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Abstract

Background: Chronic Obstructive Pulmonary Disease (COPD) is one of the top 10
causes of death worldwide, representing a major public health problem. Researchers
have been looking for new technologies and methods for patient monitoring with the
intention of an early identification of acute exacerbation events. Many of these works
have been focusing in breathing rate variation, while achieving unsatisfactory
sensitivity and/or specificity. This study aims to identify breathing features that better
describe respiratory pattern changes in a short-term adjustment of the
load-capacity-drive balance, using exercising data.

Results: Under any tested circumstances, breathing rate alone leads to poor capability
of classifying rest and effort periods. The best performances were achieved when using
Fourier coefficients or when combining breathing rate with the signal amplitude
and/or ARIMA coefficients.

Conclusions: Breathing rate alone is a quite poor feature in terms of prediction of
breathing change and the addition of any of the other proposed features improves the
classification power. Thus, the combination of features may be considered for
enhancing exacerbation prediction methods based in the breathing signal.
Trial Registration : ClinicalTrials NCT03753386. Registered 27 November 2018,https://
clinicaltrials.gov/show/NCT03753386

Keywords: Respiratory pattern, Telemonitoring, Classification, Novelty detection,
Chronic obstructive pulmonary disease (COPD)

Background
Motivation

Chronic Obstructive Pulmonary Disease (COPD) is one of the top 10 causes of death
worldwide, representing a major public health problem [1]. It is characterized by per-
manent and progressive obstruction of the airways, which may result in an accelerated
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decline in respiratory function. Increasing breathing difficulty often leads to a reduction
in daily activities and a deterioration in the quality of life.

Besides, patients with COPD may experience periods of acute deterioration of symp-
toms, called exacerbations. Exacerbations are complex events that negatively impact the
health of the patient. Their severity can be very variable, requiring hospitalization in
cases of moderate or severe events [2]. In France, an exacerbation with hospitalization is
responsible for an average additional cost of approximately 8300 euros [3].

In addition, with each new exacerbation, the chances of further exacerbation and the
risk of mortality increase [4].

Early management of exacerbations is essential to reduce mortality, limit the patient•s
loss of ventilatory capacity and reduce hospitalisations and costs of health [5].

It is nowadays possible to use passive and non-invasive equipment to follow patients
under oxygen therapy at home by measuring and recording a breathing signal. Using
machine learning on such signals for an early detection of abnormality in the respiratory
process could be a major challenge to improve the COPD patient care.

Related work

Within this context, researchers have been looking for new technologies and methods
for monitoring COPD patients with the intention of early identifying acute exacerba-
tion events. Some methods, based on self-reported symptoms or manually entered data
[6…10] are limited, since they depend on subjective assessment and on patient com-
pliance. Others have been focusing in remote monitoring devices, enabling automatic
follow-up of physiological data and reducing the need for intervention for data acquisition
by patients or the health team [11…16].

Some of the methods described employ an online learning process, that can be con-
sidered as a novelty detection approach. Sometimes called one-class classification, the
novelty detection consists of describing a •normalityŽ class, from which new points can
be classified as belonging or not. They are often used in medical problems modelling, in
which a lot of the data belongs to •normalityŽ while the •abnormalŽ events not only are
rare, but also variable, meaning that the characteristics of abnormality may not be known
a priori [17, 18].

In the case of exacerbation prediction, one frequent hypothesis is that changes in the
breathing pattern may occur before exacerbation. More specifically, some authors have
found that a significant change in breathing rate may be related to an exacerbation event
[11, 13, 14, 16].

Among the remote monitoring devices proposed, some have the particularity of being
coupled with a non-pharmacological treatment. That is the case of some non-invasive
ventilation (NIV) machines [11, 14, 16] that allow monitoring with minimal patient effort,
since it only depends on patients treatment compliance. In the most recent of these stud-
ies, a model for prediction of exacerbations based only on the respiratory rate performed
with 93.5% sensitivity and 64.8% specificity. The model performance was increased when
combining breathing rate with other measures from NIV [16].

With the same principle, other methods were proposed based on data from devices
that monitor patients under long-term oxygen therapy (LTOT) [13]. Compared to NIV,
no mask is used, the breathing is only spontaneous and measures concern only the nasal
pressure. In the latter study, an increase in breathing rate was able to predict exacerbations
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with 66% sensitivity and 93% specificity. LTOT is the most used non-pharmacological
treatment among patients with COPD in France [19]. Therefore LTOT monitoring
devices allow to cover another part of the population, while capturing measures from
patient•s spontaneous breathing. Nonetheless, those devices are for now limited to the
monitoring of breathing rate and treatment compliance.

