Sociodemographic determinants in the evolution of pain in inflammatory rheumatic diseases: results from ESPOIR and DESIR cohorts
Sushmithadev Kumaradev, Christian Roux, Jérémie Sellam, Serge Perrot, Thao Pham, Aline Dugravot, Anna Molto

To cite this version:
Sushmithadev Kumaradev, Christian Roux, Jérémie Sellam, Serge Perrot, Thao Pham, et al.. Sociodemographic determinants in the evolution of pain in inflammatory rheumatic diseases: results from ESPOIR and DESIR cohorts. Rheumatology, 2021, 10.1093/rheumatology/keab562/6323005. hal-03290746

HAL Id: hal-03290746
https://hal.sorbonne-universite.fr/hal-03290746
Submitted on 19 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Sociodemographic determinants in the evolution of pain in inflammatory rheumatic diseases: results from ESPOIR and DESIR cohorts

Sushmithadev Kumaradev¹,², Christian Roux¹,³*, Jérémie Sellam⁴, Serge Perrot⁵, Thao Pham⁶, Aline Dugravot²*, Anna Molto¹,³*

¹Clinical epidemiology applied to rheumatic and musculoskeletal diseases, Inserm 1153, Université de Paris, Paris, France
²Epidemiology of Ageing and Neurodegenerative diseases, Inserm 1153, Université de Paris, Paris, France
³Department of Rheumatology, APHP-Centre, Cochin Hospital, Paris, France
⁴Department of Rheumatology, APHP-Centre, Saint-Antoine Hospital, Paris, France
⁵Pain clinic, APHP-Centre, INSERM U897, Cochin Hospital, Paris, France
⁶Department of Rheumatology, APHM, Sainte-Marguerite Hospital, Aix-Marseille Univ., Marseille, France

*Aline Dugravot and Anna Molto contributed equally to this paper.

Address for correspondence: Sushmithadev Kumaradev
Université de Paris
Inserm U1153 EpiAgeing
10 avenue de Verdun
75010 Paris, France
Email: sushmithadev.kumaradev@inserm.fr
Orcid id: https://orcid.org/0000-0002-0418-4287

© The Author(s) 2021. Published by Oxford University Press on behalf of the British Society for Rheumatology. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Abstract

Objective: To determine whether sociodemographic factors are associated with heterogeneity in pain evolution in inflammatory rheumatic diseases (IRDs) after accounting for disease-specific characteristics in a system with universal health care.

Methods: This analysis included the data from two prospective observational cohorts of early IRDs (ESPOIR for early rheumatoid arthritis (RA) and DESIR for early spondyloarthritis (SpA)). Data on pain was measured respectively at 13 and 9 occasions spanning 10 and 6 years of follow-up using Short-Form 36 bodily pain amongst 810 participants of ESPOIR, and 679 participants of DESIR. Linear mixed models were used to characterise differences in pain evolution as a function of age (tertiles), sex, ethnicity, education, marital, and professional status after accounting for disease-related, treatment, lifestyle, and health factors.

Results: While transitioning from early (disease duration ≤6 months for RA and ≤3 years for SpA) to long-standing disease, differences in pain evolution emerged as a function of age (p<0.001), sex (p=0.050), and ethnicity (p=0.001) in RA, and as a function of age (p=0.048) in SpA; younger age, males, and Caucasians exhibited lower pain in the latter phases of both diseases. Highly educated (RA, β=-3.8, p=0.007; SpA, β=-6.0, p<0.001) in both diseases, and Caucasians (β=-5.6, p=0.021) in SpA presented with low pain early in the disease, with no changes throughout disease course.

Conclusion: Those older, females, non-Caucasians and lowly educated have worse pain in early and/or long-standing IRDs despite universally accessible health-care. Early identification of at-risk population and implementation of multi-disciplinary strategies may reduce patient-reported health outcome disparities.

Trial registration registrations :

ESPOIR: ClinicalTrials.Gov, www.clinicaltrials.gov, NCT03666091

DESIR: ClinicalTrials.Gov, www.clinicaltrials.gov, NCT01648907

Key words: Pain evolution, rheumatoid arthritis, spondyloarthritis, sociodemographic factors, pain outcome
Key messages
- Sociodemographic characteristics attributed to interindividual heterogeneity in either early or long-standing inflammatory rheumatic diseases.
- Low education impact pain at/before disease onset; demographic traits impact pain temporally through disease course.
- Multi-disciplinary treatment of pain should start early in disease targeting those with worse pain outcomes.

INTRODUCTION
Pain mechanisms in inflammatory rheumatic diseases (IRDs) are multifactorial, broadly classified as inflammatory, related to disease pathophysiology and non-inflammatory, attributed to dysregulation of peripheral and central pain conducting pathways. Pattern of pain evolution in IRDs is characterised by prominently decreasing pain in early phases, probably due to early diagnosis and treatment, followed by pain plateauing in the ensuing years at a level higher than population average. Emerging findings suggest that pain course is not uniform to all; unresolving pain linked probably to non-inflammatory mechanisms was observed among sub-groups of those with IRDs despite optimally controlled inflammation and universally accessible health-care advances. Besides disease severity, treatment initiated and individuals’ lifestyle and psychological health, sociodemographic characteristics potentially contribute to about 5 – 11% of observed pain heterogeneity in IRDs; older age, female sex, non-Caucasian ethnicity and low socio-economic status are associated with increased pain in IRDs; however, consistency of this association throughout disease course remains unanswered.

Previous studies reporting associations between sociodemographic characteristics and pain in IRDs were based on cross-sectional or longitudinal design that either did not account for nonlinear evolution of pain in IRDs or was not based on repeatedly assessed pain measures or was limited to those with early or long-standing disease. Aforesaid studies may have missed relevant information on temporal changes in pain associated with the transition from early to long-standing IRDs. Fluctuations in disease-specific characteristics, response to treatment, health, and pain coping behaviours accompanying disease-phase transitioning, could modify the effect of sociodemographic characteristics on pain evolution. For instance, prospective studies on early rheumatoid arthritis (RA) found that sex differences in pain were often apparent with disease continuum and not before
six months since symptom onset(18, 26) highlighting the importance of assessing temporal trends in pain. Thus, exploring the impact of sociodemographic characteristics on pain while transitioning from early to long-standing IRDs can help understand pain behaviour among vulnerable groups and implement appropriate treatment strategies quite early in disease course. Accordingly, this study aimed to assess the evolution of pain in IRDs as a function of sociodemographic characteristics, after accounting for disease-specific, current treatment, lifestyle, and psychological and health factors using repeated measures since disease onset up to 6 years or greater.

