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Abstract: Non-alcoholic fatty liver disease (NAFLD) and atherosclerosis-related cardiovascular
diseases (CVD) share common metabolic pathways. We explored the association between three
NAFLD-associated single nucleotide polymorphisms (SNPs) rs738409, rs10401969, and rs1260326
with sub-clinical atherosclerosis estimated by the carotid intima-media thickness (c-IMT) and the
inter-adventitia common carotid artery diameter (ICCAD) in patients free from clinically overt
NAFLD and CVD. The study population is the IMPROVE, a multicenter European study (n = 3711).
C-IMT measures and ICCAD were recorded using a standardized protocol. Linear regression with an
additive genetic model was used to test for association of the three SNPs with c-IMT and ICCAD.
In secondary analyses, the association of the three SNPs with c-IMT and ICCAD was tested after
stratification by alanine aminotransferase levels (ALT). No associations were found between rs738409,
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rs1260326, rs10401969, and c-IMT or ICCAD. Rs738409-G and rs10401969-C were associated with
ALT levels (p < 0.001). In patients with ALT levels above 28 U/L (highest quartile), we observed an
association between rs10401969-C and c-IMT measures of c-IMTmax and c-IMTmean-max (p = 0.018
and 0.021, respectively). In conclusion, NAFLD-associated SNPs do not associate with sub-clinical
atherosclerosis measures. However, our results suggest a possible mediating function of impaired
liver function on atherosclerosis development.

Keywords: carotid intima-media thickness; non-alcoholic fatty liver disease; alanine aminotransferase
and genetic association study

1. Introduction

The mechanisms underlying the mutual interaction between the liver and the heart are poorly
investigated [1]. Given the high prevalence in the population of both liver and cardiac diseases,
understanding the factors associated with an increased risk of cardiovascular diseases (CVD) in
individuals with impaired liver function, and vice-versa, is highly clinically relevant [2].

Non-alcoholic fatty liver disease (NAFLD) affects about 20–30% of the population [3] and share
several risk factors with atherosclerosis [4]. However, a causal association between these two conditions
has not been demonstrated [5]. Atherosclerosis is a chronic inflammatory disease of the vessel wall
associated with a plethora of clinical manifestations in different vascular beds. Coronary heart disease
(CHD) and atherothrombotic stroke, the two most common atherosclerotic related CVD, represent the
first cause of death in Western countries [6].

NAFLD is characterized by lipid accumulation in the liver (hepatic steatosis) in the absence of
alcohol consumption and increased circulating levels of the hepatic enzyme alanine aminotransferase
(ALT). Hepatic steatosis has been associated with components of the metabolic syndrome (abdominal
obesity, insulin resistance, hypertriglyceridemia) [7] and low grade systemic chronic inflammation [8],
all factors known to predispose to the development of atherosclerosis in the vessel wall.

Genetic variants in three genes involved in lipid and glucose metabolism, rs738409 (C/G)
in the patatin-like phospholipase domain-containing 3 (PNPLA3) gene, rs10401969 (T/C) in the
transmembrane 6 superfamily member 2 (TM6SF2) gene, and rs1260326 (C/T) in the glucokinase
regulatory protein (GCKR) gene, have been consistently associated with the risk of NAFLD and NAFLD
hepatic complications. No association was reported with the risk of CVD [5,9], while the association
with cardiometabolic traits is controversial [10].

Epidemiological studies have been mostly performed so far in patients diagnosed with NAFLD.
Overall, NAFLD patients with elevated ALT circulating levels have more frequent carotid atherosclerotic
plaques, a higher risk of CHD [11–13], an increased prevalence of sub-clinical atherosclerosis, measured
by carotid intima-media thickness (c-IMT), reduced arterial distensibility, and increased coronary
artery calcium [14,15].

