N
N

N

HAL

open science

Policy Search with Rare Significant Events: Choosing
the Right Partner to Cooperate with
Paul Ecoffet, Nicolas Fontbonne, Jean-Baptiste André, Nicolas Bredeche

» To cite this version:

Paul Ecoffet, Nicolas Fontbonne, Jean-Baptiste André, Nicolas Bredeche. Policy Search with Rare
Significant Events: Choosing the Right Partner to Cooperate with. PLoS ONE, 2022, PLoS ONE, 17

(4), pp.e0266841. 10.1371/journal.pone.0266841 . hal-03315730

HAL Id: hal-03315730
https://hal.sorbonne-universite.fr /hal-03315730
Submitted on 5 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.sorbonne-universite.fr/hal-03315730
https://hal.archives-ouvertes.fr

2103.06846v1 [cs.LG] 11 Mar 2021

arXiv

Policy Search with Rare Significant Events:
Choosing the Right Partner to Cooperate with

Paul Ecoffet
Institut des Systémes Intelligents et de Robotique,
Sorbonne Université
Paris, France
paul.ecoffet@sorbonne-universite.fr

Jean-Baptiste André
Institut Jean Nicod, Département d’Etudes Cognitives,
Ecole Normale Supérieure
Paris, France
jeanbaptisteandre@gmail.com

ABSTRACT

This paper focuses on a class of reinforcement learning problems
where significant events are rare and limited to a single positive
reward per episode. A typical example is that of an agent who
has to choose a partner to cooperate with, while a large number
of partners are simply not interested in cooperating, regardless of
what the agent has to offer. We address this problem in a continuous
state and action space with two different kinds of search methods:
a gradient policy search method and a direct policy search method
using an evolution strategy. We show that when significant events
are rare, gradient information is also scarce, making it difficult for
policy gradient search methods to find an optimal policy, with or
without a deep neural architecture. On the other hand, we show
that direct policy search methods are invariant to the rarity of
significant events, which is yet another confirmation of the unique
role evolutionary algorithms has to play as a reinforcement learning
method.

CCS CONCEPTS

« Theory of computation — Evolutionary algorithms; « Com-
puting methodologies — Reinforcement learning;

KEYWORDS

reinforcement learning, rare significant events, on-policy, on-line,
continuous state and action spaces, cooperation and partner choice,
gradient policy search, direct policy search, evolutionary algo-
rithms, PPO, CMAES

1 INTRODUCTION

We consider a particular class of reinforcement learning problems
where only rare events can result in non-zero rewards and when
the agent can experience at most one positive reward in a limited
time. This problem is closely related to the problem of learning with
rare significant events in reinforcement learning [2, 5, 11], where
rare events can significantly affect performance (e.g. in network
and communication systems or control problems where failure can
be catastrophic). In this paper, we consider that while significant

Nicolas Fontbonne
Institut des Systemes Intelligents et de Robotique,
Sorbonne Université
Paris, France
nicolas.fontbonne@sorbonne-universite.fr

Nicolas Bredeche
Institut des Systemes Intelligents et de Robotique,
Sorbonne Université
Paris, France
nicolas.bredeche@sorbonne-universite.fr

events occur independently of the agent’s actions, the agent’s pol-
icy determines if a positive reward should be obtained when such
an event occurs. Significant events are thus defined as unique op-
portunities to obtain a positive reward and stop the game. Each
opportunity can either be seized for an immediate reward or ignored
if the agent hopes to get a better reward in the future.

We address this problem in the context of an independent,
on-line and on-policy episodic learning task with continuous
state and action spaces. The practical application addressed in this
paper is that of an agent learning to choose a partner for a task
that requires cooperation (e.g., predators hunting a large prey or
individuals selecting a lifelong mate). The agent can choose to
cooperate or not with a potential partner, based on the effort this
partner is willing to invest in the cooperation. At the same time,
the agent must invest enough so that its partner also accepts to
cooperate. In this setup, the agent may face partners willing to
invest various amount of energy in cooperation (i.e., a possibly
significant event), or even refuse to cooperate whatever the agent
is ready to invest (i.e. a non-significant event).

