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ABSTRACT

Collective movements are pervasive behaviours among social organisms and have led to the development of many models.
However, modelling animal trajectories and social interactions in simple bounded environments remains a challenge. Moreover,
advances in the understanding of the sensory-motor loop and the information processing by animals are leading to revisions of
the traditional assumptions made in decision-making algorithms. In this context, we develop a methodology based on artificial
neural networks (ANN) to describe the collective motion of small zebrafish groups in a bounded environment. Although ANN
models are commonly used in artificial systems they are still under-explored to model animal collective behaviours. Here,
we present a methodology to calibrate Multilayer Perceptrons by learning from real fish experimental data. The ANNs are
trained using either supervised learning or various forms of evolutionary reinforcement learning methods (using the CMA-ES
and NSGA-III algorithms). We reveal that ANN models trained using evolutionary methods are capable of generating realistic
collective motions for groups of 5 zebrafish including the tank wall effects, a feature that is lacking in previous models. Finally,
we also discuss the benefits of optimised ANNs as candidates for driving robotic lure with biologically realistic behaviour, a
method that is becoming increasingly popular to gather data and validate assumptions on collective behaviours.

Introduction
Collective motion is one of the most ubiquitous collective behaviour displayed by fish and can lead to collective
decision-making1. An interest to study the link between individual behaviours and collective patterns has arisen
out of these numerous observations and led to the development of models simulating agents performing collective
movement and behaviours. A large variety of models exist to describe collective motion in biological systems2.

Modelling the collective motion of fish groups remains a challenging task, in particular for generating accurate
collective trajectories3. The first models were computer simulations describing the motion of a collection of
individuals taking into account a collision avoidance and speed alignment mechanisms4. In this kind of simulations,
the time step updating can be synchronous5,6 or asynchronous7,8. Recent updated version of this kind of modelling
has also been used9,10. In physics, models of self-propelled particles (SPP) have been developed to analyse the type
of transitions between different group patterns from a phase transition point of view11–15. Inspired by mathematical
models of random walk, kinematic models modelling fish trajectories with stochastic differential equations have
also being developed to describe animal collective motions16–19. Most of these models consider animals as simple
particles submitted to some kind of "social" forces that allow the emergence of collective motion patterns.

Probabilistic models based on a mechanism that takes into account visual perception and motion direction
have been proposed20–22. The model considers the three dimensional visual sensory system of fish that adjust their
trajectory according to their perception field. It introduces a stochastic process based on a probability distribution
function to move in targeted directions rather than on a summation of influential vectors as it is assumed by previous
models.

If the considered behaviours are more complex than aligned collective motion in unbounded environments more
elaborate models are needed. Modelling realistic bounded and structured environments requires multilevel models
that take into account perception of the environment and the other individuals and that allow decision-making23–25.
It is also an important issue to calibrate multilevel and spatially dependent social behaviour model because it involves
trade-offs between social tendencies (e.g. aggregation, group splitting), and response to the environment (e.g.
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wall-following, zone occupation). We have previously shown that an optimisation method based on multi-objective
evolutionary computation gives good results for complex models of collective behaviour26–28.

Objectives
Zebrafish is a classic animal model in genetics and neurosciences. It has been used extensively to study individual and
collective behaviours, through experimental observations and modelling. Our goal is to automatically build models
able to generate zebrafish trajectories that capture social interactions of individual fish within a small group of 5 fish
placed in a bounded environment (i.e. with walls). We aim at generating models for autonomous fish agents that
perform realistic collective behaviours for lasting duration of at least 30 minutes. This work participates to another
general objective, namely to design robotic fish that can socially interact with live fish in realistic environments29,30.

Contributions
We consider groups of 5 agents including n simulated autonomous agents driven by the MLP model and (5− n)
"real" agents with trajectories replayed from fish trajectories acquired from experimental observations. Varying the
number n of simulated agents makes it possible to tune the level of difficulty. A value of n = 1 (easy setup) implies
that the simulated agent should blend into a group performing realistic trajectories while a value of n = 5 (difficult
setup) requires that realistic trajectories are endogenous to the simulated agents.

