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ABSTRACT
The solar gravitational moments J2n are important astronomical quantities whose precise determination is relevant for solar
physics, gravitational theory and high precision astrometry, and celestial mechanics. Accordingly, we propose in the present
work to calculate new values of J2n (for n = 1, 2, 3, 4, and 5) using recent two-dimensional rotation rates inferred from the
high-resolution Solar Dynamics Observatory / Helioseismic and Magnetic Imager helioseismic data spanning the whole solar
activity cycle 24. To this aim, a general integral equation relating J2n to the solar internal density and rotation is derived from
the structure equations governing the equilibrium of slowly rotating stars. For comparison purpose, the calculations are also
performed using rotation rates obtained from a recently improved analysis of Solar and Heliospheric Observatory / Michelson
Doppler Imager heliseismic data for solar cycle 23. In agreement with earlier findings, the results confirmed the sensitivity of
high-order moments (n > 1) to the radial and latitudinal distribution of rotation in the convective zone. The computed value of
the quadrupole moment J2 (n = 1) is in accordance with recent measurements of the precession of Mercury’s perihelion deduced
from high precision ranging data of the MESSENGER spacecraft. The theoretical estimate of the related solar oblateness ��
is consistent with the most accurate space-based determinations, particularly the one from Reuven Ramathy High-Energy Solar
Spectroscopic Imager/Solar Aspect Sensor.
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1 IN T RO D U C T I O N

Solar gravitational moments J2n are coefficients that describe the
rotation-induced deviation of the Sun’s outer gravitational potential
φout from a spherical configuration. Assuming an axial symmetry
around the rotation axis, they intervene in the expression of φout as
projection coefficients on the basis of Legendre polynomials:

φout(r, u) = −GM�
r

[
1 −

∞∑
n=1

(
R�
r

)2n

J2nP2n(u)

]
. (1)

The odd terms have been omitted from the series in equation (1)
because of equatorial symmetry. The quantities G, M�, r, R�, P2n

and u = cos θ , are respectively the gravitational constant, the solar
mass, the distance from the centre of the Sun, the mean solar
radius, the Legendre polynomials of degree 2n, and the cosine of
the colatitude of the Sun θ (angle to the rotation axis). The accurate
determination of J2n is of interest not only in solar physics but also
in many other astrophysical applications. The most famous one
is undoubtedly the test of general relativity (GR) resulting from
the combination of the value of the quadrupole moment J2 with
the measurements of the anomalous precession of Mercury’s orbit
(Dicke 1964; Shapiro et al. 1972; Campbell et al. 1983; Lydon &
Sofia 1996; Chapman 2008; Gough 2013). In the same way, J2

can be used to constraint the Eddington-Robertson parameters in
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the parametrized-post-newtonian theory of gravity, an alternative
gravitation theory to GR (Pireaux & Rozelot 2003; Iorio 2005). In
astrometry, an estimate of J2 makes possible to study its effect on the
astrometric (Kislik 1983; Bursa 1986) and celestial mechanics (Xu
et al. 2011, 2017; Vaishwar, Kushvah & Mishra 2018) determination
of planetary orbits and also on the dynamics of the earth–moon
system (Bois & Girard 1999). For detailed reviews on the implication
of J2n in alternative theories of gravitation, high precision astrometry
and celestial mechanics, readers are referred to the two articles by
Rozelot, Damiani & Pireaux (2009) and Rozelot & Fazel (2013). In
solar physics, J2n indicate non-uniform mass and angular velocity
distribution inside the Sun and their accurate knowledge would
provide a good constraint on internal structure and rotation (Dicke
& Goldenberg 1967; Ulrich & Hawkins 1981a, b; Paterno, Sofia
& di Mauro 1996; Godier & Rozelot 1999; Armstrong & Kuhn
1999; Mecheri et al. 2004), and on solar cycle models through the
study of their temporal evolution (Antia, Chitre & Gough 2008),
complementing thus the constraints imposed by helioseismology.