Identifying individuals at highest CVD risk represents an important step to improve CVD
prevention and treatment. In the present study, we sought to investigate the association of these
three NAFLD-associated genetic variants, rs738409, rs10401969, and rs1260326, with measures of
sub-clinical atherosclerosis in a large European cohort consisting of individuals without overt NAFLD
and free of clinical CVD manifestation. As measures of carotid sub-clinical atherosclerosis, we used
c-IMT and inter-adventitia common carotid artery diameter (ICCAD), both correlated with coronary
atherosclerosis [16]. In secondary analysis, we have estimated the association of the aforementioned
single nucleotide polymorphisms (SNPs) with c-IMT and ICCAD stratified by circulating ALT levels.
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2. Materials and Methods

2.1. Study Population

We performed our study in a large European cardiovascular cohort including individuals
at high risk of cardiovascular events (acronym: IMPROVE (Carotid Intima Media Thickness
and IMT-PRogression as Predictors of Vascular Events in a High-Risk European Population)).
The IMPROVE study was previously described [16]. Briefly, between 2004 and 2005, 3711 participants,
free from CVD, but with at least three conventional atherosclerosis risk factors, were recruited in
five European countries. Study participants reported their lifestyle habits, previous and current
diseases, and medications, and underwent a physical examination. Blood samples were withdrawn
and stored at −80 ◦C in the biobank. Height (m) and weight (kg) were used to estimate body mass
index (BMI; kg/m2). Hypertension was defined as blood pressure higher than 140/90 mmHg at the
visit and/or if self-reported and/or in the presence of treatment; diabetes was defined if blood glucose
≥ 7.0 mmol/L and/or if self-reported and/or in the presence of treatment with glucose-lowering drugs
or insulin. Smoking was defined either as never and former or as current smoking. Plasma total
cholesterol (TC), LDL-cholesterol (LDL-C), triglycerides (TG), glucose level, and ALT were measured
using standard enzymatic methods from fasting blood samples [16].

2.2. Ethics

The study was designed following the rules of Good Clinical Practice (GCP) and with the ethical
principles established in the Declaration of Helsinki. Each participant provided two different informed
consents; one for general participation in the study and one for genotyping. The regional ethical
committee at Karolinska Institutet has approved the study (Dnr 2003-115, 2017/404-32, 2019/06387).

2.3. Ultrasonographic Measures

The carotid artery ultrasonographic scan was recorded at baseline measuring four consecutive
segments at the far wall of the left and right carotid artery in three angles (anterior, lateral, and posterior).
Data from the eight segments measured in each patient were averaged to estimate the c-IMTmean,
c-IMTmax, and c-IMTmean-max. The inter-adventitia common carotid artery diameter (ICCAD) was
measured in a plaque free area of the second centimeter of the common carotid proximal to the
bifurcation. Data are expressed in mm. Details on protocol, validation, and precision of carotid
ultrasound measurements were previously described [17].

2.4. Genotyping

Genomic DNA from IMPROVE study participants was genotyped with two genotyping arrays,
the CardioMetaboChip 200 K and the Immunochip, each one analyzing approximately 200,000 genetic
variants [18]. The CardioMetaboChip 200 K is a custom Illumina iSelect genotyping. The Immunochip
is a custom Illumina Infinium HD array designed to densely genotype immune-mediated diseases
using loci identified by genome-wide association (GWA) studies. Standard quality control procedures
for genetic data were conducted on the individual genotyping chips as well as the combined chip
(CardioMetabo-Immuno, Metabochip, Illumina, San Diego, CA, USA) [19]. Measurements of DNA
concentration, standardization of DNA concentration in DNA samples, aliquoting, and plating were
performed according to a pre-established standard operating procedures (SOP). One aliquot has been
stored at −20 ◦C for long-term use, with a diluted working stock kept in a microtiter array.

Multidimensional scaling (MDS) components were calculated using PLINK version 1.07 [20]
(using default settings) to identify possible non-European ethnicity and used to adjust for population
stratification. SNPs were excluded for deviation from Hardy–Weinberg equilibrium (p < 0.0000001),
call rate < 95%, or minor allele frequency (MAF) < 1%. Subjects with call rate < 95%, cryptic relatedness,
ambiguous sex, or identified as outliers by MDS were also excluded. Genotype data for rs738409 (C/G),
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rs10401969 (T/C), and rs1260326 (C/T) were extracted from the CardioMetabo-Immuno chip after the
quality control procedures described above.

