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Abstract. Animal and robot social interactions are interesting both for
ethological studies and robotics. On the one hand, the robots can be
tools and models to analyse animal collective behaviours, on the other
hand the robots and their artificial intelligence are directly confronted
and compared to the natural animal collective intelligence. The first step
is to design robots and their behavioural controllers that are capable of
socially interact with animals. Designing such behavioural bio-mimetic
controllers remains an important challenge as they have to reproduce
the animal behaviours and have to be calibrated on experimental data.
Most animal collective behavioural models are designed by modellers
based on experimental data. This process is long and costly because it
is difficult to identify the relevant behavioural features that are then
used as a priori knowledge in model building. Here, we want to model
the fish individual and collective behaviours in order to develop robot
controllers. We explore the use of optimised black-box models based on
artificial neural networks (ANN) to model fish behaviours. While the
ANN may not be biomimetic but rather bio-inspired, they can be used
to link perception to motor responses. These models are designed to
be implementable as robot controllers to form mixed-groups of fish and
robots, using few a priori knowledge of the fish behaviours. We present
a methodology with multilayer perceptron or echo state networks that
are optimised through evolutionary algorithms to model accurately the
fish individual and collective behaviours in a bounded rectangular arena.
We assess the biomimetism of the generated models and compare them
to the fish experimental behaviours.

Keywords: collective behaviour, neural networks, echo state network,
multi-objective neuro-evolution, bio-hybrid systems, biomimetic, robot,
zebrafish, fish

1 Introduction

Autonomous, biomimetic robots can serve as tools in animal behavioural studies.
Robots are used in ethology and behavioural studies to untangle the multimodal
modes of interactions and communication between animals [23]. When they are



socially integrated in a group of animals, they are capable of sending calibrated
stimuli to test the animal responses in a social context [17]. Moreover, animal and
autonomous robot interactions represent an interesting challenge for robotics.
Confronting robots to animals is a difficult task because specific behavioural
models have to be designed and the robots have to be socially accepted by the
animals. The robots have to engage in social behaviour and convince somehow
the animal that they can be social companions. In this context, the capabili-
ties of the robots and their intelligence are put in harsh conditions and often
demonstrate the huge gap that still exists between autonomous robots and an-
imals not only considering motion and coping with the environment but also
in terms of intelligence. It is a direct comparison of artificial and natural col-
lective intelligence. Moreover, the design of such social robots is challenging as
it involves both a luring capability including appropriate robot behaviours, and
the social acceptation of the robots by the animals. We have shown that the
social integration of robots into groups of fish can be improved by refining the
behavioural models used to build their controllers [8]. The models have also to
be calibrated to replicate accurately the animal collective behaviours in complex
environments [8].

Research on animal and robot interactions need also bio-mimetic formal mod-
els as behavioural controllers of the robots if the robots have to behave as con-
geners [3, 2]. Robots controllers have to deal with a whole range of behaviours to
allow them to take into account not only the other individuals but also the envi-
ronment and in particular the walls [8, 7]. However, most of biological collective
behaviour models deal only with one sub-part at a time of fish behaviours in un-
bounded environments. Controllers based on neural networks, such as multilayer
perceptron (MLP) [22] or echo state networks (ESN) [20] have the advantage to
be easier to implement and could deal with a larger range of events.

Objectives

We aim at building models that generate accurately zebrafish trajectories of one
individual within a small group of 5 agents. The trajectories are the result of so-
cial interactions in a bounded environment. Zebrafish are a classic animal model
in the research fields of genetics and neurosciences of individual and collective
behaviours. Building models that correctly reproduce the individual trajectories
of fish within a group is still an open question [18]. We explore MLP and ESN
models, optimised by evolutionary computation, to generate individual trajec-
tories. MLP and ESN are black-box models that need few a priori information
provided by the modeller. They are optimised on the experimental data and as
such represent a model of the complex experimental collective trajectories. How-
ever, they are difficult to calibrate on the zebrafish experimental data due to the
complexity of the fish trajectories. Here, we consider the design and calibration
by evolutionary computation of neural network models, MLP and ESN, that
can become robot controllers. We test two evolutionary optimisation methods,
CMA-ES [1] and NSGA-III [33] and show that the latter gives better results.



