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Abstract 
This paper presents a comparative analysis on two 

artificial neural networks (with different architectures) for 
the task of tempo estimation. For this purpose, it also 
proposes the modeling, training and evaluation of a B-
RNN (Bidirectional Recurrent Neural Network) model 
capable of estimating tempo in bpm (beats per minutes) of 
musical pieces, without using external auxiliary modules. 
An extensive database (12,550 pieces in total) was curated 
to conduct a quantitative and qualitative analysis over the 
experiment. Percussion-only tracks were also included in 
the dataset. The performance of the B-RNN is compared 
to that of state-of-the-art models. For further comparison, 
a state-of-the-art CNN was also retrained with the same 
datasets used for the B-RNN training. Evaluation results 
for each model and datasets are presented and discussed, 
as well as observations and ideas for future research. 
Tempo estimation was more accurate for the percussion-
only dataset, suggesting that the estimation can be more 
accurate for percussion-only tracks, although further 
experiments (with more of such datasets) should be made 
to gather stronger evidence. 

1. Introduction 
Music Information Retrieval (MIR) is the field of 

study that aims to extract, analyze and provide information 
from a song [1]. Basic methodologies for Music 
Information Retrieval can include audio signal processing, 
musical perception, among others [2]. Some examples of 
MIR research involve tempo estimation [3] — which is the 
main research theme of this paper —, identifying musical 
styles [4] and comparison of similarity between two songs 
[5]. Estimating the tempo of a song is considered one of 
the most fundamental tasks of MIR [6]. 

 The tempo of a musical piece corresponds to the 
number of beats that would be counted in one minute 
(beats per minute, or bpm) [7]. In general terms, it can be 
understood as the speed at which humans often tap their 
fingers or feet as they listen to music [6]. When listening 
to a song, it is often generalized that music sounding “fast” 
to a listener should have a longer tempo than songs that 
seem comparatively slower. 

Rhythm is one of the most important characteristics 
of music [7], and it can be said that it is one of the factors 

that makes certain musical genres easily recognizable 
(e.g.: waltz in 3/4 and rock in 4/4-time signatures). Some 
of them more often work with faster tempo – like heavy 
metal – while others often work with comparatively 
shorter tempo – like reggae. Identifying such tempo could 
have interesting applications in other contexts, such as, for 
example, a recommendation system for similar songs, 
which would suggest tracks considering similar tempi 
and/or other characteristics. 

As such, it could be interesting for research 
methods to estimate the tempo of a musical piece using 
modern technologies with good accuracy, as well as 
verifying if there is any model in such technology that 
stands out in performance. Still considering the importance 
of tempo, it would be also interesting to test whether the 
tempo estimation is more accurate when estimating over 
tracks containing percussion only, which is often one of the 
most responsible instrument(s) for determining tempo. 

The tempo estimation in music using computational 
methods has been studied for some decades. As an 
example, the work of Schreirer [8], from 1998, was one of 
the first to process the audio signal in a continuous way 
(previously, the usual methods worked over discrete 
temporal events) [9]. 

As for tempo estimation using artificial neural 
networks (ANNs), the first evidences were found at late 
2000s-early 2010s. Some of these works were those of 
Böck [6], circa 2010, and that of Gkiokas, Katsouros and 
Carayannis [10] in 2012. Böck  uses a bidirectional Long-
Short Term Memory (LSTM) [11] in order to map beat 
activations, after which the results are further processed 
with comb filters. The work of [10] also uses a 
convolutional neural network to derive a beat activation 
function, then identify the tempo in later steps. 

A neural network model considered state of the art 
(for tempo estimation) was proposed by Böck and Schedl 
in 2011 [12] and further refined in 2015 [9]. The model is 
a bidirectional LSTM, aided by external modules which 
process detected beat activations. The first published 
model capable of estimating tempo without the help of 
external modules that presented state of the art 
performance was the work of Schreiber and Müller [13] 
published in 2018, consisting of convolutional and dense 
layers. This model was an important starting point for the 
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development of this work. The model on [13] presented 
results comparable to the state of the art. Böck and Davies, 
in 2020 [14], proposed a system which uses a CNN with 
convolutional layers and TCN layers (temporal 
convolutional networks), then processes the results with 
deep Bayesian networks, also achieving state-of-the-art 
results.  