After exclusion of study participants with no visualized carotid artery (n = 7) and missing
genotypes (n = 356), a total of 3347 subjects were analyzed in the present study. Given the low allele
frequency of the effect allele (EA) for rs10401969, heterozygous CT and homozygous CC (n = 393 and
n = 19, respectively) were pooled in the analysis.

2.5. Statistical Analysis

Continuous variables were expressed as median and interquartile range (IQR) and categorical
variables as percentages. Linear regression models were used to assess the association between the
studied SNPs, rs738409 (C/G), rs1260326 (C/T), and rs10401969 (T/C), and c-IMT measures (c-IMTmean,
c-IMTmax, and c-IMTmean-max), ICCAD, ALT, and metabolic traits including BMI, TC, LDL-C, TG,
and glucose level. Individuals with type 2 diabetes were excluded from the analysis of glucose levels.
C-IMT measures and ICCAD were log transformed when pertinent to achieve a normal distribution.
Analyses were performed assuming an additive model of inheritance. Results are reported as β (β)
coefficient and standard error (SE). Estimates were adjusted for age, sex, and multidimensional scaling
dimensions (MSD). Three MSD components were found to be informative (MSD1, MSD2, MSD3) and
introduced in the analytical model, as previously reported [21]. In secondary analyses, ALT (U/L) levels
were categorized in quartiles (1st quartile (Q), Q1: ≤16, n = 876; Q2: >16–≤21, n = 929; Q3: >21–≤28,
n = 801; Q4: >28, n = 741). The association of the three SNPs with c-IMT and ICCAD levels in the
different ALT quartiles was then estimated by linear regression, after adjustment for age, gender,
and MSD1–3.

Multiple testing correction was not applied for ultrasonographic measures because they are
strongly correlated. However, in the main analysis we corrected for multiple comparison considering
5 independent tests (c-IMT and ICCAD, lipids, ALT, BMI, and glucose). All statistical tests were
two-sided and a p < 0.01 was then considered statistically significant. Statistical analysis was performed
using STATA 12 (StataCorp LP, College Station, TX, USA).

3. Results

3.1. Clinical Characteristics

Clinical, biochemical, and ultrasonographic characteristics of the study participants by rs738409
(C/G), rs10401969 (T/C), and rs1260326 (C/T) genotypes are presented in Table 1.

Study participants carrying the GG genotype at rs738409 had higher TC, LDL-C, and ALT levels
and lower c-IMT and ICCAD when compared to the CC and CG genotype groups. Those carrying the
TC/CC genotype of rs10401969 had higher glucose, LDL-C, ALT, c-IMT, and ICCAD values and lower
TC and TG levels as compared to the CC group. Finally, TT carriers at rs1260326 had lower BMI, TG,
ALT, c-IMT, and ICCAD values and higher TC and LDL-C levels as compared to the CC/CT carriers.

3.2. Association of rs738409 (C/G), rs10401969 (T/C), and rs1260326 (C/T) with c-IMT and ICCAD

No associations were observed between the effect allele (EA) rs738409-G, rs10401969-C,
and rs1260326–T (vs. the respective common allele) with C-IMT and ICCAD, as shown in Table 2.

3.3. Association of rs738409 (C/G), rs10401969 (T/C), and rs1260326 (C/T) with Metabolic Traits

Table 3 shows the results of the association of EA for each of the SNPs with ALT and metabolic
traits. In multivariate analysis, rs738409-G and rs10401969-C were associated with ALT circulating
levels (β = 0.029, SE = 0.006, p < 0.001 and β = 0.040, SE = 0.009, p < 0.001, respectively), while no
association was observed for rs1260326-T. When we tested the association of the three SNPs with
metabolic traits, only rs1260326-T was found to be associated with TG (β = 0.105, SE = 0.020, p < 0.001)
and BMI (β = −0.224, SE = 0.102, p = 0.028).
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Table 1. Clinical characteristics, and biochemical and ultrasonographic measurements in the IMPROVE study population stratified by rs738409 (C/G), rs10401969
(T/C), and rs1260326 (C/T). Data are expressed as median (interquartile ranges) for continuous variables or number (percent) for categorical variables.