We show that such MLP and ESN behavioural models could be useful in ani-
mal robot interactions and could make the robots accepted by the animals by
reproducing their behaviours and trajectories as in [8].

2 Materials and Methods

2.1 Experimental set-up

We use the same experimental procedure, fish handling, and set-up as in [6,
2, 28, 8, 10, 4]. The experimental arena is a square white plexiglass aquarium of
1000× 1000× 100 mm. An overhead camera captures frames at 15 FPS, with a
500×500px resolution, that are then tracked to find the fish positions. We use 10
groups of 5 adults wild-type AB zebrafish (Danio rerio) in 10 trials lasting each
one for 30-minutes as in [6, 2, 28, 8, 10, 4]. The experiments performed in this
study were conducted under the authorisation of the Buffon Ethical Committee
(registered to the French National Ethical Committee for Animal Experiments
#40) after submission to the French state ethical board for animal experiments.
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Fig. 1: Methodology workflow. An evolutionary algorithm is used to evolve the
weight of a MLP (1 hidden layer, 100 neurons) or an ESN (100 reservoir neurons)
neural networks that serves as the controller of a simulated robot interacting with
4 fish described by the experimental data. Only the connections represented
by dotted arrows are evolved (for MLP: all connections; for ESN: connections
from inputs to reservoir, from reservoir to outputs and from outputs to outputs
and to reservoir). The fitness function is computed through data-analysis of
these simulations and represent the biomimetism metric of the simulated robot
behaviour compared to the behaviour exhibited by real fish in experiments. Two
evolutionary algorithms are tested: CMA-ES (mono-objective) and NSGA-III
(multi-objective).



2.2 Artificial neural network model

Black-box models, like artificial neural networks (ANN), can be used to model
phenomena with few a priori information. Although they are not used yet to
model fish collective behaviours based on experimental data, here we show that
they are relevant to model zebrafish collective behaviour. We propose a method-
ology (Fig. 1) where either a multilayer perceptron (MLP) [22] artificial neural
network, or an echo state network (ESN) [20], is calibrated through the use of
evolutionary algorithms to model the behaviour of a simulated fish in a group
of 5 individuals. The 4 other individuals are described by the experimental data
obtained with 10 different groups of 5 fish for trials lasting 30 minutes.

MLP are a type of feedforward artificial neural networks that are very pop-
ular in artificial intelligence to solve a large variety of real-world problems [25].
Their capability to universally approximate functions [11] makes them suitable
to model control and robotic problems [25]. We consider MLP with only one
hidden layer of 100 neurons (using a hyperbolic tangent function as activation
function).

ESN are recurrent neural networks often used to model temporal processes,
like time-series, or robot control tasks [26]. They are sufficiently expressive to
model complex non-linear temporal problems, that non-recurrent MLP cannot
model.

For the considered focal agent, the neural network model takes the following
parameters as input: (i) the direction vector (angle and distance) from the focal
agent towards each other agent; (ii) the angular distance between the focal agent
direction and each other agent direction (alignment measure); (iii) the direction
vector (angle and distance) from the focal agent towards the nearest wall; (iv)
the instant linear speed of the focal agent at the current time-step, and at the
previous time-step; (v) the instant angular speed of the focal agent at the current
time-step, and at the previous time-step. This set of inputs is typically used in
multi-agent modelling of animal collective behaviour [13, 30]. As a first step, we
consider that it is sufficient to model fish behaviour with neural networks.

The neural network has two outputs corresponding to the change in linear
and angular speeds to apply from the current time-step to the next time-step.
Here, we limit our approach to modelling fish trajectories resulting from social
interactions in a homogeneous environment but bounded by walls. Very few
models of fish collective behaviours take into account the presence of walls [9, 5].

