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Inter-individual variability has various impacts in animal social behaviour. This implies that not only collective
behaviours have to be studied but also the behavioural variability of each member composing the groups. To un-
derstand those effects on group behaviour, we develop a quantitative methodology based on automated ethograms
and autonomous robots to study the inter-individual variability among social animals. We choose chicks of Gallus
gallus domesticus as a classic social animal model system for their suitability in laboratory and controlled exper-
imentation. Moreover, even domesticated chicken present social structures implying forms or leadership and filial
imprinting. We develop an imprinting methodology on autonomous robots to study individual and social behaviour
of free moving animals. This allows to quantify the behaviours of large number of animals. We develop an au-
tomated experimental methodology that allows to make relatively fast controlled experiments and efficient data
analysis. Our analysis are based on high-throughput data allowing a fine quantification of individual behavioural
traits. We quantify the efficiency of various state-of-the-art algorithms to automate data analysis and produce
automated ethograms. We show that the use of robots allows to provide controlled and quantified stimuli to the
animals in absence of human intervention. We quantify the individual behaviour of 205 chicks obtained from hatch-
ing after synchronized fecundation. Our results show a high variability of individual behaviours and of imprinting
quality and success. Three classes of chicks are observed: imprinted with variability, indifferent to the imprinting
stimuli (i.e the robots) and chicks that avoid the imprinting stimuli. Our study shows that the concomitant use of
autonomous robots and automated ethograms allows detailed and quantitative analysis of behavioural patterns of
animals in controlled laboratory experiments.

Keywords: Filial imprinting, Gallus gallus domesticus, High-Throughput Ethology, Autonomous Robots,
Collective Behaviour

I. INTRODUCTION

Many species of animal live in group and are capable of
making decisions while maintaining group coherence1,2.
Animal living in groups are constrained by what they
can perceive thus most of the time they cannot have
a global view of the group and their environment.
Yet those species are capable of remarkable group
behaviours. The question arises as to understand what
kind of mechanism allows the group to perform so well
given their individual limitations. Several forms of social
structures exists that go from all individuals apparently
having the same weight in the group to various forms of
leadership and social hierarchy.

Among the many group-living species, the chicken
(Gallus gallus domesticus) is an interesting animal
model: the chickens are social animals and chicks
present a social attachment to their siblings and to their
mother. Indeed, in precocial birds such as chickens,
the formation of social attachments occurs in the first
days after hatching. This process is used as a model for
the study of learning3 because the chicks’ environment
and conditions prior to hatching can be controlled and
standardized. Hence, the period immediately after
hatching is likely to be particularly useful for studying
social motivation and learning.

This social structure allows to address the question of
the role of leadership in group decision-making. Chicks

are attracted to each other and at the same time they
tend to remain in a relatively close vicinity to their
mother that they can also follow as a group. The
question arises as to what makes the group coherent and
what is the importance of the leader, the hen, in group
decision making and group coherence. The development
of filial behaviour can be separated in terms of two inter-
acting processes: filial motivation and filial imprinting.
Filial motivation causes chicks to approach and follow
conspicuous objects with certain general properties like
colours, shapes, sizes, and movement patterns. In a
natural environment, chicks are attracted toward the
hen and the other chicks of the group. Filial imprinting
is a learning process through which the chick comes to
restrict this behaviour to focus to particular stimuli4–7.
As chicks become progressively more familiar with an
object, they tend to approach this object more3. Thus,
filial motivation determines the propensity to make so-
cial attachments, while imprinting establishes preference.

In ethological studies one of the long-standing interests
is to understand social communication, relationships and
structures. Until recently, to study these mechanisms
researchers had used simple specially designed mock-ups
whose behaviour can be controlled so as to trigger a
response of the animals. But nowadays availability
of low-cost miniaturized computer chips, motors and
sensors allowed these artificial models to become sophis-
ticated and reliable robotic devices that can be used
to test hypotheses8. For instance, robots were used
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to study male territorial instinct in dart-poison frogs9

and mate selection in Tungara frogs10, to test ideas
about nest mate recognition in brush turkeys11, and the
predator avoidance by ground squirrels12. A number of
recent works in ethology have successfully used robots to
investigate individual and collective animal behaviours,
in particular by creating mixed robot-animals societies:
robots were mixed with chicks13, cockroaches14,15, fruit
flies16, killifish17 and zebrafish18.

Here, we address these questions by using a robot
(cf. Fig. 1) that will become a surrogate mother to
individual chicks. To build a social attachment between
the chicks and the robot we use the filial imprinting
mechanism. After hatching a critical period exists where
the chick will learn to build social attachment to specific
objects. Classical ethology has shown that this special
form of learning works for any object remaining close
to the chicks and presenting specific colour, movement
and sound patterns. In this study, we develop an
imprinting methodology involving autonomous robots
to study individual behaviour of free moving animals.
Thanks to this methodology we are able to quantify the
individual behaviours and social responses to the robot.
We also develop automated experimental methodologies
that allow to make fast and efficient data analysis,
and compare to existing ones19,20. A workflow of this
methodology is found in Fig. 2. The analysis is based
on high throughput data allowing fine quantification of
individual behavioural traits. Thanks to this method
we can make quantitative assessment of individual
variability of a large number of individuals.

We investigate whether the imprinting quality of chicks
can be influenced by social bonding. After the imprint-
ing process, the chicks are randomly put in groups of 6
individuals for 20 days. We then perform a new quantifi-
cation of individual behaviour traits, and compare them
to original results. Additional experiments include ex-
periments during the period of time the chicks are put
into groups, where entire groups of chicks interact with
a robot, but the associated results are not investigated
in this article. Here, we quantify the individual charac-
teristics for 205 animals. The results show a large vari-
ability of behavioural patterns. One of the main vari-
ability is related to the success of imprinting. Three
types of chicks are observed: imprinted, indifferent and
avoiders. Among the successfully imprinted chicks we
still observe a large variability of behavioural patterns.
Finally we show that the use of autonomous robots and
automated ethograms allow detailed quantitative studies
of animal behavioural patterns as it has also been shown
with Drosophila flies and bees16,21.

