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Stratified Radiative Transfer for Multidimensional Fluids1

François Golse2, Olivier Pironneau3

Abstract

New mathematical and numerical results are given for the coupling of the temperature
equation of a fluid with Radiative Transfer: existence and uniqueness and a convergent
monotone numerical scheme. The technique is shown to be feasible for studying the
temperature of lake Leman heated by the sun and for the earth atmosphere to study the
effects of greenhouse gases.

Keywords: Radiative Transfer, Navier-Stokes equations, Integral equations, Numerical
Method, Convergence, Climate.

1. Introduction

Fifty years ago, the second author was admitted to the prestigious Dept of Applied Math.
& Theoretical Physics at Cambridge, UK, headed then by Sir James Lighthill. Two ibm

card punchers connected to the computing center – also one of the best in the world
in those days– had been relegated to the basement; to use them was frowned upon as
a threat to the speciality of the lab: clever analytic approximations and other multiple
scales expansions of special cases of the Navier-Stokes equations.
It took a decade to prove that computer simulations for fluids were not only possible,
but also useful to industry. A colleague from the wind tunnels in Modane told us then
that an airplane could never be designed and validated by a numerical simulation. True
to this wrong prediction however, many ad-hoc turbulence models had to be devised: it
was only by a combined theoretical, experimental and computational (TEC) effort that
the world’s first complete airplane could be simulated at Dassault Aviation in 1979 and
that airplanes have since be flown safely without the difficult certification stamps of wind
tunnels.
It was also a success of the top-down approach to CFD. The “JLL”(Lions) school of
applied mathematics had the luck of being taken seriously by a few French high-tech
industry labs. This was not the case in the USA where the head of a national research
funding agency had ruled out variational methods (leading to finite volumes and finite
elements for fluids) as “incomprehensible by aeronautical engineers”, thereafter forcing
all numerical schemes to be in the class of body fitted structured meshes, an impossible
task for airplanes.
The top-down approach to a problem could be defined by saying that the mathematical
model is defined first, then shown to be well posed and then approximated numerically by
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convergent algorithms. The bottom-up approach is when the problem is made of several
modules, studied independently, and patched together at the algorithmic level.
The downside of the top-down approach - from functional analysis to numerical methods
- is that it may discard important faster algorithms for which convergence are not known.
This was the case for compressible flows in the nineties for which the bottom-up approach
pragmatically patched different turbulence and/or numerical models in different zones
with the drawback that it was difficult to assert that the computed solution was one of
the original problem.
In the numerical simulations which fill the supercomputing centers today, CFD is often
only one part of a multi-physics model. Such are the combustion and climate computa-
tions. Both need, at least, radiative transfer and chemistry modules.
While the top-down approach is successful in computational chemistry [CDK+03], math-
ematical analysis of climate models is still in progress. The three dimensional Primi-
tive Equations with hydrostatic and geostrophic approximations have been shown to be
well posed (see [LTW94],[AG01],[CCT20] and the bibliography therein) and so are the
multi-layered Shallow Water equations for the oceans [CLGP13]; but even if the coupled
ocean-atmosphere is mathematically well-posed, it is very far from the complete model
used in climatology. No doubt when a new numerical climate project is proposed, such
as [DDT+15], a top-down approach is made [EDK19], but soon overwhelmed by the
complexity of the task when more modules are added.
Radiative transfer – one such module that needs to be added – is essential in astrophysics
[Cha50] to derive the composition of stars, in nuclear engineering to predict plasma[DL00],
in combustion for engines [ACP+09], and many other fields like solar panels [ZPS+21]
and even T-shirts [ZPS+21]!
In the eighties, at CEA, R. Dautray [DL00] headed a team of applied mathematicians
who used the top-down approach in nuclear engineering. The first author was in close
contact with them. But turning his expertise on radiative transfer to climate modeling
is not straightforward.
Books on radiative transfer for the atmosphere are numerous, such as [GY61], [Boh06]and
[ZT03]; but to speed-up codes, the documentation manual of climate models reveal that
many approximations are made. For instance LMDZ refers to a model proposed by
Fouquart [Fou88][Mor91] which suggests that empirical formulas are used in addition
to simplified numerical schemes to speed-up the computations. The formulas for the
absorption, scattering and albedo coefficients are complex and adapted to reproduce the
experimental data. In other words the gap is wide between practice and fundamentals as
seen by Fowler [Fow11] and Chandrasekhar [Cha50], for instance.
Coupling radiative transfer to the Navier-Stokes system using the top-down approach is
the topic of this article. The problem is shown well posed in the context of a strati-
fied atmosphere and a numerical method – derived from the mathematical proof of well
posedness – is proposed. It is accurate in the sense that there are no singular functions
or integrals to approximate. It is fast compared to the fluid solver to which it is coupled
but of course not as fast as empirical formulas.
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2. Radiative transfer and the temperature equation

Let us begin with a simple problem: the effect of sunlight on a lake Ω. Let Iν(x, ω, t) be
the light intensity of frequency ν at x ∈ Ω, in the direction ω ∈ S2, the unit sphere, at
time t ∈ (0, T ). Let T, ρ,u be the temperature, density and velocity in the lake. Energy
, momentum and mass conservations (see [Pom73],[Fow11]) yields (1),(2),(3):

2.1. The fundamental equations

Given Iν , T at time zero, find Iν , T for all {x,ω, t, ν} ∈ Ω× S2 × (0, T )× R+ such that

1

c
∂tIν + ω ·∇Iν + ρκ̄νaν

[
Iν −

1

4π

∫
S2
p(ω,ω′)Iν(ω

′)dω′
]

= ρκ̄ν(1− aν)[Bν(T )− Iν ],(1)

∂tT + u · ∇T − κT∆T = −∇ ·
∫ ∞

0

∫
S2
Iν(ω

′)ωdωdν. (2)

∂tu + u · ∇u− µF
ρ

∆u +
1

ρ
∇p = g, ∇ · u = 0, ∂tρ+∇ · (ρu) = 0, (3)

where ∇,∆ are with respect to x, Bν(T ) =
2~ν3

c2[e
~ν
kT − 1]

, is the Planck function, ~ is the

Planck constant, c is the speed of light in the medium and k is the Boltzmann constant.
The absorption coefficient κν := ρκ̄ν is the percentage of light absorbed per unit length,
aν ∈ (0, 1) is the scattering albedo, 1

4π
p(ω,ω′) is the probability that a ray in the direction

ω′ scatters in the direction ω. The constants κT and µF are the thermal and molecular
diffusions; g is the gravity.
Existence of solution for (3) has been established by P-L. Lions [Lio96].
As c >> 1, in a regime where 1

c
∂tIν << 1, integrating (1) in ω leads to an alternative

form for (2):

∂tT + u · ∇T − κT∆T = −
∫ ∞

0

ρκ̄ν(1− aν)
(

4πBν(T )−
∫
S2
Iν(ω)dω

)
dν. (4)

As usual, boundary conditions must be given. Dirichlet or Neumann conditions may be
prescribed for u and T on ∂Ω. For the light intensity equation, Iν should be given at all
times on {(x,ω) ∈ ∂Ω × S2 : n(x) · ω < 0}, where n is the outer unit normal of ∂Ω.
Finally ρ should be specified on on ∂Ω when u · n < 0.

2.2. Grey Medium
When κν and aν are independent of ν - a so-called grey medium (cf. [Fow11], p. 70)- the
problem can be written in terms of I =

∫∞
0
Iνdν:

ω ·∇I + κa

[
I − 1

4π

∫
S2
p(ω,ω′)I(ω′)dω′

]
= κ(1− a)(B0T

4 − I), (5)

∂tT + u · ∇T − κT∆T = −κ(1− a)4π

(
B0T

4 − 1

4π

∫
S2
I(ω)dω

)
, (6)

where B0 comes from the Boltzmann-Stefan law:∫ ∞
0

2~ν3

c2[e
~ν
kT − 1]

dν =

(
~
kT

)−4
2~
c2

∫ ∞
0

( ~ν
kT

)3

e
~ν
kT − 1

d
~ν
kT

= B0T
4 with B0 :=

2k4

~3c2

π4

15
.
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2.3. Vertically stratified cases: spatial invariance

Let (x, y, z) be a cartesian frame with z the altitude/depth. The sun being very far, the
light source on the lake is independent of x and y. Then, assuming that T ′ varies slowly
with x and y, in the sense that

(H) ∂zIν >> ∂xIν , ∂zIν >> ∂yIν , (7)

then (1),(2) become [ZT03]

µ∂zIν + κνIν = κν(1− aν)Bν(T ) +
κνaν

2

∫ 1

−1

p(µ, µ′)Iν(z, µ
′)dµ′ (8)

Iν(zM , µ)|µ<0 = Q−(µ)Bν(T̄S), I(zm, µ)|µ>0 = 0, (9)

∂tT + u · ∇T − κT∆T = −4π

∫ ∞
0

κν(1− aν)
(
Bν(T )− 1

2

∫ 1

−1

Iνdµ

)
dν, ∂nT |∂Ω = 0.

