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Abstract. Gram-negative bacteria produce specific mem-
brane lipids, i.e. 3-hydroxy fatty acids with 10 to 18 C
atoms. They have been recently proposed as temperature
and pH proxies in terrestrial settings. Nevertheless, the ex-
isting correlations between pH or temperature and indices
derived from 3-OH FA distribution are based on a small
soil dataset (ca. 70 samples) and only applicable region-
ally. The aim of this study was to investigate the applica-
bility of 3-OH FAs as mean annual air temperature (MAAT)
and pH proxies at the global level. This was achieved using
an extended soil dataset of 168 topsoils distributed world-
wide, covering a wide range of temperatures (5 to 30 ◦C)
and pH (3 to 8). The response of 3-OH FAs to tempera-
ture and pH was compared to that of established branched
glycerol dialkyl glycerol tetraether (GDGT)-based proxies
(MBT’5Me/CBT). Strong linear relationships between 3-OH-
FA-derived indices (RAN15, RAN17 and RIAN) and MAAT
or pH could only be obtained locally for some of the indi-
vidual transects. This suggests that these indices cannot be
used as palaeoproxies at the global scale using simple lin-

ear regression models, in contrast with the MBT’5Me and
CBT. However, strong global correlations between 3-OH FA
relative abundances and MAAT or pH were shown by us-
ing other algorithms (multiple linear regression, k-NN and
random forest models). The applicability of the three afore-
mentioned models for palaeotemperature reconstruction was
tested and compared with the MAAT record from a Chi-
nese speleothem. The calibration based on the random forest
model appeared to be the most robust. It generally showed
similar trends with previously available records and high-
lighted known climatic events poorly visible when using lo-
cal 3-OH FA calibrations. Altogether, these results demon-
strate the potential of 3-OH FAs as palaeoproxies in terres-
trial settings.
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1 Introduction

Investigating past climate variations is essential to under-
stand and predict future environmental changes, especially in
the context of global anthropogenic change. Direct records of
environmental parameters are available for the last decades,
the so-called “instrumental” period. Beyond this period,
proxies can be used to obtain indirect information on envi-
ronmental parameters. A major challenge is to develop re-
liable proxies which can be applied to continental environ-
ments in addition to marine ones. Indeed, available prox-
ies have been mainly developed and used in marine settings
as the composition and mechanism of formation of marine
sedimentary cores are less complex than in continental set-
tings, which are highly heterogeneous. Several environmen-
tal proxies based on organic (e.g. the alkenone unsaturation
index (Uk

′

37; Brassell et al., 1986) and inorganic (Mg/Ca ra-
tio and 18O/16O ratio of foraminifera; Emiliani, 1955; Erez
and Luz, 1983) fossil remains were notably developed for the
reconstruction of sea surface temperatures.

Some of the existing proxies are based on membrane lipids
synthesized by certain microorganisms (Eglinton and Eglin-
ton, 2008; Schouten et al., 2013). These microorganisms are
able to adjust the composition of their membrane lipids in
response to the prevailing environmental conditions in order
to maintain an appropriate fluidity and to ensure the optimal
state of the cellular membrane (Singer and Nicolson, 1972;
Sinensky, 1974; Hazel and Williams, 1990; Denich et al.,
2003). The structure of glycerol dialkyl glycerol tetraethers
(GDGTs), which are membrane lipids biosynthesized by ar-
chaea and some bacteria, is especially known to be related to
environmental conditions. Archaeal GDGTs are constituted
of isoprenoid alkyl chains ether-linked to glycerol, whereas
bacterial GDGTs are characterized by branched alkyl chains
instead of isoprenoid ones. The latter compounds are ubiqui-
tous in terrestrial (Weijers et al., 2007; Peterse et al., 2012;
De Jonge et al., 2014; Naafs et al., 2017) and aquatic envi-
ronments (Peterse et al., 2009; Tierney and Russell, 2009;
Sinninghe Damsté et al., 2009; Loomis et al., 2012; Peterse
et al., 2015; Weber et al., 2015). These branched GDGTs
(brGDGTs) are produced by still unidentified bacteria, al-
though some of them may belong to the phylum Acidobacte-
ria (Sinninghe Damsté et al., 2011, 2014, 2018). The analysis
of brGDGTs in a large number of soils distributed worldwide
showed that the relative distribution of these compounds is
mainly related to mean annual air temperature (MAAT) and
soil pH (Weijers et al., 2007; Peterse et al., 2012; De Jonge
et al., 2014). Even though brGDGT proxies were largely in-
vestigated over the last 10 years (De Jonge et al., 2014; Dear-
ing Crampton-Flood et al., 2020) and were applied to various
palaeorecords (e.g, Coffinet et al., 2018; Wang et al., 2020),
new molecular proxies, independent of and complementary
to brGDGTs, are needed to improve the reliability of temper-
ature reconstructions in terrestrial settings.

Recent studies have unveiled the potential of another fam-
ily of bacterial lipids – 3-hydroxy fatty acids (3-OH FAs) –
for temperature and pH reconstructions in terrestrial (Wang
et al., 2016, 2018; Huguet et al., 2019) and marine (Yang
et al., 2020) settings; 3-OH FAs with 10 to 18 carbon
atoms are specifically produced by Gram-negative bacteria
and are bound to the lipopolysaccharide (LPS) by ester or
amide bonds (Wollenweber et al., 1982; Wollenweber and
Rietschel, 1990). Three types of 3-OH FAs can be distin-
guished with either normal chains or branched chains, iso or
anteiso.

The analysis of 3-OH FAs in soils showed that the ratio of
C15 or C17 anteiso 3-OH FA to normal C15 or C17 3-OH FA
(RAN15 and RAN17 indices, respectively) were negatively
correlated with MAAT along the three mountains investi-
gated so far: Mt. Shennongjia (China; Wang et al., 2016),
Mt. Rungwe and Mt. Majella (Tanzania and Italy, respec-
tively; Huguet et al., 2019). This suggests that Gram-negative
bacteria producing these fatty acids respond to colder tem-
peratures with an increase in anteiso-C15/C17 vs. n-C15/C17
3-OH FAs in order to maintain a proper fluidity and opti-
mal state of the bacterial membrane, the so-called homeo-
viscous adaptation mechanism (Sinensky, 1974; Hazel and
Eugene Williams, 1990). Nevertheless, the relationships be-
tween RAN15 and MAAT along the three mountain transects
showed the same slopes but different intercepts (Wang et al.,
2016; Huguet et al., 2019), suggesting that regional or local
RAN15 relations may be more appropriate to apply for tem-
perature reconstructions in terrestrial settings. In contrast, a
significant calibration between RAN17 and MAAT could be
established using combined data from the three mountain re-
gions (Wang et al., 2016; Huguet et al., 2019).

Another index, defined as the cologarithm of the sum of
anteiso and iso 3-OH FAs divided by the sum of normal
homologues (RIAN index), was shown to be strongly nega-
tively correlated with soil pH along the three aforementioned
mountains (Wang et al., 2016; Huguet et al., 2020), reflect-
ing a general relative increase in normal homologues com-
pared to branched (iso and anteiso) ones with increasing pH.
This mechanism was suggested to reduce the permeability
and fluidity of the membrane for the cell to cope with lower
pH (Russell et al., 1995; Denich et al., 2003; Beales, 2004).

For the first time, 3-OH FA indices were recently applied
to the reconstruction of the temperature and hydrological
changes over the last 10 000 years in a speleothem from
China (Wang et al., 2018), showing the potential of 3-OH
FAs as independent tools for environmental reconstruction
in terrestrial settings. A very recent study based on marine
sediments from the North Pacific Ocean suggested that the
distribution of 3-OH FAs could also be used to reconstruct
sea surface temperature (Yang et al., 2020).

Even though these results are promising, the linear regres-
sions between pH or MAAT and 3-OH FA indices in terres-
trial environments are still based on a rather small dataset
(ca. 70 soil samples; Wang et al., 2016; Huguet et al., 2019).
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The aim of this study was to investigate the applicability of
3-OH FAs as MAAT and pH proxies at the global level us-
ing an extended soil dataset and refined statistical tools. The
3-OH FA distribution from 54 soils was determined in four
globally distributed altitudinal transects (Tibet, Italy, the Pe-
ruvian Andes and Chile) and was combined with data pre-
viously published by Wang et al. (2016; Mt. Shennongjia,
China), Huguet et al. (2019; Mt. Rungwe, Tanzania, and
Mt. Majella, Italy) and Véquaud et al. (2021; Mt. Bauges and
Mt. Lautaret-Galibier, France), leading to a total of 168 sam-
ples. In addition to linear regressions, non-parametric ma-
chine learning models were used to improve the global rela-
tionships between 3-OH FA distribution and MAAT or pH.
These models present the advantage of taking into account
non-linear environmental influences, in line with the intrin-
sic complexity of the environmental settings. Finally, these
new models were tested and compared by applying them
to a speleothem archive (Wang et al., 2018) representing to
date the only available MAAT record derived from 3-OH FA
proxies in a continental setting. As brGDGTs are the only
microbial organic proxies which can be used for temperature
and pH reconstructions in terrestrial settings so far, they can
serve as a reference proxy to understand the temperature and
pH dependency of 3-OH FAs analysed in the same dataset.
The 3-OH FAs and brGDGTs have thus been concomitantly
analysed to assess their reliability and complementarity as
independent temperature and pH proxies.

2 Material and methods

2.1 Soil dataset

2.1.1 Study sites

The dataset of the present study is comprised of the globally
distributed surface soils previously analysed for brGDGTs
and 3-OH FAs and collected along four altitudinal transects:
Mt. Shennongjia (China; Yang et al., 2015; Wang et al.,
2016), Mt. Rungwe (Tanzania; Coffinet et al., 2017; Huguet
et al., 2019), Mt. Majella (Italy; Huguet et al., 2019) and
Mt. Bauges and Mt. Lautaret-Balibier (France; Véquaud et
al., 2021). This set was extended with surficial soils (0–
10 cm) from four additional altitudinal transects described
below, located in Italy, Tibet, Peru and Chile (Table 1).

