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ABSTRACT
�is paper deals with the programmability of a swarm of bio-micro-
robots in order to display self-assembling behaviors into speci�c
shapes. We consider robots that are DNA-functionalized micro-
beads capable of sensing and expressing signals as well as self-
assembling. We describe an in vitro experimentation with a million
of micro-beads conditionally aggregating into clusters. Using a
realistic simulation, we then address the question of how to auto-
matically design the reaction networks that de�ne the micro-robots’
behavior, to self-assemble into a speci�c shape at a speci�c location.
We use bioNEAT, an instantiation of the famous NEAT algorithm
capable of handling chemical reaction networks, and CMA-ES to
optimize the behavior of each micro-bead. As in swarm robotics,
each micro-bead shares the same behavioral rules and the gen-
eral outcome depends on interactions between neighbors and with
the environment. Results obtained on four di�erent target func-
tions show that solutions optimized with evolutionary algorithms
display e�cient self-assembling behaviors, improving over pure
hand-designed networks provided by an expert a�er a week-long
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trials and errors search. In addition, we show that evolved solutions
are able to self-repair a�er damage, which is a critical property for
smart materials.
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1 INTRODUCTION
Swarm robotics considers large number of autonomous robots capa-
ble of achieving complex organization based solely on local interac-
tions. �ese robots are usually endowedwith limited sensing, acting
and communication capabilities, with the same decision making
1Corresponding author 1: naubertkato@is.ocha.ac.jp
2Corresponding author 2: nicolas.bredeche@upmc.fr
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rules being duplicated on each robot. Swarm robotics aim to achieve
complex behaviors through self-organization: decisions that occur
at the microscopic scale may have consequences observable at the
macroscopic scale.

We are interested in the process of self-assembly: the ability
for a swarm of robots to assemble into a speci�c shape through
self-organization principles [1–5]. In contrast to previous works
in swarm robotics, we consider robots at the microscopic scale.
Long-term applications for swarms of micro-robots capable of self-
assembling are numerous, such as building smart materials (manu-
facturing of micro-structures in a distributed fashion or building
a structure that is resilient with respect to damage or changing
environmental conditions) or developing new functionalities for
nanomedecine (space-�lling, encapsulation of a speci�c target ele-
ment, bio-sensing).

In this paper, we use a swarm of micro-beads of 1 � 10µm in
diameter. Each bead is functionalized by sticking bio-molecules
(single strands DNA) to the bead’s surface. �is enables sensing,
communication, and aggregation between micro-beads. Section 2
presents the full setup as well as an in vitro demonstration of approx.
one million of micro-beads self-assembling to form clusters in a
2-dimensional environment. One major advantage of such a setup
is that someone with the required expertise can engineer 20 � 100
millions of micro-beads per milliliter within minutes using easily
accessible chemical material, and let them run autonomously in a
closed chamber of a few squared centimeters containing a few µL
of solutions for hours.

However, designing the program that is to be sticked to each
micro-bead poses a major challenge as the dynamics of chemical
systems are highly non-linear. Single strands DNA interact with
one another in a fashion that makes it extremely di�cult, even for
an expert, to program simple tasks. We address this challenge in
simulation by using bioNEAT [6], an instantiation of the famous
NEAT algorithm [7] modi�ed to evolve chemical reaction networks
with positive and negative feedbacks between chemical species. We
show that bioNEAT is capable of �nding reaction networks that
are both non-intuitive and comparable in performance to reaction
networks designed by human experts, but in much shorter time.
We also show that both expert- and bioNEAT-designed solutions
bene�t greatly from additional automatic parameter tuning (using
CMA-ES [8]), improving both performance and resilience, i.e. the
ability to self-repair a�er damage.