We propose the use of datasets consisting of 
percussion instruments only (such as drums) to the 
estimation of tempo via neural networks research. One of 
the reasons this is yet to be more explored might be due to 
the lack of extensive availability of such databases to the 
MIR community. However, we found there are percussion-
only databases being constructed, which already provide a 
reasonably good number of tracks and annotations to work 
with. As such, we decided to explore this possibility.  

This paper also aims to propose, train and evaluate 
a new bidirectional recurrent neural network model (B-
RNN) that is capable of estimating the tempo in bpm of a 
musical piece without the need for help of other additional 
modules (external to the model itself). We aim to evaluate 
the performance over a collection of datasets, then 
compare and discuss the results considering other 
architectures such as convolutional neural networks. 

2. Dataset 
For the experiment, we built a large dataset 

containing complete musical pieces (or samples). These 
pieces might contain either multiple instruments or a single 
instrument, such one drum line (which is a percussion 
instrument) without other instruments.  

 
Name Qt. of 

samples 
Dura-
tion (s) 

Extension Genres 

ACM [15] 1.410 30 .wav Pop, rock 

Extended 
Ballroom [16] 

3.826 30 .mp3 Salsa, 
foxtrot, 
samba etc. 

GiantSteps 
Tempo [17] 

664  120 .mp3 EDM 

GiantSteps 
MTGa 

1.158  120 .mp3 EDM 

Grooveb 443 10-60+ .wav Reggae, 
pop, rock, 
jazz etc. 

GTZan[18] 999  30 .wav Pop, rock 
etc. 

Hainsworth [5] 222  40-60+ .wav Folk, jazz 
etc. 

LMD [19] 3.611  30 .mp3 Pop, rock, 
classical 
etc. 

SMC [20] 217  40 .wav Classical, 
romantic, 
acoustic 
etc. 

a. Available on: <https://github.com/GiantSteps/giantsteps-tempo-
dataset>. Accessed: 30 April 2021. 

b. Available on: <https://ai.google/research/teams/brain/magenta/>. 
Accessed: 30 April 2021. 

 
Table 1: Selected datasets and their features. 

  
Figure 1: Tempo distribution of the dataset samples. 

 
The dataset for this experiment contains 12,550 

parts/samples. It is a collection of smaller datasets that 
were selected for their variety of pieces (diversity of 
musical genres, also avoiding repetition of data). The free 
availability for use in academic experiments — as well as 
availability of public annotations (of tempo in bpm) — in 
their respective papers/source were also important factors. 

Datasets containing percussion-only tracks were 
also considered necessary for this experiment. This is due 
to the fact that percussion instruments, such as drums, are 
often the most used instrument to guide the rhythm of a 
song (particularly in pop and rock); thus, it of our interest 
to verify whether the tempo estimation could be more 
accurate if the network tries to estimate the tempo only 
over the percussion. Furthermore, to the best of our 
knowledge there are no works on tempo estimation (with 
neural networks) that presented experiments with drum-
only tracks (nor the Groove dataset). Should the network 
performance over drums-only pieces eventually be 
considerably more accurate, it could be interesting to try 
extracting the drum lines from a multi-instrument song for 
future experiments.  

Table 1 lists the names, number of pieces and 
presents a brief description of each database, showing also 
the musical genres of the pieces that make up each one. 
After the name of each dataset, there is also a reference to 
their original publication, which grants the access to the 
musical pieces and the available annotations (exceptions: 
the annotations for GiantSteps MTG and LMD were 
obtained from [13] instead of their original sources). 

The Groove dataset is the only that contains purely 
percussion pieces (in this case, drums), totaling 443 
samples. All the others present mostly multi-instrument 
tracks, some of them containing vocal lines. This can be 
considered an obstacle for the goal of determining whether 
there is greater accuracy in estimating the tempo of 
percussion-only pieces, since the amount of data is a 
crucial factor for the performance of a neural network [21]. 
Although the original Groove dataset on the source page is 
more extensive, most of the samples which are available in 
the Grove dataset consist of information that is not relevant 
to this experiment, such as drum fills. The authors filtered 
the database and annotations so that only tracks with 
proper instrumentation (and available .wav file) remained. 
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It is interesting to highlight a few points on the 
selected datasets: Extended Ballroom contains music from 
13 different genres, as well as time signatures other than 
4/4 (which is the most common in pop songs), such as 3/4. 
SMC, according to the authors [20], was created with the 
intention of being particularly challenging for rhythm 
analysis systems. It includes samples of several styles such 
as classical music, blues, soundtracks, etc. Groove also 
features popular drum lines in a variety of genres such as 
punk, rock, jazz, and gospel, also presenting a variety of 
time signatures including 3/4 and 6/8. It is possible to 
consider that Groove does not suffer from style bias, as the 
tracks were performed by several drummers. The diversity 
of styles and metrics is an enriching factor for the database. 