METHODS

Study design and participants
The participants of this study belong to the two ongoing prospective French multicentric cohorts in a setting of universally accessible health-care: ESPOIR (Etude et Suivi des Polyarthrites Indifférenciées Récentes)(27) started in 2002/05 and DESIR (DEvenir des Spondylarthropathies Indifférenciées Récentes)(28) started in 2007/10. ESPOIR comprises 813 participants aged 18 – 70 years with features suggestive of early RA of less than 6 months duration followed up over 10 years. DESIR comprises 708 participants aged 18 – 50 years, presenting with inflammatory back pain highly probable of spondyloarthritis (SpA) diagnosis, for a duration ranging 3 months to 3 years followed up for six years. Participants were biological Disease Modifying Anti-Rheumatic Drugs (DMARDs) naïve at inclusion. Clinical visits were conducted biannually in the initial 2 years of follow-up and annually henceforth corresponding to 13 and 9 visits respectively for ESPOIR and DESIR cohorts collecting clinical, biological, and radiographic information. The study was conducted as per good clinical practice guidelines. Cohort ESPOIR had obtained ethical approval from ethics committee of Montpellier, France (no. 020307), and cohort DESIR had obtained ethical approval from Comité de Protection des Personnes Ile de France III. Signed informed consent was given by participants of both cohorts.

Pain
The bodily pain sub-scale of Short Form 36 (SF-36 BP) questionnaire is used as a valid measure for pain evaluation.(29, 30) In both the cohorts, SF-36 BP comprises two questions evaluating pain intensity and interference “over last 8 days”. Refer to supplement (supplementary data S1, available at Rheumatology online) regarding SF-36 BP component questions and scoring pattern. Both pain intensity and interference scores were averaged to obtain SF-36 BP. To ease interpretation, scores were reversed such that, higher scores correspond to higher pain. Apart from SF-36 BP, a visual analogue scale (VAS)(30, 31)
measure ranging from 0 (no pain) to 100 (worst imaginable pain), measuring joint pain intensity when mobilized (joint mobilisation pain) and when at rest (resting joint pain) for ESPOIR, and a numerical rating scale (NRS)(31) ranging from 0 (no pain) to 10 (worst imaginable pain) measuring back pain intensity during day (back pain) and at night (night pain) for DESIR were also considered. NRS scores were multiplied by ten to assure uniformity in the range of pain measures (0 – 100) across the different scales. Pain variables were assessed at each clinical visit.

Sociodemographic factors

Demographic factors included sex, age at inclusion (continuous, tertiles), and ethnicity (participants self-identified themselves as Caucasians or Others—those belonging to African, Asian, Maghrebian, or other origin). Social factors included education, marital, and professional status recorded at inclusion. Highest attained education was categorised as low education (less than or equal to secondary level) and high education (more than secondary level). Marital status was grouped as couples (married or cohabiting) and single (unmarried, divorced and widowed). Professional status was classified as no job (those without job or retired), blue-collar (laborers, farmers or artisans), and white-collar (intermediate and executive professionals) workers.

Covariates

Disease-related factors included symptom duration and a distinct set of variables for each cohort. Variables for ESPOIR are: inflammatory marker (erythrocyte sedimentation rate (ESR) in mm/hr), clinical markers (tender, and swollen joint count based on 28 joints), imaging marker (presence of x-ray changes fulfilling American College of Rheumatology (ACR) 1987 criteria),(32) biological markers (rheumatoid factor, and anti-cyclic citrullinated peptide antibodies (ACPA) positivity). Variables for DESIR are: inflammatory marker (C-Reactive Protein (CRP) in mg/dl), clinical markers (history of peripheral arthritis (arthritis index), history of peripheral enthesitis (enthesitis index), and number of swollen joints (synovitis index)), imaging marker (presence of sacroiliitis in magnetic resonance imaging), and biological marker (human leukocyte antigen (HLA) B27 positivity). Rationale behind the choice of disease-related factors is given in the supplement (supplementary data S2, available at Rheumatology online). **Treatment** included current use of non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids, DMARDS, and analgesics. **Lifestyle factors** included body mass index (BMI), current smoking, and alcohol consumption status. **Health factors** included the rheumatic disease comorbidity index (RDCI), a validated and weighted comorbidity index for rheumatological outcomes(33) based on self-declared disease status or medication
use history for lung, cardiovascular, fracture, depression (as a measure of psychological health),
diabetes, cancer, and gastrointestinal diseases. Refer to supplement (supplementary data S3, available at
Rheumatology online) for RDCI calculation. All covariates were assessed repeatedly at clinical visits and
analysed as time-dependant variables whenever feasible.

Statistical Analysis
Descriptive statistics comparing population characteristics by tertiles of each pain score were done using
Pearson’s Chi square, Fischer’s exact and analysis of variance (ANOVA) tests. Both cohorts were analysed
separately using linear mixed models with continuous pain variables as dependent variables and time
since inclusion (t0) as timescale. Based on cubic spline regression, time, time2, and time3 (slope terms)
were incorporated to model nonlinear evolution of pain. Random effects for the intercept and time
allowed individual differences in pain score at intercept and changes in pain over time. Five multivariate
models were examined. Model 1 was adjusted for sociodemographic characteristics and their interaction
with time (slope terms). Thereafter, model 1 was additionally and sequentially adjusted for disease-
related (model 2), treatment (model 3), lifestyle (model 4), and health (model 5) factors. Differences in
the evolution of pain as a function of sociodemographic factors were tested by examining if interaction
of sociodemographic factors with slope terms ($p_{trajectory}$) improved model fit using the Wald test.
Additionally, above analysis was repeated restricting the analytic sample to those fulfilling ACR 1987
criteria in ESPOIR cohort and American spondyloarthritis international society (ASAS) criteria in DESIR
cohort as a part of sensitivity analysis. All analysis was done using Stata version 15.0 (Stata Corp.). All
p<0.05 were considered significant.