Soil samples were collected from 13 sites along Mount
Pollino in the Calabria region (Italy) between 0 and
2200 m a.s.l. (above sea level) (Table 1). Mt. Pollino is lo-
cated in the calcareous Apennine range and is 2248 m a.s.l. It
is framed to the north-west by the Sierra de Prete (2181 m
high) and to the south by the Pollino Abyss. The alpine
to subalpine area (above 2100 m a.s.l.) is characterized by
the presence of Mediterranean grasslands (Festuca bosniaca,
Carex kitaibeliana) and the presence of sinkholes (Todaro
et al., 2007; Scalercio et al., 2014). The mountainous veg-

etation (over 1200 m a.s.l.) is dominated by Fagus sylvatica
forests and, at the treeline, by scattered Pinus leucodermis
(Bonanomi et al., 2020). The soil is poorly developed and
dominated by calcareous soils. Between 0 and 1200 m a.s.l.
(Scalercio et al., 2014, and reference therein), Mt. Pollino
is characterized by the presence of Quercus ilex forests or
shrubs. Climate along this mountain is humid Mediterranean,
with high summer temperatures and an irregular distribu-
tion of rainfall throughout the year with pronounced sum-
mer drought (39.5 % in winter, 23.7 % in spring, 29.2 %
in autumn, 7.6 % in summer; average annual precipitation:
1570 mm; see Todaro et al., 2007). MAAT is comprised be-
tween 7 ◦C (2200 m a.s.l.) and 18 ◦C (0 m a.s.l.; Scalercio et
al., 2014). MAAT along Mt. Pollino was estimated using a
linear regression between two MAATs (16 ◦C at 400 m a.s.l.
and 10 ◦C at 1600 m a.s.l.) from the meteorological data
(Castrovillari station) recorded by Scalercio et al. (2014).
The pH of the soils analysed in the present study ranges be-
tween 4.5 and 6.8 (Table 1).

Soil samples were collected from 17 sites along Mount
Shegyla between 3106 and 4474 m a.s.l. (south-eastern Ti-
bet, China), as previously described by Wang et al. (2015).
Different climatic zonations are observed along this high-
altitude site (2700 to 4500 m a.s.l.): (i) a mountainous tem-
perate zone between 2700 and 3400 m, (ii) a subalpine cold
temperate zone between 3400 and 4300 m, and (iii) a cold
alpine zone above 4300 m. Plant species such as brown oak
(Q. semecarpifolia) or common fir (Abies alba) are abundant
within the mountainous and subalpine levels. In the cold sub-
alpine zone, the forrest’s fir (Abies georgei var. smithii) is en-
demic to western China. In the cold alpine zone, coniferous
species (Sabina saltuaria) as well as species typical of moun-
tainous regions such as Rhododendron are observed. MAAT
was estimated using a linear regression between seven mea-
sured MAATs from the data recorded by Wang et al. (2015).
The average MAAT along the transect is 4.6 ◦C, with a min-
imum of 1.1 ◦C at ca. 4500 m a.s.l. and a maximum of 8.9 ◦C
at ca. 3100 m a.s.l. (Table 1). Soil pH ranges between 4.6 and
6.4 (Table 1).

Soils were sampled from 14 sites in the Peruvian Andes
along the Kosñipata transect, located in south-eastern Peru,
in the upper part of the Madre de Dios and Madeira water-
shed, east of the Andes Cordillera (Nottingham et al., 2015).
This transect (190 m to 3700 m a.s.l.) is well documented and
is the object of numerous ecological studies (Malhi et al.,
2010; Nottingham et al., 2015). There is a shift in vegetation
zonation with increasing elevation, from tropical lowland
forest to montane cloud forest and high-elevation “Puna”
grassland. The treeline lies between 3200 and 3600 m a.s.l.
For the 14 sites sampled in this study, the lower 13 sites are
forest, and the highest site is grassland. The 14 sites are part
of a network of 1 ha forest plots (Nottingham et al., 2015); for
each 1 ha plot, 0–10 cm surface soil was sampled from five
systematically distributed locations within each 1 ha plot.
Mean annual precipitation does not vary significantly with al-
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Table 1. List of the soil samples collected along Mt. Shegyla, Mt. Pollino, the Peruvian Andes and the Chilean Andes, with corresponding
altitude (m), MAAT (◦C), pH, and 3-OH-FA- and brGDGT-derived indices.

ID Location Altitude (m) MAAT (◦C) pH RAN15 RAN17 RIAN MBT’5Me CBT’

1 Peruvian Andes 194 26.4 3.7 2.45 0.96 0.47 0.96 −1.09
2 Peruvian Andes 210 26.4 4 2.56 0.61 0.60 0.97 −1.92
3 Peruvian Andes 1063 20.7 4.7 3.46 0.70 0.54 0.98 −1.76
4 Peruvian Andes 1500 17.4 3.5 4.15 0.93 0.51 0.91 −1.55
5 Peruvian Andes 1750 15.8 3.6 5.30 1.32 0.51 0.92 −1.62
6 Peruvian Andes 1850 16 3.5 6.81 1.23 0.54 0.96 −1.76
7 Peruvian Andes 2020 14.9 3.4 7.00 1.19 0.54 0.95 −1.68
8 Peruvian Andes 2520 12.1 3.7 8.40 1.59 0.53 0.74 −1.42
9 Peruvian Andes 2720 11.1 3.6 8.42 1.73 0.48 0.83 −1.45
10 Peruvian Andes 3020 9.5 3.4 13.78 2.21 0.44 0.83 −1.21
11 Peruvian Andes 3200 8.9 3.5 6.91 2.35 0.37 0.71 −1.48
12 Peruvian Andes 3025 11.1 3.5 8.86 1.74 0.52 0.82 −1.66
13 Peruvian Andes 3400 7.7 3.4 9.10 2.39 0.40 0.71 −1.39
14 Peruvian Andes 3644 6.5 3.4 8.93 2.03 0.67 0.58 −1.21

15 Mt. Shegyla, Tibet 3106 8.9 5.53 6.22 2.02 0.51 0.59 −0.83
16 Mt. Shegyla, Tibet 3117 8.9 6.43 4.47 1.86 0.36 0.57 −0.35
17 Mt. Shegyla, Tibet 3132 8.8 6.01 4.07 1.72 0.43 0.61 −0.47
18 Mt. Shegyla, Tibet 3344 7.6 6.03 5.40 2.80 0.34 0.51 −0.67
19 Mt. Shegyla, Tibet 3355 7.5 5.87 4.09 2.71 0.23 0.44 −0.39
20 Mt. Shegyla, Tibet 3356 7.5 5.52 3.87 2.14 0.25 0.42 −0.70
21 Mt. Shegyla, Tibet 4030 3.7 5.21 8.21 3.64 0.43 0.49 −1.10
22 Mt. Shegyla, Tibet 4046 3.6 4.68 8.37 3.00 0.49 0.52 −1.17
23 Mt. Shegyla, Tibet 4050 3.6 4.61 8.94 2.47 0.50 0.44 −1.33
24 Mt. Shegyla, Tibet 3912 4.3 5.04 9.74 2.30 0.48 0.40 −2.39
25 Mt. Shegyla, Tibet 3918 4.3 4.68 8.67 1.80 0.56 0.45 −2.23
26 Mt. Shegyla, Tibet 4298 2.1 5.04 10.00 2.78 0.50 0.45 −2.04
27 Mt. Shegyla, Tibet 4295 2.2 4.87 12.17 3.90 0.50 0.42 −1.07
28 Mt. Shegyla, Tibet 4304 2.1 5.26 10.10 3.20 0.46 0.46 −1.14
29 Mt. Shegyla, Tibet 4479 1.1 5.26 10.11 3.42 0.52 0.35 −1.27
30 Mt. Shegyla, Tibet 4479 1.1 5.07 5.71 3.00 0.50 0.35 −0.84
31 Mt. Shegyla, Tibet 4474 1.1 5.24 7.88 3.65 0.42 0.32 −1.15

32 Mt. Pollino, Italy 0 18 6.78 2.71 1.19 0.15 0.50 0.31
33 Mt. Pollino, Italy 200 17 6.19 2.41 1.28 0.30 0.63 0.34
34 Mt. Pollino, Italy 400 16 6.13 4.26 2.29 0.22 0.58 0.35
35 Mt. Pollino, Italy 600 15 6.14 4.15 2.36 0.22 0.55 0.43
36 Mt. Pollino, Italy 800 14 4.53 3.34 2.77 0.34 0.51 −0.24
37 Mt. Pollino, Italy 1000 13 5.41 3.06 1.83 0.28 0.48 0.10
38 Mt. Pollino, Italy 1200 12 6.37 4.21 1.91 0.24 0.55 0.43
39 Mt. Pollino, Italy 1400 11 5.62 5.77 4.16 0.18 0.52 0.40
40 Mt. Pollino, Italy 1600 10 4.93 7.64 4.54 0.27 0.44 −0.13
41 Mt. Pollino, Italy 1800 9 4.91 3.45 3.17 0.25 0.45 −0.07
42 Mt. Pollino, Italy 2000 8 5.52 6.35 4.52 0.19 0.56 0.40
43 Mt. Pollino, Italy 2100 7.5 5.91 10.26 3.62 0.19 0.42 0.38
44 Mt. Pollino, Italy 2200 7 5.85 6.21 2.82 0.31 0.47 0.34

45 Chilean Andes 690 9.2 5.38 5.01 3.51 0.42 0.41 −0.80
46 Chilean Andes 870 8.9 5.62 5.21 2.43 0.39 0.49 −0.52
47 Chilean Andes 891 7.9 4.94 5.18 2.69 0.53 0.44 −0.94
48 Chilean Andes 915 NA 6.75 4.67 4.25 0.21 NA NA
49 Chilean Andes 980 8.5 5.63 3.87 3.83 0.28 0.46 −0.66
50 Chilean Andes 985 5.8 4.67 6.41 3.12 0.48 0.41 −1.83
51 Chilean Andes 1125 6.0 5.00 3.83 4.18 0.46 0.42 −1.02
52 Chilean Andes 1151 6.0 5.89 4.74 2.89 0.33 0.43 −0.32
53 Chilean Andes 1196 7.1 5.79 5.70 4.07 0.34 0.43 −0.40
54 Chilean Andes 1385 NA 4.43 4.85 1.91 0.39 0.41 −2.28
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titude (mean= 2448 mm yr−1, SD= 503 mm yr−1; Rapp and
Silman, 2012; Nottingham et al., 2015). MAAT is comprised
between 26.4 ◦C at 194 m altitude and 6.5 ◦C at 3644 m alti-
tude (Table 1). The pH is characteristic of acidic soils (3.4–
4.7; Table 1). Further information on these sites and soils is
available in Nottingham et al. (2015).