2.3 Data analysis

For each trial, e, and simulations, we compute several behavioural metrics using
the tracked positions of agents: (i) the distribution of inter-individual distances
between agents (De); (ii) the distributions of instant linear speeds (Le); (iii) the
distributions of instant angular speeds (Ae); (iv) the distribution of polarisation
of the agents in the group (Pe) and (v) the distribution of distances of agents
to their nearest wall (We). The polarisation of an agent group measures how
aligned the agents in a group are, and is defined as the absolute value of the



mean agent heading: P = 1
N

∣∣∑N
i=1 ui

∣∣ where ui is the unit direction of agent i
and N = 5 is the number of agents [32].

We define a similarity measure (ranging from 0.0 to 1.0) to measure the
biomimetism of the simulated robot behaviour by comparing the behaviour of
the group of agents in simulations where the robot is present (experiment er: four
fish and one robot) to the behaviour of the experimental fish groups (experiment
ec: five fish):

S(er, ec) = 5
√

I(Der , Dec)I(Ler ,Wec)I(Aer , Oec)I(Per , Tec)I(Wer , Tec) (1)

The function I(X,Y ) is defined as such: I(X,Y ) = 1−H(X,Y ). The H(X,Y )
function is the Hellinger distance between two histograms [14]. It is defined as:

H(X,Y ) = 1√
2

√∑d
i=1(
√
Xi −

√
Yi)2 where Xi and Yi are the bin frequencies.

This score measures the social acceptation of the robot by the fish, as defined
in [8, 7]. Compared to the similarity measure defined in these articles, we added
a measure of the polarisation of the agents. This was motivated by the tendency
of our evolved neural models, without a polarisation factor, to generate agents
with unnatural looping behaviour to catch up with the group.

2.4 Optimisation

We calibrate the ANN models presented here to match as close as possible the
behaviour of one fish in a group of 5 individuals in 30-minute simulations (at
15 time-steps per seconds, i.e. 27000 steps per simulation). This is achieved by
optimising the connection weights of the ANN through evolutionary computation
that iteratively perform global optimisation (inspired by biological evolution) on
a defined fitness function so as to find its maxima [27, 21].

We consider two optimisation methods (as in [7]), for MLP and ESN net-
works. In the Sim-MonoObj-MLP case, we use the CMA-ES [1] mono-objective
evolutionary algorithm to optimise an MLP, with the task of maximising the
S(e1, e2) function. In the Sim-MultiObj-MLP and Sim-MultiObj-ESN cases,
we use the NSGA-III [33] multi-objective algorithm with three objectives to
maximise. The first objective is a performance objective corresponding to the
S(e1, e2) function. We also consider two other objectives used to guide the evo-
lutionary process: one that promotes genotypic diversity [24] (defined by the
mean euclidean distance of the genome of an individual to the genomes of the
other individuals of the current population), the other encouraging behavioural
diversity (defined by the euclidean distance between the De, Le, Ae, Pe and
We scores of an individual). The NSGA-III algorithm was used with a 0.80%
probability of crossovers and a 0.20% probability of mutations (we also tested
this algorithm with only mutations and obtained similar results). The NSGA-
III algorithm [33] is considered instead of the NSGA-II algorithm [12] employed
in [7] because it is known to converge faster than NSGA-II on problems with
more than two objectives [19].



In both methods, we use populations of 60 individuals and 300 generations.
Each case is repeated in 10 different trials. We use a NSGA-III implementation
based on the DEAP python library [16].
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Fig. 2: Similarity scores between the behaviour of the experimental fish groups
(control) and the behaviour of the best-performing simulated individuals of the
MLP models optimised by CMA-ES or NSGA-III. Results are obtained over 10
different trials (experiments for fish-only groups, and simulations for NN mod-
els). We consider five behavioural features to characterise exhibited behaviours.
Inter-individual distances corresponds to the similarity in distribution of
inter-individual distances between all agents and measures the capabilities of the
agents to aggregate. Linear and Angular speeds distributions correspond
to the distributions of linear and angular speeds of the agents. Polarisation
measures how aligned the agents are in the group. Distances to nearest wall
corresponds to the similarity in distribution of agent distance to their nearest
wall, and assess their capability to follow the walls. The Biomimetic score
corresponds to the geometric mean of the other scores.