RESULTS
Eight hundred and ten of 813 ESPOIR participants and 679 of 708 DESIR participants having at least one
measure for all variables constituted the analytic sample (supplementary figure S1, available at
Rheumatology online). The retention rate of the participants at the end of 5 years of follow-up were
61.7% and 58.2% and at the end of follow-up were 53.5% and 43.4% respectively for ESPOIR and DESIR.
74.9% of ESPOIR and 58.2% of DESIR participants have at least 7 measures of all variables considered for
analysis. Table 1 shows baseline characteristics of the analytic sample of both cohorts. ESPOIR
participants were more likely older (ESPOIR vs. DESIR mean age 48.1 vs. 33.6 years, p<0.001),
predominantly female (76.8% vs. 54.8%, p<0.001), less educated (68.4% vs. 39.9%, p<0.001) and had
higher pain scores (mean SF-36 BP 62.2 vs 56.7, p<0.001) than DESIR participants. Interaction terms
assessing the role of disease-related factors (inflammatory and clinical markers) in the evolution of pain (SF-36 BP) among sociodemographic groups (sex, ethnicity, and education) were not significant ($P_{interaction}$>0.07).

Supplementary tables S1 (ESPOIR) and S4 (DESIR), available at *Rheumatology* online, compared baseline characteristics of participants by tertiles of SF-36 BP at inclusion. In ESPOIR, participants with higher SF-36 BP had lower education, used analgesics more frequently and had higher ESR, tender and swollen joint count, BMI, and RDCI. In DESIR, across SF-36 BP tertiles an increasing percentage of non-Caucasians, low education, corticosteroid, and analgesic use and increasing CRP, peripheral arthritis, and enthesitis were seen. Results for joint mobilisation, and resting joint pain of ESPOIR (supplementary table S2 and S3) and back, and night pain of DESIR (supplementary table S5 and S6, all available at *Rheumatology* online) are provided in the supplement.

Results for rheumatoid arthritis (ESPOIR)

Univariate and all five multivariate models showing the association between covariates and pain variables namely, SF-36 BP, joint mobilisation, and resting joint pain, assessed at inclusion are provided in the supplement (supplementary table S7, S8, S9, available at *Rheumatology* online). **Figure 1** represents the 10-year evolution of SF-36 BP (supplementary figure S2 for joint mobilization pain and supplementary figure S3 for resting joint pain, available at *Rheumatology* online) by sociodemographic groups in the fully adjusted model. Correspondingly, evolution of differences in pain score for each year of follow-up are shown in green in **Figure 2** and supplementary table S13, available at *Rheumatology* online (**Table 2** for joint mobilization and resting joint pain). Pain did not differ by sex at inclusion (p_{t0}≥0.38 for 3 pain scores). Though differential pain evolution by sex was not evident (p for interaction between sex and slope terms ($p_{trajectory}$≥0.05), from 2 up to 4 years after inclusion males had lower pain scores than females. Pain evolution differed across age; although youngest tertile had higher pain at inclusion (β=4.4, p=0.005 for SF-36 BP), they showed a significant decrease in both SF-36 BP and joint mobilization pain ($p_{trajectory}$<0.001 for both) over follow-up compared to oldest tertile. No ethnic differences in pain were observed at inclusion (p_{t0}≥0.11), but, compared to Caucasians, others ethnic group showed increased SF-36 BP ($p_{trajectory}$=0.001) and resting joint pain ($p_{trajectory}$=0.029) over follow-up. Education-based differences in pain were present since inclusion (low vs high education β=3.8, p=0.007 for SF-36 BP, β=4.2, p=0.011 for joint mobilization pain, β=9.0, p<0.001 for resting joint pain) without evolutionary changes ($p_{trajectory}$≥0.074). Profession-related differences in pain evolution were not
consistent; compared with white-collar workers those with no job had higher resting joint pain at inclusion ($\beta=4.5$ for no job and $\beta=2.7$ for white-collar workers, $p=0.048$), and increased SF-36 BP ($p_{\text{trajectory}}=0.029$) in the later years of follow-up.

Results for spondyloarthritis (DESIR)

Univariate and all five multivariate models showing the association between covariates and pain at inclusion for SF-36 BP, back, and night pain are provided in the supplement (supplementary table S10, S11, S12, available at *Rheumatology* online). **Figure 3** represents the 6-year evolution of SF-36 BP (supplementary figure S4 for back pain and supplementary figure S5 for night pain, available at *Rheumatology* online) by sociodemographic groups in the fully adjusted model. Correspondingly, evolution of differences in pain score for each year over follow-up are shown in **red** in **Figure 2** and supplementary table S13, available at *Rheumatology* online (**Table 3** for back and night pain). Sex differences in pain assessed at inclusion and pain evolution was not significant ($p_{t0}\geq0.09$ and $p_{\text{trajectory}}\geq0.32$); though from 1 up to at least 4 years of follow-up, males had more decrease in pain scores than females. Youngest tertile experienced a larger decrease in pain over follow-up than oldest tertile ($p_{\text{trajectory}}=0.048$ for SF-36 BP, $p_{\text{trajectory}}=0.015$ for back pain). Compared to Caucasians, other ethnic group had higher pain scores at inclusion ($\beta=5.6$, $p=0.021$ for SF-36 BP) that persisted without evolutionary changes ($P_{\text{trajectory}}\geq0.29$) except for back pain ($P_{\text{trajectory}}=0.009$). Higher pain since inclusion persisted constantly through follow-up in those with low education ($\beta=6.0$, $p<0.001$ for SF-36 BP, $\beta=6.3$, $p=0.001$ for back pain and $\beta=8.0$, $p<0.001$ for night pain at inclusion; all $p_{\text{trajectory}}\geq0.167$) compared with highly educated. Compared to singles, couples had higher back ($\beta=4.7$, $p=0.019$) and night pain ($\beta=7.1$, $p=0.001$) at inclusion; nevertheless, they showed improvement in pain over follow-up ($p_{\text{trajectory}}<0.004$ for both NRS). Despite non-significant pain evolution by professional categories ($p_{\text{trajectory}}<0.15$), inconsistently, those with no job had higher back and night pain compared to white-collar workers.

