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Abstract. Bio-hybrid systems made of robots and animals can be use-
ful tools both for biology and robotics. To socially integrate robots into
animal groups the robots should behave in a biomimetic manner with
close loop interactions between robots and animals. Behavioural zebrafish
experiments show that their individual behaviours depend on social in-
teractions producing collective behaviour and depend on their position
in the environment. Based on those observations we build a multilevel
model to describe the zebrafish collective behaviours in a structured en-
vironment. Here, we present this new model segmented in spatial zones
that each corresponds to different behavioural patterns. We automati-
cally fit the model parameters for each zone to experimental data using
a multi-objective evolutionary algorithm. We then evaluate how the re-
sulting calibrated model compares to the experimental data. The model
is used to drive the behaviour of a robot that has to integrate socially in
a group of zebrafish. We show experimentally that a biomimetic multi-
level and context-dependent model allows good social integration of fish
and robots in a structured environment.

Keywords: collective behaviour, model fitting, evolutionary algorithms,
decision-making, multilevel model, zebrafish

1 Introduction

Robotics stands now as a convenient tool to study the animal behaviour. In
recent ethological and animal behavioural studies, robots are used to induce
specific and controlled stimuli and assess the response of the animals under
scrutiny. This allows to test various hypothesises on the nature of the signals
used by the animals for social interactions [21, 16].

Autonomous robots interacting in real-time with animals [19] makes it pos-
sible to create social interactions between both of them. This has already been
demonstrated by several authors for studying the behaviours of sheepdogs [26],
cows [12] or drosophila [27] to cite a few. In this paper, we focus on zebrafish



(Danio rerio), and we describe a biomimetic model that can be implemented
in a robotic lure and validated its acceptance by four zebrafish in a structured
environment.

The main difficulty is to make the robotic lure behave in such a way that
it is accepted by the animals as social companion, just as any other interacting
fish would be. Beyond the scope of this paper, this is a first step to enable
the modulation (though action) of the collective behaviours of the observed
zebrafish [15].

Different approaches have been proposed to control the movement of fish-
lures [9]. Most of them do not involve a closed loop of social interaction with the
fish. This is often the case for lures fixed to a robotic arm that performs repeated
movements, but also for studies with autonomous fish-lures. Closing the loop of
social interactions requires a real-time tracking, or perception, of the agents (fish
and robot), and a decision-making algorithm to control the robot behaviours.
In most of the experiments reported in the literature, the robots driven with
closed-loop control are programmed to follow the centroid of the fish group, to
ensures that the robot will join and follow the group of fish. However, this type
of controller implies that the robot is more a passive follower than a real group-
member making its own decisions. The embodiment of bio-inspired models can
lead to a better social integration of the artificial agents in animal groups and
can allow the robots to influence the collective decision of the mixed group by
giving specific preferences to the robot by tuning parameter values of the model
[15,9].

We present a method to calibrate automatically a new behavioural zebrafish
model by evolutionary parameters optimisation. This multilevel model describes
collective behaviour in a structured environment in agreement with experimen-
tal observations. This model makes important extensions to our previous model
for collective behaviour in a homogeneous environment [10]. The model takes
into account a simple structured environment composed of two rooms and the
fact that the fish adapt their behaviour to the zones where they are while per-
forming collective behaviour. For such multilevel and spatially dependent social
behaviour model it is an issue to calibrate the model because it involves trade-
offs between social tendencies (aggregation, group formation), and response to
the environment (wall-following, zone occupation). We use an evolutionary al-
gorithm (NSGA-II [13]) to optimise the parameters of this model so that the
exhibited collective dynamics correspond to those observed in biological exper-
iments. Then, we validate experimentally this model by implementing it as the
controller of robots that are integrated in small fish groups.

2 Materials and Methods

2.1 Experimental set-up

We use the experimental set-up described in [3,24,9,11], with the arena pre-
sented in [9,24]. This set-up (Fig. 1A) consists of a white plexiglass arena



(Fig. 1C) of 1000 x 1000 x 100 mm, that is composed of two rooms linked by a
corridor. To validate experimentally our calibrated model, we use a robot devel-
oped by the EPFL [5,2,4, 3] for the ASSISI project [23]. This robot is powered
by two conductive plates under the aquarium. An overhead camera captures
frames that are then processed for tracking and control purposes (see Fig. 1A).