�e paper is organized as follows. Section 2 presents the meth-
ods and includes two contributions: the description of, as far as we
know, the �rst in vitro experiment of a self-assembling swarm of
approx. one million micro-beads, and a simulator capable of cap-
turing the non-linear dynamics of such chemical systems, which
is used in the following Sections. Section 3 then presents the ex-
perimental protocol, including the four targets used for evaluating
self-assembly. Section 4 presents the results on performance, includ-
ing a comparison between evolved and expert-designed reaction
chemical networks, and an evaluation of the resilience of the micro-
robot swarm to damage (i.e. self-repair). Finally, Section 5 provides
a discussion with respect to both chemical and computational is-
sues.

Activation

Inhibition Degradation

+ +

+
∅
∅
∅

Figure 1: �e three modules of the PEN toolbox: activation,
where a signal strand attaches to a template, triggering the
enzymatic production of another signal strand; inhibition,
where a speci�c signal strand can prevent activity on a tar-
get template until release; and degradation, where all signal
strands in the systemare enzymatically destroyed over time.

2 METHODS
2.1 Molecular programming
Molecular programming [9] is the use of molecules (such as DNA,
RNA and/or proteins) to process information. �is paradigm relies
on chemical concentrations to represent data and chemical reactions
to transform data. In vitro demonstrations of molecular program-
ming are numerous: computing a square root [10], emulating neural
networks [11], assembling DNA nano-structures [12], encoding a
toggle-switch [13], implementing a 2-dimensional predator-prey
system [14], to cite a few.

In this paper, we use the PEN (Polymerase, Exonuclease, Nickase)
toolbox [15], a molecular programming approach relying on the
interaction between DNA molecules and enzymes to encode three
basic operations (or modules): activation, inhibition and degrada-
tion (cf. Fig. 1). Speci�cally, the PEN toolbox distinguish between
two types of DNA molecules: short (11 to 13 bases long) signal
strands and longer (22 to 25 bases long) template strands. Signal
strands can a�ach to complementary templates to produce (activa-
tion) other signal strand, or temporarily inhibit activity (inhibition).
Moreover, signal strands are continuously degraded by one of the
enzymes (degradation). Template strands are chemically protected
against degradation. As such, the concentration of signal strands
changes through time depending on their interactions with the
template strands.

PEN toolbox activation and inhibition modules can be combined
in an arbitrary fashion, forming a program. As an example, a simple
bistable system is shown in Fig. 2. A wide range of behaviors have
been implemented so far, either in vitro, such as an oscillator [15]
or a toggle switch [13] or in-silico, such as a two-bit counter [6] or
a simple controller for an abstract molecular robot [16].

Gines et al. have recently demonstrated that PEN toolbox tem-
plates could be easily a�ached to agarose micro-beads, thus localiz-
ing PEN toolbox programs, while signal could still be exchanged
through di�usion [17]. �is approach is comparable to having com-
municating agents at the micro-scale, and inspired the work in this
paper.

At the same time, other groups have shown that DNA strands are
strong enough to bind together colloids [18] or large structures like
oil-water emulsions [19]. Combining the PEN toolbox, the use of
micro-beads, and the fact that DNA strands can be used as physical
bond between larger objects, we have conducted additional in vitro
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Figure 2: Le�: graph representation of a bistable switch.
Nodes are signal strands, arrows represent activation
through template strands and bar-headed arrows represent
inhibition. For convenience, activating signals are repre-
sented in magenta and inhibiting signals in green. Right:
temporal evolution of concentration in awell-mixed system,
based on two di�erent initial conditions: low a (resp. b) con-
centration and high b (resp. a) concentration leads to a state
where b (resp. a) is expressed.

experiment to provide a proof-of-concept of self-assembly at the
microscopic scale.

We enrich the original design to add the possibility for beads
to self-assemble by using a speci�c signal strand and specially de-
signed strands also a�ached to the beads. �is results in extending
the PEN toolbox with an additional module: self-assembly. Fig. 3
illustrates the implementation of the self-assembly module: anchor-
ing strands (around 40 bases long) are a�ached to the micro-beads,
and micro-beads can anchor to one another through a signal strands
that bind together two anchoring strands.