Several observational and theoretical works have been undertaken
to determine solar gravitational moments J2n (mainly J2). In general,
the observational determinations are either from oblateness estimates
based on the profile of the Sun’s limb [Dicke & Goldenberg (1967),
Dicke, Kuhn & Libbrecht (1986) using the Solar Distortion telescope,
Hill & Stebbins (1975) using the SCLERA telescope, Lydon & Sofia
(1996) using the Solar Disc Sextant (SDS) instrument, Rösch et al.
(1996), Rozelot & Roesch (1997) using the Pic du Midi heliometer,
Fivian et al. (2008) using the Solar Aspect Sensor (SAS) onboard
of the Reuven Ramathy High-Energy Solar Spectroscopic Imager
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(RHESSI) satellite], or from astrometric observations of planetary
orbit of Mercury and other minor planets such as Icarus (Lieske &
Null 1969; Anderson et al. 1978; Afanaseva et al. 1990; Landgraf
1992; Pitjeva 2005) or form lunar laser ranging (LLR) data (Rozelot
& Bois 1998). Theoretical expressions relating the solar gravitational
moments J2n to the inner structure and dynamics of a star can be
determined using the theory of slowly rotating stars (Schwarzschild
1947; Sweet 1950). Early application of this theory to the Sun was
done by Roxburgh (1964), Goldreich & Schubert (1967), and Gough
(1981) in the context of analysing internal rotation. It was used for the
determination of J2n by Ulrich & Hawkins (1981a, b) using a simple
quadratic rotation law. Several theoretical determinations followed
Ulrich & Hawkins work, using two-dimensional helioseismically
inferred rotation rates either in a parametric form (Paterno et al.
1996; Godier & Rozelot 1999; Roxburgh 2001; Mecheri et al. 2004)
or through direct inversion of rotational frequency splitting (Gough
1982; Campbell et al. 1983; Duvall et al. 1984; Brown et al. 1989;
Pijpers 1998; Armstrong & Kuhn 1999; Antia, Chitre & Thompson
2000; Antia et al. 2008). All these contributions computed values
of J2n either from a differential or an integral equation that was
derived explicitly for the special case of n = 1 or n = 2. Exception is
made to works by Armstrong & Kuhn (1999), Roxburgh (2001), and
particularly Mecheri et al. (2004) who derived a convenient general
form of the Poisson equation whose solution at the surface gives J2n

for any value of n.
In this work, we take over the above-mentioned equation [see

Mecheri et al. 2004, equation (4)] and perform further algebraic
calculations to derive a general integral equation relating J2n to the
internal rotation following the Green’s functions method described
by Pijpers (1998). This integral equation is then used to compute
values of J2n for n = 1, 2, 3, 4, and 5 taking into account new
constraints on internal rotation provided by the high-resolution
HMI (Helioseismic and Magnetic Imager) aboard of SDO (Solar
Dynamics Observatory) helioseismic data covering the whole solar
cycle 24. Our main equations are presented in Section 2. The results
of our computations of J2n are presented and discussed in Section 3.
Finally, we give our principal conclusions in Section 4.

2 G E N E R A L I N T E G R A L E QUAT I O N FO R J2n

Theoretical expressions relating the distortions of a star to the
internal mass, density, and rotation can be obtained under the
assumption of a slow rotation (i.e. centrifugal acceleration small
compared to the gravitational acceleration) where all stellar structure
quantities are described in terms of perturbations (with subscript 1)
of the spherically symmetric non-rotating star (with subscript 0).
The perturbations are thereby expanded on the basis of Legendre
polynomials giving a gravitational potential inside the Sun φint as
follows:

φint(r, u) = φ0(r) + φ1(r, u) = φ0(r) +
∞∑

n=1

φ12n(r)P2n(u), (2)

where φ0 is the gravitational potential of a spherical Sun and φ12n

represent the projections of the perturbed gravitational potential φ1

on the Legendre polynomials basis. The gravitational moments J2n

are given assuming the continuity of the gravitational potential at the
solar surface, i.e. φint(R�, u)=φout(R�, u), as follows:

J2n = R�
GM�

φ12n (R�) . (3)

Applying this perturbation technique to stellar structure equations,
Mecheri et al. (2004) derived a convenient form of the Poisson

equation for a general n that is given as follows:

d2φ12n

dr2
+ 2

r

dφ12n

dr
− (2n (2n + 1) + UV )

φ12n

r2

= U

(
(V + 2) A2n + r

dA2n

dr
+ B2n

)
(4)

which was obtained by combining linearized equations governing the
equilibrium of rotating star in which only first-order terms have been
retained (Goldreich & Schubert 1968; Ulrich & Hawkins 1981a, b).
The quantities U = 4πρ0r3/Mr and V = dlnρ0/dlnr, which refer to a
spherical non-rotating Sun, are obtained from solar models through
the density ρ0 and the mass Mr contained in a sphere of radius r
inside the Sun. For a solar angular velocity �(r, u), the quantities A2n

and B2n are given by

A2n(r) =
∫ 1

−1
a2n(u)�(r, u)2du

= − 1

2n!

4n + 1

22n+1

∫ 1

−1
u�(r, u)2 d2n−1

du2n−1
(u2 − 1)2ndu,

B2n(r) =
∫ 1

−1
b2n(u)�(r, u)2du

= 4n + 1

2

∫ 1

−1
(1 − u2)P2n(u)�(r, u)2du. (5)

Following closely the treatment of Pijpers (1998) using the Green’s
functions method, it is possible to derive from the above general
differential equation (4), a general integral equation giving φ12n at
the surface of the Sun:

φ12n(R�) = − R−2n
�

GM�

[
r2n

(2n + 1)ψ2n + rψ
′
2n

]
r=R�

×
∫ R�

0
r2U

(
(V + 2) A2n + r

dA2n

dr
+ B2n

)
ψ2ndr,

(6)

where ψ2n(r) is a regular solution at the origin (i.e. ψ2n(r) ∝ r2n as
r → 0) of equation (4) with a right-hand side identical to zero and
ψ

′
2n(r) is its derivative with respect to r. Finally, using equation (3)

and dimensionless variables x = r/R�, ω2 = �2(R3
�/GM�), J2n is

given by

J2n = −
[

x2n

(2n + 1)ψ2n + xψ
′
2n

]
x=1

×
∫ 1

0
((x2(U − 4)Uψ2n − x3Uψ

′
2n)A2n + x2Uψ2nB2n)dx

=
∫ 1

0

∫ 1

−1
F2n(x, u)ω(x, u)2dudx (7)

The normalized integration kernel F2n(x, u) is therefore given by

F2n(x, u) = −
[

x2n

(2n + 1)ψ2n + xψ
′
2n

]
x=1

× ((
x2(U − 4)Uψ − x3Uψ

′
2n

)
a2n + x2Uψ2nb2n

)
(8)

Note that for n = 1, equation (7) reduces to equation (23) of
Pijpers (1998) in the case of general angular rotation ω(x, u) and
to equation (12) of Gough (1981) for a radially dependent angular
rotation ω(x).

3 R ESULTS AND DI SCUSSI ON

The calculated values of J2n for n = 1, 2, 3, 4, and 5 together
with previously published results also obtained using a helioseismic
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Table 1. Values of solar gravitational moments J2n (n = 1, 2, 3, 4, and 5) computed using solar models from CESAM and ASTEC stellar
evolution codes and rotation rates obtained from HMI and MDI helioseismic data, together with values from other authors also computed
using helioseismic estimates of internal rotation.