Sensitivity analysis

Supplementary figure S6 and S7, available at *Rheumatology* online, show the 10- and 6-year evolution of SF-36 bodily pain score by sociodemographic groups in the fully adjusted model respectively for those fulfilling ACR 1987 criteria in ESPOIR cohort (N=686) and ASAS criteria in DESIR cohort (N=470).

Supplementary figure S8, available at *Rheumatology* online, correspondingly shows the evolution of differences in pain score in both cohorts. The pattern of evolution of all pain scores by sociodemographic
factors were in concordance with main analysis (results shown only for SF-36), except that, due to lack of sufficient power, differences in pain as a function of sex and age over follow-up were not evident.

DISCUSSION

This longitudinal study based on two cohorts on early RA (ESPOIR) and early SPA (DESIR) with repeatedly assessed pain over respectively 10 and 6 years presented three salient findings. Firstly, sociodemographic disparities based on sex, age, ethnicity and education were important contributors of pain in early (disease duration ≤6 months for RA and ≤3 years for SpA) or long-standing IRDs. Of which ethnic, and educational disparities had clinically meaningful differences in pain scores over follow-up in a consistent manner when compared with the minimal clinically important difference in SF-36 BP score in RA corresponding to 4.9.(34) Secondly, differences in pain evolution as a function of demographic factors emerged while transitioning from early to long-standing disease; those older at early disease phase, females, and non-Caucasians—having similar pain levels as their counterparts at early phases of disease—reported higher pain during disease course. Thirdly, impact of social factors on pain is much earlier to disease-phase transitioning. Educational disparities did not catalyse changes of pain through disease course; higher pain in those with low education was present since early phases of disease. Associations between marital, and professional status and pain were not consistent.

Present study, compared pain among sociodemographic groups at inclusion when participants were biological DMARDs naïve and through the disease course, after accounting for disease-specific, treatment, lifestyle and health characteristics. Importantly, availability of repeatedly assessed data since early disease up to a span of ten and six years respectively for RA and SpA, allowed to account for time-varying nature of pain and other covariates, thus, giving an insight into the variations in the association between sociodemographic factors and pain in both early and long-standing disease. As far as we know, this is the first study that examined pain evolution in IRDs among socio-economically disparate groups. By considering evolution of three pain scores for each disease, an overall view limiting biases related to pain assessment instruments were obtained. Sensitivity analysis done by restricting to those who fulfilled diagnostic criteria was also in concordance with the above findings.

Sex-attributed differences in pain(16, 24), disease activity(35), treatment response(36), and quality of life(37) are known in IRDs. Underpinning past findings,(15, 38) women of this study (SpA) reported higher crude pain scores compared with men (supplementary table S10 – S12, available at Rheumatology
online). However, adjustment for disease-specific characteristics (inflammatory and clinical markers) attenuated the observed sex differences in pain in early IRD. With ongoing disease and treatment, a lesser improvement in pain was seen for a short while in women with RA before their pain scores decreased further to plateau with those of men. Confirming our findings, no sex differences in pain was reported in early IRD studies,(18, 26) whilst, improvement in pain was better among men in long-standing IRDs.(15, 25)

Impact of age on pain was variable in early and long-standing IRDs. In early RA, our study findings—higher pain in younger persons—were in disaccord with past studies reporting no association between pain and age.(17, 26) Discrepancies might be due to differences in adjustment for covariates, as even in our study, association between age and pain was revealed only after adjustment for disease-related, lifestyle factors, and comorbidities (supplementary table S7 – S9, available at Rheumatology online). In long-standing disease, our study findings were congruent to that of past(13, 14)—increased pain with ageing. With disease continuum and appropriate treatment initiation, younger persons experienced decreasing pain than those older, thereby, establishing an age-based pain gap.

Ethnic minorities reported worse levels for most rheumatological outcomes.(11, 19, 39) In this study, compared with Caucasians, all except joint mobilisation pain were higher among other ethnic groups. Predominantly, disease-specific inflammation-mediated heightened pain sensitivity of affected joints mediated joint mobilisation pain than the more general non-inflammatory central pain mechanisms(40), and thus, did not differ across ethnic groups. Factors yet unravelled, may increase susceptibility of ethnic minorities to non-inflammatory central pain mechanisms.

Across the spectrum of IRDs, low levels of socioeconomic indicators like education, occupation, income or homeownership were often associated with increased pain.(20) In this study, education-based pain differences were present even at early disease phase and persisted throughout. Confirmingly, antecedent studies demonstrated higher pain in those with low education in both early(41) and long-standing disease.(11, 21, 22, 42) Some showed a gradient in the association between years of education and pain.(11) This study failed to demonstrate consistent association between pain and profession unlike antecedent studies.(43) Discrepancies might have risen due to differences in the classification of professional categories, and use of socio-economic indicators between studies. Family resources like income and house ownership predicted pain better than occupational status.(21) (44)
Social environment both quantitatively in terms of extent of social network and qualitatively in terms of the emotional and necessary support from entourage(42) or marital life quality(12, 45) play important roles in the long-term pain outcome in IRDs. In our study, lack of association between pain and marital status in RA could have stemmed from the fact that assessment of marital status is not synonymous to marital quality, a better predictor of pain. In early SpA, couples reported more back pain, eventually coping as well as those single, widowed or separated; given a fairly younger age onset in SpA, family commitments may have increased the pain susceptibility in early disease.

Complexly interacting multiple mechanisms underlie the sociodemographic differences in pain. Firstly, biological mechanisms can result in altered pain sensitivity and pain modulation; hormonal differences between sex,(46) and various ethnic origins,(47) age-related degenerative changes of nervous system,(48) and associated comorbidities(48) can contribute to neuro-biological alterations affecting pain perception. Secondly, psychological mechanisms by affecting mood, anxiety and depression, comprehension, acceptance and adherence to health-promoting behaviours, and the utilisation of coping strategies can influence pain responsivity.(46, 47, 49) Women,(46) ethnic minorities,(47) those at socioeconomic disadvantage(50) and with poor marital quality(49) often rely on passive coping strategies and indulge in maladaptive pain behaviour and pain catastrophising.(8, 9) Thirdly, socio-cultural mechanisms such as pain, religion-, and health-related beliefs (46, 47) and sex, age, and ethnic differences in the societal expected role and accepted behaviours can affect pain.(51)

