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ABSTRACT

In recent years, the deep learning community has largely focused on the accuracy of deep generative
models, resulting in impressive improvements in several research fields. However, this scientific race
for quality comes at a tremendous computational cost, which incurs vast energy consumption and
greenhouse gas emissions. If the current exponential growth of computational consumption persists,
Artificial Intelligence (AI) will sadly become a considerable contributor to global warming.

At the heart of this problem are the measures that we use as a scientific community to evaluate our
work. Currently, researchers in the field of Al judge scientific works mostly based on the improvement
in accuracy, log-likelihood, reconstruction or opinion scores, all of which entirely obliterates the
actual computational cost of generative models.

In this paper, we introduce the idea of relying on a multi-objective measure based on Pareto optimality,
which simultaneously integrates the models accuracy, as well as the environmental impact of their
training. By applying this measure on the current state-of-the-art in generative audio models, we show
that this measure drastically changes the perceived significance of the results in the field, encouraging
optimal training techniques and resource allocation. We hope that this type of measure will be widely
adopted, in order to help the community to better evaluate the significance of their work, while
bringing computational cost — and in fine carbon emissions — in the spotlight of Al research.

1 Introduction

The motivation of this work comes from the following observation: between 2012 and 2018, the amount of computation
used in deep learning grew by a factor of 300,000 Dario and Danny| [2018]]. This exponential growth might have
permitted to achieve impressive results across a wide variety of tasks, but it also strongly increased the demand for
energy production, responsible for approximately 35% of total greenhouse gas emissions in 2010. If this trend continues,
it is fairly logical to predict that deep learning will be a significant contributor to climate change.

Most of the recent advances produced by deep approaches rely on a significant increase in terms of both size and
complexity [Hernandez and Brown| [2020], as well as an ever-growing number of training examples. Hence, such
improvements are often only permitted by a concomitant increase in power consumption Thompson et al.| [2020]] and,
thus, carbon emission |Strubell et al.| [2020a]]. In the audio synthesis domain, deep generative models have reached
an unprecedented quality for waveform synthesis.They are used routinely for speech synthesis in assistant such as
Apple Siri or Amazon Alexia. However, researchers concentrate on high-quality real-time raw waveform synthesis
which is by far the largest data we could use to perform synthesis. It requires handling complex temporal structures
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at both local and global scales; therefore, models are complex and computationally expensive, with either enormous
recurrent neural cells, or big kernel convolutions (or both). The disparity of proposed models in the literature and the
training time needed for them to converge questions the real effectiveness with regards to the quality of the generated
results, and what could be the best compromise in terms of energy and environment. Moreover, research institutes
and individuals can lack sufficient resources, due to the demand of countless types of specialized hardware (GPUs,
TPUs), often running continuously for several days and even up to weeks. Hence, obtaining a quality similar to that of
state-of-the-art models is becoming an unattainable goal, both financially and ecologically |Schwartz et al.|[2019].

Generally speaking, the absence of energy-based criteria for generative models falls within the broader lack of suitable
evaluation methods, notably for assessing the quality of the generated content Theis et al|[2016]. In Figure[I] we display
our analysis of the distribution of different evaluation metrics used in twenty-five state-of-the-art neural audio synthesis
research papers. We can clearly see that current researches are more focused on measures of generation quality, rather
than measures of algorithmic performance when evaluating and comparing models. Energy consumption, in that field,
is never taken into account, neither for training nor sample generation. Some studies do mention the training time per
iteration (DeepVoice Arik et al.|[2017]) and the number of generated samples per second (WaveRNN [Kalchbrenner et al.
[2018]]). However, measuring the precise energy consumption of a given model is a complex endeavor Garcia-Martin
et al. [2019], which remains mostly neglected. The new application domain of green computing aims to address this
kind of issues. This aspect is a novel field in deep learning research, already emerging in some communities as natural
language processing (NLP) |Strubell et al.|[2020b].

Generative audio models are promising advances for speech synthesis and music production. As a reminder, We also
question the possibility to embed such models and hope our approach will allow preserving the battery lifetime by
ranking the number of parameters at the same level as gains in quality.
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Figure 1: Distribution of commonly-used measures to compare and evaluate generative audio models. In purple
(left) those that refer to the quality of the generated samples, and in green (right) those that refer to their algorithmic
complexity and performances.