The TeleOx� (Srett, Boulogne-Billancourt, France) is a medical device designed to
evaluate adherence and treatment efficacy in LTOT patients. The device is placed on
the oxygen circuit between the source and the nasal cannula of the patient, adding no
new constraints for the patient. Initially developed to follow patients compliance to treat-
ment, TeleOx� also enables monitoring flow rate of oxygen and the respiratory rate of
the patient at regular intervals (45 seconds every 5 minutes) [20].

As described in [20], TeleOx� data is computed by associating a pressure sensor and a
fluidic oscillator flow sensor. From those sensors, TeleOx� measures a signal that corre-
sponds to patients• nasal pressure, which can be used to compute a proxy of the patients
oxygen flow and respiratory rates. These parameters are recorded in the device memory
for further upload in a server. The recorded data show a higher level of noise than respi-
ratory data at hospital but allow to follow patients at home, with no invasive device nor
manipulation needed.

Aim of the present article

Predicting exacerbations is widely used as the main objective in clinical studies. Yet, this
is a difficult outcome to monitor, as there is no consensus in the definition of an exacer-
bation. Moreover, it requires a long term follow-up and shows high variability between
patients.

Since exacerbations correspond to an imbalance between the respiratory muscle load-
capacity-drive relationship [21], we look for another way of analysing how this balance
reflects in breathing and detecting changes in a shorter-term follow-up, using the
TeleOx� device.

In its stable state, a patient with COPD has a precarious load-capacity balance. Its basal
load level is already high because of increased airway resistance and decreased dynamic
chest wall elastance. To compensate this excess load, the respiratory muscles of these
patients are highly demanded. In addition, COPD often comes with muscle weakness,
which reduces the ability of the respiratory muscles to compensate for this load. COPD
patients are therefore exposed to a significant risk of imbalance.

During an episode of acute respiratory infection, the increase, even moderate, of the res-
piratory load may be greater than the compensatory capacity of the respiratory muscles,
already in high demand in the basic state. This decompensation generates an increase in
symptoms such as dyspnea and coughs and a reduction in oxygen saturation.

In healthy subjects, the balance between respiratory load and compensatory capacity
has more potential to adapt to different situations. At rest, a small proportion of the
capacity of the respiratory muscles is sufficient to compensate for the low breathing loads.
During an increase in the respiratory load (pneumonia, asthma attack, physical effort,
etc.), the activity of the respiratory muscles can be increased without exceeding their
maximum capacity.

Therefore, even for a healthy individual, a change in the load-capacity-drive balance
involves changes in the way he or she breathes. Thus, the prediction of exercising may
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be used as a proof-of-concept problem before looking at decompensations in patients
with COPD. This paper focuses on the use of machine learning techniques in order to
(a) identify features that well describe respiratory pattern changes in healthy individuals
using annotated data, and (b) verify if those same features enable to identify respiratory
pattern changes in patients with COPD.

To do so, we compare the use of the breathing rate alone with the couple breathing rate-
breathing amplitude which is more representative of the subject•s breathing load. We also
compare them to more complex and standard feature extraction methods for time series
data which are ARIMA models and Fourier decomposition. This comparison is made in
terms of prediction capability using generalized linear mixed effect models.

In a second time, we provide a proof-of-concept procedure to show the ability of the
selected features to detect abnormality. To do so, we apply a one-class classification
method, that is, we train a model only on resting data and evaluate its ability to predict
exercising.

Results
Data and feature extraction

In total, dataset from twenty healthy subjects contained 439 rest periods and 78 effort
periods. In the COPD dataset, 1567 rest periods and 571 effort periods were recorded
from eight patients.

In Fig. 1, we present an example of what a 45 seconds period of recording by TeleOx�

can look like for a healthy subject at rest. This signal, although not exactly corresponding
to the respiration, is used as a proxy of it to extract the features.

Figure 2 presents two examples of healthy nasal pressure recordings. The dark gray
area corresponds to the 3 minutes of exercising. One can see on those examples that the
strategy adopted to increase the respiratory load is different from one person to another.
The top individual modifies the amplitude of his breathing, while the second increases
his breathing rate. This very different behavior justifies the use of models for which the
classification rules are learned individual per individual, rather than in common.

One example of recording for a COPD patient is given in Fig.3. Oxygen flow is not
used in the analysis but it allows for understanding variations in the pressure signal. Only
periods where continuous oxygen flow is detected are used in following analysis.