Limitations included non-availability of information regarding the characteristics, location, and mechanisms of pain. Pain variables were collected based on the self-report of pain over a short time span (past 8 days) that may not exactly reflect their past pain experiences. However, pain levels reported over short time spans are more reliable with regards to the accuracy of reporting rather than compared to pain reported over long-term. Also, the data is collected in the same manner for all participants at all time points over follow-up and any inaccuracy in measure will be at random. Overall, this could be assumed as a good representation of pain of these participants over the years. Pain coping strategies and behaviours, quality and quantity of social support that can influence pain outcomes were unavailable. Non-pharmacological pain interventions were not assessed. Due to lack of details regarding monetary resources per person, impact of socioeconomic disadvantage on pain evolution is insufficiently explored. Finally, comorbidities and medication use were self-reported and are subject to recall bias.
Persistent pain in IRDs despite adequate access to advanced treatment leads to patient dissatisfaction and secondarily augments health burden. Understanding the evolution of pain in IRDs and its associated factors seems important to identify those with poor pain prognosis and impart effective multimodal treatment. Sex, age, ethnic origin, and education play important roles in the pain experienced in early or long-standing IRDs.
Acknowledgements

These results were presented at the 33e congrès français de Rhumatologie organized by the French Society of Rheumatology (France) as a preregistered oral presentation (O.129). Authors are grateful to all participants of both ESPOIR and DESIR cohorts.

ESPOIR COHORT: An unrestricted grant for the first 5 years was allocated from Merck Sharp and Dohme (MSD). Part of the biological database were supported with two additional grants from INSERM. The ESPOIR cohort study is also supported by the French Society of Rheumatology, Pfizer, Abbvie, Lilly, and more recently Fresenius and Biogen. Additionally, we wish to thank Nathalie Rincheval (Montpellier) who did expert monitoring and data management and all the investigators who recruited and followed the patients (F. Berenbaum, Paris-Saint Antoine, MC. Boissier, Paris-Bobigny, A. Cantagrel, Toulouse, B. Combe, Montpellier, M. Dougados, Paris-Cochin, P. Fardellone et P. Boumier Amiens, B. Fautrel, Paris-La Pitié, RM. Flipo, Lille, Ph. Goupille, Tours, F. Liote, Paris- Lariboisière, O.Vittecoq, Rouen, X. Mariette, Paris Bicetre, P. Dieude, Paris Bichat, A. Sarraga, Brest, T. Schaeverbeke, Bordeaux, J. Sibilia, Strasbourg).

DESIR COHORT: The Département de la Recherche Clinique et du Développement de l’Assistance Publique–Hôpitaux de Paris sponsored the DESIR cohort. This study is conducted under the umbrella of the French Society of Rheumatology and INSERM (Institut National de la Santé et de la Recherche Médicale). The database management is performed in the department of epidemiology and biostatistics (Professor Paul Landais, D.I.M., Nîmes, France). For the first 10 years of the follow-up of the recruited patients, an unrestricted grant from Pfizer was allocated. We also thank the different regional participating centers: Professor M Dougados (Paris—Cochin B), Professor A Kahan (Paris—Cochin A), Professor P Dieudé (Paris—Bichat), Pr L Gossec (Paris—Pitié-Salpetrière), Professor F Berenbaum (Paris—Saint Antoine), Professor P Claudepierre (Créteil), Professor M. Breban (Boulogne Billancourt), Dr B. Saint-Marcoux (Aulnay-sous-Bois), Professor P Goupille (Tours), Professor J-F. Maillefert (Dijon), Dr E Dernis (Le Mans), Professor D Wendling (Besançon), Professor B Combe (Montpellier), Professor L Euller-Ziegler (Nice), Professor P Orcel, Professor P Richette (Paris—Lariboisière), Professor P Lafforgue (Marseille), Dr P Boumier (Amiens), Professor M Soubrier (Clermont-Ferrand), Dr N Mehsen (Bordeaux), Professor D Loeweille (Nancy), Professor R-M Flipo (Lille), Professor A Sarraga (Brest), Dr S Pavy (Kremlin Bicêtre), Professor A Cantagrel (Toulouse), Professor O Vittecoq (Rouen). We also thank URC-CIC Paris Centre for the coordination and monitoring of the study.
Authors’ contributions: SK, CR, AD & AM developed the hypothesis and study design. SK & AD performed statistical analysis. SK & AD wrote the first and successive drafts of the manuscript. All authors contributed to review of manuscript and approved the final version to be published. SK, AD, AM had full access to the data and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Disclosure statement: The authors have declared no conflicts of interest.

Funding: No specific funding was received from any bodies in the public, commercial or not-for-profit sectors to carry out the work described in this article.

Data availability statement: The data sets generated and/or analysed during the current study are not publicly available due to consent restrictions. Programming codes used for statistical analysis during the current study are available from the corresponding author upon reasonable request.
References

differences in outcome of ankylosing spondylitis: long-term results from the Outcome in Ankylosing
38. Mogard E, Bremander A, Lindqvist E, Bergman S. Prevalence of chronic widespread pain in a
population-based cohort of patients with spondyloarthritis - a cross-sectional study. BMC Rheumatol.
2018;2:11.
40. Lee YC, Nassikas NJ, Clauw DJ. The role of the central nervous system in the generation and
2011;13(2):211.
41. Jiang X, Sandberg ME, Saevarsdottir S, Klareskog L, Alfredsson L, Bengtsson C. Higher education is
associated with a better rheumatoid arthritis outcome concerning for pain and function but not disease
42. Evers AW, Kraaimaat FW, Geenen R, Jacobs JW, Bijlsma JW. Pain coping and social support as
43. Andersson ML, Bergman S, Soderlin MK. The Effect of Socioeconomic Class and Immigrant Status on
Disease Activity in Rheumatoid Arthritis: Data from BARFOT, a Multi-Centre Study of Early RA. Open
outcomes in early inflammatory arthritis? Data from a canadian multisite suspected rheumatoid arthritis
arthritis patients based on marital status: is a distressed marriage preferable to no marriage? J Pain.
2010;11(10):958-64.
48. El Tumi H, Johnson MI, Dantas PBF, Maynard MJ, Tashani OA. Age-related changes in pain sensitivity
49. Robles TF, Slatcher RB, Trombello JM, McGinn MM. Marital quality and health: a meta-analytic
51. Wandner LD, Scipio CD, Hirsh AT, Torres CA, Robinson ME. The perception of pain in others: how
Table 1. Baseline characteristics of rheumatoid arthritis (ESPOIR) and spondyloarthritis (DESIR) cohorts