FIG. 1: The PoulBot autonomous robot. The robot de-
veloped to test individual and social behaviour among chicks
is based on the modular research robot marXbot13. This robot
is equipped with a plastic shell that prevent chicks from being
roll over or stuck in the tracks. The upper side of the shell
allows to display a predefined colour pattern. The tube on the
top is a 360◦ omnidirectional camera that allows the robot to
perceive visually its surrounding. The small rectangular holes
allow infra-red sensors to detect objects or animals in close
vicinity.
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FIG. 2: Data analysis process First we analyse the experimental videos and extract a number of relevant features (position,
speed, acceleration, distances) at every time-step. Behavioural analysis is based on these features. Our analysis is performed
in two steps: on one hand, we classify the chicks according to the success of the filial imprinting on the robot, and on the other
hand, we automatically generate individual ethograms and behavioural sequences. Lastly, we use the generated ethograms to
compare and classify chicks by their following behaviour.

II. RESULTS

A. Filial imprinting as a means of social bonding
with robots

The first step in the behavioural analysis is to classify
the chicks according to the success of the filial imprint-
ing on the robot. Filial imprinting corresponds to the
propensity of the chicks to be attracted by the robot
and to follow it as if it was the hen mother. We observe
two different kind of non-imprinted chicks: indifferent
chicks that ignore the presence and movement of the
robot, and avoiders that run along the walls, possibly
running away from the robot. Imprinting success is
assessed by looking at the behavioural response of the
chicks towards the robot.

Figure 3 shows both the speed of three different chicks
depending of their spatial position in the arena, and the
robot trajectories. The figure shows the three typical
behaviour responses of a chick to the robot: a chick
can be imprinted (Panel A), indifferent (Panel B), or
avoider (Panel C). The distributions of chicks speed,
their distance toward the robot, and their walking
behaviour (whether they are walking or stopping), for
30 individuals, is shown in Fig. 4. Imprinted and avoider
chicks tend to alternate a walking behaviour with small
stops. Indifferent chicks stay in place in the arena,
with very few apparent walking behaviour. Imprinted
chicks tend to be close to the robot. Indifferent and
avoider chicks tend to be distant from the robot. The
three typical behaviour responses of a chick to the robot
correspond to different distributions of chick speeds, as
shown in Fig. 5: imprinted chicks move with variable
speed, indifferent chicks do not move much, avoider

chicks tend to move at higher speed than imprinted
chicks.

The classification of the behavioural response of each
chick toward the robot can be done by a human observer
looking at all the videos. However, this represents a
tedious and long qualitative work that would greatly
benefit from automation. Only 31.22% of all experiments
(64 individuals) is classified by a human observer. The
rest of the experiments is classified automatically, using
an algorithm to classify the data automatically extracted
from the videos by image analysis.

Because it is possible for a human observer to classify
with good accuracy the type of chick, we select a
supervised learning method. We use a linear support
vector machine (SVM) classifier, an algorithm often
used to solve problems in classification, regression, and
novelty detection34–36. This method is first trained on
the human-classified dataset, separating experiments
into three classes: imprinted, avoider, indifferent. The
classification process used the following features: mean
distance between a robot and a chick, mean speed of a
chick, and its standard deviation. The results of the
classification are presented in Fig. 6. Panel A shows
the training dataset composed of 31.22% of the all
data (64 individuals). The green points correspond to
the imprinted chicks, the blue points to the indifferent
chicks, and red points to the avoider chicks. The
experiments have a duration of one hour, and were
repeated for 205 different chicks. Panel B of Fig. 6 shows
the results of the trained classifier on the whole data set
(205 individuals). The classifier present an accuracy of
98.05% (201/205). The crossed points corresponds to
misclassification (4 individuals). These misclassification
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are the consequence of mixed behavioural pattern. Even
for human observers, these individuals are difficult
to categorize because, during the test, they present
characteristics of imprinting or avoider behavioural
traits.

As a result of individual tests we observed 55.12%
(113/205) imprinted chicks, 36.10% (74/205) indifferent
and 8.78% (18/205) of avoider chicks.

0 0.1 0.2 0.3 0.4 0.5

A B C

Speed (m/s)

FIG. 3: Speeds of three different chicks depending on spatial position Panels A, B, C show the speed of chicks
depending on their spatial position in the arena, in three different settings, presenting different behavioural types. Panel A
corresponds to a chick that has been classified as imprinted. Panel B corresponds to a chick that does not move and is considered
as non imprinted. Panel C corresponds to a chick that avoids the robot and runs along the walls of the setup. The grey lines
represent the robot trajectories in the arena that does not take into account the chick presence.

FIG. 4: Distribution of chicks and visually sorted be-
havioural patterns. For each individual, the first line is
the distribution of stops (in red) and walking behaviour (in
green), the second line is the distribution of speed (ms−1),
and the last line is the distribution of the distance (m) be-
tween the robot and the individual. Only 30 individuals are
considered. All experiments have a duration of 1 hour. The
bars are drawn in the experimental chronological order from
top left to right.

A

B

0 0.1 0.2 0.3 0.4 0.5
Speed (m/s)

FIG. 5: Speed distribution of chicks and visual classi-
fication. Panel A shows the visualization of speed distribu-
tions for 30 individuals during tests. The bars are drawn in
the experimental chronological order from top left to right.
Panel B shows that we can easily visually classify the animals
into three categories. First, those that move with variable
speed. Second, those that nearly do not move. Third, those
that move at high speed nearly all the time. We will see below
that these three categories are consistent with quantitative
statistical clustering methods.
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FIG. 6: Classification of the chicks according to the
filial imprinting success on the robot. The classification
process used the following features: mean distance between
a robot and a chick, mean speed of a chick, and its standard
deviation. We reduced the dimensionality of the related fea-
ture vector from three to two by using Principal Components
Analysis (PCA)36. Panels A and B show the values of the
feature vector for the considered experiments. Panel A shows
the training dataset for the Support Vector Machine (SVM)
classifier (31.22% of all experiments: 64 individuals, priorly
classed by human observation). The green points corresponds
to chicks that are attracted and follow the robot (imprinted),
the red points to chicks that avoid the robot (avoider) and the
blue to chicks that do no react to the presence of the robot
(indifferent). Panel B shows how the trained classifier divides
the plane into three regions and shows the result of the classifi-
cation on the whole data set (205 individuals). The green area
corresponds imprinted chicks, the pink area to avoider chicks
and the blue to chicks indifferent chicks. Crossed points (4
individuals) correspond to misclassification after checking the
whole dataset by human inspection. Misclassification hap-
pens when the chicks show a mixed behavioural type that is
also difficult to interpret by a human observer.