Fig. 4 shows the results of an in vitro experiment of self-assembling
micro-beads. First, a batch of 1µm of micro-beads is placed in a
2-dimensional chamber �lled with a solution containing the tem-
plate strands that can produce the signal strands used for binding.
Template strands are initially inactive, but adding a speci�c trigger
(i.e. a signal strand) initiates the production of the signal strands
used for binding. As micro-beads randomly move around due to
Brownian motion, they a�ach to one another when close enough,
gradually forming clusters. Appendix A provides details for this
experiment.

�erefore, micro-beads can be seen as forming a robot swarm.
Each micro-bead is embodied in the environment and can both:

• sense its environment, through interaction between signal
strands from the environment and template strands on the
micro-bead;

• act, either by producing signal strands through its template
strands (which can be used to regulate the behavior of
neighboring micro-beads) or modulating its movement
by deciding to self-assemble. For the la�er, micro-beads
aggregates become heavier as the number of micro-beads
increases, therefore nullifying random motion. Similarly,
assembling may be canceled by breaking the bond between
micro-beads, thus reverting to random motion.

�e setup also includes other materials in the environment,
mostly enzymes and dNTPs (generic fuel for DNA production).
A typical in vitro experiment takes several hours (e.g. 11 hours
in [20] and [13]). Due to the limited length of the experiments, it is
safely assumed that those chemicals can be considered constant in
concentration over the time scale of the systems. �is hypothesis

Sepharose microbead
(agarose+streptavidin)

Communication
(DNA-based reaction-diffusion)

DNA with biotin modification

Biotin-streptavidin connection

Signal strand

Template strand

DNA-based self-assembly

Figure 3: Implementation of control and self-assembly with
micro-beads. DNA strands chemically bonded to a biotin
attach to beads through biotin-streptavidin interactions.
�ose DNA strands retain their activity as part of the PEN
toolbox, allowing signal sensing and expression, while spe-
cial anchoring strands can assemble beads.

Figure 4: In vitro experiment with beads in water (con-
trol, le�) or with signal activating the production of self-
assembly strand (right). When self-assembly strands are
produced in the environment, beads self-assemble in an un-
speci�c way. Experiment was run for 13 hours.

is realistic thanks to the slow denaturation process of enzymes and
the possibility to have a large excess of dNTPs.

Finally, monitoring of those systems relies on confocalmicroscopy
to (1) track �uorescent molecules a�ached to template strands,
which conditionally change light emission based on template acti-
vation and (2) see physical beads. By combining both sets of data,
it is possible to monitor both the state of the controller (template
activation) and of the robot (position).

2.2 Simulation
One major challenge when designing molecular programming sys-
tems (including PEN toolbox systems) is the non-linearity of the
chemical reaction response. A trial and error approach is thus nec-
essary, but unrealistic to perform directly in vitro due to the time
required for such experiments. As such, a reasonable solution is
to rely on simulation to �nd �rst good candidate solutions before
actual implementation.

Dynamics of PEN toolbox systems have been modeled by Aubert
et al. [6]. �eir approach relies on a domain level model for reac-
tions: complementary DNA strands are either completely double-
stranded or single-stranded, with no intermediate form, and with
enzymes performing their operations, in a single step. �e set of
possible reactions is thus strongly constrained and can then be
enumerated.
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Reactions are modeled through mass action kinetics, which
yields a system of ordinary di�erential equations. Solving those
equations then gives us the behavior of a system in a well–mixed en-
vironment. Reaction rates were obtained from experimental results
when available [13] or from the existing literature otherwise.