rs738409 rs10401969 rs1260326

n CC CG GG TT CT + CC CC CT TT

Men, n (%) 3347 1070 (47.9) 482 (48.9) 46 (42.6) 1385 (47.2) 221(53.6) 556 (52.0) 712 (45.0) 389 (53.4)
Age, years 3347 65.0 (59.8–67.3) 64.2 (59.6–67.1) 62.21 (58.6–66.6) 64.3 (59.5–67.2) 66.3 (60.8–67.2) 64.6 (59.5–67.1) 65.0 (60.1–67.4) 63.8 (59.4–63.3)
BMI, (kg/m2) 3346 26.8 (24.2–29.3) 26.9 (24.6–29.7) 26.7 (24.1–30.9) 26.8 (24.2–29.4) 26.8 (24.6–29.8) 27.28 (24.7–30.2) 26.7 (24.2–29.1) 24.5 (23.8–28.9)

Cardiovascular Risk Factors, n (%)

Current smoke 3347 351 (15.6) 135 (13.7) 16 (14.8) 448 (15.6) 54 (13.1) 163 (15.2) 223 (14.4) 116 (15.9)
Diabetes mellitus Type 2 3294 570 (25.7) 267 (27.5) 31 (29.8) 751 (26.0) 117 (28.7) 333 (31.7) 382 (25.11) 153 (21.2)
Hypertension 3347 1787 (79.28) 789 (80.1) 85 (78.7) 2310 (78.7) 351 (85.2) 881 (82.3) 1218 (78.63) 562 (77.2)

Biochemical Measurements

TC 3341 5.4 (4.7–6.2) 5.4 (4.7–6.2) 5.6 (4.5–6.4) 5.5 (4.7–6.2) 5.2 (4.6–6.0) 5.3 (4.6–6.2) 5.4 (4.7–6.2) 5.6 (4.9–6.3)
LDL-C 3347 3.5 (2.8–4.2) 3.5 (2.8–4.2) 3.6 (2.7–4.5) 3.5 (2.8–4.2) 3.4 (2.9–4.1) 3.5 (2.8–4.2) 3.5 (2.8–4.2) 3.64 (3.0–4.3)
HDL-C 3341 1.2 (1.0–1.5) 1.2 (1.0–1.4) 1.2 (1.0–1.4) 1.2 (1.0–1.5) 1.2 (1.0–1.4) 1.2 (1.0–1.5) 1.2 (1.0–1.5) 1.2 (1.0–1.5)
TG 3341 1.3 (0.9–1.9) 1.3 (0.9–1.9) 1.3 (0.9–1.7) 1.3 (0.9–1.9) 1.2 (0.9–1.7) 1.2 (0.9–1.7) 1.3 (0.9–1.8) 1.4 (1.0–2.1)
Glucose 3341 5.5 (4.9–6.3) 5.5 (5.0–6.4) 5.4 (4.9–6.4) 5.5 (4.9–6.3) 5.6 (5.1–6.6) 5.6 (5.1–6.5) 5.5 (5.0–6.3) 5.4 (4.8–6.0)
ALT 3347 20 (16.0–27.0) 21 (17.0–29.0) 23.5 (17.5–34.5) 20 (16–27) 22 (17.0–30.0) 21 (17.0–29.0) 20 (16.0–27.0) 20 (17.0–27.0)

Ultrasonographic Measures (mm)

C-IMTmean 3346 0.85 (0.7–1.0) 0.85 (0.7–1.0) 0.81 (0.7–0.9) 0.85 (0.7–1.0) 0.87 (0.8–1.0) 0.86 (0.7–1.0) 0.85 (0.7–1.0) 0.84 (0.7–1.0)
C-IMTmax 3346 1.85 (1.4–2.5) 1.93 (1.4–2.6) 1.84 (1.4–2.3) 1.85 (1.4–2.5) 1.93 (1.4–2.5) 1.93 (1.4–2.6) 1.85 (1.4–2.5) 1.84 (1.4–2.4)
C-IMTmean-max 3347 1.19 (1.0–1.4) 1.20 (1.0–1.4) 1.13 (1.0–1.3) 1.18 (1.0–1.4) 1.23 (1.1–1.4) 1.22 (1.0–1.4) 1.19 (1.0–1.4) 1.17 (1.0–1.4)
ICCAD 3347 7.72 (7.2–8.3) 7.82 (7.2–8.4) 7.55 (7.1–8.0) 7.73 (7.2–8.3) 7.82 (7.2–8.4) 7.85 (7.3–8.4) 7.71 (7.2–8.3) 7.64 (7.2–8.2)