B. Automated Ethograms

Ethograms are typically used to describe animal
behaviour. They are made usually by human experts
consistently documenting behaviour from observations.
The two main approaches are focal sampling (in which
the human expert make systematic observation of the
behaviour of an individual – it is a precise but time-
expensive method) and scan sampling (in which the
observer only uses observation recorded at regular in-

tervals to classify behaviours – it is less time-consuming
compared to focal sampling, but also less accurate).
Ethograms done by human observation are time con-
suming and tedious if one wants to obtain quantitative
results. We present a combined methodology that per-
forms detailed quantitative studies of single individual
repeated for a large number of animals (205 individuals).

Recently, a number of ethological studies have
used similar methodologies to automatically gener-
ate ethograms of animal behaviour from behavioural
data19,20,37–39. This process of automatic behaviours
detection is call ”Automated ethology”, and produces
”automated ethograms”. It is usually done in two
steps. The first step is called ”Segmentation”: the
trajectories are split into segments. Each segment is
labelled independently from the others, using either
classification or clustering algorithms. In the second
step, a label (or ”class”) is assigned to each segment,
describing which kind of behaviour the chick is exhibit-
ing as the corresponding time. Two kind of algorithms
can be used for labelling: classification algorithms
and clustering algorithms. For each segment, these
algorithms use a set of features (statistical measures) of
the observed individual to find a corresponding label.
Before the labelling process, classification algorithms
need to be trained with a training set of segments
already labelled by a human. This training set is
used as reference (or a priori knowledge) to guide the
labelling process. Clustering algorithm do not need
to be trained beforehand, and only uses the similar-
ity of the segments’ features to group them together
into clusters. Each cluster correspond to a different label.

The segmentation strategy can impact the reliability
of the labelling process of trajectories compared to a
labelling done by humans. This is especially the case
when segments incorporate periods of time when the
chicks exhibit several different behaviour. On the other
hand, when segments are too small, it can add noise
into the features used for labelling. In an optimal
segmentation, segments end when a chick changes its
behaviour. A typical segmentation method used in
the literature is the N -steps window segmentation:
trajectories containing M time-steps are split into M/N
segments each with a size of N time-steps. An extreme
case is the 1-step window segmentation, where every
time-step is a new segment. Note that the choice of N
can influence the reliability of a segmentation: if N is
too big, segments can include period of times where the
chicks exhibit several different behaviours. On the other
hand, N -step window segmentation with a low N can
be more sensitive to noise.

We introduce a more robust segmentation method,
the ’Threshold crossing’ method. We make two hypoth-
esises, supported by human observations: first, that
chicks reduce their speed below a given threshold when
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FIG. 7: Defining how trajectories are segmented. The
criteria for segmentation is based on speed and acceleration.
Two thresholds (red lines) are defined for speed and for ac-
celeration. The speed threshold is used to detect stops. Be-
low the threshold (44mm.s−1) the animal is considered as not
moving. To further segment intervals during which the animal
is moving, the criteria is based on the acceleration. First we
define a deceleration threshold (−500mm.s−2) below which
we consider that the animal is going to change type of move-
ment. After being below the threshold, when the acceleration
equals to 0, the trajectory is segmented. Then a new seg-
ment is started where the animal has changed its movement
type. In the shown example of experimental data, doted line
(a) marks the transition from stop to movement, (b) from
movement to stop, (c) from stop to movement, (d) change
of movement type, (e) from movement to stop, (f) change of
movement type and (g) from movement to stop.

they change behaviour; second, that chicks accelerate
when they begin to exhibit a given behaviour, and
decelerate when they change behaviour. This allow us
to introduce an original segmentation method, that we
call ’Threshold crossing’. This segmentation method is
based on the speed and acceleration of a chick (Fig. 7):
time-steps when the speed or acceleration of a chicks are
below predefined thresholds are considered as stops.

The segments obtained are then labelled using state-
of-the-art algorithms of the literature, either using
classification algorithms: Decision Trees (DT), Decision
Trees with Random Forest (DT/Forest), k-Nearest
Neighbours (k-NN), Support Vector Machines (SVM);
or a clustering algorithm: K-Means. These methods
are described in detail in Sec. III E and III F. For each
segment, the classification and clustering algorithms
use the following features (statistical measures) to find
a label (corresponding to the behaviour of the chick):

the mean speed of the chick, the acceleration of the
chick, the distance between the chick and the robot, the
distance between the chick and the wall of the arena, and
the distance traveled by the chick during the experiment.

Based on human observation, we separated chick be-
haviours into seven classes:

stops the chick stops moving

joins the chick, initially distant from the robot, joins the
robot (with a higher speed than when following it)

follows the chick is close to the robot and follows it

in front the chick goes in front of the robot

loops the chick goes around the robot and make a full
loop around it

bumped the robot pushes gently the chick out of its way

other the chick has a behaviour that is not related to
the robot

Note that the robot is programmed to constantly move,
even if a chick is on its trajectory. This set of classes
correspond to the labels used by the classification
algorithms during the labelling process.

We validated the automated labelling of chicks
trajectories by computing the error compared to human-
labeled trajectories: the collection of human-labeled
behavioural sequences was split into two parts: the first
part was used during the training step (learning base),
and the second part was used to perform this validation.
As the observed error of classification is very low (0.04),
we can say that the automated labelling is very close to
the labelling done by humans.