We extend this model to spatial, inhomogeneous environment,
by using a reaction-di�usion model. �is is achieved by adding a
di�usion term to the 0D reaction �uxes:

@[s]
@t

(x ,�, t) = rs (x ,�, t) + Ds · 4[s](x ,�, t) (1)

where s is a DNA strand from the system, rs the 0D �ux for s , Ds
the di�usion rate of s and 4[s] the local Laplacian of concentration.
We can then solve the system on a discretized grid.

We further enrich the model with micro-beads, considering both
motion and DNA functionalization.

Micro-beads move around following Brownian motion, which
simply results from interactions at work in a liquid solution at a
microscopic scale. �is is implemented by applying a Gaussian
noise to their position at each time step with mean 0 and variance
�

2 = 2D with

D =
kBT

6�d�water
(2)

where kB is the Boltzmann constant, T the temperature, d the
bead’s diameter and �water the viscosity of water. For aggregates
of N micro-beads, we consider the structure has N times the size
of a single micro-bead. Finally, we ignore collisions between micro-
beads, as it can be assumed that micro-beads can move above or
below each other.

With respect to functionalization, micro-beads are considered
to have a homogeneous concentration of template strands on their
surface, so that all the 2D surface covered by a micro-bead receive
an equal concentration of templates. Additionally, we ignore fabri-
cation defects and template leaks. We also consider that activation
and inhibition work with the same rates for both single and aggre-
gated micro-beads. While this is currently an open question, it is
not unreasonable if aggregates are loose enough (i.e. if anchoring
strands are long enough). Moreover, this assumption keeps the
model simple.

2.3 Automated design of reaction networks
Search space. In our setup, the challenge is to design a reaction

network that solve a given problem, i.e. to pick the right signal
strands (produced at the surface of beads and di�using in the envi-
ronment) and template strands (a�ached to the beads) to trigger
self-assembly at the right location. Moreover, we consider that all
beads have the same templates at the same concentrations, which
is akin to give the same program to all robots in a swarm.

�e search space thus spans (1) a graph structure: the types of
template strands on the beads, which will determine how signal
strands are regulating each other’s production; (2) the concentration
of each type of template strands; (3) the duplex stability of each
signal strand: the ratio of the hybridization rate over the separation
rate of the strand, which is a proxy for the physical properties of a
strand sequence.

Parameter Value
Target number of bioNEAT species 20

Population size 50
Individual re-evaluations 2
Maximum graph size 16
Mutation operator Probability
Parameter mutation 0.96
Add template strand 0.01

Remove template strand 0.01
Add signal species 0.01

Add inhibition species 0.01
Table 1: Parameters for bioNEAT.

BioNEAT. We rely on bioNEAT, an evolutionary algorithm based
on the famous NEAT (NeuroEvolution of Augmenting Topologies)
algorithm [7]. NEAT is designed to increase progressively the
complexity of neural networks while relying on species to pro-
tect solution diversity. BioNEAT works similarly, with di�erent
mutation operators to deal with PEN toolbox graphs rather than
neural networks. Global parameters for evolution are summarized
in Table 1.

When performing a mutation, we select and apply one of the
following mutation operators: mutating a parameter (signal species
stability or template strand concentration); adding/removing a tem-
plate strand; adding an activating signal species; adding an inhi-
bition species. �e last two operations di�er from NEAT and are
explained further.

Signal species are added in one of twoways, either (a) by spli�ing
an activation template, so that the structure A ! B becomes A !
C ! B (which is similar to NEAT), or (b) by adding a signal species
with an auto-catalytic template, as well as a template from that
species to a random signal species in the graph.

Inhibition species are added either (a) by adding an inhibition
species targeting an existing (non-inhibited) template and adding a
template that bind an arbitrarily chosen existing signal species to
the newly created species, or (b) by adding an inhibited template,
i.e. performing both a template addition operation as de�ned above
and applying (a) to that template.

Table 1 gives the probabilities for each variation to be applied.
A detailed description of the algorithm can be found in [21, 22].