Soil samples were collected from 10 sites between 690 m
and 1385 m a.s.l. from the lake shore (20 to 50 m offshore)
of 10 Andean lakes located in Chile (38–39◦ S) within the
temperate forest (Table 1). High-frequency measurements of
MAAT over a period of 1 year are available for the different
sampling sites. MAAT is comprised between 5.75 and 9.2 ◦C.
Soil pH ranges between 4.4 and 6.8 (Table 1).

2.1.2 pH measurement

Following sampling, soils were immediately transported to
the laboratory and stored at −20 ◦C. Soil samples from the
Peruvian Andes, Mt. Pollino and Mt. Shegyla were then
freeze-dried, ground and sieved at 2 mm. The pH of the
freeze-dried samples was measured in ultrapure water with
a 1 : 2.5 soil–water ratio. Typically, 10 mL of ultrapure water
were added to 4 g of dry soil. The soil solution was stirred
for 30 min before decantation for one hand pH measurement
(Carter et al., 2007).

2.2 Lipid analyses

The brGDGTs and 3-OH FAs were analysed in all samples
from the Peruvian Andes, Chilean Andes, Mt. Pollino and
Mt. Shegyla.

2.2.1 3-OH FA analysis

Sample preparation for 3-OH FA analysis was identical
to that reported by Huguet et al. (2019) and Véquaud et
al. (2021). Soil samples were subjected to acid hydrolysis
(3 M HCl) and extracted with organic solvents. This organic
fraction was then rotary-evaporated, methylated in a 1 M
HCl–MeOH solution at 80 ◦C for 1 h and separated into three
fractions over an activated silica column: (i) 30 mL of hep-
tane : EtOAc (98 : 2), (ii) 30 mL of EtOAc and (iii) 30 mL
of MeOH. The 3-OH FAs contained in the second frac-
tion were derivatized at 70 ◦C for 30 min with a solu-
tion of N,O- bis(trimethylsilyl)trifluoroacetamide (BSTFA)
– trimethylchlorosilane (TMCS) 99 : 1 (Grace Davison Dis-
covery Science, USA) before gas chromatography–mass
spectrometry (GC–MS) analysis.

We analysed 3-OH FAs with an Agilent 6890N GC-
5973N using a Restek RXI-5 Sil MS silica column
(60 m× 0.25 mm, 0.25 µm inner diameter film thickness), as
previously described (Huguet et al., 2019). The 3-OH FAs
were quantified by integrating the appropriate peak on the
ion chromatogram and comparing the area with an internal
standard (3-hydroxytetradecanoic acid, 2,2,3,4,4-d5; Sigma-
Aldrich, France). The internal standard (0.5 mg/mL) was

added just before injection as a proportion of 3 µL of standard
to 100 µL of sample, as detailed by Huguet et al. (2019). The
different 3-OH FAs were identified based on their retention
time after extraction of the characteristic m/z 175 fragment
(m/z 178 for the deuterated internal standard; cf. Huguet et
al., 2019).

The RIAN index was calculated as follows (Wang et al.,
2016; Eq. 1) in the range C10–C18:

RIAN=− log[(I +A)/N ], (1)

where I , A and N represent the sum of all iso, anteiso and
normal 3-OH FAs, respectively.

RAN15 and RAN17 indices are defined as follows (Wang
et al., 2016; Eqs. 2 and 3):

RAN15 = [anteiso C15]/[normal C15] (2)
RAN17 = [anteiso C17]/[normal C17]. (3)

Analytical errors associated with the calculation of RIAN,
RAN15 and RAN17 indices are respectively 0.006, 0.3 and
0.2 based on the analysis of one sample injected nine times
during the analysis and five samples injected in triplicate.

2.2.2 brGDGT analysis

Sample preparation for brGDGT analysis was similar to
that reported by Coffinet et al. (2014). Briefly, ca. 5–10 g
of soil was extracted using an accelerated solvent extrac-
tor (ASE 100, Thermo Scientific Dionex, USA) with a
dichloromethane (DCM)–methanol (MeOH) mixture (9 : 1)
for 3× 5 min at 100 ◦C at a pressure of 100 bars in 34 mL
cells. The total lipid extract was rotary-evaporated and sepa-
rated into two fractions of increasing polarity on a column of
activated alumina: (i) 30 mL of heptane : DCM (9 : 1, v : v);
(ii) 30 mL of DCM : MeOH (1 : 1, v : v). GDGTs are con-
tained in the second fraction, which was rotary evaporated.
An aliquot (300 µL) was re-dissolved in heptane and cen-
trifuged using an Eppendorf MiniSpin centrifuge (Eppendorf
AG, Hamburg, Germany) at 7000 rpm for 1 min.

GDGTs were then analysed by high-pressure liquid chro-
matography coupled with mass spectrometry with an atmo-
spheric pressure chemical ionization source (HPLC–APCI-
MS) using a Shimadzu LCMS 2020. GDGT analysis was
performed using two Hypersil GOLD silica columns in tan-
dem (150 mm× 2.1 mm, 1.9 µm; Thermo Finnigan, USA),
thermally controlled at 40 ◦C, as described by Huguet et
al. (2019). This methodology enables the separation of 5- and
6-methyl brGDGTs. Semi-quantification of brGDGTs was
performed by comparing the integrated signal of the respec-
tive compound with the signal of a C46 synthesized internal
standard (Huguet et al., 2006) assuming their response fac-
tors to be identical.

The MBT’5Me index, reflecting the average number of
methyl groups in 5-methyl isomers of GDGTs and consid-
ered to be related to MAAT, was calculated according to De
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Jonge et al. (2014; Eq. 4):

MBT′5Me =
[Ia+Ib+Ic]

[Ia+Ib+Ic ]+ [IIa+IIb+IIc]+ [IIIa]
. (4)

The CBT’ index, reflecting the average number of cy-
clopentyl rings in GDGTs and considered to be related to
pH, was calculated as follows (De Jonge et al., 2014; Eq. 5):

CBT′ =

log
((

[Ic]+
[
IIa′

]
+

[
IIb′

]
+

[
IIc′

]
+

[
IIIa′

]
+

[
IIIb′

]
+

[
IIIc′

])
([Ia]+ [IIa]+ [IIIa])

)
. (5)

The Roman numerals correspond to the different GDGT
structures presented in De Jonge et al. (2014). The 6-methyl
brGDGTs are denoted by an apostrophe after the Roman nu-
merals for their corresponding 5-methyl isomers. Analytical
errors associated with the calculation of MBT’5Me and CBT’
indices are 0.015 and 0.02, respectively, based on the analy-
sis of three samples in triplicate among the 44 soil samples.

2.3 Statistical analysis

In order to investigate the correlations between environmen-
tal variables (pH, MAAT) and the relative abundances of bac-
terial lipids (brGDGTs and 3-OH FAs) or the indices based
on these compounds, pairwise correlation matrices were per-
formed in addition to single or multiple linear regressions. As
the dataset is not normally distributed, Spearman correlation
was used with a confidence level of 5 %.

Principal component analyses (PCAs) were performed on
the different soil samples to statistically compare the 3-OH
FA and brGDGT distributions along the different altitudinal
transects. The fractional abundances of the bacterial lipids
(3-OH FAs and brGDGTs) were used for these PCAs, with
MAAT, pH and location of the sampling site representing
supplementary variables (i.e. not influencing the principal
components of the analysis).

Independent models should be used for the development
of environmental calibrations as each of them has its own ad-
vantages and limits. Linear regression methods are simple to
use, but many of them suffer from the phenomenon of regres-
sion dilution, as previously noted (Naafs et al., 2017; Dearing
Crampton-Flood et al., 2020). That is why other models than
ordinary least squares or single or multiple regression were
also proposed in this study (cf. Sect. 4.2. for discussion of the
models): the k-nearest neighbour (k-NN) and random forest
models. These models are based on machine learning algo-
rithms, which are built on a proportion of the total dataset
(randomly defined, i.e. training dataset) and then tested on
the rest of the dataset, considered to be independent (test
dataset).

The k-NN model is based on the estimation of the mean
distances between the different samples. This is a supervised
learning method (e.g. Gangopadhyay et al., 2009). A train-
ing database composed of N “input–output” pairs is initially

constituted to estimate the output associated with a new input
x. The method of the k-nearest neighbours takes into account
the k training samples whose input is the closest to the new
input x, according to a distance to be defined. This method is
non-parametric and is used for classification and regression.
In k-NN regression, the result is the value for this object,
which is the average of the values of the k-nearest neigh-
bours. Its constraints lie in the fact that, by definition, if a
range of values is more frequent than the others, then it will
be statistically predominant among the k closest neighbours.
To overcome this limitation of the k-NN method, data selec-
tion was performed randomly on the dataset with a stratifi-
cation modality according to the MAAT or the pH. This ap-
proach allows the limitation of the impact of extreme values
as detailed below.

The random forest algorithm is also a supervised learning
method used, among other things, for regressions (e.g. Ho,
1995; Breiman, 2001; Denisko and Hoffman, 2018). This
model works by constructing a multitude of decision trees
at training time and producing the mean prediction of the
individual trees. Decision tree learning is one of the predic-
tive modelling approaches used to move from observations to
conclusions about the target value of an item. Decision trees
where variables are continuous values are called regression
trees.