3 Results

We analyse the behaviour of one simulated robot in a group of 4 fish. The
robots are driven by ANN (either MLP or ESN) evolved with CMA-ES (Sim-
MonoObj-MLP case) or with NSGA-III (Sim-MultiObj-MLP and Sim-
MultiObj-ESN cases) and compare it to the behaviour of fish-only groups
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Fig. 3: Comparison between 30-minutes trials involving 5 fish (control, biological
data) and simulations involving 4 fish and 1 robot, over 10 trials and across 5
behavioural features: inter-individual distances (A), linear (B) and angular (C)
speeds distributions, polarisation (D), and distances to nearest wall (E).



(Control case). We only consider the best-evolved ANN controllers. In the sim-
ulations, the simulated robot does not influence the fish because the fish are
described by their experimental data that is replayed.

Examples of agent trajectories obtained in the three tested cases are found
in Fig. 4A. In the Sim-MonoObj-MLP and Sim-MultiObj-* cases, they
correspond to the trajectory of the simulated robot agent. In both case, we
can see that the robot follow the walls like the fish, and are often part of the
fish group as natural fish do. However, the robot trajectories can incorporate
patterns not found in the fish trajectories. For example, small circular loop are
done when the robot performs an U-turn to catch up with the fish group. This
is particularly present in the Sim-MonoObj-MLP case, and seldom appear in
the Sim-MultiObj-* cases.

Control Sim-MonoObj-MLP Sim-MultiObj-MLP Sim-MultiObj-ESN

A

B

Fig. 4: Agent trajectories observed after 30-minute trials in a square (1m) aquar-
ium, for the 4 considered cases: Control reference experimental fish data ob-
tained as in [9, 28], Sim-MonoObj-MLP MLP optimised by CMA-ES, Sim-
MultiObj-MLP MLP optimised by NSGA-III, Sim-MultiObj-ESN ESN op-
timised by NSGA-III. A Examples of an individual trajectory of one agent among
the 5 making the group (fish or simulated robot) during 1-minute out of a 30-
minute trial. B Presence probability density of agents in the arena.

We compute the presence probability density of agents in the arena (Fig. 4B):
it shows that the robot tend to follow the walls as the fish do naturally.

For the three tested cases, we compute the statistics presented in Sec. 2.3
(Fig. 3). The corresponding similarity scores are shown in Fig. 2. The results of
the Control case shows sustained aggregative and wall-following behaviours of
the fish group. Fish also seldom pass through the centre of the arena, possibly in
small short-lived sub-groups. There is group behavioural variability, especially
on aggregative tendencies (measured by inter-individual distances), and wall-



following behaviour (measured by the distance to the nearest wall), because
each one of the 10 groups is composed of different fish i.e. 50 fish in total.

The similarity scores of the Sim-MultiObj-* cases are often within the
variance domain of the Control case, except for the inter-individual score. It
suggests that groups incorporating the robot driven by an MLP evolved by
NSGA-III exhibit relatively similar dynamics as a fish-only group, at least ac-
cording to our proposed measures. However, it is still perfectible: the robot is
sometimes at the tail of the group, possibly because of gap created between the
robot and the fish group by small trajectories errors (e.g. small loops shown in
robot trajectories in Fig. 4A).

The Sim-MonoObj-MLP case sacrifices biomimetism to focus mainly on
group-following behaviour: this translated into a higher inter-individual score
than in the Sim-MultiObj-* cases, and robot tend to follow closely the fish
group. With Sim-MonoObj-MLP, the robot is going faster than the fish,
and will fastly go back towards the centroid of the group if it is too far ahead
of the group: this explains the large presence of loops in Fig. 4A. The Sim-
MonoObj-MLP does not take into account behavioural diversity like the Sim-
MultiObj-*, but focus on the one that is easier to find (namely the group-
following behaviour) and stays stuck in this local optimum.