3 EXPERIMENTAL SETTINGS
3.1 Target objectives for self-assembly
We de�ne four targets for self-assembly, named bo�om-line, right-
line, top-line and center-line. Fig. 5 (right) shows for each target a
white area where micro-beads should self-assemble, starting from
initial random positions. In order to enable localization, we place
two �xed sources each producing a particular type of signal strand
(see Fig. 5 (le�)). �rough di�usion, these two sources produce
gradients throughout the environment, which can in turn be used by
micro-beads to trigger self-assembly. Due to the isotropic di�usion
of gradients, self-assembling into straight pa�erns is not straight-
forward.
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bottom-line right-line top-line center-line

Figure 5: Le�: the experimental setup, as seen from above.
Two gradient sources are shown in red and green, respec-
tively. Beads are shown in blue. Gradients di�use isotrop-
ically throughout the environment. Right: targets for self-
assembly, as seen from above. Micro-beads should aggregate
in the white area.

Targets are meant to pose increasing challenges. �e bo�om-
line target roughly corresponds to a non-linear repulsion from
gradients. �e right-line and top-line targets correspond to both
non-linear a�raction and repulsion from either a single or both gra-
dient source(s). Finally, the center-line target requires a non-linear
comparison of the concentration of gradient signals to establish
two thresholds for self-assembly (positions of right and le� edges).

Table 2 lists parameters and values for our experimental setup. In
order to speed up evaluation time, we consider a small swarm of 500
micro-beads of 5µm in diameter within a chamber of 1mm ⇤ 1mm,
ie. preserving concentration within the same order of magnitude
w.r.t. in vitro experiments.

3.2 Fitness function
In order to evaluate self-assembly with respect to target shapes,
we �rst discretize the environment into a N ⇥ N matrix of cells
(N = 160 in the following). �en we de�ne the following �tness
function, to compute a match-nomatch score:

f =
’

(x,�)2tar�et
r ⇥B(x ,�)�

’
(x,�)<tar�et

p⇤ea⇤d (x,�)⇥B(x ,�) (3)

where r is the reward, p the base penalty, B(x ,�) the indicator
function of presence of a set of aggregated micro-beads at posi-
tion (x ,�), d the distance between a cell that is not within the target
area and the closest cell within the target area, and a a scaling
factor.

�e �rst term of the equation provides a reward based on the
number of cells within the target area that contains micro-beads
producing anchoring strands. �e second term is a penalization
term that is based on the number of cells producing anchoring
strands that are located outside the target area, with penalization
increasing with distance to the target area.

In order to reduce the number of iterations for evaluating a can-
didate solution, we consider the production of anchoring strands (as
a proxy for self-assembling) to estimate the position of aggregated
micro-beads. In other words, B(x ,�) is equal to 1.0 if the concen-
tration of anchoring strands in (x ,�) is above a given threshold (ie.
5 nanoMolar), and 0 otherwise. Considering the production of an-
choring strands makes it possible to avoid waiting for micro-beads
to actually self-assemble, which can be quite slow with Brownian
motion.

In addition to the �tness score, we provide a qualitative estimate
by se�ing a threshold for discriminating between successful and
failed a�empts. �is criterion for successful self-assembly is de�ned

Simulation parameters
Arena size 1mm ⇥ 1mm
Beads 500

Bead size (aggregation) 50 µm
Bead size (Brownian motion) 5 µm

Temperature 43�C
Grid size 160 ⇥ 160

Time discretization 0.1 min per step
Duration of an evaluation 1000 steps (i.e. 100 min)

Fitness parameters
r (reward) 1.0
p (penalty) 0.1
a (scaling) 0.1

Table 2: Parameters for simulation and �tness evaluation.

by considering solutions covering more than 50% of the target area,
with more signal expressed in the target area than outside.

4 RESULTS
4.1 Optimization
For each target, we perform 12 replicates of 2500 evaluations for the
right-line, top-line and bo�om-line targets and 7500 for the more
challenging center-line target. To reduce evaluation noise, each
evaluation comprises two independent simulations, with the �nal
�tness of the individual being the worse of the two. Each replicate
takes less than a day of computation time using 24-core computer
running Ubuntu 14.04.