Our method is summarised in Fig. 1. We rely on a multi-agents approach where each simulated agent is controlled
by a Multilayer Perceptrons (MLP)31 using high-level sensory inputs and actuators that are similar to what is available
to zebrafish (see Table 1). MLP weights are trained using either supervised learning or stochastic optimisation
techniques so as to generate relevant trajectories w.r.t. the expected behaviours. To do so, we define an objective
function to maximise, which quantifies simulated agent individual trajectories (e.g. linear and angular speeds), group
dynamics (e.g. inter-individual distances, polarisation) and relation with the environment (e.g. distance to wall). By
using experimental data as a reference, the performance of MLP-driven simulated agents can be assessed.

Our results show that it is possible to design and automatically calibrate neural network models to act as
simulated agent controllers. In particular, we reveal that evolutionary optimisation methods, namely CMA-ES32 and
NSGA-III33, provide a great improvement over more classic supervised learning methods. This is due to the ability
of evolutionary computation to act as a policy-search reinforcement learning method34, where sequential decisions
are considered. This is very different than with supervised learning, where the goal is to devise effector outputs
based solely on immediate sensory information without any regards from the sequence of actions (past or future).

Methods

Animal handling and experimental set-up
Our experiments involved 10 groups of 5 adults (6-12 months old) wild-type AB zebrafish (Danio rerio) in ten
30-minutes trials as in28,30, 35–37. Rearing and handling of the fish are described in the supplementary file. We use
the experimental set-up that consists of a walled arena of 1×1×0.1 m described in 28,30, 35–37 and detailed in the
supplementary.

Artificial neural network model
Black-box models, like artificial neural networks (ANN), can model phenomena with few a priori information. To
our knowledge, they were only used to model fish collective behaviour in preliminary studies36,38. We extend the
methodology from36 based on experimental data, and we show that it is relevant to model zebrafish individual and
collective behaviours. This methodology (Fig. 1) makes use of Multilayer Perceptron (MLP)31 artificial neural
networks that are calibrated through the use of evolutionary algorithms to model the behaviour of simulated fish-like
agents in a group of 5 individuals. Three cases with increasing difficulty are considered with groups composed of
respectively 1,3,5 simulated agents driven by the calibrated MLP models and 4,2,0 agents following the experimental
trajectories of experimental fish.

MLP are a type of feedforward artificial neural networks. They are very popular in artificial intelligence to solve
a large variety of real-world problems39. They have the capability to universally approximate functions40 which
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Figure 1. Workflow of the methodology to optimise artificial neural networks to model fish behaviour. An
evolutionary algorithm is used to evolve the weight of Multilayer Perceptron (MLP, 1 hidden layer, 100 neurons) that
serve as behavioural models of fish-like agents in multi-agents simulations. The fitness function is computed through
data-analysis of these simulations and represent the biomimetism metric that quantifies the realism of the simulated
fish behaviour compared to the behaviour exhibited by the experimental fish. Two evolutionary algorithms are tested:
CMA-ES (mono-objective) and NSGA-III (multi-objective).

makes them suitable to model control problems39. We consider MLP with only one hidden layer of 100 neurons
(using a hyperbolic tangent function as activation function) as in36.

For the considered focal agent, the neural network model takes the 20 parameters of Table 1 as input. This set of
inputs is typically used in multi-agent modelling of animal collective behaviour2,41. We consider that it is sufficient
to model fish behaviour with neural networks.

The neural network has 2 outputs (Table 1) corresponding to the change in linear and angular speeds to apply from
the current time-step to the next time-step. Our approach models fish trajectories resulting from social interactions in
a homogeneous environment bounded by walls. Very few models of fish collective behaviours take into account the
presence of walls22,23, 30, 36.

Data analysis
Zebrafish behaviour is multi-level (i.e. with different dynamics at the level of individual trajectories vs. at the level of
group behaviour) and multi-modal (i.e. with several kind of exhibited behaviours)30,35, 42. In a bounded environment,
zebrafish group exhibit a trade-off between aggregation and wall-following behaviours. Groups tend to be short-lived
with individuals continuously leaving and joining the groups30.