3. Methodology 
Tempo estimation of a musical piece (which is 

originally an audio file) can be approached as both a 
regression problem and a classification problem. The 
classification approach can consider the tempo in bpm of 
a song as a class; a class is an integer number which is 
between the lowest and the highest bpm values selected. 
This method could be interesting due to the possibility of 
working later with other tempo probabilities, such as 
finding a second or third tempo considered more suitable 
[13]. This information could also be relevant when 
analyzing a musical piece structured with multiple tempi 
(although this paper proposes to work with the scope of a 
single tempo only). Furthermore, decimal values can be 
deemed irrelevant for tempo estimation. For these reasons, 
the authors chose to work with the classification problem 
approach instead of regression. 

It is worth noting that music does not necessarily 
consist of a single tempo in bpm. There are pieces that 
present bpm changes over time: for example, in classical 
music, it is common to have different tempi in distinct 
parts of the piece’s structure. Therefore, it is to be expected 
that the estimation of a single tempo will not be accurate 
for such pieces. It is expected, for this experiment, that the 
neural network will be able to estimate with some 
precision the tempo of music that present a single tempo 
for most of their duration. 

After defining that the experiment will be 
conducted on neural networks, the first step was the dataset 
selection (introduced in Section 2). Then the following 
steps consisted of defining the input representation for the 
neural network, defining the neural network model, 
network training and evaluation; these first three following 
steps are presented and discussed in this Section, while the 
evaluation of models and results are discussed in 
Section 4.  

In short, we obtain a Mel spectrogram of the music 
piece chosen as input, scale it on the time axis, crop it into 
several windows. These windows are the input for the 
neural network. The model will then process these 
windows, estimating the probabilities of the tempo classes 
for the windows; Finally, a single value of tempo in bpm 
will be chosen as output after considering all the windows 
probabilities. These processes and definitions will be 
further explained in this Section. 

3.1 Input representation 

For this experiment, the Mel spectrogram (which 
will be defined in the next paragraphs) was selected as the 
input representation for the neural network. The input 
treatment process that will be described is replicated from 
[13]. 

Although the most basic form of signal 
representation is the waveform, which represents the 
magnitude (y-axis) over time, one of its downsides is being 
quite heavier than other representations for a system to 
process. Therefore, it was on the interest of the authors 
using Fourier transforms to obtain a spectrogram, which 
works in the context of frequency.  

The spectrogram provides a two-dimensional 
visual representation of an audio signal, in which the 
horizontal axis represents time and the vertical axis 
represents frequency [22], while color schemes can be 
used to represent intensity (third axis). Figure 2 is an 
example of a spectrogram. 

The Mel spectrogram is a spectrogram that uses the 
Mel scale which represents frequencies akin to human 
perception [23]. The Mel scale is widely used in MIR 
research. Since music is created by human beings, rhythm 
and time are created and perceived by human beings as 
well. Therefore, the Mel scale is useful to carry out 
experiments that aim to simulate hearing in a closer way to 
that of its creators. 

It is possible to process the input further for 
network training efficiency by scaling the spectrogram. 
The entire musical piece spectrogram can be scaled on the 
time axis (keeping the frequency axis untouched). For this 
experiment, the spectrogram is scaled along the time axis 
using a random factor c ∈ {0.8, 0.84, ..., 1.16, 1.2} (the 
tempo ground truth label is also scaled accordingly to 
factor c). This also generates diversity of inputs for further 
training of the network. 

Instead of providing an entire spectrogram for the 
neural network to process, it is possible to crop several 
windows of this same spectrogram, which was the selected 
input method in this work. This mode has not only an 
advantage from a size efficiency point of view (input gets 
much smaller), but also from the number of examples for 
training. Cropping the spectrogram in windows, it is 
possible to generate several different training examples for 
the network from what was, originally, only one input. 