Fig. 6 shows the results for each of the target. Each graph uses
boxplots to display the best �tnesses from each of the 12 replicates
throughout evolution. It can be observed that performance of the
best individual increases over time, with the supposedly easier
targets displaying higher �tness values. However, minimal �tness
values are always very close to zero (except for the right-line target),
implying that some runs struggle to bootstrap evolution.

Fig. 7 shows the evaluation of the best solutions of the last gen-
eration of each replicate. For clarity, only the anchoring signal is
shown, that is: the position were micro-beads are self-assembling
into larger clusters. In this �gure, runs that produce successful
self-assembly (cf. Section 3.2) are highlighted in green. Success-
ful self-assembly is as follows: bo�om-line: 6/12, right-line: 5/12,
top-line: 4/12, and center-line: 2/12 (with two additional candidate
solutions failing very short from the threshold). As expected, the
more di�cult the target, the lower the success rate.

Network complexity increases as target are more challenging,
with the best solutions for each setup featuring 4 (bo�om-line), 6
(right-line), 8 (top-line) and 15 nodes (center-line). It should also
be noted that in all but the most simple case, evolved candidate
solutions are not symmetric, evenwhen the target is, and sometimes
feature nodes that could easily be removed (see next sub-Section).
we can also note some counter-intuitive or non-trivial features
such as using incoherent feed-forward3 instead of inhibition. While
the simplest networks may be interpreted by an expert, candidate
solutions for the center-line target are more di�cult to analyze as

3I.e. a signal species both activates and inhibits the production of an output.
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Figure 6: Performance results for each target. Each graph
displays results obtained by picking the best individuals of
each generation of the N = 12 independent runs. A value of
1.0 represents the maximum �tness value.

bottom-line right-line

top-line center-line

Figure 7: Best solutions of the last generation of each run for
each target. Red indicates production of the self-assembly
signal. Green borders highlight successful solutions (see Sec-
tion 3.2).

bioNEAT bioNEAT
(CMAES)

Figure 8: Best solution obtained by evolution, with addi-
tional parameter tuning done by CMA-ES. Le�: chemical re-
action network; top-right: chemical concentrations; bottom-
right: production of anchoring signals.

they involve complex interactions between aggregated and non-
aggregated beads, which are observed from the multiple signals
produced throughout the environment.

4.2 Automation vs. expert knowledge
Prior to running our evolutionary algorithm, a control experiment
was conducted. A human expert4 in PEN toolbox had to design
from scratch a chemical reaction network for the center-line target.
While this was originally motivated by addressing the question of
whether the center-line could be achieved or not, this ended up
providing a reference value to evaluate evolved candidate solutions.

A�empts were done over a full week, with hundreds of trial
and errors, each trial requiring simulation (from a few seconds to
several minutes). In addition, we used the state-of-the-art CMA-ES
algorithm [8] to automatically tune parameters over 4000 evalua-
tions starting from the chemical reaction network obtained from
the expert. Similarly, we used CMA-ES to tune the parameters of
the solution previously obtained by bioNEAT for the center-line
target. As a result, we get four di�erent methods each de�ned by a
speci�c design method, and respectively termed bioNEAT (see pre-
vious sub-Section), expert, bioNEAT+CMAES and expert+CMAES.
Results are shown in Fig. 9 and 8.

�e bioNEAT- and expert-designed solutions yield similar results,
but with a statistically signi�cant advantage for the la�er (0.41±0.09
vs. 0.47 ± 0.10 over 100 evaluations, and p ⌧ 0.05 with Mann-
Whitney U test). �en, both bene�ts from additional parameter-
tuning using CMAES, with bioNEAT+CMAES jumping to a �tness
value of 0.81 ± 0.05 and expert+CMAES topping at 0.94 ± 0.02, this
time leading with a statistically signi�cant advantage (p ⌧ 0.05).