We measured the reliability of the different methods
of segmentation and labelling presented compared to
human-labeled trajectories. In addition to the ’Thresh-
old crossing’ segmentation method, we also tested the
N -step window segmentation for several values of N :
N = 1 and N = 5. These results are compiled in Table. I
using Mean Absolute Percentage Error (MAPE) values.
The MAPE values are computed using the formula:
MAPE = 1

n

∑n
t=1|

At−Ft

At
| with At the human-labelled

reference values and Ft the values obtained by classi-
fication methods. The best-performing classification
method is the Decision Trees with Random Forests
method, when using a Threshold crossing segmentation
or a 1-window segmentation. Methods using the 5-step
window segmentation method have a smaller reliability
than methods using the 1-step window segmentation:
the segments obtained by 5-step window segmentation
can incorporate periods of time when the chick exhibit
several different behaviours. It should also be noted
that chicks behavioural traces often include shorts stops
of the chicks when they change behaviour. These stops
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TABLE I: Table of mean Absolute percentage error (MAPE) of different combinations of segmentation and classification
methods, compared to human-labelled ethograms.Three segmentation methods are considered: (1) the threshold crossing
described in Sec. III E and Fig. 7, (2) the N-step windows where segments have a fixed size of N time-steps. The classification
and clustering algorithms tested are described in Section II B : DT stands for Decision Trees, kNN for k-Nearest Neighbours,
SVM for Support Vector Machines. The MAPE values are computed using the formula: MAPE = 1

n

∑n
t=1|

At−Ft
At
| with At

the human-labelled reference values and Ft the values obtained by classification methods. The best-performing scores are put
in bold.

Segmentation Method
Threshold crossing 1-step window 5-steps window
MAPE std.dev. MAPE std.dev. MAPE std.dev.

A
lg

o
r
it

h
m

Classification (supervised)

DT41 0.20 0.04 0.19 0.04 2.11 0.91
DT/Forest42 0.04 0.00 0.04 0.01 0.89 0.12
kNN43 5.40 1.60 5.56 2.87 6.37 4.22
SVM36 0.12 0.02 0.11 0.11 1.48 0.45

Clustering (unsupervised) K-Means43 8.57 3.84 12.99 4.76 12.73 4.98

can have a duration inferior to 5 time steps, and may
impact negatively the performance of the 5-step window
segmentation. The K-Means clustering algorithm give
promising results, but is outperformed by the tested
classification algorithms. It is not surprising, as this is
a clustering algorithm: it is not trained beforehand, and
cannot use any a-priori information (except the number
of labels).

Figure 8 shows an automated ethogram of an indi-
vidual chick using the best-performing segmentation
and classification methods: ”Threshold crossing” and
Decision Trees with Random Forest.

Figure 9 shows the distribution of durations of each
behaviour for all imprinted chicks (113 individuals),
all indifferent chicks (74 individuals) and all avoider
chicks (18 individuals), over three series of experiments.
Statistical analysis (Kruskal-Wallis one-way analysis of
variance40) shows that the three datasets are signifi-
cantly different (p=2.2375× 10−5).

Figure 10 presents an example of a trajectory of
an imprinted chick. This trajectory is segmented and
coloured according to the observed behaviour of the
chick. The chick tends to stop when it is changing
direction, or when it is changing it’s behaviour.

Automated ethograms generated by our methodology
can take two forms. Individual ethograms, in the form of
behavioural sequences (Fig. 8), describe the evolution of
the behaviour of a single chick (in one given experiment)
with respect to time. The global dynamics of chicks be-
haviour for all imprinted chicks can be described using
the transition frequencies between the seven behavioural
patterns considered (Table II). Transition frequencies can
be used to build global ethograms, in the form of Finite
State Machines, or state transition diagrams, as shown in
Fig. 11 (self-transitions are not taken into account). Ac-
cording to these figures, chicks tend to stop when they
are changing their behaviour.

C. Quantification of individual variability

In this section, we show that is it possible to quantify
the imprinting quality of the chicks toward the robot,
by using the individual ethograms described in Sec.
II B. Only data from imprinted and indifferent chicks
are considered, as avoiders chicks avoid any imprinting
stimuli toward the robot: the imprinting process fails
and the imprinting quality is null.

The global distribution of behaviours for every chick
can be found in Fig. 12. Our objective is to define
an imprinting index, corresponding to the measure of
individual attachment of a chick toward the robot. We
use information from the distribution of behaviour of
each chicks to compute this index. As we want to define
a one-dimensional index, this information needs to be
compressed.

We introduce a new representation of the behaviour of
each chicks, similar to the one used in 12 and previous
sections, but with a reduced dimensionality (3 instead
of 7): for each chick, a vector of three values (bs, bj , bc)
represents respectively the portion of time the chick (1)
rests, (2) runs toward the robot and (3) stays close to
the robot. These values are presented in Fig. 12. In
this representation, the ”Bumped” behaviour is ignored
because it only occurs rarely. The ”Other” behaviour
is ignored because it does not correspond to a clearly
identified behaviour.