(10)

where zM(x, y) and zm(x, y) are max and min of z such that (x, y, z) ∈ Ω, µ is the cosine
of the angle ω to the vertical axis, Q−(µ) = −µQ′ cos θ is the sunlight intensity when θ
is the latitude, and T̄S is the temperature of the sun; we have assumed that the sun is a
black body and that no light comes back from the bottom of the lake. Here u is given,
solenoidal and regular enough for (10) to make sense.

Remarks 1.

• Hypothesis (H) will hold if T varies slowly with x, y. It will be so if u is almost
horizontal and the vertical cross sections of Ω depend slowly on x, y. Turbulent
flows do not satisfy this criteria.

• According to our definition of top-down analysis, the problem investigated is (8),(9),(10),
not (1),(2),(3), justifying the restriction “stratified” in the title.

• All terms of (10) must be kept, except maybe, κT∂xxT and κT∂yyT , but neglecting
them renders the boundary conditions mathematically difficult.

• We shall ignore the mathematical difficulty induced by the boundary condition ∂nT |∂Ω =
0 when the intersection of the side of the lake with the water surface is not at right
angle.

2.4. The vertically stratified grey problem

For a grey medium (8),(10) become

(P 1)


µ∂zI + κI = κ(1− a)B0T

4 +
κa

2

∫ 1

−1

pIdµ′, I|zM ,µ<0 = −µQB0T̄
4
S , I|zm,µ>0 = 0,

∂tT + u · ∇T − κT∆T = −4πκ(1− a)

(
B0T

4 − 1
2

∫ 1

−1

Idµ

)
, ∂nT |∂Ω = 0.

(11)
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2.5. Elimination of I when the scattering is isotropic

Denote the exponential integral and the mean light intensity respectively by

Em(x) :=

∫ 1

0

µm−2e−
x
µdµ, J(z) := 1

2

∫ 1

−1

I(z, µ)dµ.

Then the method of characteristics applied to (11) gives

(P 2)

J(z) = 1
2
QB0T̄

4
SE3(κ(zM − z)) + 1

2

∫ zM

zm

κE1(κ|s− z|)
(
(1− a)B0T

4
s + aJ(s)

)
ds,

∂tT + u · ∇T − κT∆T = −4πκ(1− a)
(
B0T

4(z)− J(z)
)

(12)
Note that to improve readability, we write indifferently T (z) or Tz.

2.6. No scattering

Let Te(z) =
(

1
2
QE3(κ|zM − z|)

) 1
4 T̄S and assume that a = 0, then

(P 3)

{
(4πκB0)−1(∂tT + u · ∇T − κT∆T ) + T 4 = T 4

e + 1
2

∫ zM

zm

κE1(κ|s− z|)T 4
s ds, ∂nT |∂Ω = 0.

(13)

2.7. Algorithm for (P 3) in the stationary static case

Assume T stationary and u = 0. Let κ̄T = (4πκB0)−1κT .
Generate {T n}n≥0 from T 0 = 0 by,∣∣∣∣∣∣∣

(T n+
1
2 )4 := T 4

e + 1
2

∫ zM

zm

κE1(κ|s− z|)T ns
4ds, T n+

1
2 ≥ 0

−κ̄T∆T n+1 + (T n+1
+ )4 = (T n+

1
2 )4, ∂nT

n+1|∂Ω = 0.

(14)

where T+ = max(T, 0). Note that T 7→ −κ̄T∆T + T 4
+ is a monotone operator for which

Newton or fixed point iterations can be applied to solve the PDE. To prove monotone
convergence, the following result is needed.

Lemma 1. C1(κ) := 1
2

maxz
∫ Z

0
κE1(κ|s− z])ds < 1.

Proof∫ X

0

E1(x)dx =

∫ ∞
1

∫ X

0

e−xt

t
dxdt =

∫ ∞
1

1− e−Xt

t2
dt <

∫ ∞
1

1

t2
dt = 1.

⇒ κ

∫ Z

0

E1(κ|τ − t|)dt =

∫ κZ

0

E1(|s− κτ |)ds =

∫ κτ

0

E1(κτ − s)ds+

∫ κZ

κτ

E1(s− κτ)ds

=

∫ κτ

0

E1(θ)dθ +

∫ κ(Z−τ)

0

E1(θ)dθ < 2. (15)

�
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Theorem 1.
{T n}n≥0 generated by Algorithm (14) converges to a solution of (13) and the convergence
is monotone: T n+1(x) > T n(x) for all x and all n.

Proof : From (14)

(T n+
1
2 )4 ≤ |T 4

e |∞ + C1(κ)|T n|4∞.

By the maximum principle for the PDE in (14), T n+1 ≥ 0 and |T n+1|∞ ≤ |T n+
1
2 |∞ ,

therefore
|T n+1|4 ≤ |Te|4∞ + C1(κ)|T n|4∞.

Hence |T n+1|∞ is bounded. Assume that T n ≥ T n−1. The convergence is monotone
because

(T n+
1
2 )4 − (T n−

1
2 )4 = 1

2

∫ zM

zm

κE1(κ|s− z|)
[
(T ns )4 − (T n−1

s )4
]
≥ 0,

and as

−κ̄T∆(T n+1 − T n) + b(T n+1 − T n) = (T n+
1
2 )4 − (T n−

1
2 )4 (16)

with b = ((T n+1)2 + (T n)2)(T n+1 + T n) ≥ 0, the maximum principle implies that T n+1 −
T n ≥ 0.

�

Remark 1. Generalization of the above result to (P 3) is straightforward because the max-
imum principle holds also for the temperature equation with convection. Consequently it
seems doable to extend the above to the system (2),(3). When the density variations with
the temperature are small the Boussineq approximation can be used in conjunction with
(13):

(P 4)

 (4πκB0)−1(∂tT + u · ∇T − κT∆T ) + T 4 = T 4
e + 1

2

∫ zM

zm

κE1(κ|t− z|)T 4
s ds,

∂tu + u · ∇u− νF∆u +∇p = −b(T − T0)g, ∇ · u = 0,
(17)

with u, T given at t = 0 and u or ∂nu or pn + νT∂nu and ∂nT = 0 or T given on ∂Ω.
The kinematic viscosity νF = µF/ρ is taken constant; b is a measure of ∂Tρ and T0 is
the average temperature. See [Att09], for instance, for the mathematical analysis of the
Boussinesq-Stefan problem (similar to (P 4) without the T 4 terms).

3. Numerical tests

Earth sees the sun as a black body at temperature T̄S = 5800K radiating with an intensity
Q′ = 1370W/m2 of which 70% reach the ground, giving at noon in Milano Q = 1370 ×
0.7 cos π

4
= 678.

For water ρ = 1000kg/m3; light absorption is κ = 0.1 for one meter and thermal diffu-
sivity of water is κT = 1.5× 10−7m2/s giving κ̄T = 0.66× 1011.

To avoid those large numbers we scale T by 10−3. Then T̄S = 5.8, (Q
2

)
1
4 T̄S = 24.9,

κ̃T = 10−9κ̄T = 66.
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Table 1: The physical constants.

c ~ k B0

2.998× 108 6.6261× 10−34 1.381× 10−23 1.806657× 10−19

0 2 4 6 8

1.2

1.4

1.6

z

sc
al

ed
T
n

T 4
z

T 5
z

T 6
z

T 7
z

T 8
z

T 9
z

Figure 1: Convergence of Tn solution of
(18)

Figure 2: Color map of T (x, z) at iteration 10. The
triangulation is also shown, adapted from T com-
puted at iteration 5.

3.1. A one dimensional test

If Ω = (0, 10), we need to solve with Algorithm (14) the integro-differential equation in
z:

−66T ′′ + T 4 = 12.5E3(0.1|10− z|) + 0.05

∫ 10

0

E1(0.1|s− z|)T 4(s)ds,

T (0) = (12.5E3(0))
1
4 , T ′(10) = 0. (18)

To solve −66T ′′ + T 4 = f , 3 iterations of a fixed point loop are used: −830T ′′m+1 +
Tm3Tm+1 = f .
The results are shown on Figure 1. The convergence is monotone as expected, even
though Theorem 1 hasn’t been proved when a Dirichlet condition is applied to T on part
of ∂Ω. Notice that in absence of sunlight the temperature would be T (0) everywhere.

3.2. A two dimensional test for a lake

Now Ω is half of the vertical cross section of a symmetric lake. The lower right quarter
side of the unit circle is stretched by x, z 7→ 30x, 10z. The bottom boundary has an
equation named z = zm(x). The same problem is solve in 2D:

−66∆T + T 4 = 12.5E3(0.1|zm(x)− z|) + 0.05

∫ 10

zm(x)

E1(0.1|s− z|)T 4(s)ds,

T (x, zm(x)) = (12.5E3(0.1zm(x))
1
4 , ∂zT (10) = 0. (19)

The same 3× 10 double iteration loop is used ; the results are shown on Figure 2.
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3.3. A 3D case with convection in Lake Leman

Lake Leman is discretized into 33810 tetrahedra. The surface has 1287 triangles. The
Finite Element method of degree 1 is used. This is too coarse for a Navier-Stokes simu-
lation but appropriate for a potential flow. Pressure is imposed on the left and right tips
to simulates the debit of the Rhône. The pressure p solves −∆p = 0 with ∂np = 0 on the
remaining boundaries; the velocity is u = ∇p. The top plot in Figure 3 shows p and u.
The full temperature equation of Problem (P 4) is solved with the same physical constant
as above. The temperature is set at Te initially and on the bottom and side boundaries
of the lake. The time step is t = 0.1; the method is fully implicit for the temperature.
At each time step 3 iterations are needed to handle the T 4 term. Figure 3 shows the
temperature after 15 time steps; it appears to have reached a steady state. The top right
view of Figure 3 shows a region in red where the water at the surface is the hotest.

