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1 Univ Paris Diderot, LIED, UMR 8236, 75013, Paris, France
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Abstract. We have previously shown how to socially integrate a fish
robot into a group of zebrafish thanks to biomimetic behavioural mod-
els. The models have to be calibrated on experimental data to present
correct behavioural features. This calibration is essential to enhance the
social integration of the robot into the group. When calibrated, the be-
havioural model of fish behaviour is implemented to drive a robot with
closed-loop control of social interactions into a group of zebrafish. This
approach can be useful to form mixed-groups, and study animal indi-
vidual and collective behaviour by using biomimetic autonomous robots
capable of responding to the animals in long-standing experiments. Here,
we show a methodology for continuous real-time calibration and refine-
ment of multi-level behavioural model. The real-time calibration, by an
evolutionary algorithm, is based on simulation of the model to corre-
spond to the observed fish behaviour in real-time. The calibrated model
is updated on the robot and tested during the experiments. This method
allows to cope with changes of dynamics in fish behaviour. Moreover, each
fish presents individual behavioural differences. Thus, each trial is done
with naive fish groups that display behavioural variability. This real-
time calibration methodology can optimise the robot behaviours dur-
ing the experiments. Our implementation of this methodology runs on
three different computers that perform individual tracking, data-analysis,
multi-objective evolutionary algorithms, simulation of the fish robot and
adaptation of the robot behavioural models, all in real-time.

Keywords: collective behaviour, real-time model fitting, evolutionary
algorithms, decision-making, multilevel model, zebrafish, robot, biohy-
brid system

1 Introduction

The study of animal collective behaviour involves the search for the relevant sig-
nals and mechanisms used by the animals for social interactions [33, 26]. Robots



can help ethologists to test various hypothesis on the nature of these signals by
inducing specific and controlled stimuli to assess animal response.

Autonomous robots are capable to interact with animals and can serve as
tools to study social dynamics [31]. This approach has already been used in
studies to analyse the behaviour of ducks [41], drosophila [42], cockroaches [21],
fish [10, 27, 28, 25, 24, 6, 2], bees [20, 29, 38] and birds [23, 14, 19].

Here, we socially integrate a behavioural biomimetic robotic lure into a group
of four zebrafish (Danio rerio) moving in a structured environment and validate
its acceptance by the animals. This problem is difficult because the robotic lure
must be designed to be perceived as a social companion by the animals: it must,
to a certain extent look like a fish, behave like a fish, be able to respond appro-
priately to environmental and social cues to close the loop of social interactions
with the fish. Closing the loop of social interactions requires real-time individual
perception and a decision-making algorithm to control the robot behaviours [10].

These aspects were investigated in [10, 9] through the use of biomimetic
robotic fish lures driven by a calibrated biomimetic model to make the robot
mimics expected fish behaviour. An evolutionary algorithm (NSGA-II [15]) was
used to optimise the parameters of this model so that the resulting collective dy-
namics corresponded to those observed in biological experiments. This type of
controller allowed the robot to be a real group-member making its own decisions
rather than a passive follower.

However, the model calibration was done off-line and not during the ongoing
experiments. As such, it could not take into account the changes in animal
behaviour across experiments and the intrinsic behavioural differences between
groups used in experiments.

Here, we tackle this problem by continuously refining and calibrating the
biomimetic model driving the robot behaviours in real-time during the exper-
iment by using on-line evolutionary algorithm (NSGA-II [15]). This task is
computationally-intensive and requires three computers to deal with agent real-
time tracking, robot control, real-time data-analysis, and model calibration. We
test this methodology in a set of 10 experiments with four fish and one robot. In
each case, the robot closed-loop behaviour becomes progressively socially inte-
grated into the group of fish. This is the first step towards evolving mixed-group
of animals and robot [10].

2 Materials and Methods

2.1 Experimental set-up

We use the experimental set-up from [9, 4, 35, 10, 12] (Fig. 2, ”Control & track-
ing” part) with a white plexiglass arena (Fig. 1A) of 1000 × 1000 × 100 mm
composed of two rooms linked by a corridor.We use the FishBot robot [3, 5, 4],
powered by two conductive plates under the aquarium, to interact with fish. An
overhead camera captures frames (15 FPS, 500×500px), that are then tracked to
find the fish positions. A complementary fish-eye camera (15 FPS, 640× 480px)
placed under the fish tank is used to track the position of the robot.