Abbreviations: n: number of subjects; BMI: body mass index; ALT: alanine aminotransferase; TC: total cholesterol; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol;
LDL-C: low-density lipoprotein cholesterol; C-IMT: carotid intima-media thickness; ICCAD: inter-adventitia common carotid artery diameter. Unit of measure: ALT: U/L; BMI: kg/m2; TC,
LDL-C, TG, and glucose: mmol/L.
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Table 2. Association of rs738409 (C/G), rs10401969 (T/C), and rs1260326 (C/T) with c-IMT measures
and ICCAD.

Ultrasonographic
Measures n SNP EA Model 1 Model 2

β SE p β SE p

c-IMTmean 3346
rs738409 G −0.002 0.0029 0.443 −0.001 0.003 0.818

rs10401969 C 0.012 0.005 0.025 0.001 0.004 0.768
rs1260326 T −0.004 0.002 0.060 0.003 0.002 0.179

c-IMTmax 3346
rs738409 G 0 0.006 0.963 0.002 0.005 0.636

rs10401969 C 0.014 0.009 0.108 0 0.008 0.970
rs1260326 T −0.01 0.004 0.013 0.001 0.004 0.810

c-IMTmean-max 3347
rs738409 G −0.003 0.003 0.353 −0.001 0.003 0.663

rs10401969 C 0.014 0.005 0.006 0.003 0.005 0.476
rs1260326 T −0.005 0.002 0.02 0.003 0.002 0.176

ICCAD 3347
rs738409 G 0 0.001 0.499 0.002 0.001 0.174

rs10401969 C 0.006 0.002 0.015 0.001 0.002 0.732
rs1260326 T −0.005 0.001 <0.001 −0.001 −0.001 0.271

Abbreviations: n: number of subjects; EA: effect allele; SNP: single nucleotide polymorphism. Model 1 univariate
analysis. Model 2 adjusted for age, sex, and multidimensional scaling dimensions (MSD) 1–3. All c-IMT variables
and ICCAD were logarithmically transformed before statistical analysis.

Table 3. Association of the effect allele at rs738409 (C/G), rs10401969 (T/C), and rs1260326 (C/T) with
metabolic traits.

Metabolic
Traits n SNP EA Model 1 Model 2

β SE p β SE p

ALT 3347
rs738409 G 0.031 0.006 <0.001 0.029 0.006 <0.001

rs10401969 C 0.042 0.01 <0.001 0.040 0.009 <0.001
rs1260326 T −0.012 0.004 0.009 −0.008 0.004 0.062

BMI 3346
rs738409 G 0.296 0.136 0.029 0.265 0.132 0.045

rs10401969 C 0.181 0.225 0.421 −0.038 0.219 0.816
rs1260326 T −0.569 0.101 <0.001 −0.224 0.102 0.028

TC 3341
rs738409 G −0.025 0.036 0.489 −0.026 0.034 0.441

rs10401969 C −0.13 0.059 0.028 −0.042 0.057 0.465
rs1260326 T 0.122 0.027 <0.001 0.027 0.027 0.312

LDL-C 3347
rs738409 G −0.008 0.032 0.803 −0.007 0.031 0.831

rs10401969 C −0.096 0.053 0.069 −0.022 0.051 0.659
rs1260326 T 0.064 0.024 0.008 −0.027 0.024 0.255

TG 3341
rs738409 G −0.018 0.026 0.474 −0.022 0.025 0.388

rs10401969 C −0.044 0.042 0.300 −0.030 0.042 0.482
rs1260326 T 0.114 0.019 <0.001 0.105 0.020 <0.001