<table>
<thead>
<tr>
<th>Variables</th>
<th>Rheumatoid arthritis (ESPOIR, N=794)</th>
<th>Spondyloarthritis (DESIR, N=642)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sociodemographic factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>184 (23.2)</td>
<td>290 (45.2)</td>
</tr>
<tr>
<td>Age, m (SD)</td>
<td>48.1 (12.6)</td>
<td>33.6 (8.6)</td>
</tr>
<tr>
<td>Caucasian, n (%)</td>
<td>733 (92.3)</td>
<td>577 (89.9)</td>
</tr>
<tr>
<td>More than secondary education, n (%)</td>
<td>251 (31.6)</td>
<td>386 (60.1)</td>
</tr>
<tr>
<td>Profession, No job, n (%)</td>
<td>32 (4.0)</td>
<td>89 (13.9)</td>
</tr>
<tr>
<td>White-collar workers, n (%)</td>
<td>158 (19.9)</td>
<td>90 (14.0)</td>
</tr>
<tr>
<td>Blue-collar workers, n (%)</td>
<td>604 (76.1)</td>
<td>463 (72.1)</td>
</tr>
<tr>
<td>Married, n (%)</td>
<td>579 (72.9)</td>
<td>418 (65.1)</td>
</tr>
<tr>
<td>Disease-related factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptom duration y, m (SD)</td>
<td>0.6 (0.7)</td>
<td>1.5 (0.9)</td>
</tr>
<tr>
<td>Erythrocyte sedimentation rate, m (SD)</td>
<td>29.4 (24.7)</td>
<td>7.5 (13.0)</td>
</tr>
<tr>
<td>C-reactive protein, m (SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tender joint count (0-28), m(SD)</td>
<td>8.4 (7.0)</td>
<td></td>
</tr>
<tr>
<td>Swollen joint count (0-28), m(SD)</td>
<td>7.2 (5.4)</td>
<td></td>
</tr>
<tr>
<td>Arthritis index (0-159), m (SD)</td>
<td>4.2 (8.2)</td>
<td>0.1 (0.8)</td>
</tr>
<tr>
<td>Synovitis index (0-28), m (SD)</td>
<td>4.2 (5.8)</td>
<td></td>
</tr>
<tr>
<td>Enthesitis index (0-39), m (SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imaging markers, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiographic changes as per ACR criteria</td>
<td>108 (13.6)</td>
<td>218 (34.0)</td>
</tr>
<tr>
<td>Sacroiliitis features in MRI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological markers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF positivity, n (%)</td>
<td>334 (42.1)</td>
<td></td>
</tr>
<tr>
<td>ACPA positivity, n (%)</td>
<td>306 (38.5)</td>
<td></td>
</tr>
<tr>
<td>HLA B27positivity, n (%)</td>
<td>380 (59.2)</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non steroidal anti-inflammatory agents, n (%)</td>
<td>722 (90.9)</td>
<td>597 (93.0)</td>
</tr>
<tr>
<td>Corticosteroids, n (%)</td>
<td>156 (19.7)</td>
<td>116 (18.1)</td>
</tr>
<tr>
<td>Disease modifying anti rheumatic agents, n (%)</td>
<td>55 (6.9)</td>
<td>87 (13.6)</td>
</tr>
<tr>
<td>Analgesics, n (%)</td>
<td>538 (67.8)</td>
<td>406 (63.2)</td>
</tr>
<tr>
<td>Lifestyle Factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI in Kg/m², m (SD)</td>
<td>25.0 (4.5)</td>
<td>23.9 (3.9)</td>
</tr>
<tr>
<td>Smoker, n (%)</td>
<td>377 (47.5)</td>
<td>234 (36.5)</td>
</tr>
<tr>
<td>Alcohol consumer, n (%)</td>
<td>138 (17.4)</td>
<td>97 (15.1)</td>
</tr>
<tr>
<td>Health Factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheumatic disease comorbidity index, m (SD)</td>
<td>1.1 (1.3)</td>
<td>0.4 (0.7)</td>
</tr>
<tr>
<td>Pain Measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF-36 Bodily Pain Scale (0-100), m (SD)</td>
<td>62.2 (20.4)</td>
<td>56.7 (22.0)</td>
</tr>
<tr>
<td>Joint mobilisation pain¹ (0-100), m (SD)</td>
<td>54.9 (25.8)</td>
<td></td>
</tr>
<tr>
<td>Resting joint pain² (0-100), m (SD)</td>
<td>37.0 (27.5)</td>
<td></td>
</tr>
<tr>
<td>Back pain² (0-100), m (SD)</td>
<td>49.8 (27.1)</td>
<td></td>
</tr>
<tr>
<td>Night pain² (0-100), m (SD)</td>
<td>46.8 (30.3)</td>
<td></td>
</tr>
</tbody>
</table>

ACR, American college of rheumatology; MRI, magnetic resonance imaging; RF, rheumatoid factor; ACPA, anti-cyclic citrullinated peptide antibody; HLA, human leukocyte antigen; BMI, body mass index; SF-36, short form-36

¹ Joint mobilisation and resting joint pain are measured using visual analogue scale in ESPOIR cohort

² Back and night pain are measured using numerical rating scale in DESIR cohort
Only characteristics of participants with measures for all variables at baseline are described. 16 out of 810 ESPOIR analytic sample and 37 out of 679 DESIR analytic sample had one or more missing variables at baseline.
Table 2. Differences in visual analogue scale pain scores by sociodemographic factors over follow-up in rheumatoid arthritis

