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A numerical method based on the Lattice Boltzmann formalism is presented to capture the effect of
adsorption kinetics on transport in porous media. Through the use of a general adsorption operator,
canonical models such as Henry and Langmuir adsorption as well as more complex adsorption
mechanisms involving collective behavior with lateral interactions and surface aggregation can be
investigated using this versatile model. By extending the description of adsorption phenomena
to kinetic regimes with any underlying adsorption model, this effective technique allows assessing
the coupled dynamics resulting from advection/diffusion/adsorption in pores not only in stationary
conditions but also under transient conditions (i.e. in regimes where the adsorbed amount evolves
with time due to diffusion and advection). As illustrated in this paper, the development of such an
approach provides a simple tool to determine the reciprocal effect of molecular flow/dispersion on
adsorption kinetics. In this context, the use of a Lattice Boltzmann-based approach is important as it
allows considering porous media of any morphology and topology. Beyond fundamental implications,
this efficient method allows treating real engineering conditions such as pollutant dispersion or
surfactant injection in a flowing liquid in soils/porous rocks.

I. INTRODUCTION

While fluid transport and dispersion in restricted geome-
tries such as in porous media have been broadly con-
sidered in physics, the impact of fluid transport on ad-
sorption phenomena remains puzzling by many aspects
[1–9]. Situations corresponding to a flowing liquid (sol-
vent) carrying adsorbable molecules (solute) in a porous
material have been treated extensively under static con-
ditions (stationary regime) [10, 11]. In contrast, transient
regimes, which are observed for times shorter than the
typical time needed to reach local equilibrium between
the adsorbed and free solute concentrations, display com-
plex behaviors to be unraveled. Formally, addressing this
challenge requires to better understand the interplay of
molecule transport and adsorption kinetics in confining
materials. To do so, it is important to integrate ad-
sorption kinetics into physical transport models but also
to consider different phenomena involved (mass transfer,
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diffusion, and adsorption). Besides the different adsorp-
tion/transport regimes, the porous medium structure is
another ingredient that significantly influences the trans-
port behavior of adsorbing molecules (since adsorption is
also sensitive to the geometry/structure of the solid/fluid
interface) [12–14]. In particular, depending on the porous
structure, features such as constrictions or low porosity
zones (reduced flow) induce strong coupling between fluid
transport and molecular adsorption [9, 15, 16]. There-
fore, understanding the interplay between the structural
heterogeneity of the porous medium and the adsorption
thermodynamics and kinetics is considered as a key fun-
damental challenge [17, 18]. Beyond basic science im-
plications, increasing attention is also paid in applied re-
search to such adsorption/transport coupling as it is seen
as an efficient means to improve existing processes. For
instance, in addition to conventional applications such
as air and water purification, adsorption processes are
now widely used in the oil and petrochemical sectors as
well as in the preparation of industrial gases. In partic-
ular, for purification, it is necessary to better assess and
understand the migration of pollutants into natural or
synthetic porous media [19, 20].

From a theoretical viewpoint, such interplay between



2

adsorption kinetics and flow can be taken into account us-
ing numerical methods (e.g. [21]). The latter are consid-
ered as efficient and robust as they provide information
on both the adsorption and transport properties. Indeed,
experimentally, detailed information on adsorbed quan-
tities is not easily accessible since only adsorbate free
concentrations in solution are assessed (adsorbed con-
centrations and their distribution in pores are not known
a priori). Moreover, conducting an experimental para-
metric study – by considering constants such as adsorp-
tion/desorption coefficients – is not simple as there is no
direct access to adsorbed quantities at the pore scale.
In contrast, numerical methods allow the determination
of any relevant quantities even at the nanometer scale.
Among available numerical frameworks, several Lattice
Boltzmann methods accounting for adsorption have been
proposed to probe dispersion/diffusion under no flow con-
ditions. For instance, Guo et al. [22] have proposed a
computational scheme to model adsorption. By using
specific equations of state, these authors have considered
various adsorption isotherm types. Using a somewhat
similar approach, Xu et al. [23, 24] have simulated gas
adsorption in gas shale by considering two phase separa-
tion and adsorption in nanopores. These Lattice Boltz-
mann studies only account for adsorption under no flow
conditions with adsorbable particles only subjected to
diffusion. To consider adsorption effects in transport sit-
uations, Ning et al. have introduced a Lattice Boltzmann
method with a multiple relaxation time scheme coupled
with adsorption to simulate gas flow in confining organic
nanopores [25]. In their work on the impact of gas slip-
page and adsorption on flow, these authors used the ad-
sorptive force introduced by Sukop and Or [26] to model
the surface/adsorbate interactions. Similar approaches
accounting for fluid transport combined with adsorption
effects were proposed by Agarwal et al. [27] and Manjhi
et al. [28]. In these works, a first order adsorption kinet-
ics corresponding to the Henry regime was considered so
that these models apply to the low concentration regime
only (where the adsorbed amount is proportional to the
bulk concentration). Typically, in Ref. [28], an advec-
tion/diffusion equation with a term accounting for ad-
sorption was solved using a Lattice Boltzmann method.
The algorithm in these different studies relies on impos-
ing a constant dispersion coefficient, therefore prevent-
ing from studying the influence of adsorption on disper-
sion and other transport regimes. Last but not least,
Rotenberg and coworkers have developed a Lattice Boltz-
mann scheme to determine the impact of adsorption on
solute/solvent dynamics [6, 7, 29]. In this approach, ad-
sorption occurs on fluid nodes directly in contact with
neighboring solid nodes. At each position/node, free
and adsorbed quantities are defined to describe equilib-
rium properties after each adsorption step. The trans-
port behavior is described using the moment propagation
method by introducing propagators for both the free and
adsorbed phases [30, 31]. This allows computing the dy-
namical properties of the dispersed solute in the flowing

fluid.