We quantify zebrafish behaviour by analysing each trial e (experiments or simulations) and use the tracked
positions of agents to compute the following behavioural metrics:

at the level of individual trajectories the distributions of instant linear speeds (Le) and the distributions of instant
angular speeds (Ae). These metrics assess the biomimetism of agent individual trajectories.

at the level of group dynamics the distribution of inter-individual distances between agents (De) and the distribution
of polarisation of the agents in the group (Pe). The inter-individual distance evaluates the aggregative behaviour
of the fish groups. The polarisation of an agent group measures how aligned the agents in a group are, and is
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Name # of param. Description
Linear speed 1 Instant linear speed of the focal agent at the previous time-step
Angular speed 1 Instant angular speed of the focal agent at the previous time-step
Distance towards agents 4 Linear distance from the focal agent towards each other agent
Angle towards agents 4 Angular distance from the focal agent towards each other agent
Alignment (angle) 4 Angular distance between the focal agent heading and each other agent heading
Alignment (linear speed) 4 Difference of linear speed between the focal agent and each other agent linear speed
Distance to nearest wall 1 Linear distance from the focal agent towards the nearest wall
Angle towards nearest wall 1 Angular distance from the focal agent towards the nearest wall

Name # of param. Description
Delta linear speed 1 Change of instant linear speed of the focal agent from the previous time-step
Delta angular speed 1 Change of instant angular speed of the focal agent from the previous time-step

Inputs

Outputs

Table 1. List of the 20 parameters used in inputs and of the 2 parameters used as outputs of the neural network
models of agent behaviour.

defined as the absolute value of the mean agent heading: P = 1
N

��∑N
i=1 ui

�� where ui is the unit direction of agent
i and N = 5 is the number of agents43.

in relation with the environment the spatial (2D) distribution of probability (density) of presence in the arena
(Ee) and the distribution of distances of agents to their nearest wall (We). These metrics assess the spatial
repartition of the fish in arena.

We compute a biomimetism score using the similarity measure defined in30,36, 42 to quantify the realism of
the behaviour of a group of simulated agents. It compares the behaviours of this group with the behaviours of the
experimental fish averaged across all 10 experimental trials (Control case ec). This score ranges from 0.0 to 1.0 and
is defined as:

S(e,ec) = 5
√

I(Le, Lec )I(Ae, Aec )I(De, Dec )I(Pe, Pec )I(Ee, Eec ) (1)

The function I(X ,Y ) is defined as such: I(X ,Y ) = 1−H(X ,Y ). The H(X ,Y ) function is the Hellinger distance
between two histograms44. It is defined as: H(X ,Y ) = 1√

2

√∑d
i=1(
√

Xi −
√

Yi)2 where Xi and Yi are the bin frequencies.

Optimisation
We calibrate the MLP models describing agent behaviour to match as close as possible the dynamics of fish in
groups of 5 individuals during 30 minutes simulations (15 time-steps per seconds, i.e. 27000 steps per simulation)
using a methodology inspired from36,42. This is achieved by optimising the connection weights of the MLP using
evolutionary algorithms that iteratively perform global optimisation (inspired by biological evolution) on a defined
fitness function so as to find its optimal value45,46.

This calibration is a challenging problem because controllers have to cope with the multi-level and multi-modal
nature of fish collective behaviour. It has to take into account conflicting behaviours and dynamics: dynamics
at the level of the individual (individual trajectories), at the level of the group (aggregation) and in response to
environmental stimuli (wall following behaviour). The optimisation process must handle an ill-defined fitness function
(incorporating the biomimetic score defined earlier) that only describes partially the behaviour of experimental fish
and that follow an aggregated representation (the biomimetic score aggregates several unrelated metrics).

We consider five optimisation methods (Table 2). Each case corresponds to a different way of optimising the
MLP controllers and caters to different difficulties of the calibration process. We employ two global optimisers:
CMA-ES32 and NSGA-III. The CMA-ES32 algorithm is a popular state-of-the-art global optimiser that is able to
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handle problems where few assumptions need to be made on the nature of the underlying fitness function. It is able to
cope with noisy, ill-defined fitness functions. It is a mono-objective optimisation algorithm (i.e. the fitness function
is unidimensional, only one objective is optimised). The NSGA-III33 algorithm is a popular multi-objective (i.e. the
fitness function is multi-dimensional, several objectives are optimised) global optimiser . It is considered instead of
the NSGA-II algorithm47 employed in42 because it is known to converge faster than NSGA-II on problems with more
than two objectives48.

In the CMA-ES case, we use the CMA-ES32 algorithm with the task of maximising the biomimetism score
between MLP-driven agents simulations (eo) and experiment fish groups (ec): Seo ,ec . This case tests the hypothesis
that a mono-objective solution is sufficient to cope with the multi-modal nature of the problem.