Figure 3: Top left: velocity vectors and pressure isolines at the surface of the lake. Top right: iso lines
of the surface temperature. Bottom left: perspective view of a 3D color map of the temperature on the
side of the lake past a middle vertical plane. Bottom right: perspective view showing some temperature
level surfaces inside the lake.

This computation is merely a feasibility study to prove that the implementation of the
RT module in a standard CFD code is easy and fast. Computing time on an intel core
i9 takes less than a minute.

3.4. Comments on the programming tools

In fifty years the research problems have become increasingly complex and without the
joint development of computers and programming tools it would not be possible for a
single individual to contribute or even test his ideas. The second author is part of the
team which developed the PDE solver FreeFem++[Hec12]
(see https://fr.wikipedia.org/wiki/FreeFem%2B%2B).
The algorithms discussed here have been implemented with this tool in a very short time.
The discretization of lake Leman is part of the examples in [Hec12], written by F. Hecht.

8



4. The general case, κν, aν non constant

Photons interact with the atomic structure of the medium which implies that κν depends
strongly on ν but also on the temperature and pressure. For the earth atmosphere the
pressure and the temperature are approximately decaying exponentially with altitude.
Assume that variations with altitude are known: ρκ̄ν = ϕ(z)κν with z = zm = 0 on the
ground. Let τ =

∫ z
0
ϕ(s)ds; for instance τ = 1− e−z when ϕ(z) = e−z. Now (8),(10) hold

with 0 < τ < Z := 1− e−zM instead of zm < z < zM).
Consider two types of scattering kernels: a Rayleigh scattering kernel pr(µ, µ′) = 3

8
[3 −

µ2 + 3(µ2 − 1)µ′2] and an isotropic scattering kernel p = 1. Let arν and aiν := aν − arν be
the scattering coefficients for both. The problem is

µ∂τIν + κνIν = κν(1− aν)Bν(T ) + 1
2
κν

∫ 1

−1

(arνp
r + aiν)Iνdµ

′

I(0, µ)|µ>0 = αI(0,−µ) +Q+
ν (µ), I(Z, µ)|µ<0 = Q−ν (µ) (20)

The boundary condition at τ = 0 is a simplified Lambert condition which says that a
portion α of the incoming light is reflected back (Earth albedo) and adds to the prescribed
upgoing light Q+

ν . Sun light is prescribed at high altitude, Z, to be Q−(µ).
Let

Jν(τ) = 1
2

∫ 1

−1

Iν(τ, µ)dµ, Kν(τ) = 1
2

∫ 1

−1

µ2Iν(τ, µ)dµ.

An integral formulation can be derived from (20) as in [Cha50], section 11.2:

(µ∂τ + κν)Iν = Hν(τ, µ)
:= κν

(
(1− aν)Bν(Tτ ) + [aiν + 3

8
arν(3− µ2)]Jν(τ) + 9

8
arν(µ

2 − 1)Kν(τ)
)

(21)

⇒ I(τ, µ) = 1µ>0

[
R+
ν (µ)e−κν

τ
µ +

∫ τ

0

eκν
t−τ
µ

µ
κνHν(t, µ)dt

]

+ 1µ<0

[
Q−ν (µ)eκν

Z−τ
µ −

∫ Z

τ

eκν
t−τ
µ

µ
κνHν(t, µ)dt

]
, (22)

where R+(µ) = Q+
ν (µ) + αI(0,−µ), i.e.

R+
ν (µ)|µ>0 = Q+

ν (µ) + α

[
Q−ν (−µ)e−κν

Z
µ +

∫ Z

0

e−κν
t
µ

µ
κνHν(t,−µ)dt

]
. (23)

From (22), since Hν = H0
ν + µ2H2

ν , with H0
ν , H

2
ν independent of µ, linear functions of Jν

and Kν :

H0
ν (τ) = κν(1− aν)Bν(T ) + κν

(
(aiν +

9arν
8

)Jν −
9arν
8
Kν

)
,

H2
ν (τ) = −κν

3arν
8

[Jν − 3Kν ]. (24)

Jν(τ) = 1
2

∫ 1

0

(
e
−κν τµQ+

ν (µ) +

[
e
−κν (Z−τ)

µ + αe
−κν (Z+τ)

µ

]
Q−ν (−µ)

)
dµ

+1
2

∫ Z

0

(
[E1(κν |τ − t|) + αE1(κν(τ + t))]H0

ν (τ) + [E3(κν |τ − t|) + αE3(κν(τ + t))]H2
ν (τ)

)
dt

9



(25)

Kν(τ) = 1
2

∫ 1

0
µ2

(
e
−κν τµQ+

ν (µ) +

[
e
−κν (Z−τ)

µ + αe
−κν (Z+τ)

µ

]
Q−ν (−µ)

)
dµ

+1
2

∫ Z

0

(
[E3(κν |τ − t|) + αE3(κν(τ + t))]H0

ν (τ) + [E5(κν |τ − t|) + αE5(κν(τ + t))]H2
ν (τ)

)
dt,

(26)

The system is coupled to

∂tT + u · ∇T − κT∆x,y,zT + 4π

∫ ∞
0

κν(1− aν)Bν(Tτ )dν = 4π

∫ ∞
0

κν(1− aν) Jν(τ)dν,

(27)

4.1. Iterative method for the general case

In the spirit of (14), consider

4.2. Algorithm 2

1. Starting from T 0 = 0, J0
ν = 0, K0

ν = 0.

2. Compute Jn+1
ν (τ), Kn+1

ν (τ) by (25)(26) with T n, Jn,Kn. in place of T, J,K.

3. Compute T n+1 by solving (27) with Jn+1
ν (τ) in the r.h.s.

Note that for isotropic scattering Kν is not needed. Then the following convergence
results hold when thermal diffusion is neglected.

Theorem 2. Assume α = 0, u = 0, κT = 0, ∂tT = 0. Assume κν strictly positive and
uniformly bounded, and 0 ≤ aν < 1 for all ν > 0. Let Q±ν ≥ 0 satisfy, for some TM and
some Q

0 ≤ Q±ν (µ) ≤ QBν(TM) ∀µ, ν ∈ (−1, 1)× R+. (28)

Then Algorithm 4.2 defines a sequence of radiative intensities Inν and temperatures T n

converging pointwise to Iν and T respectively, which is a solution of (20),(27) and the
convergence is uniformely increasing.

Remarks 2.

1. Starting with T 0 = 0 is a sure way to initialise the recurrence and have T 1 > T 0.

2. Most likely, monotone convergence holds also in the general case α > 0, u, κT and
∂tT non-zero because,just like T 7→ T 4, the function T 7→

∫∞
0
κν(1− aν)Bν(T )dν is

monotone increasing (its derivative is strictly positive).

3. In the special case arν = 0, and Q±ν (µ) = |µ|Q±ν the problem is

(µ∂τ + κν)Iν(τ, µ) = κνaνJν(τ) + κν(1− aν)Bν(Tτ ), Jν(τ) = 1
2

∫ 1

−1

Iν(τ, µ)dµ,

Iν(0, µ) = Q+
ν µ , Iν(Z,−µ) = Q−ν µ , 0 < µ < 1 ,∫ ∞

0

κν(1− aν)Bν(Tτ )dν =

∫ ∞
0

κν(1− aν)Jν(τ)dν.

(29)
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The iterative process is then to start with T 0 = 0, and compute T n+1 from T n by

Jn+1
ν (τ) = 1

2
Q+
ν E3(κντ) + 1

2
Q−ν E3(κν(Z − τ))

+κν

∫ Z

0

E1(κν |τ − t|) (aνJ
n
ν (t) + (1− aν)Bν(T

n
t )) dt, (30)∫ ∞

0

κν(1− aν)Bν(T
n+1
τ )dν =

∫ ∞
0

κν(1− aν)Jn+1
ν (τ)dν. (31)

4. Note that T 7→
∫∞

0
κν(1 − aν)Bν(T )dν is continuous, strictly increasing, hence

invertible. Thus (31) defines T n+1
τ uniquely.

5. One may recover the light intensity by

In+1
ν (τ, µ) =e−κν

τ
µQ+

ν (µ)1µ>0 + e−κν
(Z−τ)
|µ| Q−ν (µ)1µ<0

+ 1µ>0

∫ τ

0

e−κν
(τ−t)
µ κν

µ
(aνJ

n
ν (t) + (1− aν)Bν(T

n
t ))dt

+ 1µ<0

∫ Z

τ

e−κν
(t−τ)
µ κν

µ
(aνJ

n
ν (t) + (1− aν)Bν(T

n
t ))dt .

(32)

but numerically these are singular integrals while (30),(31) are not. Indeed e−
x
µ/µ

tends to infinity when x and µ tend to 0.