Fig. 1: A. Experimental setup: a tank with two square rooms (350×350 mm at
floor level) connected by a corridor (380×100 mm). This set-up is used to study
zebrafish collective behaviours [11, 34, 35, 10, 9]. It is composed of three zones
(corridor, center of the rooms, close to room walls) that correspond to three
different behavioural attractors. B. Multilevel model for fish behaviour [10, 9].
The agents behave differently depending on the zone where they are situated.

We used 10 groups of 4 adults wild-type AB zebrafish (Danio rerio) in ten
30-minutes experiments as in [10, 9, 35]: 30 minutes is sufficient to capture the
behaviour and dynamics of groups of 4 zebrafish. Fish are released in the aquar-
ium after the lure is placed in the aquarium.

To ensure real-time adaptation, our methodology is computationally inten-
sive, and uses three networked 32-core computers (Fig. 2). Computer 1 is used to
track the agents in real-time and control the robot according to the behavioural
model of Sec. 2.2. Computer 2 performs every 60s data-analysis on the tracked
positions of agents from Computer 1, and estimates the biomimetism of robot
behaviour (which, in our case, can be viewed as a metric of social integration
as defined in [10]). Computer 3 re-calibrates every 60s the behavioural model to
correspond as close as possible to the behaviour of experimental fish (measured
by Computer 2). The resulting calibrated parameter set is then sent to Com-
puter 1 to serve as parameters of the robot controller model. It allows the robot
to progressively mimics the behaviour of the fish and be socially accepted.

The experiments performed in this study were conducted under the authori-
sation of the Buffon Ethical Committee (registered to the French National Eth-
ical Committee for Animal Experiments #40) after submission to the French
state ethical board for animal experiments.

2.2 Behavioural model

We use the multi-level model from [9, 10] (inspired from [11]) that describes
the individual and collective behaviours of fish (Fig. 1B). This model takes into
account both social interactions and environmental cues (i.e. walls and structure
of the tanks). It is stochastic, multi-level and context-dependent.



Fish behave differently depending on their spatial position. Namely, this
model identify three zones of the structured set-up with different fish behaviours
(Fig. 1A): when they are close to the walls, when they are in the centre of
the rooms, and when they pass through the corridor. Near the walls, fish per-
form mainly thigmotactism (wall following) while in room centre they exhibit
exploratory behaviour. In the corridor, they tend to go in a straight line with
increased speed to reach the subsequent room. Fish also react to social cues
leading to collective behaviour such as collective departures from the rooms [12].
Very few models of fish collective behaviours take into account the presence of
walls [11, 8].

The agents update their position vector Xi with a velocity vector Vi:

Xi(t+ δt) = Xi(t) + Vi(t)δt (1)

Vi(t+ δt) = vi(t+ δt)Θi(t+ δt) (2)

with vi the linear speed of the ith agent and Θi its orientation. The linear speed vi
of the agent is randomly drawn from the experimentally measured instantaneous
speed distribution.

The orientation Θi is drawn from probability density function (PDF) com-
puted as a mixture distribution of von Mises distributions centred on the stimuli
perceived by the focal agent.It takes into account the influence of other agents
and of the walls of the experimental arena. The resulting PDF is composed of
the weighted sum of (i) a PDF taking into account the effect of the walls and
(ii) a PDF describing the response to other agents. The parameter γz1,z2 , used
as a multiplicative term of the final PDF, modulates the attraction of agents
towards target zones.

We numerically compute the cumulative distribution function (CDF) corre-
sponding to this final PDF by performing a cumulative trapezoidal numerical
integration of the PDF in the interval [−π, π]. Then, the model draws a random
direction Θi in this distribution by inverse transform sampling. The position of
the fish is then updated according to this direction and his velocity.

2.3 Communication between computer nodes

We connect the three computers (Fig. 2) using the ZeroMQ distributed messag-
ing protocol [22]: computers receiving messages act as ZeroMQ subscribers, and
computers sending messages act as ZeroMQ publishers.

The tracked agent trajectories are compiled in the form of trajectory files,
and sent every 60s from Computer 1 to Computer 2 through the rsync [1]
command line application (a process which usually only need 2s to 3s that is
sufficient because the parameter update is every 60s). Then, Computer 1 send a
ZeroMQ message to Computer 2 to acknowledge that the transfer is completed.
Data-analysis scores from Computer 2 to Computer 3, and model parameters
from Computer 3 to Computer 1 are sent every 60s through ZeroMQ messages.