�e design from the expert can be interpreted rather straight-
forwardly: the system performs a comparison of gradient signal
concentrations; if the two concentration aren’t close enough, pro-
duction of the anchoring signal is inhibited. As this design partly
fails to capture the in�uence of the distance to the gradient sources,
the production of self-assembly signals widen as microbeads are
farther away from the sources.

By comparison, the evolved system gains in compactness as un-
necessary species can be easily spo�ed and trimmed, with only
4NHK, the �rst author of this paper, who acquired both extensive in silico and in vitro
experience with the PEN toolbox during the past 6 years.
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Figure 9: Best solution designed by the expert (both struc-
ture and parameter values). Le�: chemical reaction net-
work; top-right: chemical concentrations; bottom-right:
production of anchoring signals.

10 species remaining without changing the dynamics (not shown
here), versus 14 for the expert design, which we failed to compress
further. It is indeed challenging for any human expert to deal with
(1) non-linear behaviors due to chemical saturations, (2) structures
with (many) feedback loops and (3) hidden interactions, such as the
in�uence of the distance between micro-beads on local template
concentrations. As for the evolved solutions, trading understand-
ability for compactness is actually a sound option as smaller net-
works are less likely to give way to undesired interactions when
tested in vitro.

4.3 Self-repairing from induced damages
A desired properties of self-assembled robotic system is the ability
to recover from damage or, in other words, to self-repair. Given
that control is distributed over the micro-beads, we may expect a
similar feature in our system.

�e protocol is as follows: the system runs during 1000 (resp.
4000) timesteps for the bo�om-line, right-line and top-line target
setups (resp. center-line setup), which corresponds to the standard
development time used previously. �en, damage is induced by
removing all micro-beads within an area corresponding to 1/5th
of the surface at the center of the optimal target. �is is followed
by a recovery time of 30000 timesteps (i.e. approx. 3000 minutes)
a�er which we stop the simulation. Results are shown in Table 3,
compiled from 10 trials per candidate solution. In addition, Fig. 10
shows typical examples of the self-repairing process for the center-
line target.

From target to target, the e�ciency of the self-repair processes
vary greatly, from e�cient to detrimental when compared to the
damaged starting point, and never succeed to match the origi-
nal scores before damage. Zooming on the center-line target, the
expert-designed solution yield catastrophic self-repairing (p ⌧ 0.05,
Wilcoxon signed-rank test), while the bioNEAT-designed solution
is able to partly recover from damage (p ⌧ 0.05). �is is quite
di�erent when additional parameter tuning is involved: both the
expert+CMAES and the bioNEAT+CMAES versions show recovery
from damage (p ⌧ 0.05 in both cases).

Looking closer at the candidate solutions, it is possible to classify
solutions as featuring stable or non-stable anchoring strands, which
have an impact on the ability to recover from damage. On the one

target before damaged recovery
bo�om-line 0.92±0.02 0.71±0.02 0.78±0.05
right-line 0.85±0.02 0.64±0.02 0.70±0.04
top-line 0.53±0.06 0.43±0.05 0.40±0.06
center-line:

bioNEAT 0.41±0.09 0.14±0.09 0.18±0.06
expert 0.47±0.10 0.28±0.10 0.10±0.10
bioNEAT+CMAES 0.81±0.05 0.53±0.05 0.63±0.09
expert+CMAES 0.94±0.02 0.75±0.01 0.89±0.03

Table 3: Results for self-repair. For each targets, the best
candidate solution is evaluation N = 100 times, by evaluat-
ing its �tness value before damage, a�er damage, and a�er
recovery.
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Figure 10: Typical examples of self-repairing systems for
the center-line target (each line correspond to a particular
method). Le�: self-assembled swarm of micro-beads before
damage; Center: just a�er damage; Right: a�er recovery
(30000 time steps later).