Authors Rotation data J2 (×10−7) J4 (×10−9) J6 (×10−10) J8 (×10−11) J10 (×10−12)

Present work SDO/HMI (CESAM) 2.211 − 4.252 − 1.282 5.897 − 4.372
SDO/HMI (ASTEC) 2.216 − 4.256 − 1.283 5.901 − 4.375
SoHO/MDI (CESAM) 2.204 − 4.064 − 1.136 5.404 − 3.993
SoHO/MDI (ASTEC) 2.208 − 4.069 − 1.137 5.408 − 3.996

Antia et al. (2008) GONG 2.22 − 3.97 − 0.8 1.1 7.4
SoHO/MDI 2.18 − 4.70 − 2.4 − 0.8 7.1

Mecheri et al. (2004) SoHO/MDI 2.205 − 4.455
Roxburgh (2001) SoHO/MDI (ISM) 2.208 − 4.46 − 2.80 1.49

SoHO/MDI (CSM) 2.206 − 4.44 − 2.79 1.48
Antia et al. (2000) GONG + SoHO/MDI 2.18 − 4.64
Armstrong & Kuhn (1999) SoHO/MDI 2.22 − 3.84
Godier & Rozelot (1999) SoHO/MDI 1.6
Pijpers (1998) GONG + SoHO/MDI 2.18
Paterno et al. (1996) IRIS + BISON + LOWL 2.22
Brown et al. (1989) SPO/Fourier Tachometer 1.7
Duvall et al. (1984) KPNO/McMath telescope 1.7

estimates of internal rotation are given in Table 1, where a difference
in sign convention has been taken into account concerning the results
of Armstrong & Kuhn (1999) and Antia et al. (2000). They have
been computed using equation (7), in which the function ψ2n and
the kernel F2n are evaluated using the quantities U and V from two
solar models obtained from CESAM (Morel & Lebreton 2008) and
ASTEC (Christensen-Dalsgaard 2008) stellar evolution codes. For
ω, we use time-averaged two-dimensional rotation rates obtained
from SDO/HMI helioseismic data of full-disc (fd V) dopplergrams
available in the SDO HMI-AIA Joint Science Operations Center
(JSOC) data base covering the period between 2010 April and 2020
July. For comparison purpose, we also compute J2n using rotation
rates provided by the Michelson Doppler Imager (MDI) onboard
of the Solar and Heliospheric Observatory (SoHO), available in
the same data base for the period between 1996 May and 2008
March. This comparison is all the more interesting as, unlike
previous contributions of Table 1, it uses rotation rates obtained
from an improved recent analysis of fd V MDI helioseismic data
(Larson & Schou 2015, 2018), which corrects for several geometric
effects during spherical harmonic decomposition as well as some
other physical effects such as the distortion of eigenfunctions by
the differential rotation and the horizontal displacement at the
solar surface. The HMI fd V data, which require less geometric
corrections, have been processed exactly in the same manner as
the MDI fd V data. The rotation rates for both data sets, have
been calculated using two-dimensional regularized least-squares
inversions (Schou et al. 1998) of odd rotational splitting coefficients
of f-mode and p-mode frequencies. Fig. 1 shows superimposed time-
averaged radial profiles at different latitudes of HMI (solid lines)
and MDI (dashed lines) rotation. The two rotation profiles are very
similar with only small differences at high latitude in the convective
zone. However, a more pronounced difference can be noticed in
deeper region inside the Sun below approximately 0.4R�. It should
be noted that these two locations are regions in the Sun where
rotation estimates are considered unreliable, but nevertheless, we
use them in our calculations in the absence of other alternatives.
Table 1 shows that, for the same solar model, the calculated values
of J2n from HMI and MDI rotation data have the same order of
magnitude with however a slightly larger absolute values for HMI
results. The difference is approximately of the order of 0.3 per cent