In this article, we propose a new method to evaluate both accuracy (or quality) and energy efficiency of generative
models. First, we present estimations of training costs in terms of CO5 emissions for all state-of-the-art models for
which we had enough training details among the twenty-five used in Figure[T} SampleRNN Mebhri et al|[2019], SING
Défossez et al.| [2018]], WaveGAN Donahue et al.| [2019]], GANSynth |[Engel et al.|[2019]] and FloWaveNet Kim et al.
[2019]]. We then propose the use of a multi-objective Pareto optimality criterion to provide fair comparisons regarding
both quality and energy efficiency when publishing new models. We compute a subjective score for quality, and present
two Pareto fronts, one for the training based on our COs estimation, and one for the inference based on the number of
parameters.

2 State-of-the-art

2.1 Neural audio synthesis

Audio synthesis has been a field of interest for over a century now, opening interesting doors for both musicians and
scientists |[Briot [2020]. It can be defined as the process of generating sound, using electronic hardware or software. The
expression "Neural audio synthesis" refers to audio synthesis performed by neural networks. It holds the promise of
speeding-up human-computer interactions, increasing performance and expressivity, enabling unprecedented accuracy
in statistical modeling tasks based on statistical modeling, and offering new tools for computational creativity Esling
and Devis|[2020]].
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Audio data can be expressed in many different ways. We count three categories with different levels of abstraction:
symbolic, time-frequency representation (spectrograms) and waveform. Although spectrograms have historically been
the most commonly used representation, they still lack in audio quality when applied to real-time synthesis especially
due to the phase reconstruction issue. Thus, working directly on waveform could both improve generation times (by
removing any form of post-processing), but also improve the quality of generated results.

2.2 Deep generative audio models

Deep generative models are a flourishing class of machine learning approaches, which deal with learning to generate
novel data based on the observation of existing examples. Given training data points x following an unknown
probability distribution p(x), generative models aims to learn a parametric distribution py(x) from a model family that
best approximates p(x), by iteratively changing model parameters . Several methods exist to address this, that we
can split in four categories : auto-regressive models, Variational Auto-Encoders (VAE) Kingma and Welling|[2014]],
Generative Adversarial Networks (GAN) |Goodfellow et al.|[2014]] and Flow-based modelsRezende and Mohamed
[2015]].

Auto-regressive models try to model examples x = x; 7 by making the assumption that each dimension z; is only
dependent on the previous ones:

T
p(x) = Hp(mt|x1,...,xt,1). (1)
=1

Following this formulation, WaveNet|van den Oord et al.|[2016]| and SampleRNN Mehri et al.|[2019] have tackled direct
waveform learning and generation. Unfortunately, these methods are based on heavy architectures whose computational
complexity require humongous energy, both for training and inference. Furthermore, they also provide almost no direct
control on the generative process. Some approaches use VAEs Esling et al.|[2018]] that learn a latent space providing a
low-dimensional representation of the data while remaining rather simple and fast to train. However, the generated
samples tend to be slightly blurry compared to recent adversarial networks, such as WaveGan Donahue et al.|[2019]
or GANSynth|Engel et al.[[2019]]. These show impressive reconstruction abilities but lack latent expressivity and are
difficult to optimize due to unstable training dynamics. The recently proposed Normalizing Flows (NF) allow to model
highly complex distributions in the latent space and already yield remarkable results such as the FlowSynth |Esling et al.
[2020] or FloWaveNet |Kim et al.|[2019]] models.

2.3 Maeasures of energy efficiency

First, we present general notions surrounding energy and power measurement in order to clarify these concepts. For
the sake of brevity, we avoid going into too much detail, but refer interested readers to|Garcia-Martin et al.|[2019] for
additional explanations. The energy E (in Joules) is defined as the effort to perform a task during a certain period of
time 7" (in seconds). This can be expressed as the integral of the instantaneous power P(¢) during that period as

T
Jo / P(t)dt )
0
The resulting average power (in Watts) is defined as
E
Pcwg = f 3)

Generally, the goal of energy efficiency is to reduce the amount of energy required to perform the same task. In machine
learning contexts, we consider two types of energy efficiency measures: the amount of energy required to train a model
(until convergence), and the amount of energy required by the model for inference steps (generating a sample in the
case of audio synthesis). However, measuring the energy consumption of any kind of computer program is already a
challenging task, since there are many variables involved (e.g. cache hits, cache misses, DRAM accesses).