In the NSGA-III-SP (Selection pressures) case, we use the NSGA-III33 to maximise three objectives. The first
objective is a performance objective corresponding to the biomimetism score function: Seo ,ec . We also consider
two other objectives used to guide the evolutionary process: one that promotes genotypic diversity49 (defined by
the mean euclidean distance of the genome of an individual to the genomes of the other individuals of the current
population), the other encouraging behavioural diversity (defined by the euclidean distance between the Le, Ae, De,
Pe and Ee scores of an individual). This case tests the hypothesis that the optimisation process needs a mechanism
adapting the exploration vs exploitation tradeoff and encourage the exploration of solution with varying behaviours.

In the NSGA-III-CM (Combined Metrics) case, we use the NSGA-III33 to maximise three objectives. The first
objective is a performance objective corresponding to the biomimetism score function: Seo ,ec . The second and
third objectives correspond to the aggregation of behavioural metrics related either to group behaviours (mean of
inter-individual distance score De and polarisation score Pe) or related to individuals trajectories and response to
environmental factors (mean of linear speeds score Le and density of presence in the arena score Ee). This case tests
the hypothesis that the optimisation process must explore solutions handling dynamics at different scales.

In the NSGA-III-AM (All metrics) case, we use the NSGA-III33 to maximise five objectives: one corresponding
to the biomimetim score function Seo ,ec , and the four others corresponding to the four behavioural distances metrics
considered: the linear speeds score Le, the inter-individual distance score De, the polarisation score Pe and the
density of presence score Ee. This case tests the hypothesis that the optimisation process must explore solutions
catering to each considered behavioural metrics.

In the NSGA-III-Nov (Novelty) case, we use the NSGA-III33 to maximise two objectives. The first objective is
a performance objective corresponding to the biomimetism score function: Seo ,ec . The second objective is a novelty
measure as defined in50,51. It promotes the search of novel behaviours rather than only the search of efficiency
(performance). This process has two benefits over optimising only performance: it can circumvent the deceptiveness
present in some problems and it allows the evolutionary process to be more open-ended. Here, our problem is
potentially deceptive has it involves trade-offs between different expected behaviours; their combination produces a
large number of local optima in the fitness function. The novelty measure ρ(i) of individual i is computed from a
growing archive of previously encountered solutions (containing genomes and performances of previously evaluated
individuals). It corresponds to the mean behavioural distance between i and its k nearest neighbours in the archive:
ρ(x) = 1

k

∑k
j=0 d(x, µj), with µj the j-th nearest neighbour of x, and d the euclidean distance. Our best performing

results are obtained with k = 4.
In the SL (Supervised Learning) case, we employ a supervised learning approach to train MLPs to match

experimental fish behaviour. The learning process is achieved by using the Adam52 global optimiser. During training,
a dropout layer (probability of dropout: 0.3) is added after the hidden layer. The training dataset corresponds to the
reconstructed sets of inputs and outputs for each agent of the experimental fish trajectory at each time-step. The loss
function is the mean squared error compared to the reference outputs for a given set of inputs.

In all cases, we use populations of 120 individuals and 500 generations. Each case is repeated in 10 different
trials. We use CMA-ES and NSGA-III implementations based on the DEAP python library53.
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Case name Algorithm # of objectives Objectives
CMA-ES CMA-ES32 1 Biomimetism score
NSGA-III-SP (Selection Pressures) NSGA-III33 3 Biomimetism score, genotypic diversity, behavioural diversity
NSGA-III-CM (Combined Metrics) NSGA-III33 3 Biomimetism score, trajectory metrics, environment metrics
NSGA-III-AM (All Metrics) NSGA-III33 5 Biomimetism score, inter-individual score, linear speeds score,

polarisation score, density of presence score
NSGA-III-Nov (Novelty) NSGA-III33 2 Biomimetism score, novelty
SL Adam52 - Loss function: mean squared error