<table>
<thead>
<tr>
<th>Sex</th>
<th>Joint mobilisation pain</th>
<th>Age</th>
<th>Ethnicity Others vs Caucasians</th>
<th>Education Low vs high</th>
<th>Profession Blue-collar vs no job</th>
<th>Profession White-collar vs no job</th>
<th>Marital status Single vs couples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year</td>
<td>β (95% CI)</td>
<td>β (95% CI)</td>
<td>B (95% CI)</td>
<td>β (95% CI)</td>
<td>β (95% CI)</td>
<td>β (95% CI)</td>
</tr>
<tr>
<td>Male</td>
<td>0</td>
<td>-1.5 (-5.0; 1.9)</td>
<td>-5.0 (-8.5; -1.4)</td>
<td>-9.0 (-12.6; -5.4)</td>
<td>-4.4 (-9.8; 1.0)</td>
<td>4.2 (1.0; 7.4)</td>
<td>-5.4 (-13.4; 2.5)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.3 (1.5; 4.0)</td>
<td>-1.6 (-4.4; 1.2)</td>
<td>-3.1 (-5.9; -0.2)</td>
<td>-0.8 (-5.0; 3.4)</td>
<td>5.8 (3.2; 8.3)</td>
<td>-4.4 (-10.7; 1.9)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.9 (0.0; 5.7)</td>
<td>0.5 (-2.4; 3.4)</td>
<td>0.4 (-2.5; 3.3)</td>
<td>1.3 (-3.1; 5.7)</td>
<td>6.6 (4.0; 9.3)</td>
<td>-3.8 (-10.2; 2.7)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.6 (0.7; 6.5)</td>
<td>1.5 (-1.4; 4.5)</td>
<td>1.9 (-1.1; 4.9)</td>
<td>2.1 (-2.4; 6.6)</td>
<td>6.9 (4.2; 9.6)</td>
<td>-3.4 (-9.9; 3.1)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.6 (0.8; 6.4)</td>
<td>1.8 (-1.1; 4.7)</td>
<td>2.0 (-0.9; 5.0)</td>
<td>2.1 (-2.4; 6.6)</td>
<td>6.7 (4.1; 9.4)</td>
<td>-3.1 (-9.5; 3.2)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.2 (0.3; 6.0)</td>
<td>1.5 (-1.4; 4.4)</td>
<td>1.2 (-1.8; 4.2)</td>
<td>1.5 (-3.1; 6.1)</td>
<td>6.3 (3.6; 8.9)</td>
<td>-2.9 (-9.2; 3.5)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.6 (-0.4; 5.6)</td>
<td>0.9 (-2.1; 4.0)</td>
<td>0.1 (-3.1; 3.2)</td>
<td>0.7 (-4.3; 5.6)</td>
<td>5.6 (2.9; 8.4)</td>
<td>-2.5 (-9.2; 4.2)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.1 (-1.1; 5.3)</td>
<td>0.3 (-2.9; 3.6)</td>
<td>0.1 (-4.3; 2.4)</td>
<td>-0.1 (-5.4; 5.3)</td>
<td>5.0 (2.1; 7.9)</td>
<td>-1.9 (-8.9; 5.1)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.9 (-1.4; 5.2)</td>
<td>0.0 (-3.4; 3.3)</td>
<td>-0.1 (-4.7; 2.2)</td>
<td>-0.4 (-5.8; 5.0)</td>
<td>4.5 (1.5; 7.5)</td>
<td>-0.9 (-8.0; 6.3)</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2.3 (-1.2; 5.8)</td>
<td>0.1 (-3.4; 3.6)</td>
<td>-0.1 (-3.9; 3.3)</td>
<td>0.0 (-5.4; 5.5)</td>
<td>4.3 (1.1; 7.4)</td>
<td>0.6 (-7.0; 8.2)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.5 (-1.2; 8.2)</td>
<td>1.0 (-3.7; 5.6)</td>
<td>2.4 (-2.4; 7.2)</td>
<td>1.6 (-5.6; 8.7)</td>
<td>4.5 (0.2; 8.7)</td>
<td>2.7 (-7.7; 13.0)</td>
</tr>
</tbody>
</table>

P traj = 0.052 <0.001 0.169 0.301 0.518 0.153

P traj* = 0.185 0.330 0.029 0.215 0.518 0.104

Cl, confidence interval. In rheumatoid arthritis/ESPOIR cohort: tertile 1 = ≤44.5 years, tertile 2 = 44.7 – 55.2 years and tertile 3 = ≥55.3 years. Highlighted values correspond to a p value<0.05

* for difference in pain trajectories/evolution (drawn from testing the interactions between sociodemographic factor and slope terms using Wald test).

Analysis adjusted for sociodemographic factors (sex, age, ethnicity, education, profession and marital status assessed at inclusion) and their interaction with slope terms (time, time², and time³), and time-dependant disease-related, treatment, lifestyle, and health factors.
Table 3. Differences in numerical rating scale pain scores by sociodemographic factors over follow-up in spondyloarthritis

<table>
<thead>
<tr>
<th>Year</th>
<th>Back pain</th>
<th>Night pain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sex</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td>Female vs male</td>
<td>Tertile 2 vs tertile 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B (95% CI)</td>
</tr>
<tr>
<td>0</td>
<td>3.2 (-0.5; 6.9)</td>
<td>-3.0 (-7.5; 1.5)</td>
</tr>
<tr>
<td>1</td>
<td>3.4 (0.4; 6.4)</td>
<td>0.8 (-2.9; 4.5)</td>
</tr>
<tr>
<td>2</td>
<td>3.7 (0.6; 6.8)</td>
<td>2.7 (-1.1; 6.5)</td>
</tr>
<tr>
<td>3</td>
<td>4.1 (0.9; 7.3)</td>
<td>3.3 (-0.6; 7.2)</td>
</tr>
<tr>
<td>4</td>
<td>4.4 (0.7; 8.1)</td>
<td>3.1 (-1.3; 7.6)</td>
</tr>
<tr>
<td>5</td>
<td>4.6 (0.7; 8.4)</td>
<td>2.8 (-1.9; 7.5)</td>
</tr>
<tr>
<td>6</td>
<td>4.4 (-0.6; 9.4)</td>
<td>2.9 (-3.3; 9.1)</td>
</tr>
</tbody>
</table>

P traj*: 0.924 0.015 0.009 0.733 0.151 0.004

CI, confidence interval.

In spondyloarthritis/DESIR cohort: tertile 1 = <29.4 years, tertile 2 = 29.4 – 37.6 years, tertile 3 = ≥ 37.7 years

Highlighted values correspond to a p value<0.05

* P for difference in pain trajectories/evolution (drawn from testing the interactions between sociodemographic factor and slope terms using Wald test).