hand, stable strands display very li�le self-repair capability but
also do not deform much over time. On the other hand, unstable
strands continuously switch from self-assembled to solitary states,
and this may help to perform self-repair (by spreading over the
damage area), but are subject to variation over time even without
introducing damage (ie. deformation). Unstable strands are due to
low thermodynamical stability of their duplexed con�guration (i.e.
the binding between strands). �is is illustrated by the example
shown for the center-line target obtained with bioNEAT only: the
�nal structure displays a similar �tness a�er self-repair, but its
global shape is not similar as self-assembling continue in the upper
part. A similar balance between stability and self-repair has been
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analyzed in self-healing polymeric materials (e.g. see the review
in [23]).

It remains an open question as to why some candidate solutions
feature unstable anchoring strands, or stable ones. Also, it is possi-
ble that enforcing self-assembly to come to a halt may help with
both stability and self-repair, as it was previously noted for other
developmental systems [24].

5 DISCUSSION AND CONCLUSION
In this paper, we started with describing the �rst in vitro demonstra-
tion of self-assembly using a swarm of micro-robots composed of
one million DNA-functionalized micro-beads. �en, we described
and validated (using simulation) a method for the automated de-
sign of self-assembling behaviors for a microscopic robot swarm
that combines a realistic simulator and either the bioNEAT algo-
rithm (to optimize the topology of chemical reaction networks) or
CMA-ES (to optimize parameters), or both at once. We showed that
bioNEAT is able to �nd reaction networks close in performance to
expert-designed solutions, but in shorter time and with be�er com-
pacity. We also showed that CMA-ES very signi�cantly improves
both bioNEAT- and expert-designed reaction networks. Finally, we
showed promising results w.r.t self-repairing capabilities.

We are le� with the question of how realistic the chemistry sim-
ulated in this work is. We simulate micro-beads of 5µm in diameter,
which is in-between large micro-beads capable of self-regulation
but which are not subject to Brownian motion due to their size [17],
and smaller micro-beads which may move but not self-regulate.
One possible solution would be to use large micro-beads (> 10µm)
and emulate Brownian motion with vibration motors a�ached to
the chamber. While this approach remains technically challenging,
it is far from unrealistic. However, the question remains open as
to the interaction between induced-vibration and localization gra-
dients. Another solution is to use small micro-beads (1µm) and to
make do with the lack of self-regulation, which in our case may
not be a problem as long as self-regulation is not used.

Another open question is whether self-assembling kills the pro-
duction of signal. Clusters of beads may be too tight for enzymes to
properly interact with templates, meaning that aggregates would
be functionally limited. One possible solution is to use porous
spheres to maintain di�usion throughout aggregates of beads, but
this remains to be tried in vitro. �at said, it is also not clear that
such a limitation would be an issue as the production of anchoring
signal is necessary at the frontiers of aggregates, not within.
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ANNEX: IN VITRO EXPERIMENT (METHODS)
1µm beads prepared with 100 nM aggregation strands were incubated at 43 �C in glass
capillaries in a bu�er of 20 mM Tris-HCl, 10 mM (NH4)2SO4, 10 mM KCl, 50 mM NaCl,

8 mM MgSO4, 10 µM each dNTP, 1 µM dUTP, 1% DTT, 1x EvaGreen intercalating dye,
2.5% BSA, 4% Nb BSMI nicking enzyme, 0.03% Bst Warmstart polymerase, 0.0085%
�RecJ exonuclease, 100 nM streptavidin, 0.4% SSB and 30 nM template strand producing
the self-assembly strand. A�er the glass capillaries were �lled, the systemwas triggered
either with water (control) or signal strand activating the template. Additional details
on preparing PEN toolbox systems can be found in [25]. �e system was observed
under a confocal microscope, looking both at visible light and green �uorescence (from
Evagreen dye).
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