The training phase required for the random forests, k-
NN and multiple linear regression was performed on 75 %
of the sample set with an iteration of 10 cross-validations
per model. Data selection was performed randomly on the
dataset (with no pre-processing of the individual 3-OH FAs)
but with a stratification modality according to the MAAT or
the pH to limit the impact of extreme values on the different
models used. Then, the robustness and precision of the dif-
ferent models were tested on the remaining 25 % of samples,
considered to be an independent dataset. Simple and multi-
ple linear regressions, PCA, k-NN and random forest mod-
els were performed with R software, version 3.6.1 (R Core
Team, 2014), using the packages tidymodels (version 0.1.0),
kknn (version 1.3.1) and ranger (version 0.11.2). A web ap-
plication is available online (https://athibault.shinyapps.io/
paleotools, last access: 12 April 2021) for the reconstruction
of 3-OH FA-derived MAAT using the machine learning mod-
els proposed in the present study.

3 Results

3.1 Distribution of bacterial lipids

3.1.1 3-OH FAs

Representing 8 elevation transects and 168 samples, 3-OH
FAs were identified in the whole dataset (Supplement Ta-
ble S1; Yang et al., 2015; Wang et al., 2016; Coffinet et
al., 2017; Huguet et al., 2019; Véquaud et al., 2021). Their
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chain lengths range between 8 and 26 C atoms, indicat-
ing that these compounds have various origins (bacteria,
plants and fungi; (Zelles, 1999; Wang et al., 2016, and ref-
erence therein). The homologues of 3-OH FAs with 10 to
18 C atoms are considered to be produced exclusively by
Gram-negative bacteria (Wollenweber and Rietschel, 1990;
Szponar et al., 2003) and will be the only ones consid-
ered in the following. Compounds with an even carbon
number and normal chains were the most abundant 3-OH
FAs in all samples (mean= 67.9 % of the total 3-OH FAs,
standard deviation (SD)= 6.8 %), with a predominance of
the n-C14 homologue (21.9 %, SD= 3.23 %; Fig. 1). Iso
(mean= 22.9 %, SD= 5.01 %) and anteiso (mean= 6.33 %,
SD= 1.79 %) isomers were also present. It must be noted
that anteiso isomers were only detected for odd carbon-
numbered 3-OH FAs (Yang et al., 2015; Wang et al., 2016;
Coffinet et al., 2017; Huguet et al., 2019).

The distribution of 3-OH FAs in the soils of the different
altitudinal transects did not show a large variability (Fig. 1).
Thus, there was no major difference in the relative abun-
dances of most of the 3-OH FAs (i-C11, a-C11, n-C11, i-C12,
a-C13, n-C13, i-C14, n-C15, i-C16, a-C17 and n-C17) between
the eight study sites, even though slight differences could
be observed for some compounds as detailed below. For ex-
ample, the Peruvian samples were characterized by higher
average proportions of n-C18 3-OH FA and lower contribu-
tion of the n-C10 and n-C12 homologues than those from the
other transects. Soils from Mt. Shegyla were characterized
by lower average proportions of n-C14 3-OH FAs and higher
abundances of i-C17 compounds compared to the other tran-
sects (Fig. 1).

3.1.2 brGDGTs

The relative abundances of brGDGTs were compared be-
tween the same transects as for 3-OH FAs, representing a
total of 168 samples. The 5- and 6-methyl isomers were sep-
arated in most of the samples (Fig. 2, Table S2), except in
older dataset, i.e. soils from Mt. Rungwe (Coffinet et al.,
2014, 2017). The brGDGT data from Mt. Rungwe will not
be further considered in this study.

The brGDGT distribution was dominated by acyclic com-
pounds (Ia, IIa, IIa’, IIIa, IIIa’) which represent on aver-
age ca. 83.4 % of total brGDGTs (SD= 14.5 %; Fig. 2). The
tetramethylated (Ia-c; mean= 39.3 %, SD of 20.5 %) and
the pentamethylated (IIa–c; 44.8 %, SD= 12.8 %) brGDGTs
were predominant over the hexamethylated ones (IIIa–c;
Fig. 2). The 5-methyl isomers were on average present in
a higher proportion (mean= 71.9 %, SD= 23.4 %) than the
6-methyl compounds (Fig. 2).

High variability in the brGDGT distribution was ob-
served among the different transects. The relative abun-
dance of brGDGT Ia was much higher in the Peruvian
soils (mean= 83 %, SD= 12.6 %) than in the other transects
(mean between 17.3 % and 61.7 %; Fig. 2). The 5-methyl

isomers were more abundant than the 6-methyl isomers
for all sites except for Mt. Pollino (mean 5-methyl= 44 %,
SD= 11.7 %) and Mt. Majella (mean 5-methyl= 33.7 %,
SD= 5.5 %; Fig. 2).

3.2 3-OH-FA- and brGDGT-derived indices

3.2.1 3-OH FAs

The RIAN index varied between 0.1 and 0.8 among the eight
elevation transects (Table 1). The RIAN index ranged from
0.37 to 0.67 for the Peruvian Andes, 0.23 to 0.56 for Mt. She-
gyla, 0.15 to 0.34 for Mt. Pollino, 0.21 to 0.53 for the Chilean
Andes, 0.26 to 0.80 for Mt. Rungwe (Huguet et al., 2019),
0.16 to 0.46 for Mt. Majella (Huguet et al., 2019), 0.20 to
0.69 for Mt. Shennongjia (Wang et al., 2016) and 0.13 to
0.56 for the French Alps (Véquaud et al., 2021).

The RAN15 varied greatly among the different sites (Ta-
ble 1). It was in the same range along Mt. Rungwe (1.04-
5.73) and Mt. Majella (0.68–6.43; Huguet et al., 2019). In
contrast, its upper limit was higher for Mt. Shennongjia
(0.68–10.18; Wang et al., 2016), Mt. Shegyla (4.07–12.17),
Mt. Pollino (2.41–10.26), the Peruvian Andes (2.45–13.77)
and the French Alps (1.44–12.26). The range of variation in
RAN15 was narrower for the Chilean Andes (3.82–6.40).

The RAN17 values were similar among the different alti-
tudinal transects (Table 1), ranging from 1.72 to 3.90 along
Mt. Shegyla, 0.73 to 4.75 along Mt. Majella (Huguet et
al., 2019), 1.19 to 4.54 along Mt. Pollino, 1.91 to 4.25 for
the Chilean Andes and 1.12 to 3.57 along Mt. Shennongjia
(Wang et al., 2016). The range of RAN17 values was nar-
rower for Mt. Rungwe (0.33–1.62; Huguet et al., 2019) and
the Peruvian Andes (0.61–2.39) and wider for the French
Alps (0.89–6.42; Véquaud et al., 2021) compared to the other
sites.

3.2.2 brGDGTs

The range of variation in the MBT’5Me index was homoge-
neous along most transects (0.32–0.63; Table 1), except the
Peruvian Andes, with higher values (0.58–0.98; Table 1). Re-
garding the CBT’ index, it showed similar ranges along the
Chilean Andes (−2.28 to −0.32) and Mt. Shegyla (−2.39 to
−0.35; Table 1). This index showed different ranges of vari-
ations along the other altitudinal transects, Mt. Shennongjia
(−1.18 to 0.50; Yang et al., 2015), Mt. Pollino (−0.24 to
0.43) and the Peruvian Andes (−1.91 to −1.09). Finally, the
CBT’ values varied within a narrow range along Mt. Ma-
jella (0.23–0.59; Huguet et al., 2019) and within a wide range
along the French Alps (−2.29 to 0.52; Véquaud et al., 2021).
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Figure 1. Average distribution of 3-OH FAs along the eight altitudinal transects investigated in this study. Data from Mt. Majella and
Mt. Rungwe were taken from Huguet et al. (2019). Data from Mt. Shennongjia were taken from Wang et al. (2016). Data from Mt. Bauges
and Mt. Lautaret-Galibier were taken from Véquaud et al. (2021).

Figure 2. Average distribution of 5- and 6-methyl brGDGTs, along Mt. Shegyla, Mt. Pollino Majella, Lautaret-Bauges, the Peruvian Andes
and the Chilean Andes. Data from Mt. Majella were taken from Huguet et al. (2019). Data from Mt. Shennongjia were taken from Yang et
al. (2015). Data from Mt. Bauges and Mt. Lautaret-Galibier were taken from Véquaud et al. (2021).
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3.3 Principal component analysis and clustering of
3-OH FA and brGDGT distribution

Principal component analyses were performed to refine the
comparison of bacterial lipid distribution (3-OH FAs and
brGDGTs) among the different altitudinal transects.

3.3.1 3-OH FAs

The first two axes of the 3-OH FA PCA explained 39.1 %
of the total variance in the dataset (Fig. 3a). Dimension 1
(23.9 %) opposed samples from Mt. Pollino in the right quad-
rant to Peruvian soils and samples from Mt. Shennongjia.
Dimension 2 (15.2 %) especially separated individuals from
Chile and Mt. Rungwe. The Wilks’ test showed that the loca-
tion of the sampling sites was the best variable discriminating
the distribution of the individuals in the PCA.

Principal component analysis performed on the tempera-
ture (RAN15, RAN17) and pH (RIAN) indices derived from
3-OH FAs showed that most of the variance was carried
by the first two axes of the PCA (Axis 1= 56.09 %, Axis
2= 35.29 %; Fig. S2). The first axis was highly correlated
with the RAN15 (r = 0.87) and RAN17 (r = 0.93) as well as
with MAAT (r =−0.67), while Axis 2 showed strong corre-
lations with the RIAN (r = 0.96) and pH (r =−0.61). The
PCA allowed the visualization of relationships at the scale of
the whole dataset between MAAT and RAN15 and RAN17
(r =−0.61; r =−0.64, respectively) and between pH and
RIAN (r =−0.53).

3.3.2 brGDGTs

The first two axes of the brGDGT PCA explained 57.7 %
of the total variance in the dataset (Fig. 3b). Dimension 1
(42.6 %) strongly discriminated soils from Mt. Majella and,
to a lesser extent, Mt. Pollino in the right quadrant from those
from Mt. Shegyla, the Peruvian Andes and the Chilean An-
des in the left quadrant. Mt. Majella and Mt. Pollino were
also discriminated negatively along dimension 2 (15.1 %).
Samples from Mt. Shennongjia and Lautaret-Galibier were
distributed over the entire PCA. As for the 3-OH FAs, Wilks’
test showed that the location of the sampling sites was the
best variable discriminating the distribution of the brGDGTs
in the PCA.