To obtain a representation of chick behaviour with a
further reduced dimensionality, we performed principal
component analysis (PCA) on the dataset composed of
(bs, bj , bc) vectors for all chicks: 97.26% of the variance in
this dataset is explained by the first principal component.
This shows that the first principal component is sufficient
to quantify the behaviour of a chick. The first principal
component is computed as follow: bsps + bjpj + bcpc,
where ps = 0.7510,pj = −0.0975 and pc = −0.6531. We
define an imprinting index, corresponding to the measure
of individual attachment of a chick toward the robot, by
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FIG. 8: Automated ethogram of an individual chick. The method of behavioural classification based on Decision Trees
with Random Forests allows producing automated ethograms. The figure shows, for a test of 25 minutes, the sequence of
behaviours performed by the animal while the robot is constantly moving in a straight line at a constant speed of 70 mm/s and
reflecting randomly on the walls of the set-up. The enlargement shows a behavioural sequence of 1 min. The behaviours are
classified in seven categories namely: stop (red), joins (yellow), follow (green), in front(light blue), loops (dark blue), bumped
(orange) and other (grey). ”Stop” corresponds to moments when the chick is considered as not moving (see method), ”joins”
corresponds to a chick that is further away from the robot and that joins it, ”follows” correspond to an animal that is close
to the robot and follows it, ”in front” is when the chick goes in front of the robot, ”loop” is when the chicks makes a loop
around the robot, bumped is when the robot pushes the chick out of its way and ”other” means anything else than the previous
categories.
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behaviour. Each bar corresponds to a 25 min test of different individuals. The most important integrated fraction is the time
chicks spend not moving although they are following the robot.
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TABLE II: Transition (from rows to columns) frequencies among behavioural patterns for imprinted chicks (113
individuals). Probabilities were computed from a total of 66247 events. Probability values higher than 0.05 are put in bold.

Behaviours Stops Joins Follows In front Loops Is bumped Other
Stops 0.213 0.677 0.021 0.001 0.018 0.07
Joins 0.795 0.182 0.014 0.006 0.002 0.001
Follows 0.922 0.000 0.057 0.018 0.003 0.000
In front 0.787 0.002 0.210 0.000 0.001 0.000
Loops 0.829 0.004 0.163 0.002 0.002 0.000
Is bumped 0.666 0.002 0.328 0.002 0.002 0.000
Other 0.995 0.005 0.000 0.000 0.000 0.000

FIG. 10: Example of trajectories of one imprinted
chick and the robot in the experimental arena. The
magenta lines represent the robot trajectories in the arena,
while the coloured lines represent the trajectory of an im-
printed chick. Labelling of the chick trajectories by colours
was done automatically using Decision Trees with each colour
corresponding to specific observed behaviour.

a linear transformation of the first principal component:

ii = ii0 − (bsps + bjpj + bcpc),

where ii0 is chosen to separate imprinted and non-
imprinted (indifferent and avoiders) sets.

This imprinting index can be used to sort all chicks
by the “imprinting force” of a chick toward the robot.

A quantitative analysis of the imprinting level of
imprinted and indifferent chicks (187 individuals) was
performed (as described in Sec. II A), with results shown
in Fig. 13. It shows that the majority of indifferent
chicks have an imprinting index close to −20, with small
imprinting variability: it can be explained by the fact
that indifferent chicks are immobile during most of the
experiments. Imprinted chicks have a larger imprinting

FIG. 11: Sequence of behaviours according to the tran-
sition matrix probabilities. The possible sequences of be-
haviours are shown according to the transition matrix (see
Table II). The thickness of a transition arrow is proportional
to its occurrence probability. Only transitions with an oc-
currence probability higher than 0.05 are represented. Self-
transitions are not taken into account.

variability than indifferent chicks. Most imprinted chicks
have an imprinting index between 0 and 65.
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FIG. 12: Construction of a quantitative imprinting in-
dex based on the behavioural time budget. The his-
tograms represent the amount of time spend by a chick in
each type of behaviour. For each individual, it is possible to
build a vector, (bs, bj , bc), taking into account the most im-
portant behaviours. A PCA analysis show that 97.26% of the
variance in the data is explained by the first principal com-
ponent. Then, we build an imprinting index on the base of
a linear transformation of the vector. This imprinting index
allows to qualitatively sort each individual on an imprinting
scale. Only data from imprinted and indifferent chicks are
used.

ii

FIG. 13: Imprinting indexes Values and distribution of im-
printing indexes for all imprinted and indifferent chicks (187
individuals). Red colour corresponds to indifferent chicks and
blue colour corresponds to imprinted chicks. The bigger val-
ues correspond to higher level of imprinting

D. Time evolution of social bonding

We investigate the influence of social bonding on the
imprinting quality of chicks toward the robot. After the
imprinting process, 72 randomly selected chicks are put
in 12 groups of 6 individuals for 20 days. Each of these
group contains a random number of imprinted, indiffer-
ent and avoiders chicks. Then, we assess if the chicks have
changed their individual behaviour toward the robot by
performing another set of experiments, with the same ap-
proach described in previous sections. These experiments
were only performed on 42 individuals in 7 groups. We
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FIG. 14: Imprinting indexes evolution distribution. We
show here a distribution of difference in the imprinting index
between the second and the first individual tests for 71 indi-
viduals. Mean value of this dataset is −7.5018, thus we ob-
serve a general decline in the individual attachment towards
the robot, possibly due to the aging of the animals. Note that
this distribution is not normal, even if it looks the part (the
Kolmogorov-Smirnoff test fails when compared to the normal
distribution, with p = 0.4163).

produce imprinting indexes using the method described
in II C. To study the change in imprinting quality of
chicks put in groups compared to chicks alone, we in-
troduce the measure:

δii = iit2 − iit1

where iit1 and iit2 are the imprinting index of a chick
respectively before and after being put into groups. The
distribution of the δii measure is shown in Fig. 14. The
mean value of all considered δii is −7.5018: we observe
a general decline of individual attachment toward the
robot. It can possibly be explained by the aging of the
animals.