Glucose 2426
rs738409 G 0.024 0.025 0.344 0.027 0.023 0.233

rs10401969 C 0.087 0.041 0.035 0.033 0.038 0.376
rs1260326 T −0.087 0.018 <0.001 −0.031 0.017 0.076

Abbreviations: n: number of subjects; EA: effect allele; ALT: alanine aminotransferase; BMI: body mass index; TC: total
cholesterol; LDL-C: low-density lipoprotein cholesterol; TG: triglycerides. Unit of measure: ALT: U/L; BMI: kg/m2;
TC, LDL-C, TG, and glucose: mmol/L. Model 1: univariate analysis; Model 2: adjusted by age, sex, and MDS 1–3.
ALT and TG were logarithmically transformed before statistical analysis because of skewed distributions.
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3.4. Association of rs738409 (C/G), rs10401969 (T/C), and rs1260326 (C/T) with c-IMT and ICCAD after
Stratification by ALT Levels

Supplementary Table S1 shows c-IMT measures and ICCAD across rs738409, rs10401969,
and rs1260326 genotype groups stratified by ALT quartiles. As shown in Supplementary Table S2,
rs10401969-C was positively associated with c-IMTmax and c-IMTmean-max (p = 0.018 and 0.021,
respectively) in the highest ALT quartile. No significant associations between rs738409 and rs1260326
and c-IMT and ICCAD were observed in any of the ALT quartiles.

4. Discussion

The main finding of our study is that genetic variants consistently associated with NAFLD
were not associated with measures of sub-clinical atherosclerosis (c-IMT and ICCAD) in European
individuals at high CV risk without overt CVD and NAFLD. Our results confirm and extend previous
observations showing an association of rs738409 and rs10401969 with ALT circulating levels and
suggest that atherosclerosis burden might be higher in the presence of rs10401969-C and high ALT
levels. Consistent with this, our data support the hypothesis that an impaired liver function might
contribute to, or be associated with, more severe atherosclerotic disease [22,23].

Rs738409 (C/G) maps at the patatin-like phospholipase domain-containing 3 (PNPLA3) gene,
encoding an enzyme with lipid acyl hydrolase activity. Rs738409-G causes an amino acid substitution
(I148M) in a PNPLA3 side chain, able to modify the catalytic properties of the enzyme leading to
triglyceride accumulation in the liver [24]. Moreover, PNPLA3 I148M seems to disrupt enzyme activity,
which leads to a reduced incorporation of triglycerides into very low density lipoprotein, resulting in
the increase intracellular fat content [25]. The increased hepatic fat accumulation observed in subjects
carrying the rs738409-G allele may explain the elevated ALT levels [25,26].

Studies performed in NAFLD patients have provided controversial results on the association
between rs738409 (C/G) and measures of sub-clinical atherosclerosis [27,28]. In young NAFLD patients,
rs738409-GG was associated with a greater severity of carotid plaques, thicker c-IMT, and with c-IMT
progression [27]. On the other hand, rs738409-GG was found to be associated with c-IMT measures only
in subjects with metabolic syndrome and NAFLD [28] and was not associated with c-IMT measures in
a Chinese cohort of 4300 middle-aged men and women [29].

Our findings do not support an association of this SNP either with measures of sub-clinical
atherosclerosis or with metabolic traits, thus supporting the hypothesis that this SNP is not mainly
related to CVD risk, but to NAFLD risk.