The duration of 10 seconds can be considered 
enough to get a good sense of the tempo of a piece. 
Therefore, it is enough to choose a number of frames that 
is sufficiently close to such time interval. The value of 256 
frames (approximately 11.9 seconds) for the spectrogram 
input, used by [25], was considered adequate. 

Thus, the input to the neural network is a honey 
spectrogram with dimensions FT × TT = 40 × 256 (FT is the 
number of frequency bins and TT is the number of time 
frames). FT covers the frequency range between 20 and 
5,000 Hz.  
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Figure 2: A Mel spectrogram (extracted from [6]).  

 

There are also some interesting variations of the 
Mel spectrogram, such as the log Mel (which uses a 
logarithmic scale for intensity, that is, decibels). It may be 
interesting, for a future experiment (not in the scope of this 
paper), to use the log Mel spectrogram pursuing 
improvements in tempo estimation. 

3.2 Model 
For this experiment, a new model of bidirectional 

recurrent neural networks is proposed. Bidirectional 
recurrent neural networks (B-RNN), introduced by 
Schuster and Paliwal [25], are recognized as a good model 
for tasks such as speech recognition [26], also proving to 
be valuable for tempo estimation. Böck and Schedl [12] 
propose a B-LSTM (bidirectional Long Short-Term 
Memory) (which is a type of B-RNN [26]) for tempo 
estimation; their model can provide state of the art 
accuracy [13], although they use external modules to 
process beat activation functions, which is not the goal of 
this paper.  

 

 
Figure 3: The B-RNN model overview (modified 
from [13]). 

 
The use of bidirectionality makes sense, since, 

when analyzing a song, both the previous context and the 
future context of a moment in a song can be used to help 
determine the tempo. Considering the aforementioned 
factors, the bidirectional recurrent neural network was 

chosen as a suitable type of model to be worked with in 
this paper.  

Since the goal is to estimate tempo without the need 
of auxiliary modules external to the neural network itself, 
and the authors could not find any B-RNN models yet 
published that perform this task, a new model was 
proposed. The overview on the model is represented on 
Figure 3.   

We constructed 3 B-RNN layers with 25 simple 
recurrent units for each direction to process the input. This 
corresponds to 6 layers and 150 units. The number of units 
was inspired on Böck and Schedl [12] B-LSTM. Since the 
B-RNN is simpler than the B-LSTM, it might be 
interesting to try more layers or units in the future (which 
goes beyond the scope of this paper). The recurrent layers 
have tanh (hyperbolic tangent) as the activation 
function.  The input is normalized before it is sent to the 
recurrent layers.  

The goal for recurrent layers is to identify onsets, 
analyzing the Mel spectrogram frequencies, and 
identifying its temporal dependencies. Onset is considered 
the exact moment of the beginning of a beat; detecting 
them is needed to find its periodicities. With the 
bidirectional recurrency, we expect to detect sufficiently 
long temporal dependencies.  

Since we do not want to use external modules for 
signal processing (such as comb filters), there is the need 
for the model to be able to process the output from the 
recurrent layers. Schreiber and Müller [13] proposed a 
CNN that use dense layers for such feature. Since their 
model also presented state-of-the-art results, we decided to 
replicate the dense layers from [13]. The replicated dense 
layers can also be seen in Figure 3. 

Thus, the next step is the processing by these dense 
layers, whose purpose is to classify the features detected 
by the recurrent layers. First, the output of the recurrent 
layers undergoes an average pooling of (5 × 1). After a 
batch normalization as the next step, a Dropout layer (p = 
0.5) is added to avoid overfitting, succeeded by a dense 
layer. A batch normalization followed by dense layers will 
then finish processing the data. The first two dense layers 
use ELU (exponential linear unit) as the activation 
function, while the last one uses softmax. 

Since the network deals with a multiclass 
classification problem, we chose categorical cross entropy 
for the error function. The chosen optimizer is SGD 
(stochastic gradient descent) with a clipping value of 5 to 
prevent gradient explosion. The value for learning rate is 
0.001; for momentum it is 0.9. The bidirectional recurrent 
neural network has a total of 6.583.772 trainable 
parameters. 