To take into account the composition of the groups in
our analysis, we introduce the group imprinting index
as an average of imprinting indices of group members
in the first individual test: iig =

∑6
k=1 ii

k
t1/6 where

iikt1 is the imprinting index of the k-th chick in a group
before being put into a group. We compute δgii as a
difference between the group average and the individual
imprinting index: δgii = iig − ii. Chicks for which this
value is positive shows an imprinting quality below
the average in their group, and chicks for which this
value is negative show more attachment toward the
robot compared to the average of their group. The
link between the δgii and δii is shown in Fig. 15. The
represented distributions are significantly positively
correlated (Student’s T test for a transformation of the
Pearson’s correlation p = 0.000012, with a correlation
coefficient of 0.5907). We observe that, after being put
in groups, chicks have an imprinting quality toward the
robot that is closer to the average of their group. A
chick that originally was not very interested in the robot
develops a stronger attachment after being placed in
the group of individuals strongly imprinted toward the
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FIG. 15: Quantifying social effects on the temporal
change of imprinting. Link between imprinting strength
evolution and deviation of the chick from its group based on
the change of the individual imprinting index after experi-
ments of 42 chicks in 7 groups of 6 chicks presenting various
level of imprinting. After being put in groups, chicks have
an imprinting quality toward the robot that is closer to the
average of their group. A chick that originally was not very
interested in the robot develops a stronger attachment after
being placed in the group of individuals strongly imprinted
toward the robot. A chick that originally was very attached
to the robot become less interested in the robot after being
placed in the group of individuals that have a low interest
toward the robot.

robot. On the other hand, a chick that originally was
very attached to the robot become less interested in the
robot after being placed in the group of individuals that
have a low interest toward the robot.

III. MATERIALS AND METHODS

Ethics statement Animal experiments were per-
formed in accordance with the recommendations and
guidelines of the local competent authority and ethic
committee.

A. The PoulBot robot

The robot does not look like a chicken, however chicks
developed a strong social attachment to it thanks to the
filial imprinting mechanism22. Chicks prefer imprinting
object with spotted pattern, dots or strikes23. Moving
objects are more attractive4, as visual imprinting would
occur on the association between object form and
movement24. Chicks are attracted by colours that are

easy to discriminate from the colours of the ground.
Red-orange or blue revealed to be the most attractive
colours25. Not only the nature but the characteristics
of the colours have an influence on recognition and
imprinting26. Chick can learn or be imprinted on static
coloured two-dimensional stimuli27. Contrasted patterns
attract more the chick attention and are more effective
for accurate memory28.

Auditory communication is of importance in poultry29

and imprinting also depends on auditory stimuli29,30.
Early exposure to auditory stimulus induces preferences
in experiments. Several vocalizations and their roles
still need to be investigated in imprinting process but it
is known that early exposure to a sound influence the
later preferences. It seems that both auditory and visual
learning are enhanced during the critical period, which
is consistent with the interpretation that imprinting is a
within-event learning occurring when elements and their
representations are linked31.

The main features of the robot namely movement,
colour pattern and sound emission have been designed
taking into account these results. Moreover, each of
them can be switched on and off and programmed
independently of each other allowing the study of the
multi-modality of factors favoring filial imprinting. The
fact that the robot is fully autonomous and can move in
the same environment as the chicks allows studies where
the animals can move freely and in groups, thus allowing
to study the link between individual and collective
behaviour.

The mobile robot used in this study is a track-type
mobile robot presented in Fig. 113. We named it the
PoulBot. The robot is a configuration of the marXbot
robot – a modular research robot developed at EPFL32.
The PoulBot consists of the following modules: a base
module providing energy, means for locomotion, a
gyroscope, an accelerometer, 24 short range infrared
proximity sensors around the robot and a speaker,
a colour pattern module allowing a robot to carry a
specific pattern, an extra ring of proximity sensors
placed above the colour pattern module and a main
computer board with a 533MHz Freescale i.MX31 and an
omnidirectional camera, the main board also provides
Wi-Fi and Bluetooth wireless connectivity. On the top
of the robot we fixed three colour markers used to track
the robot position and orientation with a camera fixed
above the experimental setup (see below). Every module
of the robot consists of one or several Microchip dsPIC33
microcontrollers that drive the sensors and/or actuators
of the module. The microcontrollers are connected
with each other and with the main computer of the
robot through a controller-area network (CAN) bus.
The robot can be extended with the sound acquisition
module and with the pecking module.
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The control system of our robot is a hierarchical be-
haviour based controller33. The robot is equipped with a
set of primitive behaviours tightly bonded with the sen-
sors and actuators of the robot. Each primitive behaviour
serves to achieve a particular goal or to perform a spe-
cific activity (e.g., wall-following or obstacle-avoidance
behaviours). The primitive behaviours are combined to-
gether to form higher level composite behaviours for spe-
cific experiments. Behaviour-based systems work well
in dynamic environments, in cases when fast reaction
and high adaptability are important. These characteris-
tics make the behaviour based approach a natural choice
when designing a control system for a robot that interacts
with animals.

B. Animal hatching housing and handling

We performed experiments with chicks, Gallus gallus
domesticus, from hatching up to 3 week-old. As breed,
we chose the egg layer White Leghorn that is common in
scientific studies. The incubators were disposed together
in a 10m2 isolated rearing room that was maintained
in the dark and at a constant temperature of 35◦C
during incubation. Eggs were incubated at the classical
temperature of 38◦C with a relative humidity of 70%.
After hatching, chicks were identified with numbered
plastic rings their hatching time was recorded. They
were left to rest and dry in the incubators. When
dry, they were kept in the dark in individual boxes
until the imprinting process. The light was left off to
reduce imprinting of first hatched chicks on siblings.
The presence of humans was reduced to the minimum
necessary for handling. During hatching, the frequency
of visit by experimentalists was of 1 hour.

During incubation and up to the imprinting process,
two speakers and a MP3 device played a calibrated sound
sound that the robots also played during imprinting and
tests. The sound was played from egg state to the end
of the imprinting sessions. This calibrated sound had a
frequency of 6kHz and with a beep duration of 150ms
and interval between two beeps of 350ms. These features
have been chosen in correspondence to the range of chick
audition44,45. We chose the upper threshold of the range
and a sound designed to be neutral since it is totally
artificial, which means that it is not related to a natural
chick or hen calls, such as alarm calls or clucking, and
have thus no biological sense. This was made for auditory
imprinting not oriented towards a special message signal.

After the imprinting process, chicks are kept in groups
of 6 in breeding nurseries and given food and water ad
libitum. The temperature of the breeding room was re-
duced during the three weeks from 32 to 23◦C according
to breeding standards.