Results from theoretical biology [4, 7, 10, 17] have shown that
cooperation with partner choice is optimal only under certain con-
ditions. First, the number of cooperation opportunities must be
large enough that an agent can refuse to cooperate with a potential
partner and still have the opportunity to meet a more interesting
partner. Second, if an agent and its partner both decide to cooper-
ate, the actual duration of this cooperation must be long enough to
make cooperation with an uninteresting partner significantly costly
(which is the case when there can be only one single successful
cooperation event). Under these conditions, the optimal strategy
for an agent is to be very demanding in choosing its partner.

The question raised in this paper is whether reinforcement learn-
ing algorithms actually succeed in learning an optimal strategy
when the necessary conditions are met. We are particularly inter-
ested in how the rarity of significant events influences convergence
speed and performance of policy learning. Indeed, it is not clear
how gradient-based policy search method can deal with a possibly
large number of non-significant events that provide zero-reward.

We use two state-of-the-art methods for on-policy reinforcement
learning with continuous state and action spaces: (1) a deep learning

Paul Ecoffet, Nicolas Fontbonne, Jean-Baptiste André, and Nicolas Bredeche

method (PPO [23]) for gradient policy search and (2) an evolutionary
method (CMAES [13]) for direct policy search. While both methods
provide similar results when the agent is always presented with
significant events, policy search methods are not equals when such
events become rarer. While the direct policy method is oblivious
to rarity of significant events, the gradient policy search method
suffers significantly from rarity.

The paper is structured as follows: the reinforcement learning
problem with significant rare events and single reward per episode
is formalized, and the partner choice learning problem is presented
as a variation of a continuous prisoner’s dilemma. Algorithms and
results are then presented, and learned policies are analysed and
compared.

2 METHODS
2.1 Learning with Rare Significant Events

Formally, we consider an independent learner x,, called the focal
agent, which is placed in an aspatial environment. At each time
step, xe is presented with either a cooperative partner x} € X* or
a non-cooperative partner X; € X~. X* (resp. X7) is the finite set
of all cooperative (resp. non-cooperative) agents, with both i and
j € Nandi > 0,j > 0. When presented with a non-cooperative
partner x7, the focal agent’s reward will always be zero. When
presented with a cooperative partner x}, the focal agent’s reward
will depend on its own action and that of its partner. (see Section 2.2
for details).

Our objective is to endow the focal agent xo with the ability
to learn how to best cooperate, which implies to negotiate with
its potential partners and decide whether cooperation is worth
investing energy in, or not (see Section 2.3 for details). The focal
agent faces an individual learning problem as it must optimize its
own gain over time in a competitive setup, whether its partners are
also learning agents or not. For cooperation to occur between the
focal agent and a partner, the partner must willing to cooperate (ie.
be one of x}) and both the focal agent and the cooperative partner
must estimate that one’s own energy invested in cooperation is
worth the benefits.

We use the standard reinforcement learning framework pro-
posed by Sutton and Barto [27] to formalize the learning task from
the focal agent’s viewpoint, which is essentially a single agent
reinforcement learning problem.

The focal agent x, interacts with the environment in a discrete
time manner. At each time step t =0, 1,2, ..., xo is in a state s € R
which describes its current partner’s investment value, and plays a
continuous value a € R which represents its decision to cooperate
(a > 0) or not (a <= 0).

Let iy be the parametrised policy of the focal agent, with 6 € R".
The learning task is to search for 6%, such as:

0" = argmaxJ(0) (1)
0

With J the global function to be optimized, defined as:

JO)=EY'r)
t

with reward r; at time t. Rewards are defined such that r € R
and depends on the current state s and action a, and are produced
according to the probability generator defined as follow:

_ | payoff(s,a) with probability p
r(s.a) = { 0 otherwise. ®)
The probability p € [0,1] determines the probability to en-
counter a cooperative agent (i.e. one of x;"). The value of p depends
on the setup, and determines how rare significant events occur
when p < 1.0. A probability of p = 1.0 means the focal agent x,
encounters a cooperative partner at each time step t, with a pos-
sible positive reward (if cooperation is accepted by both agents)
that depends on the payoff function. Non-zero rewards become
rarer (but still possible) as p — 0. Note that payoff (s, a) is non-zero
only if both the focal agent and its cooperative partner accept to
cooperate. Cf. Section 2.3 for details on the negotiation process.
The problem presented here is very similar to that of Rare Sig-
nificant Events as formulated by Frank et al. [11]. However, our
problem differs on two aspects. Firstly, we consider on-line on-
policy search of a parametrised policy, where the frequency of
significant events cannot be controlled. Secondly, and even more
importantly, a learning episode stops right after the focal agent and
one cooperative agent have reached a consensus to cooperate. If no
cooperation is triggered, an episode stops after a maximum number
of iterations T, defined as:

100 .
T= 7 time steps 4)

It results that the expected number of meetings M is held con-
stant independently from the value of p (i.e. E(M) = 100). It is
therefore possible to obtain episodes of different lengths but with
the same number of significant events.

The situation that is modelled here corresponds to many col-
lective tasks observed in nature [3, 25, 28], where each agent has
to balance between looking for partners and cooperating with the
current partner, the latter possibly taking significant time. As a
matter of fact, it has been shown elsewhere [4, 7, 9, 10, 17] that
optimal partner choice strategies can be reached only when the
cost of cooperation is large (ie. the duration of cooperation is long
with regards to looking for cooperative partners).

2.2 Partner Choice and Payoff Function

Whenever the focal agent xe and a cooperative partner x} interact
together, they play a variation of a continuous Prisoner’s Dilemma.
Cooperation actually takes place if both agents deem it worthwhile.
The two-step procedure for partner choice is the following:

(1) each agent simultaneously announce the investment they
are willing to pay to cooperate;

(2) each agent then chooses to continue the cooperation based
on the investment announced by its partner and its own.

To simplify notations, we use xo and x] to represent both the
agents and the investment values they play, i.e. xo (resp. x}) plays
xe (resp. x7). The gain received by the focal agent x is defined as:

1
P(x.,xl?L) =a><x.+b><x;r— Exg (5)

With a,b > 0 and a + b > 0. This payoff function combines
both a prisoner’s dilemma and a public good game, and was first
introduced in Ecoffet et al. [10]. Two different equilibria' can be
reached for x,:

e x; = a. This is a sub-optimal equilibrium, which corresponds
to an agent cheating, a typical outcome in the prisoner’s
dilemma where an agent maximizes its own gain, but also
minimizes its exposure to defection. This ensure the best
payoff for the agent if it is unable to distinguish a cheater
from a cooperator.

o x. = a+b. This is the optimal equilibrium, where both agents
cooperate to maximize their long-term gain.

The public good game is included in the payoff function to help
distinguish between agents that are simply ignoring the cooperation
game (xo = 0), from those who takes part in it, even if they defect
(xe = xg).

The focal agent can get the optimal payoff if it plays xe = x; and
its partner plays x} > xc, which can occur if particular conditions
are met when partner choice is enabled. Partner choice can lead to
optimal individual gain whenever a successful cooperation removes
the possibility for further gain with other partners. In other words:
the focal agent can meet with any number of possible partners
but will take the gain of the first and single mutually accepted
cooperation offer.

In this paper, we set a = 5 and b = 5, therefore x; = 5 and x, = 10.
The maximum payoff the agent can obtain is to invest xo = x, with
its partner investing equally x; = x.. In this context, P(xe, x}) = 50.
The focal agent’s investment is bounded as 0.0 < xo < 15.0. This is
similar for x7.

P(xe,x}) and payoff (s, a) (introduced in Equation 3) differs as
the P function relates to the game theoretical setting while the
payoff function relates to the reinforcement learning problem. On
the one hand, the payoff function computes the focal individual’s
reward whether or not cooperation was initiated. On the other
hand, P computes the focal individual’s gain that results from a

cooperation game between two agents that accepted to cooperate.