Table 2. List of evolutionary algorithms methods used to optimise the MLP controllers weights. The
best-performing controllers obtained through each method is compared to the experimental fish behaviours (Control
case) of ten 30-minutes trials of five agents (simulated or experimental fish). The considered objectives are
described in the Methods section. All evolutionary methods have a budget of 60 000 evaluations over 500
generations with populations of 120 individuals. Each methods is repeated through 10 different runs and fitness are
computed across 10 different simulation trials per evaluation. The CMA-ES algorithm was used with an initial
σ = 0.5. The NSGA-III algorithm was used with rates of crossovers of 1.0 and rates of mutations of 0.2. In the SL
case, MLP are trained by Adam52 over 150 epochs with a batch size of 64 and a learning rate of 0.000005.
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Figure 2. Quantitative analysis of the difference of behaviour between the 5-agent experimental fish groups
(Control) and 5-agent groups formed by 1,3,5 simulated agents and respectively 4,2,0 experimental fish from the
Control case. The simulated agents are driven by the best-performing MLP models optimised by CMA-ES or
NSGA-III algorithms and according to the configurations detailed on Table 2, obtained after 10 optimisation runs.
Results are obtained over 10 different trials (experiments for fish-only groups, and simulations for ANN models). We
consider five behavioural features to characterise exhibited behaviours. Inter-individual distances corresponds to
the similarity in distribution of inter-individual distances between all agents and measures the capabilities of the
agents to aggregate. Linear speed distributions corresponds to the distributions of linear speed of the agents.
Polarisation measures how aligned the agents are in the group. Probability of presence corresponds to the
similarity in spatial distribution of agent density of presence in each part of the arena. It involves the comparison of
2D spatial histograms as seen in Fig. 3B. The Biomimetic score corresponds to the geometric mean of the other
scores. Scores of simulated groups with 1 simulated agent optimised by evolutionary methods are not significantly
different (Wilcoxon test, p < 0.05) from experimental fish groups. However, scores of simulated groups with 3 or 5
simulated agents optimised by all methods are all significantly different from experimental fish groups.
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Figure 3. Kinetic behaviour of the agents (simulated or experimental fish) in the arena, using the best-performing
controllers. These controllers are MLP neural networks evolved through the five considered methods. They can be
compared to experimental fish (Control case) in 30-minutes trials in the square (1m×1m) arena, obtained as in22,35.
A Examples of individual trajectories of one simulated agent among the five making the group over one minute (900
time-steps). B Presence probability density of all autonomous agents in the arena represented by 2D histograms with
25×25 bins.
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Results

We consider simulations with groups of 5 agents including 1, 3, or 5 simulated MLP-driven agents (Fig. 1) and
respectively 4, 2, or 0 agents with trajectories corresponding to experimental fish data. We analyse the behaviour the
MLP-driven agents and quantify how they compare to the behaviour of fish-only groups (Control case). The MLP
controllers are calibrated using the methods described in the previous section. We only consider the best-evolved
ANN controllers.

Examples of agents trajectories are found in Fig. 3A. For all simulated cases, they correspond to the trajectories
of an MLP-driven agents, and can be compared to the trajectories of an actual fish in the Control case. We can see
that the MLP-driven agents exhibit wall-following behaviour as in Control but their trajectories incorporate patterns
not found in actual fish trajectories. Namely, small circular loops can appear in all simulated cases (especially here
with NSGA-III cases) when simulated agents performs U-turns to catch up with the rest of the group. Previous
analyses in36 showed that this effect cannot be easily mitigated even when the fitness function takes into account
agents angular speeds.

We present the presence probability density of all agents in the arena in Fig. 3B. In experiments with only one
MLP-driven agent, the resulting presence probability densities of all cases match those of the Control case. However,
experiments with 3 or 5 MLP-driven agents can exhibit excesses of density of presence in corners compared to the
Control case, despite that presence probability density is taken into account in the fitness function computation.
It is especially present in experiments with 3 MLP-driven agents, and in the NSGA-III-SP, NSGA-III-CM and
NSGA-III-AM cases.

We compute the biomimetism scores (Fig. 2) presented in the Methods section quantifying the similarity between
MLP-driven agents trajectories and Control case experimental fish trajectories. The similarity scores for each
behavioural metric is found in Supplementary Information (Fig. 4).

The results of the Control case show a large variability in behaviour of the experimental fish because the 10
tested fish groups are composed of different fish (totalling 50 different fish) with different behaviour and individual
preferences. This is especially the case with fish linear speeds (corroborating studies on zebrafish behaviour35,54) and
wall-following behaviour (measured by the probability of presence scores). This suggests that fish follow walls from
a distance that vary according to group composition, with sporadic (to a varying degree) passes through the centre of
the arena, possibly in small short-lived sub-groups. Conversely, the fish tend to exhibit similar degree of alignment
across the 10 experimental runs and sustained aggregative tendencies (measured by inter-individual distances scores).