6. Theorem 2 extends a result given in [Pir21] which had unnecessary restrictions on
κν.

Proof
The complete proof will appear in [BP21]. Here, for simplicity, we consider the case

aν = 0. Let S(τ) :=

∫ ∞
0

κν
2

∫ 1

0

(
e−κν

τ
µQ+

ν (µ) + e−κν
Z−τ
µ Q−ν (−µ)

)
dµdν. By (30)

∫ ∞
0

κνBν(T
n+1
τ )dν =

∫ ∞
0

κνJ
n+1
ν (τ)dν = S(τ) + 1

2

∫ ∞
0

∫ Z

0

κ2
νE1(κν |τ − t|)Bν(T

n
t )dtdν

≤ S(τ) + 1
2

max
κ

∫ Z

0

κE1(κ|τ − t|)dt sup
t∈(0,Z)

∫ ∞
0

κνBν(T
n
t )dν

≤ C2 + C1(κM) sup
t∈(0,Z)

∫ ∞
0

κνBν(T
n
t )dν,

with C2 = supt∈(0,Z) S(t) and κM = supν κν , because κ 7→ C1(κ) is monotone increasing.
As C1(κM) < 1 it implies that Bn

ν (τ) := Bν(T
n(τ)) is bounded for all τ .

Now assume that T nτ > T n−1
τ for all τ > 0. Then T 7→ Bν(T ) being increasing, Bν(T

n
τ ) >

Bν(T
n−1
τ ), ∀τ, ν, and so for all τ :∫ ∞

0

κν
(
Bν(T

n+1
τ )−Bν(T

n
τ )
)

dν =

∫ ∞
0

κν
(
Jn+1
ν (τ)− Jnν (τ)

)
dν

=

∫ ∞
0

κ2
ν

2

∫ Z

0

E1(κν |τ − t|)
(
Bν(T

n
t )−Bν(T

n−1
t )

)
dtdν > 0.

(33)
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As T 7→ Bν(T ) is continuous, it implies that T n+1
τ > T nτ , ∀τ . Hence for some T ∗(τ),

possibly +∞, T n → T ∗. By continuity Bν(T
n
t ) → Bν(T

∗
t ), but it has been show above

that Bν(T
n
t ) = Bn

ν → B∗ν , so Bν(T
∗
t ) is finite and so is T ∗t . Recall that a bounded

increasing sequence converges, so Bν(T
n
t ) → Bν(T

∗
t ) for all t and ν and the convergence

of E1(κν |τ − t|)Bν(T
n
t )→ E1(κν |τ − t|)Bν(T

∗
t ) being monotone, the integral converges to

the integral of the limit (Beppo Levi’s lemma). This shows that T ∗τ is the solution of the
problem. �

5. Uniqueness, Maximum Principle

This section follows computations in [Gol87] (in the case Z = +∞ and with aν = 0) and
in [Mer87].

Theorem 3. Assume 0 < κν ≤ κM , 0 ≤ aν < 1 for all ν > 0. Let Q±, R± ∈ L1((0, 1)×
R+) satisfy

0 ≤ Q±ν (µ) ≤ R±ν (µ) for a.e. (µ, ν) ∈ (0, 1)× (0,∞) .

Then, the solutions (Iν , T ) and (I ′ν , T
′) of (37) with Q±ν (µ) and R±ν (µ) respectively, satisfy

Iν(τ, µ) ≤ I ′ν(τ, µ) and Tτ ≤ T ′τ for a.e. (τ, µ) ∈ (−1, 1)× (0,∞) .

In particular, Q±ν (µ) = R±ν (µ) for a.e. (µ, ν) ∈ (0, 1)× (0,∞) implies

Iν(τ, µ) = I ′ν(τ, µ) and Tτ = T ′τ for a.e. (τ, µ) ∈ (−1, 1)× (0,∞).

One has also the following form of a Maximum Principle.

Corollary 1. Let the hypotheses of Theorem 2 hold. Let Q±ν (µ) ≤ Bν(TM) (resp. Q±ν (µ) ≥
Bν(Tm)) for a.e. (µ, ν) ∈ (0, 1)× (R+. Then a.e.(τ, µ) ∈ (−1, 1)× (0,∞),

Iν(τ, µ) ≤ Bν(TM) and Tτ ≤ TM resp. Iν(τ, µ) ≥ Bν(Tm) and Tτ ≥ Tm

The proof relies partially on a difficult argument due to [Mer87]. It will be published in
[GP21].

6. An application to the temperature in the Earth atmosphere

A numerical test is reported on Figures 4 and 5. It is an attempt at the simulation of
the effect of an increase of CO2 in the atmosphere. Our purpose is only to assess that the
numerical method can detect such a small change of κν .
Equation (31) is solved by a few steps of dichotomy followed by a few New steps. When
κν is larger than 4 some instabilities occur, probably in the exponential integrals. This
point will be investigated in the future.
The physical and numerical parameters are

• Atmosphere thickness: 12km

• Scaled sunlight power hitting the top of the atmosphere: 3.042× 10−5

12



• Percentage of sunlight reaching the ground unaffected: 0.99

• Percentage reemitted (Earth albedo): 10%.

• Percentage of sunlight being a source at high altitude (Q−): 0.1%

• Cloud (isotropic) scattering: 20%. Cloud position : between 6 and 9km

• Rayleigh scattering: 20% above 9km

• average absorption coefficient κ0 = 1.225

• density drop versus altitude : ρ0exp(−z)

• Discretization: 60 altitude stations, 300 frequencies (unevenly distributed)

• Number of iterations 22. Computing time 30” per cases.

The results are very sensitive to the value of Q− and th the earth albedo. The values for
κν are taken from Russian measurements posted on wikipedia
https://commons.wikimedia.org/wiki/File:Atmosfaerisk spredning-ru.svg.
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Figure 4: Transmittance te versus wave-length digitilized from
commons.wikimedia.org/wiki/File:Atmosfaerisk spredning-ru.svg The window around 3 is
blocked by CO2. The absorption is related to the transmittance te by κν = − log te.

Figure transmittance https://commons.wikimedia.org/wiki/File:Atmosfaerisk spredning-
ru.svg

7. Conclusion

Results obtained here are in continuation of [Gol87],[Mer87],[BGPS88], recently reviewed
for possible applications to climatology in [BP21] and [Pir21]. Existence and uniqueness
for the radiative transfer equations had remained open in the context of nuclear engi-
neering. For incompressible fluids it is not unrealistic to assume that the dependence of
the absorption coefficient κν upon the temperature can be replaced by an explicit de-
pendence on altitude. This is the key simplification by which existence, uniqueness and
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Figure 5: Scaled temperatures (left) : 3 curves z → T (z) are plotted. One computed with κ0 = 1.225
which corresponds to a grey atmosphere. One with κν shown on the right in pink color which corresponds
to Figure 4. The third one is with κν shown in green on the right where the the transparent window
around frequency 1 has been blocked. On the right the mean light intensity at altitude Z are shown
(mostly outgoing waves). Filling the transparent window results in an elevation of temperature.

monotone fast and accurate numerical schemes could be found. Hence, adding RT to a
Navier-Stokes solver is easy and fast when radiations come from one direction only.
As a final remark note that it seems doable to extend the method to the general case where
κν depends on τ and T . Indeed if the dependency τ 7→ κν(τ) is guessed only approxi-
mately, then knowing κMν > κν(τ) independent of τ is enough to apply the method with
κM on the left of the equation for Iν with a correction on the right equal to (κMν −κν(τ))Iν ;
this correction seems compatible with the monotone convergence of the temperature.
Then the method could also be extended to the case κ function of T by an additional
algorithmic m-loop using κ(Tm) instead of κ(T ) and then updating Tm to the T just
computed.
In this article the numerical computations are only given for showing the potential of the
method. Real life applications, coupling RT to the full Navier-Stokes equations requires
supercomputing power and will be done later.
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8. APPENDIX not part of this Compte-Rendus de Mécanique: Proofs of the
results quoted above

Consider the problem

(µ∂τ + κν)Iν(τ, µ) = κνaνJν(τ) + κν(1− aν)Bν(T (τ)) ,

Iν(0, µ) = Q+
ν (µ) , Iν(Z,−µ) = Q−ν (µ) , 0 < µ < 1 ,

∂τ

∫ ∞
0

∫ 1

−1

µIν(τ, µ)dµdν = 0 ,

(34)

with the notation

Jν(τ) := 1
2

∫ 1

−1

Iν(τ, µ)dµ .