Analysis adjusted for sociodemographic factors (sex, age, ethnicity, education, professional and marital status assessed at inclusion) and their interaction with slope terms (time, time², and time³), and time-dependant disease-related, treatment, lifestyle, and health factors.
Figure 1. Evolution of SF-36 bodily pain by sociodemographic sub-groups from inclusion up to 10 years in rheumatoid arthritis (ESPOIR cohort).

* P for difference in pain trajectories/evolution (drawn from testing the interactions between sociodemographic factor and slope terms using Wald test). Analysis adjusted for sociodemographic factors (sex, age, ethnicity, education, professional and marital status assessed at inclusion) and their interaction with slope terms (time, time², and time³), and disease-related (symptom duration, erythrocyte sedimentation rate, tender and swollen joint count, presence of radiographic structural lesions, rheumatoid factor positivity, anti-cyclic citrullinated peptide antibody positivity), treatment (anti-inflammatory and analgesic agents), lifestyle-related (body mass index, smoking, and alcohol consumption status), and health factors (rheumatic disease comorbidity index). Disease-related, treatment, lifestyle-related and health factors were time-dependant with some exceptions (symptom duration and anti-cyclic citrullinated antibody positivity at baseline and their interaction with slope terms were used in analysis). The tables beneath the figures indicate the total number of participants by sociodemographic sub-groups contributing at least once to the analysis by every 2 years from year 0 to 10. Estimates came from Margins command in STATA.

Figure 2. Evolution of differences in SF-36 bodily pain by sociodemographic sub-groups in rheumatoid arthritis and spondyloarthritis. Analysis adjusted for sociodemographic factors (sex, age, ethnicity, education, professional and marital status assessed at inclusion) and their interaction with slope terms (time, time², and time³), and disease-related, treatment, lifestyle-related, and health factors. The green line represents the ESPOIR cohort and the red line the DESIR cohort.
Figure 3. Evolution of SF-36 bodily pain by sociodemographic sub-groups from inclusion up to 6 years in spondyloarthritis (DESIR cohort).

* P for difference in pain trajectories/evolution (drawn from testing the interactions between sociodemographic factor and slope terms using Wald test). Analysis adjusted for sociodemographic factors (sex, age, ethnicity, education, professional and marital status assessed at inclusion) and their interaction with slope terms (time, time², and time³), and disease-related (symptom duration, C-reactive protein, arthritis, synovitis, and enthesitis indices, presence of sacroilitis, human leukocyte antigen B27 positivity), treatment (anti-inflammatory and analgesic agents), lifestyle-related (body mass index, smoking, and alcohol consumption status), and health factors (rheumatic disease comorbidity index). Disease-related, treatment, lifestyle-related and health factors were time-dependant with some exceptions (symptom duration, presence of sacroilitis and human leukocyte antigen B27 positivity at baseline and their interaction with slope terms were used in analysis). The tables beneath the figures indicate the total number of participants by sociodemographic sub-groups contributing at least once to the analysis by every year from year 0 to 6. Estimates came from Margins command in STATA.
Sex

<table>
<thead>
<tr>
<th>Years</th>
<th>0-2</th>
<th>2-4</th>
<th>4-6</th>
<th>6-8</th>
<th>8-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td>622</td>
<td>505</td>
<td>447</td>
<td>421</td>
<td>388</td>
</tr>
<tr>
<td>Males</td>
<td>388</td>
<td>154</td>
<td>137</td>
<td>117</td>
<td>109</td>
</tr>
</tbody>
</table>

P at t0 = 0.816
P traj = 0.050

Education

<table>
<thead>
<tr>
<th>Years</th>
<th>0-2</th>
<th>2-4</th>
<th>4-6</th>
<th>6-8</th>
<th>8-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>555</td>
<td>442</td>
<td>402</td>
<td>372</td>
<td>338</td>
</tr>
<tr>
<td>High</td>
<td>255</td>
<td>217</td>
<td>182</td>
<td>166</td>
<td>159</td>
</tr>
</tbody>
</table>

P at t0 = 0.007
P traj = 0.074

Age

<table>
<thead>
<tr>
<th>Years</th>
<th>0-2</th>
<th>2-4</th>
<th>4-6</th>
<th>6-8</th>
<th>8-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤44 y</td>
<td>289</td>
<td>229</td>
<td>187</td>
<td>169</td>
<td>164</td>
</tr>
<tr>
<td>44-55 y</td>
<td>253</td>
<td>212</td>
<td>203</td>
<td>189</td>
<td>173</td>
</tr>
<tr>
<td>>55 y</td>
<td>268</td>
<td>218</td>
<td>194</td>
<td>180</td>
<td>160</td>
</tr>
</tbody>
</table>

P at t0 = 0.004
P traj <0.001

Profession

<table>
<thead>
<tr>
<th>Years</th>
<th>0-2</th>
<th>2-4</th>
<th>4-6</th>
<th>6-8</th>
<th>8-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>No job</td>
<td>32</td>
<td>29</td>
<td>24</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>Blue</td>
<td>160</td>
<td>127</td>
<td>115</td>
<td>105</td>
<td>88</td>
</tr>
<tr>
<td>White</td>
<td>618</td>
<td>503</td>
<td>445</td>
<td>408</td>
<td>386</td>
</tr>
</tbody>
</table>

P at t0 = 0.301
P traj = 0.029

Ethnicity

<table>
<thead>
<tr>
<th>Years</th>
<th>0-2</th>
<th>2-4</th>
<th>4-6</th>
<th>6-8</th>
<th>8-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Others</td>
<td>62</td>
<td>48</td>
<td>35</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>Caucasian</td>
<td>748</td>
<td>611</td>
<td>549</td>
<td>508</td>
<td>463</td>
</tr>
</tbody>
</table>

P at t0 = 0.390
P traj = 0.001

Marital Status

<table>
<thead>
<tr>
<th>Years</th>
<th>0-2</th>
<th>2-4</th>
<th>4-6</th>
<th>6-8</th>
<th>8-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>217</td>
<td>168</td>
<td>144</td>
<td>138</td>
<td>124</td>
</tr>
<tr>
<td>Couples</td>
<td>593</td>
<td>491</td>
<td>440</td>
<td>400</td>
<td>373</td>
</tr>
</tbody>
</table>

P at t0 = 0.675
P traj = 0.418