There are few differences between the results of the Sim-MultiObj-MLP
and the Sim-MultiObj-ESN cases, the latter showing often slightly lower
scores than the former. However, the Sim-MultiObj-ESN displays a large vari-
ability of inter-individual scores, which could suggest that its expressivity could
be sufficient to model agents with more biomimetic behaviours if the correct
connection weights were found by the optimiser.

4 Discussion and Conclusion

We evolved artificial neural networks (ANN) to model the behaviour of a sin-
gle fish in a group of 5 individuals. This ANN controller was used to drive the
behaviour of a robot agent in simulations to integrate the group of fish by ex-
hibiting biomimetic behavioural capabilities. Our methodology is similar to the
calibration methodology developed in [7], but employs artificial neural networks
instead of an expert-designed behavioural model. Artificial neural networks are
black-box models that require few a-priori information about the target tasks.

We design a biomimetism score from behavioural measures to assess the
biomimetism of robot behaviour. In particular, we measure the aggregative ten-
dencies of the agents (inter-individual distances), their disposition to follow walls,
to be aligned with the rest of the group (polarisation), and their distribution of
linear and angular speeds.

However, finding ANN displaying behaviours of appropriate levels of biomimetism
is a challenging issue, as fish behaviour is inherently multi-level (tail-beats as mo-
tor response vs individual trajectories vs collective dynamics), multi-modal (sev-
eral kinds of behavioural patterns, and input/output sources), context-dependent
(different behaviours depending on the spatial position and proximity to other



agents) and stochastic (leading to individual and collectives choices and action
selection) [9, 29]. More specifically, fish dynamics involve trade-offs between so-
cial tendencies (aggregation, group formation), and response to the environment
(wall-following, zone occupation); they also follow distinct movement patterns
that allow them to move in a polarised group and react collectively to environ-
mental and social cues.

We show that this artificial neural models can be optimised by using evo-
lutionary algorithms, using the biomimetism score of robot behaviour as a fit-
ness function. The best-performing evolved ANN controllers show competitive
biomimetism scores compared to fish group behavioural variability. We demon-
strate that taking into account genotypic and behavioural diversity in the optimi-
sation process (through the use of the global multi-objective optimiser NSGA-
III) improve the biomimetic scores of the evolved best-performing controllers.
The ANN models evolved through mono-objective optimisation tend to focus
more on evolving a group-following behaviour rather than a biomimetic agent.

Our approach is still perfectible, in particular, we only evolve the behaviour
of a single agent in a group, rather than all agents of the group. This choice
was motivated by the large increase in difficulty in evolving ANN models for
the entire group, which would also involve additional behavioural trade-offs: e.g.
individual free-will and autonomous dynamics, individuals leaving or re-joining
the group. However, it also means that here the fish do not react to the robot in
simulations because the fish behaviour is a replay of fish experimental trajectories
recorded without robot.

Additionally, it may be possible to improve the performance (in term of
biomimetism) of the multi-objective optimisation process by combining addi-
tional selection pressures as objectives (i.e. not just genotypic and behavioural
diversity) [15]. We already include behavioural and phenotypic diversities as
selection pressures to guide the optimisation process; however, taking into ac-
count phenotypic diversity can bias the optimisation algorithm to explore rather
than exploit, which can prevent some desired phenotypes to be considered by
the optimisation algorithm. An alternative would be to use angular diversity
instead [31].

This study shows that ANN are good candidates to model individual and
collective fish behaviours, in particular in the context of social bio-hybrid systems
composed of animals and robots. By evolutionary computation, they can be
calibrated on experimental data. This approach requires less a priori knowledge
than equations or agent based modelling techniques. Although they are black
box model, they could also produce interesting results from a biological point of
view. Thus, ANN collective behaviour models can be an interesting approach to
design animal and robot social interactions.
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Evolutionary algorithms made easy. Journal of Machine Learning Research 13(Jul),
2171–2175 (2012)

17. Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tâche, F., Said,
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