The last equality in (34) implies that∫ ∞
0

κν(1− aν)Jν(τ)dν =

∫ ∞
0

κν(1− aν)Bν(T (τ))dν (35)

and, assuming that 0 < κν ≤ κM while 0 ≤ aν < 1 for all ν > 0, the r.h.s. of (35) defines
T as a functional of J , henceforth denoted T [J ]. Thus (34) can be recast as

(µ∂τ + κν)Iν(τ, µ) = κνaνJν(τ) + κν(1− aν)Bν(T [J ](τ)) ,

Iν(0, µ) = Q+
ν (µ) , Iν(Z,−µ) = Q−ν (µ) , 0 < µ < 1 ,

(36)

In order to solve numerically (34), one uses the method of iteration on the sources. Start-
ing from some appropriate (I0

ν , T
0), one construct a sequence (Inν , T

n) by the following
prescription

(µ∂τ + κν)I
n+1
ν (τ, µ) = κνaνJ

n
ν (τ) + κν(1− aν)Bν(T

n(τ)) , T n = T [Jnν ]

In+1
ν (0, µ) = Q+

ν (µ) , In+1
ν (Z,−µ) = Q−ν (µ) , 0 < µ < 1 ,

(37)

Applying the method of characteristics shows that

In+1
ν (τ, µ) =e−

κντ
µ Q+

ν (µ)1µ>0 + e−
κν (Z−τ)
|µ| Q−ν (|µ|)1µ<0

+ 1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ

(aνJ
n
ν (t) + (1− aν)Bν(T

n(t)))dt

+ 1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ|(aνJ
n
ν (t) + (1− aν)Bν(T

n(t)))dt .

(38)
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Since Bν ≥ 0, this formula shows, by a straightforward induction argument, that

I0
ν ≥ 0 , T 0 ≥ 0 , Q±ν ≥ 0 =⇒ Inν ≥ 0 .

Moreover

In+1
ν (τ, µ)− Inν (τ, µ) =

+1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ
aν(J

n
ν (t)− Jn−1

ν (t))dt

+1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ

(1− aν)(Bν(T
n(t))−Bν(T

n−1(t)))dt

+1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ|aν(J
n
ν (t)− Jn−1

ν (t))dt

+1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ|(1− aν)(Bν(T
n(t))−Bν(T

n−1(t)))dt .

Since Bν is nondecreasing for each ν > 0, formula (35) shows that

Jnν ≥ Jn−1
ν =⇒ T n ≥ T n−1

we conclude from the equality above that

I0
ν = 0 , T 0 = 0 , Q±ν ≥ 0 =⇒

{
0 ≤ I1

ν ≤ I2
ν ≤ . . . ≤ Inν ≤ . . .

0 ≤ T 1 ≤ T 2 ≤ . . . ≤ T n ≤ . . .

Since the term
(aνJ

n
ν (t) + (1− aν)Bν(T

n(t)))

in both integrals on the r.h.s. is independent of µ, one has

Jn+1
ν (τ) =1

2

∫ 1

0

(
e−

κντ
µ Q+

ν (µ) + e−
κν (Z−τ)

µ Q−ν (µ)
)
dµ

+

∫ τ

0

(∫ 1

0

e−
κν (τ−t)

µ
dµ

2µ

)
κν(aνJ

n
ν (t) + (1− aν)Bν(T

n(t)))dt

+

∫ Z

τ

(∫ 1

0

e−
κν (t−τ)

µ dµ
2µ

)
κν(aνJ

n
ν (t) + (1− aν)Bν(T

n(t)))dt .

One changes variables in the inner integral, so that∫ 1

0

e−
X
µ dµ
µ

=

∫ ∞
1

e−Xy

y
dy =

∫ ∞
X

e−z

z
dz =: E1(X) .

Thus

Jn+1
ν (τ) =1

2

∫ 1

0

(
e−

κντ
µ Q+

ν (µ) + e−
κν (Z−τ)

µ Q−ν (µ)
)
dµ

+ 1
2

∫ Z

0

E1(κν |τ − t|)κν(aνJnν (t) + (1− aν)Bν(T
n(t)))dt .
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Integrating over [0, Z] in τ implies that∫ Z

0

Jn+1
ν (τ)dτ = 1

2

∫ Z

0

∫ 1

0

(
e−

κντ
µ Q+

ν (µ) + e−
κν (Z−τ)

µ Q−ν (µ)
)
dµdτ

+1
2

∫ Z

0

(∫ Z

0

E1(κν |τ − t|)κνdτ
)

(aνJ
n
ν (t) + (1− aν)Bν(T

n(t)))dt

≤ 1
2

∫ Z

0

∫ 1

0

(
e−

κντ
µ Q+

ν (µ) + e−
κν (Z−τ)

µ Q−ν (µ)
)
dµdτ

+1
2

(
sup

0≤t≤Z

∫ Z

0

E1(κν |τ − t|)κνdτ
)∫ Z

0

(aνJ
n
ν (t) + (1− aν)Bν(T

n(t)))dt .

Let us estimate the quantity

sup
0≤t≤Z

∫ Z

0

E1(κν |τ − t|)κνdτ = sup
0≤s≤κνZ

∫ κνZ

0

E1(|σ − s|)dσ .

Observe that ∫ κνZ

0

E1(|σ − s|)dσ =

∫
R

E1(|σ − s|)1[0,κνZ](σ)dσ

=

∫
R

E1(|θ|)1[−s,κνZ−s](θ)dθ

≤
∫
R

E1(|θ|)1[−κνZ/2,κνZ/2](θ)dθ

=2

∫ κνZ/2

0

E1(θ)dθ

≤2

∫ ZκM/2

0

E1(θ)dθ =: 2C1 .

The first inequality is the elementary rearrangement inequality (Theorem 3.4 in [Lie01]);
the last one is based on the assumption 0 < κν ≤ κM . Thus∫ Z

0

Jn+1
ν (τ)dτ ≤ 1

2

∫ Z

0

∫ 1

0

(
e−

κντ
µ Q+

ν (µ) + e−
κν (Z−τ)

µ Q−ν (µ)
)
dµdτ

+C1

∫ Z

0

(aνJ
n
ν (t) + (1− aν)Bν(T

n(t)))dt .

Multiply both sides of this inequality by κν and integrate in ν: one finds that∫ ∞
0

∫ Z

0

κνJ
n+1
ν (τ)dτdν

≤ 1
2

∫ ∞
0

∫ Z

0

∫ 1

0

κν

(
e−

κντ
µ Q+

ν (µ) + e−
κν (Z−τ)

µ Q−ν (µ)
)
dµdτdν

+C1

∫ ∞
0

∫ Z

0

κν(aνJ
n
ν (t) + (1− aν)Bν(T

n(t)))dtdν .

At this point, we recall that T n = T [Jnν ], so that∫ ∞
0

κν(1− aν)Bν(T
n(t)))dν =

∫ ∞
0

κν(1− aν)Jnν (t)dν ,
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and hence ∫ ∞
0

∫ Z

0

κνJ
n+1
ν (τ)dτdν ≤ C1

∫ ∞
0

∫ Z

0

κνJ
n
ν (t)dtdν

+1
2

∫ ∞
0

∫ Z

0

∫ 1

0

κν

(
e−

κντ
µ Q+

ν (µ) + e−
κν (Z−τ)

µ Q−ν (µ)
)
dµdτdν .

The expression of the source term can be slightly reduced, by integrating out the τ
variable: ∫ Z

0

κνe
−κντ

µ dτ =

∫ Z

0

κνe
−κν (Z−τ)

µ dτ = µ
(

1− e−
κνZ
µ

)
,

so that

0 ≤1
2

∫ ∞
0

∫ Z

0

∫ 1

0

κν

(
e−

κντ
µ Q+

ν (µ) + e−
κν (Z−τ)

µ Q−ν (µ)
)
dµdτdν

≤1
2

∫ ∞
0

∫ 1

0

(Q+
ν (µ) +Q−ν (µ))µdµ =: Q .

Thus ∫ ∞
0

∫ Z

0

κνJ
n+1
ν (τ)dτdν ≤ C1

∫ ∞
0

∫ Z

0

κνJ
n
ν (t)dtdν +Q .

Initializing the sequence Inν with I0
ν = 0 and T 0 = T [J0

ν ] = 0, one finds that∫ ∞
0

∫ Z

0

κνJ
1
ν (τ)dτdν ≤ Q ,∫ ∞

0

∫ Z

0

κνJ
2
ν (τ)dτdν ≤ C1Q+Q∫ ∞

0

∫ Z

0

κνJ
3
ν (τ)dτdν ≤ C2

1Q+ C1Q+Q

and by induction ∫ ∞
0

∫ Z

0

κνJ
n+1
ν (τ)dτdν ≤ Q

n∑
j=0

Cj
1 .

Since

C1 =

∫ ZκM/2

0

E1(θ)dθ <

∫ ∞
0

E1(θ)dθ =

∫ ∞
0

(∫ ∞
1

e−θy

y
dy

)
dy =

∫ ∞
1

dy

y2
= 1 ,

the series above converges and one has the uniform bound∫ ∞
0

∫ Z

0

κνJ
n+1
ν (τ)dτdν ≤ Q

1− C1

.