Figure 1. Time-averaged radial profiles of HMI (solid lines) and MDI
(dashed lines) rotation, obtained from helioseismic data of full disc (fd V)
dopplergrams, given each 15◦ from equator (top) to pole (bottom).

for J2 and increases for higher multipole moments to 4 per cent for
J4, 11 per cent for J6, 8 per cent for J8, and 9 per cent for J10,
presumably due to the difference in the rotation deep inside the Sun
for J2 and in the outer layers for higher multipole moments. Indeed,
as already emphasized by Antia et al. (2008), high-order multipole
moments are predominantly determined from the contributions of the
outer layers of the Sun where their integration kernels are principally
concentrated as shown in Figs 2 and 3 (for n = 2, 3, 4, and 5),
exhibiting substantial variation with latitude, with local minima and
maxima positioned approximately at radial distances between 0.8R�
and 0.9R�. On the other hand, the major contribution to J2 comes
from deeper regions where the corresponding integration kernel (see
Figs 2 and 3, for n = 1) exhibits its greatest value also at r ≈ 0.77R�
principally at low latitudes around 34◦. Note that the sensitivity
of high-order multipole moments to the differential rotation in the
outer layers of the Sun has been evidenced for J4 by Mecheri et al.
(2004), particularly the effect due to the presence of a subsurface
radial gradient. More pronounced differences in the values of J2n

have been found by Antia et al. (2008) using GONG and MDI
rotation rates (Table 1) which, according to the authors, are the
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Figure 2. Three-dimensional plots (top panels) of the normalized kernel F2n as a function of x = r/R� and latitude for n = 1, 2, 3, 4, and 5 and their
corresponding contour plots (bottom panels).

Figure 3. Plots of latitudinal (top panels) and radial (bottom panels) cuts of the normalized kernel F2n for n = 1, 2, 3, 4, and 5, respectively for different values
of x = r/R� = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 and colatitude θ (◦) = 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, and 80◦.

direct consequence of the differences between the measured splitting
coefficients. For J2, our result are in close agreement with most of
the evaluations reported in Table 1, except for those of Godier &
Rozelot (1999), Brown et al. (1989), and Duvall et al. (1984), which
are considerably smaller. For Duvall et al. (1984) and Brown et al.
(1989), this difference is principally due to the very early helioseismic
data used in the inference of internal rotation, restricted to regions
close to the equator for the former. Surprisingly, Godier & Rozelot’s
value of J2 is also largely inferior to the ones obtained by Mecheri
et al. (2004) and Roxburgh (2001) despite of using exactly the same
rotation law. Higher order multipole moments J6, J8, and J10 have
the same order of magnitude as those of Roxburgh (2001) and Antia
et al. (2008), with however sensitively different exact values. It is
worth mentioning that Roxburgh’s results have been obtained using
a rotation model in a parametric form which roughly approximate the
internal rotation inferred from helioseismology. Note from Table 1,
that for the same rotation data, our results from the two solar models

are in very good agreement with insignificant differences inferior to
0.2 per cent. Similar compatibility was found by Roxburgh (2001)
for J2, J4, J6, and J8 computed using inverted (ISM) and calculated
(CSM) solar models (see Table 1). This compatibility is also verified
when comparing the values of J2 and J4 obtained respectively by
Roxburgh (2001) and Mecheri et al. (2004) using distinct solar
models but the same model of rotation of Kosovichev (1996). Both
authors pointed out that the differential rotation in the convective
zone introduces only a diminution of 0.5 per cent of the value of J2

with comparison to the one obtained for a Sun rotating uniformly
at the rotation rate of the radiative interior. This indicates that the
quadrupole moment J2 is basically determined by a spherically
averaged rotation whose departure from interior rotation is relatively
small (Roxburgh 2001).