However, both functions are linked. From a notational standpoint,
s represents the investment value of the focal individual x,, and a
represents the decision to cooperate and depends on both s and that
of its partner s} (which is implicit). The return value of payoff (s, a)
depends on whether cooperation was initiated or not. If both agents
decided to cooperate, then the focal agent’s payoff is payoff (s, a) =
P(xo, x;“), with P(xe, xl+) < 50 in this case. If cooperation fails, the
focal agent’s payoff is payoff (s, a) = 0 (which is obtained without
having to compute P). The payof f function in Equation 3 can be
written as follow, with updated notations and assuming ae > 0
(resp. af > 0) means the focal agent (resp. partner) is willing to
cooperate:

P(xe,x}) ifae>0andaf >0

payoff (e, de) = { 0 otherwise. ©)

2.3 Behavioural Strategies

For each interaction, the focal agent’s investment value xo € [0, 15]
is computed, and when the investment value of its partner is known,

! These are actually Nash equilibria, when all agents are learning.

its decision to cooperate as € R is computed to determine if co-
operation should be pursued or not. Each value is provided by a
dedicated decision module:

o the investment module which provides the cost x, that
the focal agent is willing to invest to cooperate. This mod-
ule takes no input as it is endogenous to the agent (i.e. the
proposed cost x, is fixed throughout an episode);

o the choice module takes both the focal agent’s own in-
vestment value (xo) and that of its partner (x or xJT), and
computes deo, which is used to determine if cooperation is
an interesting choice (ae > 0) or not (ae < 0). The choice
module is essentially a function fepoice (Xe, Xpartner) — o
with Xpartner € X* U X~. The parameters of the function
are learned, and the decision to cooperate is computed (as
the decision to cooperate is conditioned by the partner’s
investment).

With respect to the focal individual, Section 3 describes how the
investment and choice modules are defined and how learning is
performed depending on the learning algorithm used.

Cooperative partners xl.+ and non-cooperative partners x}T also
use similar decision modules, providing investment and choice
values. However, all use deterministic fixed strategies, which may
differ from one partner to another. Firstly, non-cooperative partners
X all follow the same strategy. Both the investment value X and
the decision to cooperate a; are always 0, V.

Secondly, cooperative partners x;” each follows a stereotypical
cooperative strategy depending on the value i. Each cooperating
partner invests a fixed value x; € [0, 15] defined as:

i—-1 .)
x;rz - X 15 i€{L,...,imax} 7)
Imax

Each cooperative partner then accepts to cooperate if the focal
agent’s investment value x, is greater or equal to their investment,
which is written as follow:

1 if xe > xT
+ = ¢ =7
4 { —1 otherwise. ®
In the following, there are imax = 31 cooperating partners (x; €
X*,i€{1,...,31}). Following Eq.8, this means cooperating partner
x{r (resp. x;, xé’l) plays 0 (resp. 0.5, ..., 15).

3 PARAMETER SETTINGS AND
ALGORITHMS

We use two reinforcement learning algorithms: a gradient pol-
icy search algorithm (PPO) and a direct policy search algorithm
(CMAES). Both algorithms are used to learn the parameters of the
focal agent’s decision modules.

For both algorithms, the performance of a policy (i.e. the return or
the fitness, depending on the vocabulary used) during one episode is
computed as the sum of rewards during the episode (cf. Section 2.1),
which is either zero, or the value of the unique non-zero reward
obtained before the episode ends.

3.1 Proximal Policy Optimization

The deep reinforcement learning Proximal Policy Optimisation
(PPO) [23] is a variation of the Policy Gradient algorithm [27].

Paul Ecoffet, Nicolas Fontbonne, Jean-Baptiste André, and Nicolas Bredeche

Parameters Values
Learning rate 0.005
Optimiser Algorithm SGD
Number of optimisation epochs 10
Minibatch size 128
Batch size 4000
Discount factor y 1.0

Search space PPO-MLP (Oas1p) R33
Search space PPO-DEEP (Opppp) R1338%4

Table 1: Parameters for the PPO algorithm

Policy gradient algorithms maximize the global performance by
updating the parameters 6 of the policy x (cf. Eq. 2).

Though, as the expected value of a certain state-action pair varies
according to the policy itself, updating a new policy from samples
acquired from an old policy may cause inaccurate predictions, as the
expected value of an action-state pair may be wrong with respect
to the new policy. PPO ensures that the policy generated from the
samples of the new policy does remain in a so-called trust region
at each learning step.

As we are dealing with episodes and do not want to encourage
the focal agent to act in the least amount of time steps as possible,
the discount factor is set to y = 1.0, as recommended by Sutton and
Barto [27, p.68]. The PPO hyper-parameters used are reported in
Table 1.