Since
0 ≤ I1

ν ≤ I2
ν ≤ . . . ≤ Inν ≤ In+1

ν ≤ . . .

the bound above and the Monotone Convergence Theorem implies that the sequence
In+1
ν (τ, µ) converges for a.e. (τ, µ, ν) ∈ (0, Z) × (−1, 1) × (0,+∞) to a limit denoted
Iν(τ, µ) as n→∞. Since

0 ≤ T 1 ≤ T 2 ≤ . . . ≤ T n ≤ T n+1 ≤ . . .
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we conclude from (35) and the Monotone Convergence Theorem that T n+1(τ) converges
for a.e. τ ∈ (0, Z) to a limit denoted T (τ) as n→∞.
Then we can pass to the limit in (38) as n→∞ by monotone convergence, to find that

Iν(τ, µ) =e−
κντ
µ Q+

ν (µ)1µ>0 + e−
κν (Z−τ)
|µ| Q−ν (|µ|)1µ<0

+ 1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ

(aνJν(t) + (1− aν)Bν(T (t)))dt

+ 1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ|(aνJν(t) + (1− aν)Bν(T (t)))dt

for a.e. (τ, µ, ν) ∈ (0, Z)× (−1, 1)× (0,+∞). One recognizes in this equality the integral
formulation of (34) or (36).
Besides, since we have seen that

0 = I0
ν ≤ I1

ν ≤ I2
ν ≤ . . . ≤ Inν ≤ In+1

ν ≤ . . . ≤ Iν

0 =T 0≤ T 1≤T 2≤ . . . ≤ T n ≤ T n+1 ≤ . . . ≤ T

so that

0 ≤
∫ Z

0

(Jn+1
ν − Jnν )(τ)dτ

= 1
2

∫ Z

0

(∫ Z

0

E1(κν |τ − t|)κνdτ
)
aν(J

n
ν − Jn−1

ν )(t)dt

+1
2

∫ Z

0

(∫ Z

0

E1(κν |τ − t|)κνdτ
)

(1− aν)(Bν(T
n(t))−Bν(T

n−1(t)))dt

≤ C1

∫ Z

0

(aν(J
n
ν − Jn−1

ν )(t) + (1− aν)(Bν(T
n(t))−Bν(T

n−1(t)))dt .

Using again the equality∫ ∞
0

κν(1− aν)Bν(T
n(t)))dν =

∫ ∞
0

κν(1− aν)Jnν (t)dν ,

we conclude that

0 ≤
∫ Z

0

∫ ∞
0

κν(J
n+1
ν − Jnν )(τ)dνdτ ≤ C1

∫ Z

0

∫ ∞
0

κν(J
n
ν − Jn−1

ν )(t)dt .

Hence

0 ≤
∫ Z

0

∫ ∞
0

κν(J
n+1
ν − Jnν )(τ)dνdτ ≤ Cn

1

∫ ∞
0

κνJ
1
ν (τ)dνdτ ≤ Cn

1Q ,

so that

0 ≤
∫ Z

0

∫ ∞
0

κν(Jν − Jnν )(τ)dνdτ ≤ Cn
1

∫ ∞
0

κνJ
1
ν (τ)dνdτ ≤ Cn

1Q
1− C1

.

Summarizing, we have proved the following result.

21



Theorem 4. Assume that 0 < κν ≤ κM , while 0 ≤ aν < 1 for all ν > 0. Let Q±ν (µ)
satisfy ∫ ∞

0

∫ 1

0

µQ±ν (µ)dµdν ≤ Q .

Choose I0
ν = 0 and T 0 = 0, and let Inν and T n = T [Jnν ] be the solution of (37). Then

Inν (τ, µ)→ Iν(τ, µ) and T n(τ)→ T (τ)

for (τ, µ, ν) ∈ (0, Z) × (−1, 1) × (0,+∞) as n → ∞, where (Iν , T ) is a solution of (34)
or (36). This method converges exponentially fast, in the sense that

0 ≤
∫ Z

0

∫ ∞
0

κν(Jν − Jnν )(τ)dνdτ ≤ Cn
1Q

1− C1

,

and, if 0 ≤ aν ≤ aM < 1 while 0 < κm ≤ κν, one has

0 ≤
∫ Z

0

α(T (t)4 − T n(t)4)dt ≤ Cn
1Q

κm(1− aM)(1− C1)
.

The last bound comes from the defining equality for the temperature in terms of the
radiative intensity

κm(1− aM)α(T 4 − (T n)4) =κm(1− aM)

∫ ∞
0

(Bν(T )−Bν(T
n))dν

≤
∫ ∞

0

κν(1− aν)(Bν(T )−Bν(T
n))dν

=

∫ ∞
0

κν(1− aν)(Jν − Jnν )dν ≤
∫ ∞

0

κν(Jν − Jnν )dν .

9. Uniqueness, Maximum Principle

This section follows computations in [Gol87] (in the case Z = +∞ and with aν = 0) and
in [Mer87].
The rather subtle monotonicity structure of the radiative transfer equations is a striking
result, discovered by Mercier in [Mer87]. In view of the complexity of the computations
in [Mer87], it may be useful to keep in mind the following simple remarks, which should
be viewed as a motivation.
Consider the steady radiative transfer equation (36) without scattering (aν = 0) in the
whole space with a source term 0 ≤ Sν ∈ L1(R× (−1, 1)× (0,∞)):

λIν(τ, µ) + µ∂τIν(τ, µ) + κνIν(τ, µ) = κνBν(T [I]) + λSν(τ, µ) , τ ∈ R , |µ| < 1 ,

where λ > 0. By definition of T [I], one easily checks that∫ ∞
−∞

∫ 1

−1

∫ ∞
0

Iν(τ, µ)dνdµdτ =

∫ ∞
−∞

∫ 1

−1

∫ ∞
0

Sν(τ, µ)dνdµdτ .
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The radiative intensity is given in terms of the temperature T [I] and the source Sν by
the explicit formula

Iν(τ, µ) =1µ>0

∫ τ

−∞
e−

(λ+κν )(τ−t)
µ

κνBν(T [I](t)) + λSν(t, µ)

µ
dt

+ 1µ<0

∫ ∞
τ

e−
(λ+κν )(t−τ)

|µ|
κνBν(T [I](t)) + λSν(t, µ)

|µ|
dt .

Now, if one replaces the source of radiation Sν in the right hand side of this equation with
a larger source S ′ν ≥ Sν , it is natural to expect that the resulting radiation intensity I ′ν
will be such that the associated temperature T [I ′] ≥ T [I]. Observe now that the function
T 7→ Bν(T ) is increasing on (0,+∞) for each ν > 0; the explicit formula for Iν in terms
of Sν and T [I] shows that I ′ν(τ, µ) ≥ Iν(τ, µ).
Of course, this argument is by no means rigorous, since it rests on the assumption that
S ′ν ≥ Sν =⇒ T [I ′] ≥ T [I], which, although physically plausible, has not been proved
yet. (Notice however that

I ′ν ≥ Iν =⇒ T [I ′] ≥ T [I]

by (35), since the Planck function Bν is increasing for each ν > 0.) Thus, the map
Sν 7→ Iν preserves both the integral and the order between radiation intensities. Now
there is a clever characterization of order preserving maps on L1 leaving the integral
invariant, which is due to Crandall and Tartar [? ]. Roughly speaking, a map from
L1 to itself that preserves the integral is order preserving iff it is nonexpansive in L1.
This brings in the notion of L1-accretivity, which is at the heart4 of Mercier’s remarkable
discovery.
Indeed, the monotonicity argument above, together with Proposition 1 of [? ] (with
C = L1(R × (−1, 1) × (0,∞))+, which is the set of a.e. positive elements of L1(R ×
(−1, 1)× (0,∞))) strongly suggest that it might be a good idea5 to study∫ ∞

−∞

∫ 1

−1

∫ ∞
0

(I2
ν − I1

ν )+(τ, µ)dνdµdτ

in terms of ∫ ∞
−∞

∫ 1

−1

∫ ∞
0

(S2
ν − S1

ν)+(τ, µ)dνdµdτ

where S1
ν , S

2
ν ∈ C and I1

ν , I
2
ν are the solutions of the steady radiative transfer equation

above with source terms S1
ν and S2

ν respectively. (Mercier’s original argument is even
more complex, because he assumes that the opacity κν depends on the temperature T ,
and is a decreasing function of T for each ν > 0 while T 7→ κν(T )Bν(T ) is nondecreasing;
the reader can easily verify that the intuitive argument above still applies, provided of

4The Crandall-Tartar lemma appeared a few years before Mercier’s paper [Mer87] on the radiative
transfer equation. I learned of both results in 1984, during discussions in Mercier’s lab, either from
Mercier himself, or from Tartar. At the time of this writing, I cannot remember whether the Crandall-
Tartar lemma was mentioned to me in connection with Mercier’s result, or for some other reason.

5This may be a reconstruction of a discussion with Mercier in the early 1980’s, unless he found
the L1-accretivity structure of the radiative transfer equations by some other argument which I fail to
remember.
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course that our physically natural assumption that S ′ν ≥ Sν =⇒ T [I ′] ≥ T [I] remains
valid in this case as well.)

Define s+(z) = 1z≥0, and z+ = max(z, 0) while z− = max(−z, 0). Thus

z = z+ − z− , |z| = z+ + z− , z+ = zs+(z) .