All results obtained using the SL case are sub-optimal compared to results obtained through evolutionary
computation.

The similarity scores of all evolutionary cases for groups with only 1 MLP-driven agent are within the variance
domain of the Control case, except for the polarity score: it shows that these groups exhibit relatively similar
dynamics as a fish-only group (at least according to our proposed measures). However, it remains difficult for the
MLP-driven agent to stay aligned with the rest of the group. This is exemplified in Fig. 3A by the tendency of the
MLP-driven agents to exhibit small trajectory loops, possibly as a sustained effort to remain close to the centroid of
the group. Previous results in36 showed that it is difficult to prevent this occurrence, even when agent angular speeds
distributions are taken into account in fitness computation.

However, simulations of groups with 3 or 5 MLP-driven agents correspond to far more complex problem tasks
and bring about results with mostly lower mean similarity scores than the Control case. In both types of groups,
the CMA-ES case displays the best-performing individuals in term of biomimetic scores, with the NSGA-III-AM
case corresponding to individuals with the lowest biomimetic scores amongst evolutionary cases. This is also the
cases for inter-individual distances scores with results of the CMA-ES, NSGA-III-Nov and NSGA-III-CM cases
with the variance domain of the Control case. All evolutionary cases display lower inter-individual distances scores
for groups with 3 MLP-driven agents than with groups with 5 MLP-driven agents: it suggests that it is easier to
aggregate with autonomous simulated agents capable of reacting to other agents (groups of 5 MLP-driven agents)
rather than aggregate with the 2 non-responsive agents present in groups of 3 MLP-driven agents.

The situation is reversed with linear speeds scores, where most cases exhibit lower similarity scores with groups
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of 5 MLP-driven agents than in groups of 3 MLP-driven agents. Indeed, groups of 3 MLP-driven agents includes 2
agents with trajectories taken from experimental fish which would bias the scores to be closer to the Control case.

Depending on the behavioural metrics, different cases have varying degree of similarity to the Control case
because they each have a different objective space, with several way of representing the target task. As such, some
behaviours are easier to reach depending on the methodological case. With groups of 5 MLP-driven agents, the
CMA-ES case has the highest scores of inter-individual distances, linear speeds and probability of presence. The
NSGA-III-CM case has the highest polarity scores.

Discussion

Developing artificial neural network models for fish collective behaviours is a challenging issue because fish
behaviours are multi-level (tail-beats as motor response vs individual trajectories vs collective dynamics), multi-
modal (variety of behavioural patterns, input/output sources), context-dependent (behaviours depending on the spatial
position and neighbours or group structure) and intrinsically stochastic (leading to individual and collectives choices
and action selection)22,55. Moreover, fish dynamics involve trade-offs between social tendencies (aggregation, group
formation), and response to the environment (wall-following, zone occupation). They also present distinct movement
patterns that allow them to move in polarised groups and react collectively to environmental and social cues.

Here we show that evolved MLP models give good results for modelling zebrafish collective behaviours taking
into account the boundaries of their environment. We quantify the realism of these MLP-driven autonomous agents
compared to experimental fish by computing biomimetism scores.

Our methodology involves the calibration of these MLP models by using evolutionary computation to match
experimental fish behaviour, using a biomimetism score as a performance objective. We employ and test both a
mono-objective (CMA-ES32) and a multi-objective (NSGA-III33) evolutionary algorithms to calibrate the weights of
the MLP models. Here, we consider 1 to 5 autonomous MLP-driven agents. This allows to test models that do not
need any fish present and still exhibit similar dynamics as fish groups. When considering more than one autonomous
agent the task of optimising MLP models become far more difficult but it is more realistic as all modelled agents
are capable of reacting to one another. We compare the results obtained through evolutionary computation to a
supervised learning methodology where we train the MLP models on the reconstructed dataset of inputs and outputs
for each time-step of the experimental data. This supervised learning method only provides sub-optimal results
(similar to the results from38), and are largely dominated by results obtained using evolutionary computation. The
latter method differs mostly by the ability to pursue global optimisation, rather than local optimisation (supervised
learning with gradient descent) which is prone to premature convergence.

