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1 INTRODUCTION

This paper presents a comparison between two methods for on-
policy reinforcement learning with continuous state and action
spaces, the gradient policy search method PPO [7] and the direct
policy search method CMAES [6], for a particular class of reinforce-
ment learning problems, that of rare significant events [1, 2, 5].
We consider a setup where significant events present unique op-
portunities to obtain a positive reward and stop the game, and
each opportunity can either be seized for an immediate reward or
ignored if the agent hopes to get a better reward in the future.
The problem is that of an agent who has to choose a partner to
cooperate with, while a large number of partners are simply not
interested in cooperating, regardless of what the agent has to offer.
Formally, we consider an independent learner x,, called the focal
agent, which is placed in an aspatial environment. At each time
step, X is presented with either a cooperative partner x} € X* or a
non-cooperative partner x; € X~ X" (resp. X™) is the finite set of
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all cooperative (resp. non-cooperative) partners, with both i and
j€Nandi>0,j > 0. When presented with a non-cooperative
partner x7, the focal agent’s reward will always be zero. When
presented with a cooperative partner x, the focal agent’s reward
will depend on its own action and that of its partner.

Our objective is to endow the focal agent x, with the ability
to learn how to best cooperate, which implies to negotiate with
its potential partners and decide whether cooperation is worth
investing energy in, or not. The focal agent faces an individual
learning problem as it must optimize its own gain over time in a
competitive setup. For cooperation to occur between the focal agent
and a partner, the partner must be willing to cooperate (ie. be one
of x}) and both the focal agent and the cooperative partner must
estimate that one’s own energy invested in cooperation is worth
the benefits. In the setup used, each partner x; follow a specific ad
hoc cooperative strategy, some with low expectations, other with
high expectations.

The focal agent x, interacts with the environment in a discrete
time manner. At each time step t =0, 1,2, ..., xo isin a state s € R
which describes its current partner’s investment value, and plays a
continuous value a € R which represents its decision to cooperate
(a > 0) or not (a <= 0).

Let iy be the parametrised policy of the focal agent, with 6 € R".
The learning task is to search for 8%, such as:

0" = argmaxJ(0) (1)
0

With J the global function to be optimized, defined as:

JO) =E) 1t (2)
t

with reward r; at time t. Rewards are defined such that r € R
and depends on the current state s and action a, and are produced
according to the probability generator defined as follow:

_ | payoff(s,a) with probability p
r(s.a) = { 0 otherwise. ®)
The probability p € [0, 1] determines the probability to en-
counter a cooperative agent (i.e. one of x;"). The value of p depends
on the setup, and determines how rare significant events occur
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when p < 1.0. A probability of p = 1.0 means the focal agent x,
encounters a cooperative partner at each time step ¢, with a possible
positive reward (if cooperation is accepted by both agents) that
depends on the payoff function. Non-zero rewards become rarer
(but still possible) as p — 0. payoff (s, a) is non-zero only if both the
focal agent and its cooperative partner accept to cooperate, with
the exact payoff value depending on the amount of energy the focal
agent and its partner invest in cooperation (more details in [4]).

The problem presented here is similar to that of Rare Significant
Events as formulated in [5]. However, it differs on two aspects.
Firstly, we consider on-line on-policy search of a parametrised pol-
icy, where the frequency of significant events cannot be controlled.
Secondly, and even more importantly, a learning episode stops right
after the focal agent and one cooperative agent have reached a con-
sensus to cooperate. If no cooperation is triggered, an episode stops
after a maximum number of iterations T, defined as:

100
T= 7 time steps 4)

It results that the expected number of significant events M is
held constant independently from the value of p (i.e. E(M) = 100).
It is therefore possible to obtain episodes of different lengths but
with the same number of significant events.

2 RESULTS

Both CMAES and PPO algorithms are used to learn the param-
eters of the focal agent’s decision module, which is used to de-
cide whether to cooperate or not based on the current partner’s
offer. CMAES and PPO are used to optimize a multi-layered Per-
ceptron of 34 weights. We also use PPO with a deep neural net-
work of 133894 dimensions, which could possibly benefit from
over-parametrization [3].

Performance of the current policy is plotted every 4000 iterations,
which corresponds to the batch size used by both PPO instances for
learning. As episodes last significantly shorter than 4000 iterations
this means the policy’s performance is averaged. For CMAES, we
extract the best policy of the current generation and re-evaluate it 10
times (i.e. for 10 episodes) to get a similarly averaged performance.
Results are shown on figures with a data point every 1000 episodes.

Figure 1 show the performance of the agent throughout its learn-
ing with both PPO algorithms (termed PPO-MLP and PPO-DEEP)
and the CMAES algorithm for different conditions of rare signifi-
cant events (p € {0.1,0.2,0.5}), as well as with the control condition
when all events are significant (p = 1.0, taken from the previous Sec-
tion). Each figure shows the mean performance of 24 independent
runs per conditions, compiling each setup by tracing the median
performance and 95% confidence interval from the 24 runs.

All three algorithms provide excellent and comparable results
when only significant events are experienced (p = 1.0). However,
results differ when significant events become rarer (i.e. p < 1.0).
On the one hand, CMAES is only marginally impacted, with all
setups showing convergence towards a similar performance value
close to the optimal (above 40). On the other hand, PPO-DEEP and
PPO-MLP are both are largely affected, with an even greater toll
for PPO-MLP when p << 1.0. In the extreme case where p = 0.1,
the average performance of 35.7 + 5.2 for PPO-DEEP and 24.9 + 4.2
of PPO-MLP, to be compared to 46.2 + 3.2 for CMAES.
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Figure 1: Performance of the best policies (median and
95% confidence interval) during learning with CMAES, PPO-
DEEP and PPO-MLP for 3 conditions with rare significant
events (p € {0.1,0.2,0.5}) and 1 control condition (p = 1.0)

3 CONCLUDING REMARKS

While both methods provide similar results when the agent is al-
ways presented with significant events, policy search methods are
not equals when such events become rarer. While the direct policy
method is oblivious to rarity of significant events, the gradient
policy search method (at least in its PPO implementation) suffers
significantly from rarity.

The robustness of the direct policy search method can be ex-
pected as the sequential and temporal aspects of the task is lost
within one episode. This is of course different for the gradient policy
search method, where increased rarity means that many learning
steps will be performed with zero-reward, resulting in poor and
possibly misleading gradient information.

A comprehensive version of this work is available on Arxiv [4].
Source code is available on Github: https://github.com/PaulEcoffet/
RLCoopExp/releases/tag/v1.1.
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