3.3 Training 
For our experiment, it is necessary to select a part 

of the dataset that will be used to train the neural network. 
Thus, we must divide it in two distinct subsets: one for the 
training step, and another for the evaluation step later. 

In order to avoid biased results, it was decided that 
datasets in the training subset cannot be in the test subset 
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(and vice versa), with the exception of Groove (because it 
is the only one that contains drum-only tracks). It is 
desirable that the training subset contains a good variety of 
genres.   

Based on these criteria, we selected for training the 
models the following subsets: Extended Ballroom, 
GiantSteps MTG, Hainsworth, LMD and part of Groove 
(90%), totaling 9,215 samples.  

Among these datasets selected for training, it is 
necessary to split them into two more subsets, one which 
will be used for the network training itself and the other 
one which should be used to measure the validation loss. 
The 80% rate was set for the model training, with then 20% 
for validation. The tracks for each subset were selected 
randomly.  

The only exception is Groove, as mentioned: since 
it does not contain an overwhelming number of samples 
(443 pieces only), also being the only dataset with 
percussion lines, we must consider a subset for evaluation. 
Groove was split following the proportions: 80% training, 
10% validation and 10% evaluation. We made an effort to 
ensure that tracks used in evaluation were as different as 
possible from those in training and validation. 

As discussed in Section 3.1, the Mel spectrogram 
of the entire signal is compressed (or expanded, if the 
duration of the entire audio is less than 11.9 s) and then 
cropped into smaller excerpts of approximately 11.9 
seconds. This process therefore increases the number of 
inputs that are provided to the network during training.  

The training was carried out under early stopping 
(when there is no validation loss in the last 100 Epochs). 
The code used to run the training stage was originally 
made available in [24], with some minor modifications 
made by us to allow the use of audio files not supported by 
the original repositories. 

The B-RNN training lasted a total of 410 Epochs 
(in 25 hours), ending due to early stopping. We trained the 
model only once, with no additional retraining. 

3.4. Estimating tempo 

As stated in Section 3.1, the whole musical piece 
spectrogram is cropped before being fed to the neural 
network. Thus, the network will estimate the tempo of each 
excerpt picking the class with the greatest activation.  

To estimate the tempo for the whole track, multiple 
output activations are calculated using a sliding window 
with half-overlap (hop-size of 128 frames, approximately 
5.96 s). The activations are averaged class-wise and the 
tempo class with the greatest activation is picked as well. 
This methodology is replicated from [13].  

4. Evaluation and results 

Following the training stage criteria, the selected 
datasets for the neural network evaluation step were ACM, 
GiantSteps Tempo, GTzan, SMC and part of Groove 
(10%), totaling 3,335 different pieces. 

To evaluate the performance, we first need to define 
what is accuracy in tempo estimation. The most objective 

concept is to estimate exactly the same value (an integer 
number such as 80 bpm). However, the difference between 
songs with close tempo values (e.g. 83 bpm and 85 bpm) 
can be practically imperceptible to human ears, so a small 
margin of error must also be taken into account, since it 
does not compromise the understanding of the music 
rhythm. As such, more than one level of accuracy for the 
measurement (secondary accuracies) are usually 
introduced in tempo estimation studies [27].  

It is also common for machines to end up 
interpreting the value of tempo as 2-3 times greater (or 
smaller) than the time perceived by humans, a 
phenomenon known as tempo octave error [28], which is 
also a research subject in MIR. In fact, human beings 
themselves often disagree as to the value of tempo 
perceived by each one [27]. One person might, for 
example, interpret the tempo of a song as 60 bpm, while 
another one interprets it as 120 bpm. Therefore, even 
though the best performance would be as close as possible 
to the true tempo value, it is also of interest to simulate 
human hearing and its inaccuracies, without discarding 
multiples of the original tempo.  

We defined some support variables to estimate the 
accuracy of tempo detection (in bpm) by the neural 
network. 3 types of accuracy were chosen: Accuracy0, 
Accuracy1 and Accuracy2. It can be said that Accuracy0 
and Accuracy1 are the ones that represent the best 
performance as they are closer to the original absolute 
value; Accuracy2 represents a performance that can be 
considered good enough (and could be refined in future 
work, not in the scope of this paper). These accuracies 
refer to the tempi values estimated by the neural networks 
for one or more musical pieces.  