To quantify the environmental cost of training deep neural networks models for NLP, Strubell et al. Strubell et al.
[2020b] decided to sample GPU, CPU and DRAM power consumption, respectively named pg, p., and p;, using
the NVIDIA System Management Interface and the Intel’s Running Average Power Limit. The sum of these three
components is then multiplied by the Power Usage Effectiveness (PUE) coefficient, which estimates additional energies
required to sustain the computing infrastructure (mainly cooling). They relied on a PUE coefficient of 1.58 as it is the
2018 global average for data centers, and end up with the following formula for the total average power

p¢ = PUE - (pc + pr + gpy) 4)
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with g the total number of the GPUs used for training. The energy consumed is obtained as the multiplication of this
total average power by the training time in seconds according to Equation (3). A popular metric for energy measurement
is the kiloWatt-hour (kWh). As its name suggests, it is the multiplication of the power in kilo-Watts by the time in
hours, given that 1 kWh = 3600 kJ. Finally, to link kilowatt-hour and CO, equivalent, Strubell et al. use the carbon
emission intensity factor (in kgCOseq/kWh). This factor is location-dependent, but can be captured in real-time thanks
to the online electricity ma

Lacoste et al. [Lacoste et al.|[2019] led to a simpler online tool called the "Machine Learning Impact Calculatmﬂ'
that provides an approximation of the carbon emission required for training a model, considering the location of the
servers, the total training time, and the hardware on which the training takes place. Very recently, Wolff Anthony et al.
Wolff Anthony et al.|[2020] developed an open-source tool written in Python called "Carbontracker", which tracks and
predicts carbon emissions produced for training deep leaning models. This provides a more accurate estimation while
being user-friendly.

Another common measure of efficiency is the total number of model parameters Engel et al.| [2019]], Vasquez and
Lewis|[2019] as it is quite easy to determine and usually directly correlated with computational complexity. Unlike
aforementioned measures, this one is hardware- and location- independent. A very recent and successful approach in
audio generation precisely attempted to reduce this number of parameters by using the lottery ticket hypothesis (Esling
et al.|[2020])). Lighter models require less memory space (especially crucial for embedded devices) but also incur less
energy consumption. Nonetheless, the number of parameters does not accurately reflect power consumption as some
operations consume more than others. Hence, the best way to alleviate that issue is to consider the number of Floating
Point Operations (FPO)|Schwartz et al.|[2019] of a model.

2.4 Pareto optimization

Pareto optimization is a branch of mathematical optimization problems involving several conflicting objectives to be
optimized simultaneously. This notion is used when it is impossible to improve one objective without degrading another.
Formally, considering a multi-objective optimization problem

mln(fl(x)an(x)aafk(x)) (5)

reX
with k& > 2 the number of objective functions and x the decision vector in the feasible set X. f : X — R* f(z) =
(fi(x),..., fu(x))T is the vector-valued objective function to be minimized.

A feasible solution x, € X is said to dominate another feasible solution x;, € X, notated x, < xp, if :

* Vie {17 sy k}a fi(xa) S fi(xb)
. 3_] S {1, ey k‘}, fj(l‘a> < fj(xb)
A solution z* € X is a Pareto optimal point and f(z*) is a Pareto optimal objective vector if there does not exist &

such that £ < x*. The set of all these optimal objective vectors is called the Pareto front. An example for k = 2 is
presented in Figure[2] note that the minimization problems are transposable to maximization problems.

f2 f2
A Pareto front A
/o X x
X x X X X xx

X o TX % X X

X X X X X

X X
X x

minimize fi, f2 h maximize fi, fo g

Figure 2: Example of two Pareto fronts (in red). Crosses represent feasible choices, red ones are Pareto optimal
solutions while black ones are dominated by at least one Pareto optimum.

"https://www.electricitymap.org/map
https://mlco2.github.io/impact/
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3 Estimation of Carbon Emissions for Training Models

3.1 Models

After a review of all state-of-the-art neural audio synthesis models working directly on waveform, we selected those for
which we had enough training details. These include the hardware used to train the model, such as the type of GPU
and total training time in hours. Surprisingly, we found out that only five of the studies properly specified both criteria.
Here, we present a short description of these models and the details of their training procedure according to the original
papers.

SampleRNN introduced by Mehri et al.| [2019]] is an auto-regressive model producing one sample at a time, composed
of auto-regressive multilayer perceptrons working at different temporalities. This model is trained for about one week
on a GeForce TITAN X on three different datasets containing speech, vocal sounds and piano sonatas leading to a total
of 168 hours of raw audio.