Most of the models developed in behavioural biology describe only a small and specific part of the behavioural
repertoire. Often, they do not completely describe animals as autonomous agents in their environment even in
laboratory conditions. They are designed to answer specific biological questions. Moreover, the larger the behavioural
repertoire, the larger the agent models, such that it becomes difficult to calibrate them on experimental data as the
number of parameters explodes. The same issue arises to describe them by kinetic equations for the same reasons. In
stark contrast, evolved ANN models can take into account behavioural details that are usually difficult to take into
account in current behavioural models.

ANN models make it possible to ask relevant biological questions. Firstly, they can be used to find in the
experimental data the necessary information needed to reproduce animal behaviours. They also open the door at using
ANN to model the functional neural working of the information processing by the animal during the sensory-motor
loop. They do not need to be biomimetic at the lowest level i.e. the individual neural physiology, but can model how
information is processed. Finally, they open new possibilities to design models that can be transferred to robotics
systems. Such system-based models allow to describe a fully autonomous agent in a realistic environment contrary
to most models that describe only a sub-part of the agent behaviours56.

Indeed, research on animal and robot interactions also need bio-mimetic formal models as robot behavioural
controllers for robots to behave like animals30,42, 57–59. Robots controllers have to deal with a whole range of
behaviours to allow them to take into account not only other individuals but also environment particularities, such
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as walls27,30. Robot behavioural models must be multilevel as they have to cope with low level hardware events
and high level social behaviours. In this study, we showed that ANN are good candidates to model individual and
collective fish behaviours, which is particularly relevant in the context of social bio-hybrid systems composed of
animals and robots.
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Supplementary Information

Ethical statement
The experiments performed in this study were conducted under the authorisation of the Buffon Ethical Committee
(registered to the French National Ethical Committee for Animal Experiments #40) after submission to the French
state ethical board for animal experiments.

Fish rearing and handling
The fish were 6-12 months old at the time of the experiments. We kept the fish under laboratory conditions, 27◦C,
500µS salinity with a 10:14 day:night cycle. The fish were reared in housing facilities ZebTEC and fed two times a
day (Special Diets Services SDS-400 Scientific Fish Food). The water pH level was maintained at 7, and Nitrites
(NO−2) were below 0.3 mg/l.

Experimental set-up
We use the experimental set-up described in 28,30, 35–37: it consists of an arena of 1000×1000×100 mm made of
white plexiglass and placed in a 1200×1200×300 mm experimental tank. The tank is filled with water up to a level
of 60 mm. The whole set-up is exposed to diffused light and confined behind white sheets to isolate experiments
and homogenise luminosity. We use an overhead acA2040-25gm monochrome GigE CCD camera (Basler AG,
Germany) to grab video frames of the experiments (with a resolution of 2040×2040 pixels, 15 frames per second).
This camera is equipped with low distortion lenses CF12.5HA-1 (Fujinon, Tokyo, Japan). The experimental videos
are then analysed and tracked off-line to retrieve the position of the fish60.

Supplementary results
Figure 4 shows the behavioural scores of the best-performing controllers obtained through the studied optimisation
methods.

Figures 5,6,7,8,9,10 provide analyses of simulated fish groups behaviour obtained through different optimisation
methods (Table 2): respectively CMA-ES, NSGA-III-SP, NSGA-III-CM, NSGA-III-AM, NSGA-III-Nov and
SL. These figures take into account the following metrics: Inter-individual distances corresponds to the similarity
in distribution of inter-individual distances between all agents and measures the capabilities of the agents to aggregate.
Linear speed distributions corresponds to the distributions of linear speed of the agents. Polarisation measures
how aligned the agents are in the group. Probability of presence corresponds to the similarity in spatial distribution
of agent density of presence in each part of the arena. It involves the comparison of 2D spatial histograms as seen in
Fig. 3B. The Biomimetic score corresponds to the geometric mean of the other scores.