4 Discussion

4.1 3-OH-FA- and brGDGT-derived proxies

Previous studies conducted on soils from individual altitudi-
nal transects revealed (1) local linear relationships between
MAAT or pH and 3-OH FA indices and (2) the potential for
combined calibrations using simple linear regressions (Wang
et al., 2016; Huguet et al., 2019; Véquaud et al., 2021). In
the present study, the existence of linear relationships be-

tween 3-OH-FA-derived indices and environmental variables
was further investigated using an extended soil dataset, and
the corresponding results were compared with those derived
from the brGDGTs, used as an established reference proxy.

4.1.1 Relationships between pH and bacterial
lipid-derived proxies

The relationship between RIAN and pH was investigated
along each of the altitudinal transects (Fig. 4a, Table S3). No
significant linear relationship was obtained for the Peruvian
Andes, Mt. Rungwe, Mt. Pollino and Mt. Majella (Huguet et
al., 2019), and weak to moderate correlations were observed
along Mt. Shegyla and Lautaret-Bauges (R2

= 0.29–0.46;
Table S3). In contrast, strong regressions between RIAN and
pH were observed along Mt. Shennongjia (R2

= 0.71) and
in the Chilean Andes (R2

= 0.66). A weak linear relation-
ship between RIAN and pH (R2

= 0.34, RMSE= 0.99, p =
7.39× 10−17) was also obtained when considering the 168
samples for the eight elevation transects altogether. There-
fore, our results confirm the general influence of pH on the
relative abundance of 3-OH FAs (Huguet et al., 2019) but
suggest that strong linear correlations between RIAN and pH
can only be obtained (i) at a local level and (ii) only for some
of the sites.

As previously suggested (Huguet et al., 2019), the absence
or weakness of linear correlations between RIAN and pH
may be at least partly due to the small range of variation in
pH (< 2 units) along some mountains, such as Mt. Rungwe,
Mt. Majella and the Peruvian Andes (Fig. 4a, Table 1; Huguet
et al., 2019). Transects for the Peruvian Andes and Mt. Ma-
jella were also characterized by the absence of relationships
between pH and the brGDGT-derived CBT’ index, support-
ing the hypothesis that narrow pH ranges limit the potential
of obtaining linear relationships between indices based on
bacterial lipids and pH. Nevertheless, the existence of a nar-
row pH range was not the only limiting factor in obtaining
a strong linear regression between RIAN and pH. Indeed,
MAAT rather than soil pH was the dominant driver of soil
bacterial diversity and community composition for the Peru-
vian transect (determined using 16S rRNA sequencing (Not-
tingham et al., 2018) and phospholipid fatty acids (Whitaker
et al., 2014)), consistent with the weak correlation between
soil pH and bacterial lipids. The weakness of the RIAN–pH
relationship may also be partly due to the heterogeneity of
soils encountered along a given altitudinal transect, repre-
senting specific microenvironments, and to the large diversity
of bacterial communities in soils from different elevations
(Siles and Margesin, 2016). The distribution of 3-OH FAs
varies greatly among Gram-negative bacterial species (Bhat
and Carlson, 1992), which may account for the significant
variability in RIAN values observed in soils from a given
transect. Altogether, these results suggest that linear models
are not the most suitable for establishing a global calibration
between RIAN and pH in soils.
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Figure 3. PCA biplot of (a) 3-OH FA fractional abundances in soil samples from the eight altitudinal transects and (b) brGDGT fractional
abundances in soil samples from seven of the eight altitudinal transects. The brGDGT data from Mt. Rungwe, for which 5- and 6-methyl
isomers were not separated, were not included in the PCA.

Biogeosciences, 18, 3937–3959, 2021 https://doi.org/10.5194/bg-18-3937-2021



P. Véquaud et al.: Bacterial lipids as temperature and pH proxies in soils 3947

Figure 4. Linear regressions between (a) pH and RIAN and (b) pH and CBT’ along the eight altitudinal transects investigated. Dotted lines
represent the 95 % confidence interval for each regression, and coloured areas represent the 95 % confidence interval for each regression.
Data for Mt. Majella and Mt. Rungwe were taken from Huguet et al. (2019). Data from Mt. Shennongjia were taken from Yang et al. (2015)
and Wang et al. (2016). Data from Mt. Bauges and Mt. Lautaret-Galibier were taken from Véquaud et al. (2021). Only significant regressions
(p < 0.05) are shown.

Concerning GDGTs, moderate to strong relationships be-
tween brGDGT-derived CBT’ index and pH were observed
along five of the seven altitudinal transects investigated
(Fig. 4b, Table S3). All the individual linear relationships
between CBT’ and pH, where present, had similar slopes
and ordinates and share (for most of the samples) the same
95 % confidence intervals (p value< 0.5). This resulted in
a strong linear relationship between CBT’ index and pH
values for the dataset (R2

= 0.68, RMSE= 0.71, n= 140),
which is weaker than the global calibration (R2

= 0.85,
RMSE= 0.52, n= 221) proposed by De Jonge et al. (2014).

The discrepancy in relationships between temperature and
brGDGTs and 3-OH FAs might partly be due to differences
in the relative abundance of these lipids among bacterial
communities. The brGDGTs are produced by a more re-
stricted and less diverse number of bacterial species than 3-
OH FAs, which are arguably biosynthesized by a large di-
versity of Gram-negative bacteria species (e.g. Wakeham et
al., 2003, Zelles et al., 1995; Zelles, 1999). So far, only bac-
teria from the Acidobacteria phylum were identified as pu-
tative brGDGT producers in soils (Sinninghe Damsté et al.,
2018). The hypothetical lower diversity of brGDGT produc-
ers, in contrast with 3-OH FAs, might explain the more ho-
mogenous response and lower scatter of the relationships be-
tween pH and CBT’ index. Moreover, the CBT’ index is a ra-
tio based on a restricted number of compounds, representing
the direct dependence of the degree of cyclization of bacte-
rial GDGTs on pH. Conversely, the RIAN index is calculated
from the relative abundances of all the individual 3-OH FAs

between C10 and C18 (Wang et al., 2016). It cannot be ruled
out that some of the compounds used to calculate the RIAN
index are preferentially synthesized, as part of the homeo-
viscous mechanism, in response to environmental variables
other than pH. This calls for a better understanding of the
ecology of 3-OH-FA-producing bacteria and their adaptation
mechanisms.

4.1.2 Relationships between MAAT and bacterial
lipid-derived proxies

RAN15 was previously shown to be correlated with MAAT
along Mt. Rungwe, Mt. Majella and Mt. Shennongjia (Wang
et al., 2016; Huguet et al., 2019). Moderate to strong linear
correlations (R2

= 0.49–0.79) between RAN15 and MAAT
were also observed along most of the individual transects in-
vestigated (Fig. 5a, Table S3), except along the Chilean and
Lautaret-Bauges transects. The individual correlations do not
share the same 95 % confidence intervals, and even when
some of them present similar slopes, the regression lines
display significantly different intercepts (p value> 0.05)
(Fig. 5a). This supports the hypothesis of a site-dependent
effect of the linear RAN15–MAAT relationship previously
made by Huguet et al. (2019).

Similarly to RAN15, RAN17 was moderately to strongly
correlated (R2

= 0.53–0.81) with MAAT along five out of
eight individual transects (Fig. 5b, Table S3). The small
range of variation in MAAT along the Chilean transect (6.0–
9.2 ◦C) (Table 1), associated with that of the RAN15/RAN17,
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Figure 5. Linear regressions between (a) MAAT and RAN15 and (b) MAAT and RAN17 along the eight altitudinal transects investigated.
Dotted lines represent the 95 % confidence interval for each regression, and coloured areas represent the 95 % confidence interval for each
regression. Data from Mt. Majella and Mt. Rungwe were taken from Huguet et al. (2019). Data from Mt. Shennongjia were taken from
Wang et al. (2016). Data from Mt. Bauges and Mt. Lautaret-Galibier were taken from Véquaud et al. (2021). Only significant regressions
(p < 0.05) are shown.

could explain the lack of a linear relationship between the
MAAT and these indices. As for the French Alps (Mt. Bauges
and Mt. Lautaret-Galibier), the influence of local environ-
mental parameters (pH and to a lesser extent soil moisture
and grain size, related to vegetation and soil types, or thermal
regimes associated with the snow cover) on 3-OH FA dis-
tribution was shown to be predominant over that of MAAT
(Véquaud et al., 2021). In contrast with RAN15, the lin-
ear regressions between RAN17 and MAAT along Mt. She-
gyla, Mt. Shennongjia, Mt. Rungwe and the Peruvian Andes
transects share confidence intervals at 95 % and have simi-
lar slope and intercept values (p value< 0.05; Fig. 5b, Ta-
ble S3), suggesting that RAN17 could be a more effective
global proxy for MAAT reconstructions than RAN15.

In order to test the hypothesis that RAN17 rather than
RAN15 is a more effective global proxy for MAAT, the global
calibrations between RAN15/RAN17 and MAAT based on
the entire soil dataset (n= 168) were compared. The two
linear regressions had similar moderate determination co-
efficients (R2

= 0.37 and 0.41 for RAN15 and RAN17, re-
spectively) and similar high RMSE (RMSE= 5.46 ◦C and
5.28 ◦C for RAN15 and RAN17, respectively; Table S3).
For all transects (except for the Mt. Majella RAN17–
MAAT relationship), the individual local regressions be-
tween RAN15/RAN17 and MAAT outperformed the pro-
posed global linear calibrations in terms of determination co-
efficients (0.49–0.81) and RMSE (1.98–3.57 ◦C; Table S3),
suggesting that local rather than global linear transfer func-

tions based on RAN15 or RAN17 may be more appropriate
for palaeotemperature reconstructions in soils.