Fig. 2: Workflow of our real-time calibration methodology. It involves extensive
computation to be able to function in real-time, and thus is implemented over
three 32-core computers. Computer 1 tracks the positions of fish and robot and
is also running the robot controller. Computer 2 performs data-analysis of the
fish and the robot behaviour using the data gathered by Computer 1 during
60s. Computer 3 calibrates the behavioural model (presented in Sec. 2.2) to be
as close as possible to the observed behaviour of the fish as assessed by the
data-analysis performed by Computer 2. It also uses the knowledge acquired
during the previous calibration processes. The calibrated model is sent every
60s to Computer 1 to be used to drive the robot. The social acceptation of the
robot behaviour is measured by Computer 2 with a distance metric of collective
features.



2.4 Real-time tracking

We use the CATS framework [4] to track agents (fish and robot) in real-time, on
Computer 1. Fish are tracked (but not identified) by using frames captured by
the overhead camera (Fig. 2) through the Shi-Tomasi method [36] implemented
in the OpenCV library [7]. In parallel, the robot is tracked through the video
frames from the camera below the fish-tank by colour and contours detection [39].
Every 60s the positions of the agents are sent to Computer 2 for data-analysis.

2.5 Data-analysis

Every 60s, Computer 2 calculates the behavioural statistics using the tracked po-
sitions of agents (from computer 1) over the last 120s of the running experiment,
for all three zones of the arena. For a zone e, these statistics are: the distribution
of inter-individual distances between agents (De), the distribution of distances
of agents to their nearest wall (We), the distribution of zones occupation (Oe),
the transition probabilities from zone e to others (Te).

These statistics are computed either only on fish agents (Control case: ec)
or on fish and robotic agents (Robot Social Integration case: er). We define
a similarity score (ranging from 0.0 to 1.0) to measure the biomimetism of robot
behaviour compared to the Control case:

S(er, ec) = 4
√
I(Der , Dec)I(Wer ,Wec)I(Oer , Oec)I(Ter , Tec) (3)

The function I(P,Q) is defined as such: I(P,Q) = 1 − H(P,Q). The H(P,Q)
function is the Hellinger distance between two histograms [16]. It is defined as:

H(P,Q) = 1√
2

√∑d
i=1(
√
Pi −

√
Qi)2 where Pi and Qi are the bin frequencies.

Cazenille et al. [10, 9] demonstrated that robotic lures with biomimetic mor-
phology and behaviour are be more socially integrated into the group of fish
than non-biomimetic lures. As such, the biomimetism score defined earlier cor-
responds to the social acceptatation of the robot by the fish.

When this statistics and scores are computed, they are dispatched to Com-
puter 3 (by the ZeroMQ system described in Sec. 2.3) to guide the optimisation
process.

2.6 Real-time optimisation of model parameters

We design a calibration methodology (Fig. 2) capable of optimising in real-
time the parameters of the behavioural model from Sec. 2.2 to mimic as close
as possible to the behaviour of experimental fish. The behavioural similarity is
quantified as described in Sec. 2.5.

It is inspired from the off-line calibration methodology in [9] and uses the
NSGA-II [15] multi-objective global optimiser (population of 60 individuals, 300
generations) with three objectives to maximise. We define a fitness with three
objectives: the first objective is a performance objective corresponding to the



S(e1, e2) function. Two other objectives are considered to guide the evolution-
ary process: one that promotes genotypic diversity [32] (defined by the mean
euclidean distance of the genome of an individual to the genomes of the other
individuals of the current population), the other encouraging behavioural diver-
sity (defined by the euclidean distance between the De, We, Oe and Te scores of
an individual).

This process is performed and restarted every 60s on Computer 3 (starting
120s after the beginning of the experiment to gather data, Fig. 2) using data
gathered during the last 120s. Every restart of the evolutionary algorithm keeps
the last generation of individuals evolved during the previous round of evolution
to bootstrap the current round of evolution, a system akin to transfer learning.
On our 32-core computer, one generation is computed approximately every 4s,
so around 15 generations are computed at every evolutionary round.

We do not optimise the linear speed vi of the agents. It is randomly drawn
from the experimental speed distribution. We use the NSGA-II implementation
provided by the DEAP python library [17].

2.7 Robot implementation and control

The robot is driven by the model presented in Sec. 2.2 thanks to the CATS frame-
work [4]. The model is calibrated every 60s using the methodology of Sec. 2.6, in
experiments involving four fish and one robot. Every 200ms, the tracked posi-
tions of the four fish are integrated into the model to compute the target position
of a fifth agent. The robot is programmed to follow this target position by using
the biomimetic movement patterns as in [5, 10].

3 Results

We assessed the evolution of the similarity scores (defined in Sec. 2.5) between
robot behaviour and fish behaviour, across sliding windows of 120s intervals of a
set of 10 trials each one lasting 30 minutes, starting in each trial from the second
time interval (120s to 180s) to gather enough experimental data. These scores
are compiled in Fig. 3. The variance for the 10 trials is plotted as a grey area
around the curves and remains rather small.