C. Experimental setup and protocol

We ran open-field tests, where animals and robots
were released on a flat arena surrounded by walls and
their behaviour was studied. The experimental arena is
a flat square of 3 m by 3 m, surrounded by a wooden
wall of 60 cm in height. A common daylight lamp is
a source of a strong infrared (IR) emission that affects
the IR sensors of the robot. To resolve this issue, we
used lamps with reduced infrared emission FQ49W/965
by OSRAM. Twelve lamps were uniformly fixed on the
ceiling to provide lighting conditions as homogeneous
as possible. A Scout scA1000-30gc colour camera by
Basler Vision Technologies with a CS-mount T3Z2910CS
varifocal lens by Computar was fixed above the setup
for tracking and recording tasks. The camera has a
resolution of 1032 × 778 pixels and a maximum frame
rate of 30 frames per second. It uses a Gigabit Ethernet
connection to transfer video to the PC. The experimental
PC has an eight-core Intel CoreTM2 Quad processor and
2 GB of RAM. It runs the monitoring and recording
software presented in the next Section and the GUI
module of the robot control system. It also serves as
a temporary storage of the experimental data recorded
during the day, before the data is transferred to external
hard drives. The temperature in the experimental
room during the whole experimentation period was kept
constant. The experimental facilities are described in
Fig. 16. The imprinting set-up is shown in Fig. 17.

The imprinting procedure precedes every series of
experiments. Depending on birth rates, we tried to
compose imprinting batches with chicks born within
at most two hour intervals. This was made to have a
sufficient number of chicks per imprinting session. To
perform the imprinting we build an arena composed of
two rows of boxes on the sides. Four boxes were built
in MDF wood with a Plexiglas side facing the wall to
let chicks see the robot that traveled back and forth
in front of them. Wooden boxes were 1500x150x300
mm. Each box had ten compartments of 150x150 mm
to house one chick at a time. By putting one chick per
box the setup allowed the simultaneous imprinting of 40
chicks. Four robots moved along the walls in front of
each box at a close distance of about 100 mm , forward
and backward, at a speed of 60 mm/s, one in front of
each box. The robots emitted a calibrate sounds that
was the same as during incubation and hatching (see
above) and displayed a specific colour pattern. This
individual and in-line imprinting process was designed
to reduce imprinting among siblings. We performed
the imprinting sessions according to the optimal period
for chicken filial imprinting the The first exposure to
the robots was 9 hours after hatching46,47. The first
exposure was programmed 9 hours after the birth of the
chicks. Three sessions of one hour in the presence of
the robot were done interrupted in-between by one hour
resting time in the breeding room. Rotation were done
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FIG. 16: Experimental facilities. The experimental arena is a square of 3 m side length surrounded by walls made of 0.6 m
high wood boards. The arena is filmed by a digital camera at 10 frames/s connected to a computer by a gigabyte Ethernet link.
During the experiments there is no human in the experimental room as the system is fully autonomous. The computer records
and processes the digital video of a trial in real time. It can also monitor and display a trial remotely for human supervision.
The computer can also monitor the robot and send instruction to it, if necessary. Animals and robots are introduced in the
set-up and let free to move around in the arena for 30 minutes by trials.

FIG. 17: Design of the imprinting set-up. The robots travel back and forth between two walls in front of the chicks.

to imprint all chicks of a hatching batch (100 individuals
at most).

Shortly after an end of the imprinting procedure we
tested all chicks: every chick was left for a half an hour
with a robot wandering on the experimental arena and
chick behaviour was observed. The robot emits a cali-
brated beeping sound and moves straight at a constant
speed of 70 mm/s. When the robot reaches an edge of
the set-up it bounces back with a random angle. The
speed of the robot was selected according to observation
of the mean chick speed during previous calibration ex-
periments. Each test lasted for 30 minutes and for data
analysis the first 2 minutes are skipped and the next 25
minutes are kept. This avoids artifacts due to animal in-
troduction and extraction from the experimental setup.
All tests were recorded and stored as digital videos for
further processing. The chicks were tested, one after the
other, in the sequence corresponding to their age, older

first, younger last.

D. Classification of filial imprinting

For classifying chicks imprinting success, as described
in Sec. II A, we used a linear support vector machine
(SVM) classifier, a supervised learning method that is
often used to solve problems in classification, regression,
and novelty detection34–36.

Classification using linear SVM is performed by
solving the problem of finding a hyperplane partitioning
the training dataset. During training, the examples of
separate classes are separated by a gap that is as wide as
possible. We make the hypothesis that our exploration
space can be linearly separated, so using linear SVM
(instead of the non-linear SVM using kernel function48)
is sufficient. SVM is fundamentally a two-class classifier,
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but a number of methods exist to handle a higher
number of classes36.

The LIBSVM (Version 3.0)49 was used to perform the
classification.

We used the following statistics on chicks and robot
movements as relevant features (explanatory variables)
for the classification process: mean distance between
a robot and a chick, mean speed of a chick, and its
standard deviation. We reduced the dimensionality of
the related feature vector from three to two by using
principal components analysis (PCA)36. The result-
ing dataset was used to train a three-class SVM classifier.

The training takes about 6 milliseconds (with 64 in-
dividuals) and the classification takes about 7 millisec-
onds (for 205 individuals) with Matlab R2011b running
on an ordinary laptop PC (Lenovo Thinkpad T60p, Linux
Ubuntu 12.04). Moreover, for individual tests the extrac-
tion of the chick and robot positions is done automati-
cally in real time during the recording of the test. Thus
the classifier allows to categorize, in real time, rapidly,
large batches of experiments saving a huge amount of
experimental time.

E. Segmentation of trajectories

The recorded experimental videos were analyzed
during the experimental run using a SwisTrack that
is an open source multi-platform tracking software50.
The robot position and orientation are defined by
three colour markers on top of it. Thus the detection
of robots and chicks is colour based. The coordi-
nates of the robots and the animals extracted from
the video were mapped to the real-world coordinates
(in mm) by using the calibration routine based on
the well known Tsai’s calibration technique51. In
order to remove high frequency noise introduced into
trajectories by the detection errors, every trajectory
is filtered by using the Savitzky-Golay smoothing filter52.