Rs10401969 maps to a locus at Chr19p13.11 [30], known to be of importance in the regulation of
lipid metabolism [31]. Previous studies have suggested that TM6SF2, a gene expressed in the small
intestine and in the liver and involved in regulation of lipid absorption and metabolism [32], is the
causative gene within the Chr19p13.11 locus [33]. Rs10401969 is in strong linkage disequilibrium
(LD) in European populations with a nonsynonymous mutation where presence of rs58542926-G
replaces a glutamate with lysine at residue 167 (E167K) [34]. This amino-acid change causes misfolding
and an accelerated degradation of TM6SF2 that results in reduced lipid absorption and hepatic
metabolism. This predisposes to liver steatosis and related hepatic complications and at the same time
maintains a favorable, non-atherogenic lipid profile consistent with the observation that this mutation
exerts a protective effect towards CVD [35,36]. Here, we found an indication of a consistent effect
of rs10401969-C on transaminase levels and sub-clinical atherosclerosis, suggesting that individuals
carrying a genetic risk of developing NAFLD and high circulating transaminase levels have a more
pronounced sub-clinical atherosclerosis. While it is difficult to directly compare our study with those
previously published since our population has a very high risk of CVD, our results confirm and extend
previous knowledge on the metabolic intertwine between NAFLD and atherosclerosis. In line with
our observations, ALT levels were associated with an increased risk of CVD in a Dutch population
after adjustment for determinants of the metabolic syndrome and other CV risk factors [37], and with
c-IMT in Korean patients with different degrees of NAFLD [38]. These results may prompt additional
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clinical investigations and underscore the importance of a careful evaluation about the initiation of
strict cardiovascular prevention measures in individuals with elevated transaminase levels and high
CVD risk.

Rs1260326-T at GCKR causes an amino-acid change (P446L) in the glucokinase regulatory protein
and it was recognized as an important determinant of inter-individual variation in liver fat [39,40]. GCKR
modulates the activity of glucokinase, an enzyme involved in the regulation of glucose metabolism
and storage in the liver. As widely reported in population-based studies, GCKR represents a genetic
factor linked to serum cholesterol and triglyceride levels [41]. However, Varbo et al. [42] evaluate the
association between GCKR-rs1260326 with lipid levels and risk of ischemic heart disease (IHD) and
myocardial infarction (MI) in the general population, reporting that GCKR-rs1260326 did not influence
low-density lipoprotein cholesterol levels or risk of IHD or MI. Presence of the amino-acid substitution
has been reported to be associated with a favorable effect on glucose and insulin metabolism, but with
an increased biosynthesis of lipids in the liver [43]. This SNP has been formerly associated with a
thicker c-IMT in patients with metabolic syndrome [44], but was not associated with c-IMT measures
in individuals without myocardial infarction or type 2 diabetes [30]. Moreover, rs780094 in the GCKR
locus, in strong LD with rs1260326, was also associated with a significant increase in c-IMT in men but
not in women in a general population Japanese cohort [45]. We have not observed an association of
this SNP with ALT or c-IMT in our study, but a favorable effect on BMI and triglyceride levels.

This study has several strengths: a large sample size, a wide range of important vascular risk
factors, consistent methodology for a large number of ultrasonographic measures; standardized
methods for carotid image acquisition. Limitations of our study are mainly related to the lack of
assessment of liver pathology. Fatty liver was not defined using some imaging modality or biopsies.
However, we used three SNPs consistently associated with NAFLD and transaminase levels as a
proxy for NAFLD and impairment of liver function. Moreover, other factors possibly modifying ALT,
such as chronic hepatitis B or C, autoimmune hepatitis, α-1 antitrypsin deficiency, drug-associated,
hemochromatosis, Wilson disease, ischemic hepatitis, and Budd-Chiari syndrome, were not assessed.

5. Conclusions

Our study shows no association of genetic variants associated with NAFLD and measures of
sub-clinical atherosclerosis and confirms and extends previous knowledge on the lack of causality in
the association between these two largely prevalent conditions. At the same time, our results suggest
that in selected groups at risk for CVD, elevated ALT may exacerbate sub-clinical atherosclerosis.
This may imply that a certain group of patients characterized by elevated ALT levels and high CVD
risk may benefit from more aggressive CVD treatment and prevention.

Supplementary Materials: The Supplementary Materials are available online http://www.mdpi.com/2073-4425/
11/11/1243/s1, Table S1: Distribution of c-IMT and ICCAD measures across rs738409 (C/G), rs10401969 (T/C),
and rs1260326 (C/T) genotype groups in the different ALT quartiles, Table S2: Association of rs10401969 (T/C) with
measures of c-IMT and ICCAD in the different ALT quartiles.
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