SING proposed by |Défossez et al.|[2018]] is a convolutional neural audio synthesizer that generates waveform given
desired categorical inputs. The training is composed of three parts on 4 NVIDIA P100 GPU on the NSynth dataset
Engel et al.|[2017] (333 hours): first, an auto-encoder is trained for 12 hours, then a sequence generator for 10 hours
and finally an end-to-end fine-tuning for 30 hours.

WaveGAN (Donahue et al.| [2019]]) is a GAN that performs raw-waveform synthesis using transposed convolutions
acting as upsampling modules. The network is trained on a single NVIDIA P100 GPU and converges within 4 days.
Four different datasets are used: bird vocalization, speech, drum sound effects and piano (15.6 hours).

GANSynth |Engel et al.|[2019] uses GANSs to generate log-magnitudes spectrograms and phases instead of modeling raw
waveform directly. The training lasts 4.5 days on a NVIDIA V100 GPU on a subset of the NSynth dataset (78 hours).

FloWaveNet proposed by |[Kim et al.|[2019] is a flow-based model for parallel waveform speech synthesis using the
WaveNet architecture (Van Den Oord et al.|[2018]]) as an inverse transformation function. The training lasts 11.3 days
on a NVIDIA Tesla V100 GPU and operates on the LISpeech dataset (24 hours).

Note that although these five models were chosen for the availability of their training details and not for their specific
architecture, we assume they form a representative set of generative models.

3.2 Experiments and results

Here, we want to estimate carbon emissions of each of these training procedures. Since we do not have all of the
previously mentioned specific hardware, some hypotheses have to be taken into account. First of all, we make the
assumption of the worst-case scenario, as does the Machine Learning Impact Calculator: we take the maximum power
consumption p,,,, in Watts for each of the GPUs according to their technical specifications, and multiply it by n, the
number of GPUs used for training and by ¢ the training time in hours, to get the kilo-Watt hours consumption. We
assume that the models are optimal and take most of the GPU resources. Note that the percentage of GPU utilization
from nvidia-smi is not equivalent to the percentage of power consumption.

As carbon emissions are location-dependent, we took a carbon intensity factor of 0.437 kgCOseq/kWh as it is the global
yearly average of ZOISEI to convert kilowatt-hours to carbon emissions. We ended up with the following formula to
estimate the carbon emission (COze) of a whole training as

COze = 0,437 X N X Prmas X L (6)

Results are shown in Table[I] We summarize the training details from column 1 to 3, and display the corresponding
kilo-Watt hours and carbon footprint estimations for each of the five studied models. As we can see, the energy
consumption ranges from 24 to 81.6kWh, and corresponding COse estimation from 10,5 to 35,7 kgCOzeq.

The estimations presented in Table T] are linearly dependent on the training time, which is itself linearly dependent on
the number of epochs before convergence and thus on the accuracy of the model. In other words, it is arguable that the
more you train a model, the more energy it consumes but the more accurate it is. Therefore, we should consider the best
"trade-off" between accuracy and carbon emission.

*https://www.carbonfootprint.com
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Model n x Hardware Pmaz t kWh COge
SampleRNN 1 x GTX TITAN X 250 168 42.0 18.4
SING 4 x NVIDIA P100 1000 52 52.0 22.7

WaveGAN 1 x NVIDIA P100 250 96 24 10.5
GANSynth 1 x NVIDIA V100 300 108 324 1545
FloWaveNet 1 x NVIDIA V100 300 272 81.6 35.7

Table 1: Approximated carbon emissions (named COze) in kgCOseq of training several state-of-art neural audio
synthesis models.

4 Multi-objective criteria

4.1 Our proposal

Increasing the size of a model and the number of training examples generally increases its accuracy, but also the
energetic cost of its training. As these objectives are clearly conflicting, our idea is to rely on Pareto optimality, in order
to evaluate a model according to both its accuracy and its environmental impact. Given two different models A and B
with the same accuracy, but where A is more energy-efficient than B, A is said to dominate B (noted A = B). If there
is no better solution than A, it is Pareto optimal. Hence, we aim to find the set of all Pareto optimal models to form a
Pareto front and remove non-optimal models.