In accordance with the discussion above, we multiply both sides of the radiative transfer
equation for two solutions Iν and I ′ν by s+(Iν − I ′ν) and integrate in all variables. This is
precisely Mercier’s computation (simpler because κν is independent of the temperature).
Denote

〈Φ〉 :=

∫ ∞
0

∫ 1

−1

Φ(µ, ν)dµdν

With T = T [I] and T ′ = T [I ′] defined by (35), let us compute

D := 〈κν((Iν − I ′ν)− aν(Jν − J ′ν)− (1− aν)(Bν(T )−Bν(T
′)))s+(Iν − I ′ν)〉

= 〈κν(1− aν)((Iν − I ′ν)− (Bν(T )−Bν(T
′)))s+(Iν − I ′ν)〉

+〈κνaν((Iν − I ′ν)− (Jν − J ′ν))s+(Iν − I ′ν)〉 =: D1 +D2

Observe that

(Jν − J ′ν)s+(Iν(µ)− I ′ν(µ)) =1
2

∫ 1

−1

(Iν − I ′ν)(µ′)s+(Iν − I ′ν)(µ)dµ′

≤1
2

∫ 1

−1

(Iν − I ′ν)+(µ′)dµ′ ,

so that D2 ≥ 0.
Next

D1 = 〈κν(1− aν)((Iν − I ′ν)− (Bν(T )−Bν(T
′)))(s+(Iν − I ′ν)− s+(T − T ′))〉

because

T = T [I] and T ′ = T [I ′] =⇒ 〈κν(1− aν)((Iν − I ′ν)− (Bν(T )−Bν(T
′)))〉 = 0 .

Since Bν is increasing for each ν > 0, one has

s+(T − T ′) = s+(Bν(T )−Bν(T
′))

so that

D1 = 〈κν(1− aν)((Iν − I ′ν)− (Bν(T )−Bν(T
′)))(s+(Iν − I ′ν)− s+(Bν(T )−Bν(T

′)))〉

and
s+ nondecreasing =⇒ D1 ≥ 0 .

Let Iν and Jν be two solutions of (36) with boundary data

Iν(0, µ) = Q+
ν (µ) , Iν(Z,−µ) = Q−ν (µ) , 0 < µ < 1 ,

Jν(0, µ) = R+
ν (µ) , Jν(Z,−µ) = R−ν (µ) , 0 < µ < 1 .
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Assume that
Q±ν (µ) ≤ R±ν (µ) for a.e. (µ, ν) ∈ (0, 1)× (0,∞) .

Then

∂τ 〈µ(Iν − Jν)+〉 ≤ −〈κν(1− aν)((Iν − Jν)− (Bν(T [I])−Bν(T [J ])))s+(Iν − Jν)〉
−〈κνaν((Iν − Jν)− (Jν − J̃ν))s+(Iν − Jν)〉 ≤ 0 ,

so that τ 7→ 〈µ(Iν − Jν)+〉(τ) is nonincreasing. Since

Q−ν ≤ R−ν =⇒ 〈µ(Iν − Jν)+〉(Z) = 〈µ+(Iν − Jν)+〉(Z) ≥ 0 ,

Q+
ν ≤ R+

ν =⇒ 〈µ(Iν − Jν)+〉(0) = −〈µ−(Iν − Jν)+〉(0) ≤ 0 ,

one has

for a.e. τ ∈ (0, Z) 0 = 〈µ(Iν − Jν)+〉
= 〈κνaν((Iν − Jν)− (Jν − J̃ν))s+(Iν − Jν)〉

= 〈κν(1− aν)((Iν − Jν)− (Bν(T [I])−Bν(T [J ])))s+(Iν − Jν)〉 ,

and
(Iν − Jν)+(0,−µ) = (Iν − Jν)+(Z, µ) = 0 for a.e. µ ∈ (0, 1) .

Besides, since κν(1− aν) > 0 for all ν > 0

0 = 〈κν(1− aν)((Iν − Jν)− (Bν(T [I])−Bν(T [J ])))s+(Iν − Jν)〉
= 〈κν(1− aν)((Iν − Jν)− (Bν(T [I])−Bν(T [J ])))(s+(Iν − Jν)− s+(T [I]− T [J ]))〉

=⇒ s+(Iν(τ, µ)− Jν(τ, µ)) = s+(T [I]− T [J ]) for a.e. (τ, µ, ν) .

At this point, we must appeal to an additional idea, which is not present in Mercier’s
paper [Mer87]. Since we are dealing with solutions of the radiative transfer equation
having the slab symmetry, it is natural idea to use the K-invariant (in the terminology
of section 10 in chapter I of Chandrasekhar [Cha50]). This idea6 is at the heart of the
exponential decay estimate for the Milne problem obtained in [Gol87], and will be used
here for a different purpose.
We compute

∂τ

〈
µ2

κν
(Iν − Jν)+

〉
= −〈aνµ((Iν − Jν)− (Jν − J̃ν))s+(T [I]− T [J ])〉

−〈(1− aν)µ((Iν − Jν)− (Bν(T [I])−Bν(T [J ]))s+(T [I]− T [J ])〉
= −〈aνµ(Iν − Jν)s+(T [I]− T [J ])〉 − 〈(1− aν)µ(Iν − Jν)s+(T [I]− T [J ])〉

= −〈µ(Iν − Jν)s+(T [I]− T [J ])〉 = −〈µ(Iν − Jν)+〉 = 0 ,

since ∫ 1

−1

µ(Jν(τ)− J̃ν(τ))dµ =

∫ 1

−1

µ(Bν(T [I])−Bν(T [J ]))dµ = 0 .

6A somewhat similar idea, unfortunately unpublished, had been used by R. Sentis to simplify the
uniqueness proof for the linear Milne problem studied in [BSS84].
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Next we integrate in τ ∈ (0, Z), and observe that

(Iν − Jν)+(0,−µ) = 0 and Q+
ν (µ) ≤ R+

ν (µ) for a.e. µ ∈ (0, 1)

=⇒
〈
µ2

κν
(Iν − Jν)+

〉
(τ) =

〈
µ2

κν
(Iν − Jν)+

〉
(0) = 0 .

Summarizing, we have proved the following result.

Theorem 5. Assume that 0 < κν ≤ κM , while 0 ≤ aν < 1 for all ν > 0. Let Q±, R± ∈
L1((0, 1)× (0,∞)) satisfy

0 ≤ Q±ν (µ) ≤ R±ν (µ) for a.e. (µ, ν) ∈ (0, 1)× (0,∞) .

Then, the solutions (Iν , T [I]) of (36), and (Jν , T [J ]) of (36) with boundary data Q±ν (µ)
replaced with R±ν (µ) satisfy

Iν(τ, µ) ≤ Jν(τ, µ) and T [I](τ) ≤ T [J ](τ) for a.e. (τ, µ) ∈ (−1, 1)× (0,∞) .

In particular,

Q±ν (µ) = R±ν (µ) for a.e. (µ, ν) ∈ (0, 1)× (0,∞)

=⇒ Iν(τ, µ) = Jν(τ, µ) and T [I](τ) = T [J ](τ) for a.e. (τ, µ) ∈ (−1, 1)× (0,∞) .

One has also the following form of Maximum Principle.

Corollary 2. Assume that 0 < κν ≤ κM , while 0 ≤ aν < 1 for all ν > 0. Let Q±ν (µ) ≤
Bν(TM) (resp. Q±ν (µ) ≥ Bν(Tm)) for a.e. (µ, ν) ∈ (0, 1)× (0,∞). Then

Iν(τ, µ) ≤ Bν(TM) and T [I](τ) ≤ TM

resp. Iν(τ, µ) ≥ Bν(Tm) and T [I](τ) ≥ Tm

for a.e. (τ, µ) ∈ (−1, 1)× (0,∞) .

Proof Indeed, Jν = Bν(TM) and T [J ] = TM (resp. Jν = Bν(Tm) and T [J ] = Tm) is the
solution of (36) with boundary data R±ν = Bν(TM) (resp. R±ν = Bν(Tm)). �

In Theorem 4, if one has the stronger condition

0 ≤ Q±ν (µ) ≤ Bν(TM) for a.e. (µ, ν) ∈ (0, 1)× (0,∞)

one obtains the following bound for the numerical and theoretical solutions

0 ≤ I1
ν ≤ I2

ν ≤ . . . ≤ Inν ≤ . . . Iν ≤ Bν(TM)

while
0 ≤ T 1 ≤ T2 ≤ . . . ≤ T n ≤ . . . ≤ T ≤ TM .
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10. Radiative Transfer with Rayleigh Scattering in a Slab

In this section, we discuss the same problem as in the previous section, with the isotropic
scattering replaced by the Rayleigh phase function. In the case of slab symmetry, the
Rayleigh phase function is

p(µ, µ′) = 3
16

(3− µ2) + 3
16

(3µ2 − 1)µ′2

(see section 11.2 in chapter I of [Cha50]). Observe that

p(µ, µ′) = 3
16

(3 + 3µ2µ′2 − µ2 − µ′2) ≥ 3
16
> 0 , (39)

while
1
2

∫ 1

−1

p(µ, µ′)dµ = 3
16

(6 + 3 · 2
3
µ′2 − 2

3
− 2µ′2) = 1 . (40)

Keeping (35) as the defining equation for T [I], the problem (36) becomes

(µ∂τ + κν)Iν(τ, µ) = 3
8
κνaν((3− µ2)Jν(τ) + (3µ2 − 1)Kν(τ))

+ κν(1− aν)Bν(T [J ](τ)) ,

Iν(0, µ) = Q+
ν (µ) , Iν(Z,−µ) = Q−ν (µ) , 0 < µ < 1 ,

(41)

with K = 1
2

∫ 1

−1
µ2Idµ, and one easily checks that (35) and (40) imply that

∂τ

∫ ∞
0

∫ 1

−1

µIν(τ, µ)dµdν = 0 .