Figure 11 shows the evolution of biomimetic score in fitness computation per evaluation.
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Figure 4. Quantitative analysis of the difference of behaviour between the 5-agent experimental fish groups
(Control) and 5-agent groups formed by 1,3,5 simulated agents and respectively 4,2,0 experimental fish from the
Control case. The simulated agents are driven by the best-performing MLP models optimised by CMA-ES or
NSGA-III algorithms and according to the configurations detailed on Table 2, obtained after 10 optimisation runs.
Results are obtained over 10 different trials (experiments for fish-only groups, and simulations for ANN models). We
consider five behavioural features to characterise exhibited behaviours. Inter-individual distances corresponds to
the similarity in distribution of inter-individual distances between all agents and measures the capabilities of the
agents to aggregate. Linear speed distributions corresponds to the distributions of linear speed of the agents.
Polarisation measures how aligned the agents are in the group. Probability of presence corresponds to the
similarity in spatial distribution of agent density of presence in each part of the arena. It involves the comparison of
2D spatial histograms as seen in Fig. 3B. Similarity scores of simulated groups with 1 simulated agent optimised by
all methods are not significantly different (Wilcoxon test, p < 0.05) from experimental fish groups (except for the
polarity metric). However, Similarity scores of simulated groups with 3 or 5 simulated agents optimised by all
methods are all significantly different from experimental fish groups.
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Figure 5. Comparison of agents behaviours between the Control case (10 trials of 30-minutes experiments
involving 5 zebrafish) and the CMA-ES case (10 trials of 30-minutes simulations of 5 agents, with respectively 1,3,5
simulated agents driven by the best-performing MLP controller optimised through the CMA-ES method and 4,2,0
agents copying the trajectories of experimental fish). Agents behaviour is quantified across 5 behavioural features:
inter-individual distances, linear and angular speeds distributions, polarisation, and distances to nearest wall.
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Figure 6. Comparison of agents behaviours between the Control case (10 trials of 30-minutes experiments
involving 5 zebrafish) and the NSGA-III-SP case (10 trials of 30-minutes simulations of 5 agents, with respectively
1,3,5 simulated agents driven by the best-performing MLP controller optimised through the NSGA-III-SP method
and 4,2,0 agents copying the trajectories of experimental fish). Agents behaviour is quantified across 5 behavioural
features: inter-individual distances, linear and angular speeds distributions, polarisation, and distances to nearest
wall.
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Figure 7. Comparison of agents behaviours between the Control case (10 trials of 30-minutes experiments
involving 5 zebrafish) and the NSGA-III-CM case (10 trials of 30-minutes simulations of 5 agents, with
respectively 1,3,5 simulated agents driven by the best-performing MLP controller optimised through the
NSGA-III-CM method and 4,2,0 agents copying the trajectories of experimental fish). Agents behaviour is
quantified across 5 behavioural features: inter-individual distances, linear and angular speeds distributions,
polarisation, and distances to nearest wall.
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Figure 8. Comparison of agents behaviours between the Control case (10 trials of 30-minutes experiments
involving 5 zebrafish) and the NSGA-III-AM case (10 trials of 30-minutes simulations of 5 agents, with respectively
1,3,5 simulated agents driven by the best-performing MLP controller optimised through the NSGA-III-AM method
and 4,2,0 agents copying the trajectories of experimental fish). Agents behaviour is quantified across 5 behavioural
features: inter-individual distances, linear and angular speeds distributions, polarisation, and distances to nearest
wall.
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Figure 9. Comparison of agents behaviours between the Control case (10 trials of 30-minutes experiments
involving 5 zebrafish) and the NSGA-III-Nov case (10 trials of 30-minutes simulations of 5 agents, with
respectively 1,3,5 simulated agents driven by the best-performing MLP controller optimised through the
NSGA-III-Nov method and 4,2,0 agents copying the trajectories of experimental fish). Agents behaviour is
quantified across 5 behavioural features: inter-individual distances, linear and angular speeds distributions,
polarisation, and distances to nearest wall.
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Figure 10. Comparison of agents behaviours between the Control case (10 trials of 30-minutes experiments
involving 5 zebrafish) and the SL case (10 trials of 30-minutes simulations of 5 agents, with respectively 1,3,5
simulated agents driven by the best-performing MLP controller optimised through the SL method and 4,2,0 agents
copying the trajectories of experimental fish). Agents behaviour is quantified across 5 behavioural features:
inter-individual distances, linear and angular speeds distributions, polarisation, and distances to nearest wall.
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Figure 11. Evolution of the biomimetism score used in the computation of the fitness values across evaluations for
all tested optimisation method. Each optimisation method is tested in 10 different runs. Each evaluation involves 10
trials of 5-minutes simulations of 5 agents, with respectively 1,3,5 simulated agents driven by the tested MLP
controllers (phenotypes of the evolution process) and 4,2,0 agents copying the trajectories of experimental fish.
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