All trials have a duration of 15min. We tracked the positions of the agents by
using the idTracker software [22]. Using this software, we obtain the positions
P(xz,y,t) of all agents at each time step A ¢ = 1/15 s for all experiments,
and build the trajectories of each agent. The experiments performed in this
study were conducted under the authorisation of the Buffon Ethical Committee
(registered to the French National Ethical Committee for Animal Experiments
#40) after submission to the French state ethical board for animal experiments.
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Fig. 1: Panel A: Experimental set-up used during the experiments [5,2,4, 3, 9].
Panel B: FishBot [5,2,4]: the robot used for mimicking fish motion patterns,
with the biomimetic lure used during the reference experiments. This robot was
developed by the EPFL for the ASSISI project [23]. Panel C: Experimental
arena composed of a tank containing two square rooms (350 x 350 mm at floor
level) connected by a corridor (380 x 100 mm at floor level). The fish tend to
swim from one room to the other, either in small groups, or individually. This
set-up is used to study the zebrafish collective dynamics. Panel D: Positions of
the three different zones corresponding to different types of behaviours: in the
corridor (zone 1), in the center of each room (zone 2), and near of the walls of
each room (zone 3).



2.2 Behavioural model

Most of the fish collective behaviour models do not take into account the envi-
ronment i.e. the walls or the structure of the tanks because they only focus on
the social interactions [18, 25].

However, zebrafish show context-dependent behaviours when they are in a
structured environment. Depending on their spatial position in the environment
they adapt their individual behavioural pattern. Moreover, because they are a
gregarious species they also take into account the position and the behaviours of
the other fish and can aggregate or start collective behaviours. As many animal
species, zebrafish display strong thigmotactism and follow walls or edges. We
show that they adapt their behaviour in three different zones of the structured
set-up: first the zone when they are close to the walls, second the zone when they
are in the centre of the rooms and third when they use the corridor to change
room. We take into account this spatial and context-dependent behaviours.

Each zone corresponds to a behavioural attractor. When the individuals are
in one of the three zones they adapt their behaviour and perform specific be-
havioural patterns. In the zone near the walls they perform mainly thigmotactism
(wall following), in the centre of the room they explore, in the corridor they tran-
sit from one room to the other. At the same time they also take into account the
behaviour of the other fish as they also do collective behaviour such as collective
departures from the rooms. The other fish can be in any of the other zones and
thus can also induce behavioural attractor switching of their companions.

We extend the biomimetic hybrid model [10, 9] using microscopic and macro-
scopic information [7, 8]. This new model (described in Fig. 2) takes into account
zones that correspond to different behavioural attractors and thus allows context-
dependent behaviours. The individual can switch from one behavioural attractor
to the other and at the same time perform collective behaviour. Our model de-
scribes individual choices close to action selection and collective behaviours at
the same time. It is a step towards modelling action selection in the context of
collective behaviours.

We present a multi-level and multi-agent biomimetic model, inspired from [10,
9] that describes the individual and collective behaviours of fish. As in [10], this
model makes the link between fish visual perception (of congeners and walls)
and motor response (i.e.: trajectories of the agents). However, it is also capable
of expressing a variability in agents behaviours when they occupy specific zones
of the arena (behavioural attractors). Table 3B lists the model parameters.

In this model, the agents update their position vector X; with a velocity
vector V; :

Xi(t+t) = X;(t) + Vi(t)ot (1)

Vi(t + 6t) = vi(t + 6t)O;(t + ot) (2)

The model computes a circular probability distribution function (PDF) [10]
corresponding to the probability of the agent to move in a specific direction
(©;). This PDF is as a mixture of von Mises distributions, an equivalent to
the Gaussian distribution in circular probability. The computation of this PDF
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Fig. 2: Multilevel model used to describe fish behaviour. The agents display
different behavioural attractors depending on the zone where they are situated.
Thus, according to the agent spatial position, the physical features of the zone
drive them towards a specific behavioural attractor. A behavioural attractor
corresponds to a set of behavioural patterns adapted to the zone where they are
located. It can correspond to different parameters sets for the same behaviour
kind.

involves the calculation of two other PDF functions: the first one describing
agent behaviour when no stimuli is present, and the second one characterising
agent behaviour when conspecifics are perceived by the agent.

The PDF capturing agent behaviour when no stimuli is present is given by:

exp(ko,z, cos(0))
271‘]()(/'430,2]. )

fo,2;(0) = (3)
for an agent situated in zone z;, and with Iy the modified Bessel function of first
kind of order zero. When the agent is situated in a zone close to a wall (zones
1 and 2 of Fig. 1D), we implement a wall-following behaviour, by increasing the
probabilities of moving towards either side of the closest wall. This is achieved
by using the following PDF:

Z exp(ko,z,; €o8(0 — puw, )
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(4)
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with g, the two possible directions along the considered wall.