The difficulties in establishing global linear
RAN15/RAN17–MAAT calibrations may partly be due
to the fact that microbial diversity, especially for 3-OH-
FA-producing Gram-negative bacteria (Margesin et al.,
2009; Siles and Margesin, 2016), can vary greatly from one
soil to another, resulting in variation in the RAN15/RAN17
indices, as also assumed for the RIAN. The strong regional
dependence of the 3-OH FA distribution may thus explain
the weak correlation between 3-OH-FA-derived indices
(RAN15, RAN17 and RIAN) and environmental variables
(MAAT or pH) at a global level. This regional dependency
was further supported by the PCA of the relative abundance
of 3-OH FAs across the global dataset, which showed that
the individuals were grouped based on the sampling location
(Fig. 3a).

In addition to 3-OH FAs, the relationships between
brGDGT distribution and MAAT were investigated along
the seven transects for which the 5- and 6-methyl brGDGT
isomers were separated (Mt. Shegyla, Mt. Pollino Majella,
Lautaret-Bauges, Mt. Shennongjia, the Peruvian Andes and
the Chilean Andes). These individual transects showed mod-
erate to strong relationships between MAAT and MBT’5Me
(R2 0.35–0.89; Fig. 6 and Table S3), with similar slopes and
ordinates (except for the Peruvian Andes), and shared 95 %
confidence intervals for most of the samples. A distinct rela-
tionship between MBT’5Me and MAAT was observed along
the Peruvian Andes and Mt. Majella transects (Fig. 6a), as
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Figure 6. Linear regressions between (a) MAAT and MBT’5Me
along seven of the eight altitudinal transects investigated. Data from
Mt. Rungwe (Coffinet et al., 2014), for which 5- and 6-methyl
brGDGTs were not separated, were not included in this graph. Dot-
ted lines represent the 95 % confidence interval for each regres-
sion, and coloured areas represent the 95 % confidence interval for
each regression. Data from Mt. Majella were taken from Huguet et
al. (2019). Data from Mt. Bauges and Mt. Lautaret-Galibier were
taken from Véquaud et al. (2021). Data from Mt. Shennongjia were
taken from Yang et al. (2015). The global soil calibration by De
Jonge et al. (2014) was applied to all these transects. Only signifi-
cant regressions (p < 0.05) are shown.

also observed for the RIAN and RAN15 indices (Figs. 4a and
5a). The singularity of the Peruvian soils is also visible in the
PCA performed on the brGDGT distribution (Fig. 3b), where
the samples from this region are pooled separately from the
rest of the dataset. This specific trend is difficult to explain,
even though the Peruvian Andes are subjected to warmer cli-
matic conditions (Table 1) than the other temperate transects,
which may in turn affect the nature of the microbial commu-
nities encountered in the soils and the bacteria lipid distri-
bution (Siles and Margesin, 2016; Hofmann et al., 2016; De
Jonge et al., 2019).

A moderate linear relationship between MAAT and
MBT’5Me (MAAT= 24.3×MBT’5Me− 5.03, R2

= 0.57,
RMSE= 3.39 ◦C, n= 140; Table S3) was observed after
combining the data for the seven aforementioned altitu-
dinal transects. This global relationship follows a similar
trend as the calibration proposed by De Jonge et al. (2014)
(MAAT= 31.45×MBT’5Me− 8.57) and is more robust and

accurate than those obtained between the RAN15/RAN17 and
MAAT (Table S3). This confirms that the MBT’5Me index
can be applied at a global scale using a simple linear regres-
sion model as previously shown (De Jonge et al., 2014; Naafs
et al., 2017), in contrast with the RAN15 and RAN17 proxies,
for which only strong local calibrations with MAAT were
found.

As a similar conclusion was obtained for the RIAN–pH
proxy, it appears necessary to use more complex models to
develop global calibrations between 3-OH-FA-derived prox-
ies and MAAT or pH. This novel method allows the com-
plexity and specificity of each environmental site to be taken
into account.

4.2 Development of new models for the reconstruction
of MAAT and pH from 3-OH FAs

Several complementary methods were recently used to de-
rive calibrations with environmental parameters from organic
proxies. Most calibrations between lipid distribution and en-
vironmental variables were based on simple linear regres-
sion models, most often the ordinary least square regression
(e.g. for brGDGTs: De Jonge et al., 2014; Wang et al., 2016)
as it is simple and easy to implement and understand. Other
linear models, such as Deming regression (Naafs et al., 2017)
or Bayesian regression (Tierney and Tingley, 2014; Dearing
Crampton-Flood et al., 2020), were also used. Nevertheless,
these single linear regression methods rely on a given index
(e.g. MBT’5Me or CBT’ for brGDGTs) which is correlated
with environmental parameters. This represents a limitation
as the relative distribution of bacterial lipids can be con-
comitantly influenced by several environmental parameters
(e.g. Véquaud et al., 2021) and can also depend on the diver-
sity of the bacteria producing these compounds (Parker et al.,
1982; Bhat and Carlson, 1992; Zelles, 1999). In contrast, us-
ing bacterial lipid relative abundances rather than a single in-
dex in the relationships with environmental variables appears
less restrictive and more representative of the environmental
complexity. Other models can be used in this way, such as
those based on multiple regressions (e.g. Peterse et al., 2012;
De Jonge et al., 2014; Russell et al., 2018), describing the re-
lationships between one or several explained variables (e.g.
bacterial lipid abundances) and one or several explanatory
variables (e.g. MAAT, pH). Multiple regressions can reveal
the presence of linear relationships among several known
variables but cannot take into account non-linear influences,
which may occur in complex environmental settings. This
limitation, common to all linear models, can be overcome
using non-parametric methods such as some of the machine
learning algorithms (e.g. nearest neighbours or random for-
est; Dunkley Jones et al., 2020). The reliability of the latter
models lies in the fact that they are non-linear, which helps
capture the intrinsic complexity of the environmental setting,
and that they avoid the regression dilution phenomenon ob-
served in most linear models. Moreover, their robustness is
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improved by the fact that they are built on a randomly de-
fined proportion of the total dataset and then tested on the rest
of the dataset, considered to be independent. Last, these ma-
chine learning algorithms are flexible and are continuously
evolving when adding new samples.

As shown in Sect. 4.1., robust global calibrations between
3-OH-FA-derived indices (RIAN, RAN15 and RAN17) and
MAAT or pH could not be established using a simple lin-
ear regression model, contrary to what was observed with
brGDGT-derived indices. Therefore, three different indepen-
dent and complementary models were tested to potentially
establish stronger statistical relationships between 3-OH FA
distributions and pH or MAAT at the global level: (i) a
parametric model – multiple linear regression, (ii) two non-
parametric models – random forest (e.g. Ho, 1995; (Denisko
and Hoffman, 2018) and k-NN algorithms (e.g. Gangopad-
hyay et al., 2009). As discussed above, the multiple linear
regression model allows the determination of linear relation-
ships between MAAT or pH and the individual relative abun-
dances of 3-OH FAs instead of indices derived from the
latter. As for the two non-parametric models, they present
among other things the advantage of taking into account non-
linear environmental influences.

The three models, based on a supervised machine learning
approach, were applied to the total soil dataset (n= 168). All
the 3-OH FA homologues of Gram-negative bacterial origin
(i.e. with chain lengths between C10 and C18; Wilkinson et
al., 1988) were included in the models, whatever their abun-
dance, to keep the maximum variability and take into account
the specificity and complexity of each altitudinal transect. In-
deed, the nature of the individual 3-OH FAs whose fractional
abundance is mainly influenced by MAAT or pH may be site-
dependent, as previously observed (Véquaud et al., 2021).
The performances of these three models were compared with
those of the linear calibrations between 3-OH-FA-derived in-
dices (RAN15, RAN17, RIAN) and MAAT or pH (Table 2).

4.2.1 Temperature calibrations

The multiple linear regression model yielded a strong rela-
tionship between 3-OH FA relative abundances and MAAT
(Fig. 7a, Eq. 6):

MAAT(◦C)=

− 59.02×[nC10] + 102.1×[iC11] + 2628.49
×[aC11] − 165.58×[nC11] − 79.799×[nC12] + 89.93

×[iC13] + 205.06×[aC13] − 136.25×[nC13] − 309.71

×[iC14] − 43.16×[nC14] − 9.27×[iC15] − 308.53
×[aC15] + 66.06×[nC15] − 60.57×[iC16] + 15.53
×[nC16] + 13.52×[iC17] − 228.76×[aC17] − 91.12
×[nC17] + 43.71
(n= 168;R2

= 0.79;RMSE = 3.0 ◦C) . (6)

This model, which takes into account the Gram-negative bac-
terial 3-OH FAs (C10-C18; Wilkinson et al., 1988), presents
a higher strength than the global linear relationships be-
tween 3-OH-FA-derived indices and MAAT (R2

= 0.37 and
0.41, RMSE= 5.5 ◦C and 5.3 ◦C for RAN15 and RAN17,
respectively; Table 2). The multiple linear regression also
improves the accuracy and robustness of MAAT prediction
in comparison with single linear relationships, with lower
RMSE (3.0 ◦C), variance in the residuals (9.2 ◦C; Fig. 7d)
and mean absolute error (MAE; 2.3 ◦C) than with the RAN15
and RAN17 calibrations (RMSE of 5.5 and 5.3 ◦C, variance
of 29.8 and 27.9 ◦C, MAE of 4.0 and 3.9 ◦C for RAN15 and
RAN17, respectively; Table 2).

Similarly to the multiple linear regression model (Fig. 7a),
the random forest (Fig. 7b) and k-NN (Fig. 7c) calibrations
are characterized by strong determination coefficients (R2

0.83 and 0.77, respectively). The variance in residuals, MAE
and RMSE of the random forest calibration are slightly lower
than those of the multiple linear regression and k-NN mod-
els (Table 2). An advantage of the random forest algorithm
lies in the fact that the weight of the different variables used
to define the model can be quantified using the permutation
importance method (Breiman, 2001). The a-C15, i-C14, a-
C17, n-C12 and n-C15 as well as to a lesser extent n-C17,
n-C16 and i-C13 3-OH FAs were observed to be the homo-
logues predominantly used by the model to estimate MAAT
values (Fig. 9a). They include all the 3-OH FAs involved in
the calculation of the RAN15 and RAN17 indices, especially
the a-C15 homologue. This may explain why linear relation-
ships between the RAN15/RAN17 and MAAT could be es-
tablished along some, but not all, of the altitudinal transects
investigated until now (Wang et al., 2016; Huguet al., 2019;
Véquaud et al., 2021; this study). Nevertheless, other indi-
vidual 3-OH FAs than those appearing in the calculation of
the RAN15 and RAN17 also have a major weight in the ran-
dom forest model and seem to be influenced by temperature
changes, explaining the moderate determination coefficients
of the global RAN15/RAN17–MAAT linear relationships ob-
served in this study.