The investment and choice modules are both represented as
Artificial Neural Networks (ANN). A module is composed of both
a decision network and a Value function, as PPO runs as an actor-
critic algorithm. The Value function network has the same layout
as the decision network, but only output the (continuous) value of
the state.

The decision network for the investment module is a simple
neural network with one single input set to 1.0, no hidden layer
and two outputs: the investment mean m and standard deviation
0. The investment x, is picked along the distribution N (m, o)
and clipped between 0 and 15. The continuous stochastic action
selection is essential to the PPO search algorithm.

The decision network for the choice module is a multilayer per-
ceptron with two input neurons and two output neurons (for ac-
cepting or refusing cooperation). The output neurons use a linear
activation function, and a softmax probabilistic choice is done to
choose which action to make (accept or decline). Hidden units use
an hyperbolic tangent activation function. A bias node is used, that
projects on both the hidden layer(s) and output neurons. The Value
Function estimator use the same architecture as the choice neural
networks, with only one output.

In Section 4, two different architectures are evaluated, which we
refer to as PPO-MLP and PPO-DEEP. While both use the decision
network for the investment module described before, they differ
with respect to the architecture used for the choice module. PPO-
MLP implements a single hidden layer with 3 neurons, and PPO-
DEEP implements a deep architecture with two hidden layers, each
with 256 neurons. While PPO-DEEP may seem overpowered at first
sight, over-parametrization has been shown to be very effective in

deep learning as multiple gradients can be followed in wide neural
networks [1, 8, 19].

All parameter values and module architecture result from an
extensive search (summarised in the Supplementary Materials). In
particular, a grid search was performed to select the best values
for each parameters, including the learning rate (Ir). The number
of Simple Gradient Descent iterations, the batch size and the mini-
batch size had little impact on neither performance nor convergence.
In addition, we performed additional experiments to evaluate the
impact of using (1) a discount factor y < 1.0 (i.e. 0.9, 0.99 and
0.999) and (2) PPO without actor-critic. None of these settings
provided better (or even comparable) results to those obtained with
the parameters used in Table 1.

3.2 Covariance Matrix Adaptation Evolution
Strategy

The Covariance Matrix Adaptation Evolution Strategy (CMAES)
is an optimisation algorithm that does black box optimisation and
is derivative-free [13]. The goal of CMAES is to find 0* that max-
imizes (or minimizes) a continuous function f. CMAES does not
require the function to be convex or differentiable, and relies on
stochastic sampling around the current estimate of the solution.
CMAES creates a population of size A using a multivariate Gauss-
ian distribution. Each individual of the population is evaluated and
CMAES then updates its distribution estimation based on the av-
erage of the sampled agents weighted by their evaluation rank.
Furthermore, the covariance matrix of the multivariate Gaussian
distribution is updated so that the distribution is biased toward the
most promising direction.

The investment module is represented as a single real value
(the investment), which is clipped between 0 and 15 when used.
The partner choice module is a neural network with 2 inputs, one
hidden layer with three neurons and two neurons on the output
layer used to compute the probability to accept or refuse cooperation.
A softmax probabilistic choice is made to choose which action to
make. A bias node is also used, neurons from the hidden layer use
an hyperbolic tangent activation function, and the output units use
a linear activation function. There are 17 neural network weights.

The parameters for both modules are compiled into a single
vector of real values. To make the search space similar to that
of PPO, dummy parameters are added to the vector (i.e. values
which can be modified by the algorithm, but with no impact on the
outcome) to reach a total number of 34 real values (i.e. ® € R34).

Table 2 summarizes the parameters used for the CMAES algo-
rithm. As CMAES is mostly parameter-free, there were no need
to perform extensive preliminary search, and we used the default
values. We choose oj,jr = 1.0 for the initial standard deviation
and a vector of zeros as initial guess. The population size A is the
default population size in the python CMAES implementation [12],
ie. A =4+ |3 XIn(N)] = 14 with N the number of dimensions
in the model. Once the A candidate solutions are evaluated, a new
population is generated according to their performance. A new
population is generated every 14 episodes, and so forth until the
evaluation budget is consumed.