Examples of agents trajectories are found in Fig. 5B. The probability of the
focal fish to orient towards a perceived fish is given by a von Mises distribution
clustered around the fish position:

i Ay, exp(ky,z;cos(0 — puy,))
fF,z7 0) = - = - 5
’ ( ) Z ATf 27T10(/if,zj) ( )

i=1
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Fig.3: Panel A Computation of the PDFs functions used by the model. One
function corresponds to the focal fish; another corresponds to the perceived
neighbouring agents. The final PDF is a weighted sum of these functions, with
a normalisation factor -, ,, corresponding to the affinity between the zones z;
(origin) and z5 (destination). The direction taken by an agent is drawn randomly
from the resulting PDF by inverse transform sampling. Panel B Table of model
parameters for each agent. The zone z; corresponds to the zone where the agent
is situated at time ¢, and z; to the zone where the agent would be at time ¢ 4 1.
The linear speed distributions of the agents are the same as the ones observed
in the Control experiments, and they are not optimised. The other parameters
in the table are optimised.

with py, the direction towards the perceived agent, Ay, = > 07, Ay, the sum
of the solid angles Ay, captured by each agent and ny the number of perceived
agents.

The final PDF f(0) is computed as follow:

fO,Zj (9) + aZj ATf fF7Zj (9)
1+ 0z, ATf

ij,Zk (0) = Vzj,2k (6)

The parameter 7., .,, used as a multiplicative term of the final PDF, modulates
the attraction of agents towards target zones. Figure 3A describes how the final
PDF is computed and how it is used to determine the agents next positions.
Unreachable areas of the PDF (e.g. the walls) are attributed a probability of
0. Then, we numerically compute the cumulative distribution function (CDF)
corresponding to this custom PDF f(6) by performing a cumulative trapezoidal
numerical integration of the PDF in the interval [—, 7r]. Finally, the model draws



a random direction @; in this distribution by inverse transform sampling. The
position of the fish is then updated according to this direction and his velocity
with equations 1 and 2.

3 Results

We consider four cases. We define the Control results as obtained from biological
experiments with five zebrafish in the experimental set-up described in Sec. 2.1.
The Sim-MonoObj and Sim-MultiObj results are defined to correspond to
the model in simulation with five agents, calibrated respectively using mono-
objective or multi-objective optimisation. The Biohybrid results are obtained
from experiments with four zebrafish and one robot driven by the model using
the best optimised parameters.

3.1 Optimisation of model parameters

We define a similarity measure (ranging from 0.0 to 1.0) to compare two exper-
iments (e; and ez), and define it as:

S(eb 62) = {3/[(061 ) Oez)I(Te1 ) T€2)I(De1 ) D€2) (7)

with O, the distribution of zones occupation, T, the transition probabilities from
zone e to the others, and D, the distribution of inter-individual distances of all
agents in zone e. The similarity measure S(ej, es) corresponds to the geometric
mean of these three features. The function I(P, Q) is defined as such:

The H(P, Q) function is the Hellinger distance between two histograms [14]. It
is defined as:

d
H(P,Q) = | S (V7 — Vi )

V2 i=1
We consider two optimization methods. In the Sim-MonoObj case, we use
the CMA-ES [1] mono-objective optimisation algorithm, with the task of max-
imising the S(ey,ez) function. In the Sim-MultiObj case, we use the NSGA-
IT [13] multi-objective algorithm with three objectives to maximise. The first
objective is a performance objective corresponding to the Sce;, e2) function. We
also consider two other objectives used to guide the evolutionary process: one
that promotes genotypic diversity [20] (defined by the mean euclidean distance
of the genome of an individual to the genomes of the other individuals of the
current population), the other encouraging behavioural diversity (defined by the
euclidean distance between the O, T, and D, scores of an individual). In both
methods, we use populations of 60 individuals (approximately twice the number
of dimensions of the problem) and 300 generations. The Sim-MonoObj sta-
bilises around the 50-th generation. The Sim-MultiObj stabilises around the



250-th generation. The linear speed v; of the agents is not optimized, and is ran-
domly drawn from the instantaneous speed distribution measured in the control
experiment. It should be noted that evolutionary algorithms do not over-fit (as
it is an optimization process), even if we use the same data (trajectories) for
both training and testing.

3.2 Robot implementation

The robot is driven by the model described in Section 2.2, after calibration.
Robotic trials have a duration of 15 minutes, and are repeated 10 times. They
involve one robot and four zebrafish. Every 333ms, we integrate the tracked
positions of the four fish into the model, and compute the target position of a
fifth agent. We then control the robot to follow this target position by using the
biomimetic movement patterns described in [4,9].

3.3 Model performance analysis and experimental validation

We assess the similarity between the results from the calibrated cases (Sim-
MonoObj, Sim-MultiObj and Biobybrid) and those of the Control case by
using the similarity measure defined in Sec. 3.1. The similarity scores are shown
in Table 1.

Using information about zones occupation and probabilities of transition
from one zone to another, we define a finite state machine corresponding to the
behavioural attractors dynamics of the entire agent population. The resulting
finite state machines obtained from the Control and Biohybrid cases are shown
in Fig. 4. The probability of presence of an agent in each part of the arena is
presented in Fig. 5A. Examples of agents trajectories are found in Fig. 5B.