Starting from I0
ν (τ, µ) = 0 and T 0(τ) = 0, one solves for In+1

(µ∂τ + κν)I
n+1
ν (τ, µ) = 3

8
κνaν((3− µ2)Jnν (τ) + (3µ2 − 1)Kn

ν (τ))

+ κν(1− aν)Bν(T
n(τ)) , T n := T [Jn]

In+1
ν (0, µ) = Q+

ν (µ) , In+1
ν (Z,−µ) = Q−ν (µ) , 0 < µ < 1 .

(42)

Since Bν is nondecreasing for each ν > 0, one easily checks with (39) that

0 = I0
ν ≤ I1

ν ≤ I2
ν ≤ . . . ≤ Inν ≤ In+1

ν ≤ . . .

0 =T 0≤ T 1≤T 2≤ . . . ≤ T n ≤ T n+1 ≤ . . .

Explicitly

In+1
ν (τ, µ) =e−

κντ
µ Q+

ν (µ)1µ>0 + e−
κν (Z−τ)
|µ| Q−ν (|µ|)1µ<0

+ 1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ

3
8
aν((3− µ2)Jnν (t) + (3µ2 − 1)Kn

ν (t))dt

+ 1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ

(1− aν)Bν(T
n(t))dt

+ 1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ|
3
8
aν((3− µ2)Jnν (t) + (3µ2 − 1)Kn

ν (t))dt

+ 1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ|(1− aν)Bν(T
n(t))dt .

(43)
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This scheme can be reduced to the following iteration to compute first Jν and µ̃2Iν as
follows:

Jn+1
ν (τ) =1

2

∫ 1

0

(
e−

κντ
µ Q+

ν (µ)1µ>0 + e−
κν (Z−τ)
|µ| Q−ν (|µ|)1µ<0

)
dµ

+ 3
16

∫ Z

0

E1(κν |τ − t|)κνaν(3Jnν (t)−Kn
ν (t))dt

+ 3
16

∫ Z

0

E3(κν |τ − t|)κνaν(3Kn
ν (t)− Jnν (t))dt

+ 1
2

∫ Z

0

E1(κν |τ − t|)κν(1− aν)Bν(T
n(t))dt ,

while

Kn+1
ν (τ) =1

2

∫ 1

0

(
e−

κντ
µ Q+

ν (µ)1µ>0 + e−
κν (Z−τ)
|µ| Q−ν (|µ|)1µ<0

)
µ2dµ

+ 3
16

∫ Z

0

E3(κν |τ − t|)κνaν(3Jnν (t)−Kn
ν (t))dt

+ 3
16

∫ Z

0

E5(κν |τ − t|)κνaν(3Kn
ν (t)− Jnν (t))dt

+ 1
2

∫ Z

0

E3(κν |τ − t|)κν(1− aν)Bν(T
n(t))dt ,

where we have denoted

En(X) :=

∫ ∞
1

e−Xy

yn
dy =

∫ ∞
X

e−z

zn
dz =

∫ 1

0

e−X/µµn−2dµ .

Once Jν and Kν are known, the right hand side of (41) is known, and Iν is obtained by
a simple quadrature formula.

Returning to (43), assume that

0 ≤ Q±ν ≤ Bν(TM) , 0 ≤ Inν ≤ Bν(TM) and 0 ≤ T n ≤ TM .
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Then

In+1
ν (τ, µ) ≤

(
e−

κντ
µ 1µ>0 + e−

κν (Z−τ)
|µ| 1µ<0

)
Bν(TM)

+ 1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ

3
8
aν((3− µ2)Bν(TM) + (µ2 − 1

3
)Bν(TM))dt

+ 1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ

(1− aν)Bν(TM)dt

+ 1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ|
3
8
aν((3− µ2)Bν(TM) + (µ2 − 1

3
)Bν(TM))dt

+ 1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ|(1− aν)Bν(TM)dt

=
(
e−

κντ
µ 1µ>0 + e−

κν (Z−τ)
|µ| 1µ<0

)
Bν(TM)

+ 1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ

(3
8
aν(3− 1

3
) + (1− aν))Bν(TM))dt

+ 1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ|(
3
8
aν(3− 1

3
) + (1− aν))Bν(TM))dt

=
(
e−

κντ
µ 1µ>0 + e−

κν (Z−τ)
|µ| 1µ<0

)
Bν(TM)

+Bν(TM)

(
1µ>0

∫ τ

0

e−
κν (τ−t)

µ κν
µ
dt+ 1µ<0

∫ Z

τ

e−
κν (t−τ)
|µ| κν

|µ|dt

)
=
(
e−

κντ
µ 1µ>0 + e−

κν (Z−τ)
|µ| 1µ<0

)
Bν(TM)

+Bν(TM)
(
1µ>0

(
1− e−

κντ
µ

)
+ 1µ<0

(
1− e−

κν (Z−τ)
|µ|

))
=Bν(TM) .

Besides
T n+1 = T [In+1] ≤ T [Bν(TM)] = TM

(using again that T 7→ Bν(T ) is increasing for each ν > 0 while κν(1 − aν) > 0 for all
ν > 0).

Summarizing, we have proved the following result.

Theorem 6. Assume that κν > 0 while 0 ≤ aν < 1 for all ν > 0. Let Q± satisfy

0 ≤ Q±ν (µ) ≤ Bν(TM) for all µ ∈ (−1, 1) and ν > 0 .

The iteration method (42) starting from I0
ν = 0 and T 0 = 0 defines a sequence of radiative

intensities Inν and temperatures T n converging pointwise to Iν and T = T [I] respectively,
which is a solution of (41).

The argument above is based on the monotonicity of the sequences Inν and T n, and does
not give any information on the convergence rate.
Finally, Theorem 5 holds verbatim for the problem (41). Here are the (slight) modifica-
tions to the proof due to the Rayleigh phase function.
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First, we slightly modify the argument concerning the term D2 as follows. In the case of
the Rayleigh phase function

D2 = 1
2

∫ ∞
0

κνaν

∫ 1

−1

(Iν − I ′ν)+(µ)dµdν

−1
2

∫ ∞
0

κνaν

∫ 1

−1

∫ 1

−1

p(µ, µ′)(Iν − J ′ν)(µ′)s+(Iν − I ′ν)(µ)dµ′dµdν .

Since p ≥ 0, one has

p(µ, µ′)(Iν − J ′ν)(µ′)s+(Iν − I ′ν)(µ) ≤ p(µ, µ′)(Iν − J ′ν)+(µ′)

so that

D2 ≥ 1
2

∫ ∞
0

κνaν

∫ 1

−1

(Iν − I ′ν)+(µ)dµdν

−1
2

∫ ∞
0

κνaν

∫ 1

−1

∫ 1

−1

p(µ, µ′)(Iν − J ′ν)+(µ′)dµ′dµdν = 0

since
1
2

∫ 1

−1

p(µ, µ′)dµ = 1 .

Therefore, following the proof of Theorem 5, we obtain in the same manner the following
conclusions

〈µ(Iν − Jν)+〉(τ) = 0 for a.e. τ ∈ (0, Z) ,

and
s+(Iν(τ, µ)− Jν(τ, µ)) = s+(T [I](τ)− T [J ](τ))

for a.e. (τ, µ, ν) ∈ (0, Z)× (−1, 1)× (0,∞) ,

while
(Iν − Jν)+(0,−µ) = (Iν − Jν)+(Z, µ) = 0 for a.e. µ ∈ (0, 1) .

Next we compute

∂τ

〈
µ2

κν
(Iν − Jν)+

〉
= −1

2

∫ ∞
0

aν

∫ 1

−1

µ(Iν − Jν)+(τ, µ)dµdν

+1
2

∫ ∞
0

aν

∫ 1

−1

µ

∫ 1

−1

p(µ, µ′)(Iν − Jν)+(τ, µ′)dµ′dν s+(T [I](τ)− T [J ](τ))

−〈(1− aν)µ((Iν − Jν)− (Bν(T [I])−Bν(T [J ]))s+(T [I]− T [J ])〉
= −〈aνµ(Iν − Jν)s+(T [I]− T [J ])〉 − 〈(1− aν)µ(Iν − Jν)s+(T [I]− T [J ])〉

= −〈µ(Iν − Jν)s+(T [I]− T [J ])〉 = −〈µ(Iν − Jν)+〉 = 0 ,

since ∫ 1

−1

µp(µ, µ′)dµ =

∫ 1

−1

µ(Bν(T [I])−Bν(T [J ]))dµ = 0 .

Finally we integrate in τ ∈ (0, Z), and conclude as in the previous section that

(Iν − Jν)+(0,−µ) = 0 and Q+
ν (µ) ≤ R+

ν (µ) for a.e. µ ∈ (0, 1)

=⇒
〈
µ2

κν
(Iν − Jν)+

〉
(τ) =

〈
µ2

κν
(Iν − Jν)+

〉
(0) = 0 .
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