A candidate solution for the focal agent is evaluated on one
episode only, which length may vary depending on when the focal

Parameter Value
Population size 14
Number of episode per evaluation 1
Cinit 1.0
Search space (8cpmAES) R34

Table 2: Parameters for the CMAES algorithm

agent and its partner both accepts to cooperate (maximal duration
defined in Eq. 4).

4 RESULTS

The environment, the models and the learning algorithms are im-
plemented with ray?, rllib®> and pytorch*. We use the cma® package
in python for the CMAES implementation. Source code is available
at https://github.com/PaulEcoffet/RLCoopExp/releases/tag/v1.1.
For a given value of probability of rare significant events p, we
performed 24 independent runs for each algorithm. A run lasts
200000 episodes. The maximum duration of an episode is fixed as
described in Section 2.1 so the expected number of significant events
remains identical independently from the actual rarity throughout
one episode (cf. equation 4). In practical, an episode lasts at most
100 (resp. 200, 500, 1000) iterations for p = 1.0 (resp. 0.5, 0.2, 0.1).
Performance of the current policy is plotted every 4000 iterations,
which corresponds to the batch size used by both PPO instances for
learning. As episodes last significantly shorter than 4000 iterations
this means the policy’s performance is averaged. For CMAES, we
extract the best policy of the current generation and re-evaluate it 10
times (i.e. for 10 episodes) to get a similarly averaged performance.
Results are shown on figures with a data point every 1000 episodes.

4.1 Learning when All Events are Significant

Figure 1 shows the performance throughout learning for CMAES,
PPO-DEEP and PPO-MLP when p = 1.0 (i.e. the focal agent faces
only cooperative partners). Each Figure shows 24 curves corre-
sponding the 24 independent runs. Both PPO versions and CMAES
are shown to learn near optimal policies (per formance — 50) in
almost all runs. CMAES is the fastest to converge, and PPO-DEEP
(despite the huge number of dimensions) is faster than PPO-MLP.
On the other hand, CMAES offers less robustness as 20 (out of 24)
runs with CMAES reach a performance above 40, to be compared
to 23 (out of 24) runs with PPO-MLP and 24 runs with PPO-DEEP.

In order to better compare the quality of the policies learned
by each algorithm, the best policy from the end of each run is
selected and re-evaluated for 1000 extra episodes without learning.
Results are shown in Figure 2 with all three methods faring similar
performance. The median value for CMAES (47.64) is only slightly
more than that of PPO-DEEP (46.99) and PPO-MLP (45.58).

Therefore, we conclude that all three algorithms provide ex-
cellent and comparable results when only significant events are
experienced (p = 1.0).

Zhttps://docs.ray.io/en/master/
Shttps://docs.ray.io/en/master/rllib.html
*https://pytorch.org/
Shttps://pypi.org/project/cma/

CMA-ES

PPO-DEEP PPO-MLP

w
o

Performance
N
w

0 100 200 O 100 200 O 100 200
Episodes (x1000)

Figure 1: Performance of the best policy throughout learn-
ing with CMAES (top), PPO-DEEP (center) and PPO-MLP
(bottom), with 24 independent runs per method, for 200 * 10
episodes. There are 20/24 runs that produced a policy where
performance above 40 with CMAES, 20/24 for PPO-DEEP
and 23/24 for PPO-MLP. Note that PPO-DEEP produces 24/24
runs with performance above 40 around episode 80 * 10,
with performance occasionally degrading and immediately
recovering for some runs afterwards due to the learning step
size (see Annex for further analysis).

50
¢

30
N ¢

40

20

Performance

10

0 A

CMA-ES PPO-DEEP PPO-MLP

Figure 2: Performance of the best policies from CMAES,
PPO-DEEP and PPO-MLP with p = 1.0 after re-evaluating
policies for 1000 episodes without learning. Two-tailed
Mann-Whitney U-test, n = 24, gives p — value = 0.12 (CMAES
vs. PPO-DEEP), p — value = 0.019 (CMAES vs. PPO-MLP),
p — value = 0.018 (PPO-DEEP vs. PPO-MLP). Median values
and Median Absolute differences are: CMAES (median=47.64,
MAD=4.72) is only slightly more than that of PPO-DEEP
(median=46.99, MAD=13.04) and PPO-MLP (median=45.58,
MAD=1.86).