The best-performing individuals of the Sim-MonoObj and Sim-MultiObj
cases display distributions of inter-individual distances that are relatively close
to those of the Control case, which suggests that these models can convincingly
exhibit fish tendency to aggregate. However, of the two cases performed in simu-
lation, only Sim-MultiObj is capable of displaying zones dynamics (occupation
of the zones, and transition probabilities from one zone to the others) similar to
the Control case. This suggests that multi-objective optimisation is required to
handle the conflicting dynamics present in fish collective behaviour.

The robot of the Biohybrid case is driven by a controller using our model
with the parameters of the best-performing individual obtained in the Sim-
MultiObj. The results of the Biohybrid case correspond to those of the Sim-
MultiObj case. The ethogram of the Biohybrid case (cf Fig. 4) shows an
increased preference for the centre of the rooms compared to the Control case.
This could be explained by our current lower level robotic implementation of
wall-following behaviour that could still be sub-optimal.
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Fig. 4: Ethogram as finite state machine corresponding to the behavioural at-
tractors for all agents. Each zones drive the agents into the corresponding be-
havioural attractor.Thus, agents modulate their behaviour in each zone as if
they enter into a specific behavioural state. Here we show the resulting tran-
sition probabilities obtained after optimisation and implementation as robotic
controllers (biohybrid) based on the experimental observations (control). The
number in each state corresponds to the proportion of time agent spend in this
state. The numbers on the arrows correspond to the transition probabilities be-
tween zones with a time-step of 1/3s.

4 Discussion and Conclusion

Collective behaviour models often focus on collective motion in homogeneous
unbounded environment. Here we present a multi-level model that is space-
dependent with individuals that behave in a context-dependent way. We make
the hypothesis that the type of behaviour displayed by the agents depends on
their position in the environment. This allows us to segment our environment
into several characteristic zones, each corresponding to a particular behavioural
attractor, matching different types of agent behaviour.

We present a methodology to calibrate this model to correspond to the col-
lective dynamics exhibited by fish in the experiments. This calibration process
is challenging, as it involves a trade-off between social tendencies (group forma-
tion), and response to the environment (wall-following, exploration). Moreover,
our model encompasses the notion of behavioural attractors, allowing agents to
exhibit several different behaviours depending on the context. Our methodology
is able to cope with this trade-off by using multi-objective optimisation.

However, this calibration methodology could still be improved: the similarity
measure we use to compare two cases only takes into account three aspects of
collective behaviours corresponding to behavioural attractors, and aggregation
dynamics. Other behavioural aspects could also be relevant at the level of collec-
tive dynamics and can be considered: e.g.: agent groups aspects, residence time
in a zone, at the level of the individuals e.g.: agent trajectory aspects, curvature
of trajectories, etc. Moreover, in relation to the environment e.g.: the distance
of an agent to the nearest wall could also be taken into account. Alternatively,
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Fig. 5: Panel A Probabilities of presence in each part of the arena, for all cases.
Panel B Examples of trajectories over a duration of 2 minutes (1800 frames).
In the Biohybrid case, the robot is in black.

Sim-MonoObj Sim-MultiObj Biohybrid
Occupation 0.57 0.97 0.89
Transitions 0.76 0.81 0.88
Interindiv. Dists 0.90 0.87 0.89
Fitness 0.73 0.88 0.89

Table 1: Similarity scores between the best-performing individuals of the three
calibrated cases and the Control case used as reference, as defined in Sec. 3.1.
We consider three standard features to characterise the collective behaviour ex-
hibited in each case. Occupation corresponds to the probability of presence
of the agent in each zone. Transitions corresponds to the probabilities of an
agent to transition from one zone to another. Inter-individual distances cor-
responds to the distribution of inter-individual distances between all agents in a
specific zone. The fitness function is computed as the geometric mean of these
scores.

it would be possible to perform the calibration without defining a similarity
measure explicitly, using a method similar to [17], by co-evolving simultaneously
the parameters of the models and classifiers. These classifiers would be trained
to identify whether or not the resulting behaviours of the optimised models are
distinct from the behaviours from the reference experiments.

Here, we make the assumption that the behavioural attractors are linked to
the position of the agent in their environment. This assumption could be relaxed,
to handle ethograms with more complex classes of behaviours like behavioural
attractors linked to agent group dynamics. Additionally, the idea that actions
are selected and segmented by the fish is questionable. While our decomposition
of fish behaviour in different behavioural attractors is convenient for modelling
purpose and ease the implementation of a biomimetic robot controller by having
a collection of discrete acts that it can perform, it is not determined that fish



make this kind of decomposition into distinct elements (actions) [6]. Finally, we
could apply our model in more complex set-up, involving large societies with a
larger number of robots, and with a more complex topology.
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