On the other hand, the sensitivity of high-order multipole moments
to the differential rotation in the convective zone makes them
responsive to the observed temporal variation of the latitudinal
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component of the angular rotation (Howe 2009) exhibiting changes
either correlated or anti-correlated with magnetic activity (Antia et al.
2008), whereas by contrast, J2, which is more sensitive to the radiative
zone rotation, do not present significant variation basically because
the angular rotation in deeper layers inside the Sun do not show
reliable temporal fluctuations. However, observational temporal
changes of J2 have been recently evidenced by Rozelot & Eren
(2020) from the analysis of the perihelion precession measurements
of several planets taken at different periods. Rozelot & Eren reported
a mean weighted value of J2 = (2.17 ± 0.06) × 10−7, which is very
compatible with our results. We mention also the good compatibility
of our results with the value J2 = (2.25 ± 0.09) × 10−7 deduced
from the measurements of the precession of Mercury’s perihelion
obtained from ranging data of the MESSENGER (MErcury Surface,
Space ENvironment, GEochemistry, and Ranging) spacecraft (Park
et al. 2017). They are however not compatible with the earlier values
of J2 = (1.8 ± 5.1) × 10−7 and J4 = (9.8 ± 4.6) × 10−7 found by
Lydon & Sofia (1996) from the SDS balloon-borne experiment.

The calculated quadrupole moment J2 gives an approximate
estimate of the theoretical solar oblateness �� via the formula ��
≈ (3/2)J2 + (δr/R�), where δr/R� = 8.1 × 10−6 (Dicke 1970),
yielding �� ≈ 8.43 × 10−6. This value is in fair agreement with
most of the observational oblateness estimates from the analysis of
space-based solar limb shape measurements, namely by SoHO/MDI
(Emilio et al. 2007), SODISM (solar diameter imager and surface
mapper) onboard of PICARD spacecraft (Irbah et al. 2014; Meftah
et al. 2015), and SDO/HMI (Meftah et al. 2016; Irbah et al. 2019). It
is worth to note also its excellent agreement with the most accurate
oblateness measurement to date (8.35 ± 0.15) × 10−6 obtained from
RHESSI/SAS limb data (Fivian et al. 2008).

Finally, the calculation of J2n and resulting �� for all MDI
and HMI rotation data available for an entire period of two solar
cycles can make possible to explore their temporal variation and
possible relation to magnetic activity and therefore allow for a direct
comparison with optical limb shape inference of solar oblateness.
The study of the dynamic evolution of these quantities from model
calculations is an ongoing work that will be the subject of a future
publication.

4 C O N C L U S I O N S

The precise theoretical estimate of solar gravitational moment J2n is
very important in many astrophysical applications. In this work, we
have used new HMI solar rotation rates to calculate updated values
of J2n (for n = 1, 2, 3, 4, and 5) by mean of a general integral
equation derived in the framework of the theory of slowly rotating
stars. The results revealed a good agreement with most of the earlier
helioseismic estimates particularly for J2 and J4, whereas J6, J8,

and J10 agree as an order of magnitude but however differ in their
exact values. On the other hand, the comparison with the calculation
results obtained using MDI rotation rates yielded a difference of
the order of ≈ 0.3 per cent for the quadrupole moment J2. This
difference increases by one order of magnitude for higher order
multipole moments indicating their greater sensitivity, as compared
to J2, to the differences between HMI and MDI rotation rates,
particularly in the outer layers of the Sun. The calculated value
of J2 ≈ 2.21 × 10−7 is in agreement with the observational value
J2 = 2.25 × 10−7 provided by the high precision measurements of the
precession of Mercury’s perihelion obtained from ranging data of the
MESSENGER spacecraft. The resulting theoretical value of the solar
oblateness �� was found to be approximately equal to 8.43 × 10−6

that is in perfect accordance with the most accurate space-based
observational estimate of 8.35 × 10−6 obtained by RHESSI/SAS.
The dynamic evolution of J2n and �� and its eventual correlation
with magnetic activity during solar cycles 23 and 24 is an ongoing
work for a planned subsequent contribution.
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