4.2 Learning when Significant Events are Rare

Figure 3 show the performance of the agent throughout its learning
with both PPO algorithms and the CMAES algorithm for different
conditions of rare significant events (p € {0.1,0.2,0.5}), as well as
with the control condition when all events are significant (p = 1.0,
taken from the previous Section). Each figure shows the mean
performance of 24 independent runs per conditions, compiling

Paul Ecoffet, Nicolas Fontbonne, Jean-Baptiste André, and Nicolas Bredeche

CMA-ES PPO-DEEP PPO-MLP
50 ,
g '
G p
€ 25 — 10
£ 0.5
& — 02
— 01
0
0 100 200 O 100 200 O 100 200

Episodes (x1000)

Figure 3: Performance of the best policies (median and 95%
confidence interval) throughout learning with CMAES, PPO-
DEEP and PPO-MLP for the 3 conditions with rare signifi-
cantevents (p € {0.1,0.2,0.5}) and 1 control condition (p = 1.0,
same data as shown in Fig.1), for the first 75 * 10 episodes
(out of 200 * 10%).

each setup by tracing the median performance and 95% confidence
interval from the 24 runs.

CMAES is only marginally impacted when significant events
become rarer (i.e. p < 1.0), with all setups showing convergence
towards a similar performance value close to the optimal (above
40). While PPO-DEEP fares better than PPO-MLP for p < 1.0, both
are largely affected. In the extreme case where p = 0.1, the average
performance of 35.7 +5.2 for PPO-DEEP and 24.9 + 4.2 of PPO-MLP,
to be compared to 46.2 + 3.2 for CMAES.

Figure 4 shows the results for the additional analysis where the
best policy from each run for each condition p € {0.1,0.2,0.5,1.0} is
selected and re-evaluated for 1000 extra episodes without learning
and with the condition p = 1.0 (i.e. only significant events matter
here). Results confirm that the difference in the performance of
policies obtained with CMAES compared to either versions of PPO
widens as significant events become rarer (p < 1.0) with both
PPO-MLP and PPO-DEEP faring significantly worse than CMAES
(p-value < 0.0001, Mann-Whitney U-test).

4.3 Analysing the Best Policies for Partner
Choice

In order to better understand why policies’ performance differ
among learning algorithms and conditions, the agent’s policy ob-
tained at the end of each run is extracted and analysed (i.e. 24
policies per algorithm per condition).

Figure 5 illustrates the outcome of the Investment Module (x,),
i.e. the investment value offered by the focal agent when faced with
a potential partner. It is obtained by measuring the investment value
of the focal agent® from 1000 episodes with p = 1.0 and without
learning. Policies learned with CMAES play close to x. = 10, which
is the optimal play for the payoff function (Section 2.2), whatever
the frequency of significant events. As expected, this is different for
policies learned with PPO, as the outcome values of the Investment

®Note that for CMAES the Investment Module follows a deterministic policy (but not
the Choice Module). Therefore, it would have been equivalent to take the investment
value from the policy parameters in that particular case.

80 FokKK l;l
sokokok kK m *
L ok ~ ~—
o 60 ***!_' *kkk ns
v **** — |
c
@© L
= ii L Bl
S 40
g ¢ ¢
& ¢ ¢ .0
20 I CMA-ES
[PPO-DEEP
I PPO-MLP
0 -
0.1 0.2 0.5 1.0

Figure 4: Performance of the best policies (medians and
quartiles) from CMAES, PPO-DEEP and PPO-MLP with p €
{0.1,0.2,0.5,1.0} after re-evaluating policies for 1000 episodes
without learning. Two-tailed Mann-Whitney U-test, n = 24
marked as: * for p — value < 0.05, ** for p — value < 0.01, ***
for p — value < 0.001 and **** for p — value < 0.0001.

Module are significantly lower when the frequency of significant
events decreases (p < 1.0).

Figure 6 illustrates the investment values played by cooperative
partners, when the focal agent accepts to cooperate (whether or
not cooperation will actually take place, as it also depends on the
partner’s acceptance). In other words, it represents how demanding
is the focal agent with respects to its partners’ intention to invest in
cooperation. The probability to accept cooperation is computed for
the policies of ea