Figures4 and 5 show examples from healthy and COPD recordings, respectively, and
the corresponding features computed every 45 s. COPD recordings often include periods

Fig. 1 Example of pressure signal recorded with TeleOx� . Window of 45 seconds of nasal pressure signal
from a healthy subject recording
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Fig. 2 Full pressure signal TeleOx� recordings for two healthy subjects. Dark gray areas correspond to the 3
minutes of exercising while the light gray areas correspond to breathing while drinking, coughing, speaking
and oral breathing. Subjects were at rest in other areas

Fig. 3 Pressure signal and oxygen flow for 8-hours recording from COPD patient. Gray areas correspond to
estimated exercise times
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Fig. 4 Extracted features example from a healthy subject recording.a Raw pressure signal,b breathing rate,
signal amplitude and ARIMA coefficients andc Fourier transform. Ina andb, dark gray areas correspond to
the 3 minutes of exercising while the light gray areas correspond to breathing while drinking, coughing,
speaking and mouth breathing

where features are not computed, which correspond to periods where oxygen is not used,
patient is not detected or the quality of the signal is considered insufficient.

Supervised classification

Classification methods were performed with healthy and COPD datasets separately. Gen-
eralized linear mixed models (GLMM) performances are presented in Tables1 and 2 for
healthy and COPD datasets respectively. Figure6 shows the ROC curves for the different
combinations of features in both cases.

In the healthy dataset, the comparison between methods shows a clear hierarchy in their
capacity to discriminate rest and exercise. Breathing rate and ARIMA coefficients alone
are clearly weaker than their combinations with amplitude or Fourier coefficients. In the
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Fig. 5 Extracted features example from a COPD patient recording.a Raw pressure signal,b breathing rate,
signal amplitude and ARIMA coefficients andc. Fourier transform. Ina andb, dark gray areas correspond to
estimated exercise times

Table 1 Performance of supervised classification models in exercise detection for the healthy
individuals dataset using different predictor variables and performance indices

Predictive variables Accuracy Sensitivity Specificity AUC

Breathing rate 0.886 0.993 0.282 0.734 (0.673-0.794)

Signal amplitude 0.957 0.986 0.795 0.987 (0.978-0.995)

ARIMA coefficients 0.859 0.959 0.295 0.820 (0.769-0.872)

Breathing rate and signal
amplitude

0.965 0.984 0.859 0.995 (0.991-1.000)

Breathing rate, signal
amplitude and ARIMA
coefficients

0.963 0.979 0.872 0.977 (0.945-1.000)

Fourier coefficients
(frequencies� 2 Hz)

0.954 0.973 0.846 0.975 (0.948-1.000)
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Table 2 Performance of supervised classification models in exercise detection for the COPD patients
dataset using different predictor variables and performance indices

Predictive variables Accuracy Sensitivity Specificity AUC

Breathing rate 0.748 0.950 0.194 0.741 (0.718-0.764)

Signal amplitude 0.787 0.951 0.338 0.773 (0.751-0.796)

ARIMA coefficients 0.806 0.945 0.424 0.814 (0.793-0.835)

Breathing rate and signal
amplitude

0.801 0.939 0.422 0.798 (0.776-0.819)

Breathing rate, signal
amplitude and ARIMA
coefficients

0.825 0.932 0.531 0.848 (0.829-0.867)

Fourier coefficients
(frequencies� 2 Hz)

0.797 0.933 0.422 0.811 (0.791-0.832)

COPD dataset, the combination of breathing rate, amplitude and ARIMA coefficients is
superior to any other case tested.

There is also a clear difference between healthy individuals and COPD patients but it is
difficult to tell if it is due to COPD or to the lesser confidence of the data labeling.

One-class classification

ROC curves of the results of one-class classification models based on the Mahalanobis
distance are shown in Fig.7. The performances obtained by each method are presented
in Tables3 and4 for healthy and COPD datasets, respectively.

In most tested conditions, the performances are slightly weakened compared to the
supervised context. This was expected, since this method learns only about normal
events, while supervised methods have access to both normal and abnormal events to
learn the classification rules. The hierarchy between the proposed methods remains how-
ever similar, although the superiority of the combination of breathing rate, amplitude and
ARIMA coefficient for the COPD dataset disappears.

Discussion
The breathing rate alone has the lowest performance for classifying rest and effort periods
for healthy individuals. Any other feature alone or combined leads to better performance
among the considered models. The models combining breathing rate with amplitude,

Fig. 6 ROC curves for the detection of exercise periods in the supervised context using combinations of the
proposed features.a Healthy subjects andb Patients with COPD
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