Accuracy0 is the accuracy rate for tempo values 
(rounded to the nearest whole number) identical to the 
ground truth label; Accuracy1 accepts estimations with a 
deviation of ±4% from the ground truth label; and 
Accuracy2 accepts values two or three times greater (or 
smaller) than the ground truth label, plus a ±4% margin of 
error. 

These variables were inspired by studies such as  
[27] and, mainly, by [13], from which the margin of error 
percentage (±4%) was replicated. The criteria for each 
accuracy were chosen not only for they are suitable for an 
accuracy analysis, but also to facilitate a comparison of the 
results with a state-of-the-art model. 

 
Dataset B-RNN Sch1 [24] Sch2  

ACM [15] 33.0 40.6 39.3 

Groove 58.1 37.2 60.6 

GiantSteps 
Tempo [17] 

15.7 27.6 27.7 

GTZan[18] 25.2 36.9 30.5 

SMC[20] 6.0 12.4 11.1 

Table 2: Accuracy0 results for the compared models. 
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Dataset B-RNN Sch1 [24] Sch2 

ACM [15] 72.1 79.5 73.8 

Groove 76.7 62.8 72.1 

GiantSteps 
Tempo [17] 

69.3 64.6 83.0 

GTZan[18] 62.0 69.4 64.6 

SMC[20] 18.4 33.6 27.2 

Table 3: Accuracy1 results for the compared models. 
 

Dataset B-RNN Sch1 [24] Sch2 

ACM [15] 93.1 97.4 96.5 

Groove 95.4 86.0 93.0 

GiantSteps Tempo 
[17] 

86.3 83.1 92.5 

GTZan[18] 85.2 92.6 91.0 

SMC[20] 30.4 50.2 40.5 

Table 4: Accuracy2 results for the compared models. 
 

The results for the B-RNN are compared to those 
presented by Schreiber and Müller’s [13] CNN 
(convolutional neural network), which we will refer to as 
Sch1. Since Sch1 presented state-of-the-art results and it 
was the first not to recur to external modules in tempo 
estimation, we will be including their results in the 
analysis; for a comparison of neural networks-only vs. 
neural networks with external modules, it is recommended 
to read their original paper [13]. 

For comparison purposes, the CNN model from 
[24] was reproduced and trained from scratch with the 
same datasets and hyperparameters used for the B-RNN of 
this paper. We will refer to this retrained model as Sch2. 
This retraining was done as an effort to avoid a possibility 
of bias in estimating percussion tracks (since Sch1 was not 
trained with this particular type of dataset). 

Tables 2, 3 and 4 each show the percentage of 
correct estimations for Accuracy0, Accuracy1 and 
Accuracy2, respectively. Best results for each dataset are 
in bold. 

The B-RNN presented better results than Sch1 [13] 
in all accuracies for the Groove dataset, and better results 
in Accuracy1 and Accuracy2 for the GiantSteps Tempo 
dataset. As previously stated, Sch1 was not trained with 
the Groove dataset. 

Nevertheless, B-RNN's performance on the Groove 
dataset (which contains only drum-line audios) was 
superior to that of CNNs: of the three types of accuracy 
established, B-RNN had the best result in two. This can 
suggest that B-RNNs might detect temporal dependencies 
better than CNNs on percussion-only tracks. Still, more 
research should be done on this matter for stronger 
evidence. Furthermore, Groove was the dataset that 

received the best accuracies for the models in this 
experiment.  

The Groove dataset had relatively high Accuracies 
0, 1 and 2 values for the B-RNN and Sch2 models, which 
were trained with percussion pieces. In fact, it was the 
dataset that presented the highest Accuracy0 values, and 
the only dataset in which B-RNN surpassed Sch1 and even 
Sch2 (which was also trained with Groove) in accuracy 
performance, as mentioned already in this section. As the 
only percussion dataset, containing 443 tracks — that is, 
only 3.53% of the total pieces —, we had expected the 
networks would not perform very well compared to the 
multi-instrumented datasets (which are 12,107 tracks, 
96.47% of the total). Obviously, the possibility of bias 
should be considered since part of the dataset was used for 
training and the other part for the assessment itself. 