This trajectories are then segmented. The segmenta-
tion process identify segments of the trajectories (i.e.:
group of continuous time-steps in the chicks behavioural
traces) when the chick exhibit a particular behaviour.
This is a first step toward labelling the trajectories with
the observed behaviour of the chicks toward the robot.
In an optimal segmentation, segments should end when
a chick changes into behaviour. A typical segmentation
method used in the literature is the N -steps window seg-
mentation: trajectories containing M time-steps are split
into M/N segments each with a size of N time-steps. An
extreme case is the 1-step window segmentation, where
every time-step is a new segment. Note that the choice
of N can influence the reliability of a segmentation: if N
is too big, segments can include period of times where

the chicks exhibit several different behaviours. On the
other hand, N -step window segmentation with a low N
can be more sensitive to noise. We introduce a more
robust segmentation method, the ’Threshold crossing’
method. We make two hypothesises, supported by hu-
man observations: first, that chicks reduce their speed
below a given threshold when they change behaviour;
second, that chicks accelerate when they begin to exhibit
a given behaviour, and decelerate when they change be-
haviour. This allow us to introduce an original segmen-
tation method, that we call ’Threshold crossing’. This
segmentation method is based on the speed and acceler-
ation of a chick (Fig. 7): time-steps when the speed or
acceleration of a chicks are below predefined thresholds
are considered as stops.

F. Classification and Clustering of trajectories

To find the quantitative representation of these
behaviours in the parameter space we use either classi-
fication algorithms or clustering algorithms. To prepare
the training set we manually labeled a number of seg-
ments of trajectories, obtained using the segmentation
method described in III E. While classification algo-
rithms are trained on human-labelled data, clustering
algorithms identify behaviours without any training.
Either techniques will label observation data into 7
classes of behaviours: ”stops”, ”joins”, ”follows”, ”in
front”, ”loops”,”bumped” and ”other”, which reflect the
activity of the chick, and its relation to the movements
of the robot. The Python library scikit-learn was used
to perform all classification and clustering operations.

(1) Decision Trees (41, DT in Table I). Decision Trees
correspond to a recursive partitioning of the training
set into several homogeneous subsets. It has a flowchart
structure where nodes and branches represent conditions
(expressing how to partition the training set), and
leafs nodes represent class labels. Decision Trees are
non-parameter and nonlinear, and so can be used in
cases when little is known a-priori about the relationship
between the variables. They are also simple to interpret
and verify by a human. The classification could incur a
loss due to overfitting, a pruning mechanism53 was used
to solve this issue.

(2) Random Forests (DT/Forest in Table I). It is a
variation of the Decision Tree method: one can use an
ensemble of trees, that is known as a random forest42,
instead of a single tree, to increase the accuracy of
classification.

(3) A k-Nearest Neighbours classifier, with an eu-
clidean distance metric43. This algorithm makes use of
a measure of similarity between all the training records
and the features of the object to be classified, then
identify the most similar k neighbours of all objects,
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and determine each object class by an object by a
majority vote of its neighbours (i.e. assign the class
which is the most frequent among the k training records
nearest to that object). Note that kNN classifiers are
known to be sensitives to noisy, irrelevant features, or
by the difference of scaling of the features43. That may
explain the classification results (Table I), where kNN
was out-performed by other algorithms.

(4) Linear multi-class SVM classifier, as described in
Section III D.

(5) K-Means43. This clustering algorithm partitions
the observations into K = 7 clusters, in which each
observation belongs to the cluster with the nearest
mean. The results are akin to partitioning the data
space into Voronoi cells. Convergence speed can be
greatly affected by the choice of initial values. We use
the popular k-means++54 algorithm for choosing initial
values.

IV. DISCUSSION

This study validates the use of imprinting to ensure
a social bond between robots and animals in order to
perform controlled experiments with calibrated stimuli
and sustained social interactions. When the robots are
accepted by the animals, they can be programmed to
keep sustained social interactions with them in long
duration trials (our experiments lasted 30 minutes).
As the robots are autonomous and work in close loop
of interactions with the animals,they allow to avoid
any human interference during the trials. The whole
set-up presented here works in absence of humans in the
experimental room and without supervision. The robots
can be programmed to produce calibrated and repetitive
multi-modal stimuli including visual (colour patterns),
sound (prerecorded natural cues or totally artificial) and
motion patterns.

Moreover, we build a framework that allows au-
tomation of high throughput data analysis. From the
positions of animals and their dynamics in time we
construct quantitative automated ethograms.

We test state-of-the-art algorithms to automate data
analysis and show that supervised method based on
Decision Tree with forest gives the best results. We
also show that simple unsupervised methods such as
K-means already gives interesting results. Here, the
algorithms allow to combine the knowledge of human
experts with fast computational methods. It is then
possible to analyze the experimental data of 205 animals
in a few minutes on modern computers.

This paper has two contributions. First, we introduce

a methodology that allows the automated generation
of quantified ethograms both on the individual level
(represented by sequences of labelled behaviours) and on
the group level (represented by Finite State Machines).
Second, we investigate the individual variability of
chicks in term of imprinting, using a classification
algorithm. Results also confirm that social bonding have
an influence on the imprinting quality. We observe that,
after being put in groups, chicks have an imprinting
quality toward the robot that is closer to the average
of their group. A chick that originally was not very
interested in the robot develops a stronger attachment
after being placed in the group of individuals strongly
imprinted toward the robot. On the other hand, a chick
that originally was very attached to the robot become
less interested in the robot after being placed in the
group of individuals that have a low interest toward the
robot.

This methodology is a first step towards mathemat-
ical modelling based on quantified ethograms, and this
study is a first step toward making the link between
inter-individual variability and collective behaviour. In
our methodology, we first study and quantify individually
each chick. Then, the chicks are put in different grouping
configuration, according to their inter-individual variabil-
ity. An interesting and on-going perspective is to make
a group behaviour analysis taking in account the chicks
individual behavioural traits, and the group composition.
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