On the whole, the strength and accuracy of the multiple
linear regression, k-NN and random forest models are much
higher than those based on the RAN15 and RAN17 indices
(Table 2). This is likely related to the fact that the three afore-
mentioned models integrate the whole suite of 3-OH FA ho-
mologues (C10 to C18) and thus better capture the complex-
ity of the response of soil Gram-negative bacteria and their
lipid distribution to temperature changes than the RAN15 and
RAN17 indices. They also present the advantage of increas-
ing the range of temperature, which may be predicted by
more than 4 ◦C in comparison with the RAN15 and RAN17
calibrations (Table 2). Indeed, even though the lower limit of
MAAT estimates for the three models tested in the present
study is slightly higher than those based on the RAN15 and
RAN17 indices, the upper limit of the MAAT, which can be
estimated using the multiple linear regression, random forest
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Table 2. Characteristics of the different models proposed in this study to estimate MAAT and pH: R2, RMSE, variance in the residuals,
mean absolute error (MAE), and the upper and lower limits of estimation. The “training” samples were used to develop the different machine
learning models, which were then tested on a “test” sample set.

Model n n R2 RMSE Variance Mean Lower estimation Upper estimation
(training) (test) in residuals absolute error limit (◦C) limit (◦C)

MAAT (◦C) RAN15 – 168 0.37 5.5 29.8 4.0 −3.1 17.2
RAN17 – 168 0.41 5.3 27.9 3.9 −4.3 17.0
k-NN 128 40 0.77 3.1 9.4 2.3 0.5 25.0
Multiple linear regression 128 40 0.79 3.0 9.2 2.3 −1.2 25.8
Random forest 128 40 0.83 2.8 8.0 2.2 0.8 24.9

pH RIAN – 168 0.34 1.0 1.0 0.8 4.1 7.9
k-NN 128 40 0.70 0.7 0.5 0.5 3.4 8.7
Multiple linear regression 128 40 0.64 0.8 0.6 0.6 4.0 8.3
Random forest 128 40 0.68 0.7 0.5 0.5 3.5 7.8

and k-NN models, is substantially higher (ca. 25 ◦C) than that
based on the RAN15 or RAN17 indices (ca. 17 ◦C; Table 2).

The three proposed models show the potential of 3-OH
FAs as MAAT proxies at the global level, which was not vis-
ible using RAN15 and RAN17 indices. The non-parametric
models (random forest and k-NN) may benefit from the fact
that they take into account the complex, non-linear relation-
ships between environmental parameters and bacterial lipid
abundance. This is highlighted when comparing the inde-
pendent variations in the individual 3-OH FA relative abun-
dances with estimated MAAT for the three proposed models,
with non-linear trends for the k-NN and random forest mod-
els, in contrast with the multiple linear regression (Fig. S2).

4.2.2 pH calibrations

A robust linear relationship between the RIAN and pH could
not be obtained from the whole soil dataset (Fig. 4a, Table 2).
In contrast, the multiple regression model provided a strong
correlation between the 3-OH FA fractional abundances and
pH (Fig. 8a, Eq. 7):

pH=−1.45

×[nC10] − 31.70×[iC11] − 162.09×[aC11] − 53.22
×[nC11] − 6.21×[nC12] + 56.24×[iC13] − 2.02
×[aC13] + 15.10×[nC13] + 23.99×[iC14] − 4.54
×[nC14] − 13.79×[iC15] − 15.74×[aC15] + 1.93
×[nC15] − 46.29×[iC16] − 3.20×[nC16] − 1.80
×[iC17] − 8.90×[aC17] + 11.46×[nC17] − 3.63
×[nC18] + 7.84

(n= 168;R2
= 0.64;RMSE= 0.8). (7)

The random forest (Fig. 8b) and k-NN pH models (Fig. 8c)
appeared to be slightly more robust and accurate than the
multiple linear regression (Fig. 8a) as the former two models
presented slightly higher determination coefficients (R2

=

0.68 and 0.70 for k-NN and random forest, respectively) and

slightly lower RMSE (0.7), variance in residuals (0.5) and
MAE (0.5) than the multiple linear regression (Table 2).

As for the MAAT random forest model, the weight of the
individual 3-OH FAs in the pH random forest calibration was
determined (Fig. 9b). Three homologues – i-C13, n-C15, i-
C16 – had a larger weight in the global pH model than the
others (Fig. 9b). This is consistent with a detailed study of 3-
OH FA distribution in soils from the French Alps (Véquaud
et al., 2021), where the i-C13 and i-C16 3-OH FAs were ob-
served to be predominantly influenced by pH. Nevertheless,
in addition to the three aforementioned homologues, most
of the C10 to C18 3-OH FAs have a non-negligible influ-
ence in the random forest pH model, except the a-C15 and
i-C14 compounds (Fig. 9b). This is in line with the definition
of the 3-OH FA-based pH index (RIAN) defined by Wang
et al. (2016), which includes the whole suite of 3-OH FAs.
These results suggest that soil Gram-negative bacteria may
respond to pH variations by modifying the whole distribu-
tion of associated 3-OH FAs (C10-C18). This would need to
be further confirmed by, for example, investigating the in-
fluence of pH variations on pure strains of Gram-negative
bacteria isolated from soils.

In any case, in contrast with the RIAN index, the multiple
linear regression, k-NN and random forest models provided
strong global calibrations with pH (Fig. 8) as robust as the
global CBT’–pH relationship (Fig. 4b). The three proposed
models also increase the range of pH which can be estimated
(∼ 4 pH units) in comparison with the RIAN global cali-
bration (∼ 3 pH units), further strengthening the potential of
these models for soil pH reconstruction. As MAAT models,
the independent variations in the individual 3-OH FA relative
abundances with estimated pH highlight non-linear trends
for the k-NN and random forest models, in contrast with
the multiple linear regression (Fig. S3), which might favour
the use of the two non-parametric models in order to take
into account such non-linear influences. The machine learn-
ing MAAT and pH models proposed in this paper are flexible
and could be further improved by increasing the number of
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Figure 7. Results of the three different models tested to reconstruct the MAAT from 3-OH FA distribution: observed MAAT (◦C) vs. predicted
MAAT (◦C) for (a) the multiple linear regression model, (b) the random forest model and (c) the k-NN method. MAAT residuals plotted
against the predicted MAAT for (d) the multiple linear regression model, (e) the random forest model and (f) the k-NN method.

soil samples analysed and the representativeness of the dif-
ferent MAAT and pH values within the dataset.

4.3 Palaeoclimate application of the new 3-OH FA and
MAAT models

The multiple regression, random forest and k-NN models de-
veloped for MAAT reconstruction using 3-OH FAs were sim-
ilar in terms of robustness and precision (Fig. 7a–c, Table 2).
The performance and validity of these global terrestrial cal-
ibrations for palaeotemperature reconstructions were thus
tested and compared with the MAAT record from a Chinese
speleothem (HS4 stalagmite) covering the last 9000 years BP
(Wang et al., 2018). This terrestrial archive was the object of
previous palaeostudies, thus providing a context for the in-
terpretation of the MAAT data, and, to the best of our knowl-
edge, represents the only published application of 3-OH FAs
as a palaeotemperature proxy in terrestrial settings (Wang et
al., 2018). The local comparison of 3-OH FA distributions in
the overlying soils and stalagmites and the analyses of bacte-
rial diversity and transport pathways suggested that the 3-OH
FAs in the HS4 speleothem were mainly soil-derived (Wang
et al., 2018), supporting the application of soil calibrations
for MAAT reconstruction from this archive, although not be-
ing a palaeosoil itself. The first palaeoapplication of 3-OH
FAs (Wang et al., 2018) on this speleothem relied on a local
calibration between the RAN15 index and MAAT proposed
by Wang et al. (2016) using soils from Mt. Shennongjia. The

MAAT estimates derived from our global soil calibrations
were compared with those obtained from this local soil cali-
bration (Wang et al., 2016).

4.3.1 Comparison of the multiple linear regression,
k-NN and random forest global MAAT
calibrations

The multiple regression model (Eq. 6, Fig. 7a) yielded
MAAT estimates ranging between −35 and 22.8 ◦C over
the last 9000 years (Fig. S4). The temperature minimum
(−35 ◦C) observed at 560 years BP can be considered to be
an outlier, with a significantly lower MAAT estimate than
those provided by the other samples. After having ignored
this apparent outlier, the MAAT range over the last 9000
years was comprised between 3.2 and 22.8 ◦C, with tem-
perature shifts of up to 15 ◦C within very short periods of
time. The observed range of MAAT and large variations in
temperature over such short periods appear far too excessive
as the expected amplitude of MAAT during the Holocene
is expected to be up to ca. 2–3 ◦C (Liu et al., 2014). This
highly questions the reliability of the multiple linear regres-
sion model for MAAT reconstruction from this archive.

MAAT estimates derived from the k-NN calibration
ranged between 6.5 and 19.7 ◦C over the last 9000 years
(Fig. S4). Abrupt shifts in MAAT of more than 10 ◦C were
observed between 2000 and 4000 years BP. Such variations,
higher than the RMSE of the calibration, appear excessive for
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Figure 8. Results of the three different models tested to reconstruct the pH from 3-OH FA distribution: observed pH vs. predicted pH for
(a) the multiple linear regression model, (b) the random forest model and (c) the k-NN method. The pH residuals plotted against the predicted
pH for (d) the multiple linear regression model, (e) the random forest model and (f) the k-NN method.