As discussed earlier, measuring the accuracy of generative models is a daunting task. The plurality of metrics used in
the literature comes with the plurality of architectures. Indeed, no straightforward accuracy (or quality) objective score
can be computed in creative tasks, conversely to classification or prediction tasks (apart from reconstruction rate in the
case of VAE-based generative models). Hence, we took the most popular measure in audio synthesis evaluation (as
seen in Figure|[T), which best coincided with our 5 models. This may be a subjective evaluation, but it seems to be the
most relevant across the audio generation literature. The MOS is a human-based measure of quality, ranging from 1
to 5, where participants are asked to rate as 1 the lowest perceived quality and 5 the highest when comparing a set of
results. The final measure is computed as

1 N
MOS = — R, 7
Nﬂ; (7)

where R,, is one rating and N the number of trials. As this score is highly dependent on each experimental setup, we
compute

MOS

MOS = ——
AMOS = X108 er

®)

to allow more accurate comparisons, where MOS ;; and MOSq stands respectively for the MOS obtained by the
model and the one obtained by the respective "ground truth" from each original paper. The higher the perceived quality
of the sound produced by the model, the closer this ratio will be to 1, and conversely the lower the perceived quality,
the closer it will be to 0. The goal is to maximize this ratio, and thus to minimize 1 — %MOS. We consider this last
measure as our subjective accuracy score.

Regarding the energy-efficiency score, we separate training from inference. Regarding training, we take the previously
introduced measure of carbon emission per training (see Table [I). Regarding inference, we rely on the number of
parameters of the models. As discussed in Section[2} this count is highly correlated to the computational complexity and
is independent of the device used to perform inference. We choose not to use the number of floating-point operations,
as this computation is not straightforward : only manual counting (or coding an automatic implementation) can be
done, which is rather constraining because it depends on each layer’s characteristics (e.g., input size, kernel size, stride,
padding, bias). A python package exists called “PyTorch-OpCounter’ﬂ but we found out that confusions were made
between FPO and MACC (multiply-accumulate) operations. Moreover, researchers have to include their calculations
when using different types of layers than the implemented ones (such as windowed convolution for SING).

*https://github.com/Lyken17/pytorch-OpCounter
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4.2 Results

We summarize in Table 2] the MOS of the models and those of the ground truth reported in each original paper. We also
compute our subjective score 1 — %MOS and count the number of parameters used by each model to infer new samples
according to their original architectures. As SampleRNN and GANSynth use pairwise comparison instead of MOS,
they are removed from this study.

Model MOS s MOSgr 1-%MOS  Param.
SampleRNN - - - 52M
SING 2,84+0,24 3,86+0,24 0,26 64M
WaveGAN 2,3+0,9  3,940,9 041  89M
GANSynth - - - 15M
FloWaveNet 3,95+0,15 4,67+0,08 0,15 186M

Table 2: Comparative Mean Opinion Scores ratios (1 — %MOS) and number of parameters of several state-of-the-art
neural audio synthesis models.

We display in Figure [3|the multi-objective space, where we plot the Pareto front for training (left) and for inference
(right). The three models FloWaveNet, SING and WaveGAN are Pareto optimal in training, whereas WaveGAN is
dominated by SING in inference and, therefore, is sub-optimal.
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Figure 3: Representation of two Pareto Fronts. The objective is to minimize the subjective score (1 — %MOS) along
with the energy efficiency of either the training (left) with the measure of the carbon emission (COe) per training, or
the inference (right) with the number of parameters.

Since our goal is to propose a new tool for sustainable evaluation of models, we did not re-train the models to make our
work more consistent and greener. Therefore, we would like to clarify to readers that we rely on approximations and
hand-crafted measures; these figures support our overall approach, but it warrants more extensive and reliable analyses,
with a larger array of models. However, it should be noted that our approach is generic, and could be applied to any
type of model or input data.

S CONCLUSIONS

In this paper, we first showed that the carbon footprint of a training procedure is far from marginal. We use indications
(hardware and training time) from state-of-the-art neural audio synthesis models to approximate carbon emissions
without having to re-train them. However, the lack of suitable training details affected our work, so we argue that
authors must report the training time along with the device used for their training when publishing a new model. In
general, a good habit would be to report actual carbon consumption of the training using tools such as the Carbontracker
Python package or the online ML CO2 impact calculator.

While increasing awareness, we also showed that this calculation must be linked to the quality of the models. To that
end, we proposed the use of a new metric based on Pareto optimality to give an equivalent importance to the model
quality as their energy efficiency. Thus, this would place computational complexity at the heart of the research process.
We rely on a subjective score for quality based on MOS and compute two Pareto fronts, one for training with our first
estimation, and one for inference with the number of parameters of each models. In conclusion, we argue that our
approach allows to find models that are non-optimal in both training and inference, facilitating the overall evaluation of
research across all objectives simultaneously.
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