Some of the B-RNN's inaccuracies on Groove were 
a 145-bpm estimation provided for a 290 bpm song. 290 
bpm is a very unusual tempo, not only for the training 
dataset distribution but for music as a whole, and that 
might have contributed to the choice of 145 instead of 290. 
Another estimation error was the attribution of 84 bpm to 
a track that has 60 bpm, but which has an unusual metric 
of 6/8, which may have contributed to the error; yet, for 
another song in 6/8 metric the detection was accurate 
enough (a 70-bpm track was rated 140 bpm, double the real 
value).  

The highest Accuracy0 value, after Groove, is for 
the ACM dataset. It makes sense since most of its content 
is pop and pop-rock songs, which are usually well-defined 
pieces with few tempo changes. Accuracy2 had the highest 
values for all Accuracies, which is expected, since it is the 
least “rigorous” secondary accuracy. Still, since it 
exceeded 85% accuracy for all datasets (except for the 
SMC, which was designed to be challenging), it is possible 
to say that the B-RNN model presents satisfactory results, 
consistent to human hearing. 

It is noticeable that, despite the two CNNs (Sch1 
and Sch2) having exactly the same architecture, their 
performances presented different accuracies for the same 
dataset. This suggests that the choice of datasets can be 
decisive for the performance of neural networks — 
something that is already well recognized in the deep 
learning field — and that the lack of greater amounts of 
music available for training can lead to a surprising 
difference in performance. Therefore, it could prove useful 
to experiment with different datasets and hyperparameters 
in future works. 

5. Conclusion 
In this paper we performed the modeling, training 

and evaluation of a neural network model (B-RNN) which 
is capable of estimating the tempo (in bpm) of a musical 
piece. Providing a piece’s Mel spectrogram as input, the 
output is a class as the estimation of tempo in bpm (beats 
per minute). We compared the results of the B-RNN with 
a CNN model considered state of the art [13], and with a 
replica of [13] which we retrained with the same datasets 
and parameters as the B-RNN for the purpose of evaluating 
the results (aiming to reduce bias). We proposed an 
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analysis on the use of percussion-only dataset for training 
and the possibility of its use improving accuracy on tempo 
estimation. 

Based on the results, it was noticed that the tempo 
estimation, overall, was more accurate for the percussion-
only dataset. This suggests that tempo estimation can be 
more accurate over percussion-only tracks, but it is 
necessary to consider that only one dataset of this type was 
found available for the experiment, which was also used 
for both training and evaluation steps. Therefore, it is 
likely that the results could be biased in this direction. 
Further experiments should be made with more percussion 
datasets in order to gather stronger evidence. Still, the 
amount and variety of tracks in the Groove dataset (the 
only percussion dataset used) was considered good enough 
to be the first step on this kind of study. 

The B-RNN model also presented very satisfactory 
results for the Accuracy2, which exceeded 85% of correct 
answers for almost all datasets. The values of Accuracy0 
and Accuracy1, in general, for both B-RNN and CNNs, do 
not exceed 80%. Since these Accuracies are relevant to the 
understanding of music and its rhythm, it would be 
interesting to search for ways to refine this precision, so as 
to identify the correct multiple value of tempo. The B-
RNN also had a better overall performance on the 
percussion-only dataset, which could suggest that 
recurrent networks identify temporal dependencies better 
than CNNs on percussion-only tracks. But further 
experiments should be done with more datasets for 
stronger evidence. 

None of the models presented superior performance 
for absolutely every dataset, which suggests that the 
performance of a neural network in the estimation of 
tempo still depends a lot on the datasets that are selected 
for training, as well as the number of pieces used for 
training. Also, both original CNN model from  [13] and its 
retrained replica presented quite different accuracies for 
the same dataset, which also enforces such suggestion, also 
possibly indicating that efforts in constructing more public 
dataset for research could be fruitful. 

For future work, it would be interesting to 
experiment other hyperparameters for the network 
trainings; as well as to refine the B-RNN model, creating 
new layers for better signal processing, or even using B-
LSTMs layers. It would also be interesting to create more 
datasets containing percussion lines-only, in order to 
reduce the possibility of bias in the assessment. Further 
experiments could be done to assess whether B-RNNs 
could be a better choice to identify temporal dependencies 
for percussion-only tracks. 
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