Figure 9. Importance (arbitrary unit) of the 3-OH FAs used to estimate (a) MAAT and (b) pH in the random forest models proposed in this
study according to the permutation importance method (Breiman, 2001).

the Holocene period, as previously discussed for the multiple
regression model. The bias in MAAT estimates may be due
to the intrinsic definition of the k-NN model, which is better
suited for uniformly distributed datasets. This is not the case
here as the individual transects heterogeneously cover a wide
range of temperatures. The application of a global calibration

at the local scale – that of the HS4 stalagmite – using the k-
NN method and based on the similarities among samples thus
does not appear appropriate. Such a calibration might be im-
proved by extending the dataset with samples more equally
distributed across a wider range of global climatic gradients.
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Figure 10. Comparison of the 3-OH FA model–MAAT record with other time series and proxy records for the HS4 speleothem (Wang et
al., 2018). (a) RAN15–MAAT record reconstructed using a local Chinese calibration (Wang et al., 2016, 2018). (b) 3-OH FA random forest
model–MAAT. (c) The CaCO3 oxygen isotope record (Hu et al., 2008b). (d) Total solar irradiance (TSI; W/m2) during the Holocene (past
9300 years) based on a composite described in Steinhilber et al. (2009).

Finally, the random forest model yielded MAAT estimates
between 10.6 and 19.3 ◦C, i.e. a smaller estimation range
than the k-NN algorithm and multiple regression model
(Fig. S4). The amplitude of the shifts observed between 2000
and 4000 years BP was ca. 4 ◦C, which is climatically more
consistent than the variations obtained with the k-NN method
and multiple regression model, even though these large vari-
ations in MAAT over such short periods of time still appear
too excessive. Furthermore, the application of the global ran-
dom forest calibration roughly provided similar temperature
trends as those derived from the local RAN15 calibration by
Wang et al. (2018; Fig. 10), despite some of the largest os-
cillations for the global model. These results suggest that the
random forest calibration is more reliable than the multiple
regression and k-NN ones. This can be explained by the in-
trinsic definition of the random forest algorithm, which aver-
ages the results of several independent models (so-called de-
cision trees), thus reducing the variance and thus the forecast
error in the final model. This is also in line with the slightly
higher accuracy of the random forest calibration compared
with the other two models (Table 2), as previously discussed.
In contrast, the multiple regression calibration was the less
performant of the three models in the investigated archive.
This may be related to its parametric nature and the fact that
it does not take into account the natural non-linear variations

in 3-OH FA fractional abundances highlighted by the random
forest and k-NN models (Figs. 2 and 3).

In conclusion, the three models proposed in this study,
especially the random forest, have potential for MAAT re-
construction, even though the application to a well-known
palaeoclimate archive showed their limitations. This high-
lights the importance of testing new calibrations on well-
characterized archives to investigate their reliability.

4.3.2 Comparison of the global random forest and local
RAN15 calibrations for MAAT reconstruction

The random forest model was observed to be the most reli-
able of the three proposed global MAAT calibrations (Fig. 7).
To go further, we compared the temperature record derived
from our global random forest calibration with that derived
from the local MAAT–RAN15 transfer function proposed by
Wang et al. (2016; Fig. 10). The application of the local
RAN15 calibration to the HS4 stalagmite yielded an aver-
age MAAT of ca. 18.4 ◦C over the most recent part of the
record (last 800 years; Fig. 10), consistent with the MAAT
of 18 ◦C recorded in situ by a temperature logger (Hu et al.,
2008; Wang et al., 2018). In contrast, absolute MAAT esti-
mates derived from the random forest model were on aver-
age 14.2 ◦C over the last 800 years and were generally lower
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than those obtained from the local RAN15 calibration over
the whole record. Altogether, these results suggest that the
random forest model tends to underestimate absolute MAAT,
in contrast with the RAN15 calibration proposed by Wang et
al. (2016). This discrepancy may be due to the fact that the
calibration proposed in the present study is based on a global
dataset, with samples subject to a large variety of environ-
mental and climatic conditions, whereas the RAN15–MAAT
transfer function by Wang et al. (2016) was constructed us-
ing soil samples from a regional altitudinal transect, located
at only 120 km distance from the stalagmite site (Wang et al.,
2018).

Even though the local calibration by Wang et al. (2016)
provides more accurate absolute MAAT values than the
present global random forest model, as could be expected,
both calibrations roughly generate similar qualitative MAAT
trends over time. A regular slight decrease in temperature of
ca. 1 ◦C was observed between 9000 and ca. 1000 years BP
based on the local RAN15 calibration (Fig. 10a; Wang et al.,
2018). This general decreasing trend was also visible when
using the random forest model but with larger oscillations
and mainly between 9000 and 4000 years BP, in agreement
with the general trend recorded by the ∂18O record (mixture
of temperature and hydrological signals; Wang et al., 2018)
of the HS4 stalagmite (Fig. 10b, c; Hu et al., 2008). In ad-
dition, both the global random forest, local RAN15 calibra-
tions and the ∂18O record allowed the identification of sev-
eral climatic events in the Northern Hemisphere, in agree-
ment with the reconstructed total solar irradiance (TSI; Stein-
hilber et al., 2009; Fig. 10d). Thus, both models highlighted,
with slightly different amplitudes, the Medieval Warm Period
(MWP; 800–1000 years BP) and Little Ice Age (LIA; 200–
500 years BP) (Mann et al., 2008; Ljungqvist, 2010; Wang et
al., 2018). The LIA event is particularly well represented by
the global random forest calibration, in line with the decrease
in the TSI (Fig. 10b, d) associated with a relative increase in
the ∂18O of HS4 carbonates (dry–cool event; Wang et al.,
2018). Before the MWP, the global random forest calibration
shows slight oscillations, which can be assumed to be repre-
sentative of TSI variations between 500 and 1300 years BP.
Similarly, an important cooling event, well correlated with a
significant decrease in the TSI (Fig. 10a, b, d), was recorded
by the two calibrations at 1300 years BP.

The global random forest calibration also highlighted two
cooling events, poorly represented by the local RAN15 cal-
ibration: one at ca. 4200 years BP and, to a lesser extent,
another one between 2800 and 3000 years BP (Bond et al.,
2001; Mayewski et al., 2004). The event at 4200 years BP
is consistent with the ∂18O and solar irradiance records and
is referenced in the literature as the “4.2-kiloyear event” (de-
Menocal, 2001). This intense drought event was suggested to
have had a major impact on different civilizations (collapses,
migrations; Gibbons, 1993; Staubwasser et al., 2003; Li et
al., 2018; Bini et al., 2019). Thus, in some parts of China, the

production of rice fields sharply decreased during this period,
leading to a decrease in population (Gao et al., 2007).

Both calibrations additionally show a cooling period be-
tween 4000 years and 3200 years BP, more pronounced based
on the global random forest model, followed by another
cooling between 3200 and 3000 years BP. This cooling pe-
riod is consistent with the trends derived from ∂18O and so-
lar irradiance records. It culminates with a cold episode at
3000 years BP, also known as Late Bronze Age Collapse
(Kaniewski et al., 2013). Indeed, this cold episode, com-
bined with droughts, may have led to a decrease in agricul-
tural production in China, contributing to the degradation of
trade routes and ultimately to the collapse of Bronze Age
civilizations (Weiss, 1982; Knapp and Manning, 2016). Last,
the global random forest calibration also highlights two addi-
tional cold events, between 5600 and 5900 years BP as well
as around 7100 years BP, corresponding to solar irradiance
minima (Bond et al., 2001; Mayewski et al., 2004) and which
are not as clearly visible with the local RAN15 calibration by
Wang et al. (2016).

The first application of the random forest calibration
to a natural archive shows the potential of 3-OH FAs as
palaeotemperature proxies at a global scale as known and
documented climatic events were recorded, with a similar
RMSE (2.8 ◦C; Table 2) as that of the local calibration by
Wang et al. (2.6 ◦C; 2016). In summary, we demonstrate that
3-OH FAs are promising and effective temperature prox-
ies for terrestrial settings, complementary to, and indepen-
dent of, the brGDGTs (De Jonge et al., 2014; Naafs et al.,
2017; Dearing Crampton-Flood et al., 2020), and also high-
light the usefulness of non-parametric models using machine
learning, especially the random forest algorithm, to establish
global MAAT calibrations. We expect that analyses of 3-OH
FAs in a larger number of globally distributed soils will fur-
ther improve the accuracy and robustness of the global ran-
dom forest calibration for palaeotemperature reconstruction.
Additional palaeoapplications are also required to further test
and validate the applicability of the global MAAT and pH
calibrations based on 3-OH FAs presented in this study.

5 Conclusions

The 3-OH FAs have been recently proposed as environ-
mental proxies in terrestrial settings, based on local stud-
ies. This study investigated for the first time the applica-
bility of these compounds as MAAT and pH proxies at the
global scale using an extended soil dataset across a series of
globally distributed elevation transects (n= 168). Strong lin-
ear relationships between 3-OH FA-derived indices (RAN15,
RAN17 and RIAN) and MAAT or pH could only be ob-
tained locally for some individual transects, suggesting that
these indices cannot be used as palaeoproxies at the global
scale through this kind of model. Other algorithms (multi-
ple linear regression, k-NN and random forest models) were
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tested and, in contrast with simple linear regressions, pro-
vided strong global correlations between MAAT or pH and 3-
OH FA relative abundances. The applicability of these three
models for palaeotemperature reconstruction was tested and
compared with the MAAT record from the unique available
record: a Chinese speleothem. The calibration based on the
random forest model appeared to be the most robust and
showed similar trends to previous reconstructions and known
Holocene climate variations. Furthermore, the global ran-
dom forest model highlighted documented climatic events
poorly represented by the local RAN15 calibration. This new
global model is promising for palaeotemperature reconstruc-
tions in terrestrial settings and could be further improved
by analysing 3-OH FAs in a larger number of globally dis-
tributed soils. This study demonstrates the major potential
of 3-OH FAs as MAAT or pH proxies in terrestrial environ-
ments through the different models presented and their appli-
cation for palaeoreconstruction.
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