From its initial value of about 0.610 (second time interval: 120s to 180s), the
average fitness (mean scores) fastly converges to values around 0.850 starting
from the fourth time interval (0.827 on 240s to 300s). This is also observed for
similarity scores of transitions and of distances to nearest wall. This shows that
both of these behavioural features can be effectively optimised through an online
evolutionary algorithm process, and remain stables during the experiment.

The similarity score of zone occupation is particularly high at the beginning
of the experiment, and is only slightly improved by our calibration methodology;
this would suggests that room occupation is only slightly dependent of model
parameters. This could be explained by a strong effect of room geometry (room
size, and the general room configuration of the arena) over room occupation:
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Fig. 3: Similarity scores between the behaviour of the experimental fish and the
behaviour of the best-performing individuals of the calibrated model at differ-
ent time intervals of 10 different experiments. These scores are computed using
data over 120s, and starting from the third time interval (120s to 180s) to ensure
gathering enough experimental data. In these plots, lines correspond to the mean
scores across the 10 experiments, and the grey translucent areas correspond to
the standard deviation. We consider four behavioural features to characterise
the behaviour exhibited in each time interval. Inter-individual distances cor-
responds to the similarity in distribution of inter-individual distances between
all agents in a specific zone and measures the capabilities of the agents to aggre-
gate. Distances to nearest wall corresponds to the similarity in distribution
of agent distance to their nearest wall, and assess their capability to follow the
walls. Occupations corresponds to the similarity in probability of presence of
the agent in each zone. Transitions corresponds to the similarity in probabili-
ties of an agent to transition from one zone to another. The Biomimetic score
corresponds to the geometric mean of the other scores.



rooms cover a larger area than the corridor. This could also be an effect of the
aggregative behaviour exhibited by fish and by the model: the robot would follow
the fish, which would tend to follow walls, thus explaining the relative invariance
of the occupation score with respect to parameter values.

The variations in similarity score of inter-individual distances suggests changes
of fish aggregative behaviour during the experiment. This could be explained by
the fact that, while zebrafish tend to remain cohesive most of the time, they have
the tendency of forming short-lived (a few seconds to a few minutes) sub-groups,
especially when confronted to a fragmented environment [10].

4 Discussion and Conclusion

Animal-robot interaction studies employ simple robot behavioural model that
are not adaptive or updated during the experiments. Often they are not biomimetic
and do not close the interaction loop between the animals and the robots [10].
Here we present a methodology to calibrate in real-time a multi-level context-
dependent biomimetic model of fish behaviour to drive the behaviour of a biomimetic
robot into a group of zebrafish. The model parameters are continuously refined
to accurately correspond to the collective dynamics exhibited by fish during the
experiments. The real-time nature of this calibration process allows the robot to
react to changes in observed fish dynamics and cope with uncertainties.

Animals can present significant inter-individual behavioural differences. They
can present significant differences in terms of personalities typically bold and
shy types [40]. In most of the experiments individuals are selected randomly
from a stock. Consequently, each group trial present differences depending on
the characteristics of the individuals. Currently, the models are calibrated on a
set of averaged experimental data and are not optimised to take into account
inter-individuals differences. We present here a method to adapt in real-time the
models and that is thus capable to cope with this issue. This method can reduce
significantly the number of experimental trials necessary to calibrate the model.

Our approach is computationally intensive and use three networked comput-
ers to handle in real-time the tracking, the robot control, the data analysis and
the model calibration tasks.

Our methodology builds on the work presented in [9] by adding real-time
capabilities to the calibration process. However, it also suffers from the same
limitations. Namely, the model we calibrate must still be structurally defined
empirically (i.e. defining behavioural attractors, zones of the environment, etc)
with ethological a-priori knowledge about fish dynamics. The calibration process
could also still be improved by taking into account additional behavioural metrics
in the computation of similarity scores, either in term of collective dynamics (e.g.
agent groups aspects, residence time in a zone), individual behaviours (e.g. agent
trajectory aspects, curvature of trajectories). This could possibly be bypassed
through the use of a calibration process without explicit similarity measure (e.g.
GAN [18] or Turing Learning [30]). Our behavioural model could be revised



to account for collective departures of agents from one room to the other, as
described in biological studies [12].

Additionally, our methodology could make use of global optimisation tech-
niques designed to minimise the number of evaluations before reaching conver-
gence, like Bayesian Optimisation [37, 13]. This would reduce calibration com-
putation costs, and possibly reduce the time needed to accurately calibrate the
models.
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