In the studies above, these robust techniques were used
to address the effect of fluid flow on adsorption in station-
ary regimes (i.e. long time limit where thermodynamic
equilibrium is reached). However, it is also relevant to in-
vestigate transient regimes where the adsorbed amount
evolves with a time constant that can be either large or
small compared to the typical transport time. To fill
this gap, Vanson et al. [8, 9] extended the method by
Levesque et al. [6] to describe the adsorption/transport
interplay in the kinetics regime via kinetic rules result-
ing in a Langmuir isotherm. Here, we build up on a
similar formalism to extend the description of such cou-
pling to any underlying adsorption kinetics and, hence,
any adsorption isotherm model. We implement a gen-
eral adsorption operator and illustrate its versatility for
the description of any complex adsorption mechanism
in the case of collective adsorption involving lateral in-
teractions between adsorbed particles and surface self-
aggregation [32]. In addition to such complex adsorption
phenomena, the proposed algorithm is implemented in a
Lattice Boltzmann framework relying on the two relax-
ation time (TRT) approach which offers a robust tech-
nique to solve the advection/adsorption/diffusion prob-
lem at stake. The implementation of the TRT scheme is
as simple as the Bhatnagar-Gross-Krook (BGK) method
while ensuring the improved numerical accuracy and sta-
bility of the multiple relaxation time (MRT) approach.
In particular, the TRT scheme is a very efficient oper-
ator for low Reynolds number flow with computational
costs equivalent to those relying on the single relaxation
time approach. This opens the way to the exploration
of a broad range of thermodynamic and kinetic condi-
tions (both in terms of fluid flow and adsorption). As
illustrated in this paper, this extended Lattice Boltz-
mann approach allows considering, for any adsorption
model (i.e. beyond Henry and Langmuir adsorption),
the transport of adsorbing molecules at any stage along
the adsorption kinetics (from the early adsorption stage
at an adsorbate free surface to the long-time, i.e. equilib-
rium, limit). In particular, the different following stages
can be investigated in detail: diffusive regime, advection-
dominated regime, and dispersive regime (with results
validated against simple known physical limits such as
Taylor dispersion modified to include adsorption).

In brief, our extended Lattice Boltzmann method re-
lies on the formal treatment of the advection/diffusion
phenomenon which is augmented to include adsorption.
For this reason, the approach derived in this article can
be seen as equivalent to solving the diffusion/advection/
adsorption equation but using a Lattice Boltzmann tech-
nique. The use of a Lattice Boltzmann approach al-
lows us to embark the full power of this general method;
combining a robust hydrodynamic framework compatible
with statistical mechanics aspects while treating complex
porous media through the use of a lattice approach [33–
35]. In practice, the advection/diffusion part is solved
using an already available Lattice Boltzmann method im-
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plemented with the two relaxation time scheme; this al-
gorithm consists of performing a collision step followed
by a propagation step for the solute molecules within
the flowing fluid [36, 37]. Adsorption is included within
this robust formalism by adding a third step – between
the collision and propagation steps – by updating the free
and adsorbed tracer concentrations using a given adsorp-
tion kinetic equation. Like with other Lattice Boltzmann
methods, the Stokes flow is precalculated and assumed
to remain unaffected as adsorption proceeds. As already
stated, the use of this generic approach allows consider-
ing any adsorption mechanisms from well-known regimes
such as Henry, Langmuir or Sips adsorption isotherms to
more complex behaviors with collective adsorption phe-
nomena.

The remainder of this article is organized as follows.
In Section II, we introduce this extended Lattice Boltz-
mann method that accounts for adsorption thermody-
namics and kinetics in a flowing fluid. After providing
the main key ingredients/steps, we write formally the re-
sulting equations to be solved numerically for different
adsorption regimes: Langmuir adsorption model (which
includes the Henry adsorption regime as it corresponds
to the low concentration limit of the Langmuir model)
and a recently published model which includes coopera-
tive adsorption [32]. In this first section, we also provide
details about the simulation setup and procedure as well
as a flow chart to illustrate how a typical simulation is
conducted. In Section III, we validate our approach by
considering adsorption kinetics under no flow conditions
for different regimes: Henry, Langmuir, and cooperative
adsorption. For different concentrations, using a proto-
typical slit pore geometry, we show that our method pro-
vides an exact description of the known solution to these
problems (as theoretical treatments are available for such
simple adsorption examples in ideal pore geometries). In
Section IV, we extend this validation by considering more
complex situations where adsorption equilibration pro-
ceeds from an initial injection configuration within the
flowing fluid (typically, a constant concentration is in-
jected at a well defined position for a given time period).
It is shown that the results obtained using our method
match the exact solution derived for a slit pore treated
with Henry adsorption conditions [38]. In Section V, we
provide some concluding remarks.

II. EXTENDED LATTICE BOLTZMANN
METHOD

A. Kinetics implementation

1. Problem statement

Lattice Boltzmann methods are known to be very ro-
bust techniques to investigate complex phenomena in-
volved in porous media such as multiphase flow [39] and
dissolution [40] (see also Ref. [41]). Let us consider a

discretized porous material made up of solid sites coex-
isting with porous sites that are accessible to the carrying
fluid and dispersing tracers (Fig. 1). All fluid sites ad-
jacent to a solid site adsorb tracer molecules. In what
follows, two populations will be considered: free and ad-
sorbed tracers with their corresponding concentrations
c(r, t) and ca(r, t) at a time t and position r. The ad-
sorbed tracer concentration in porous sites not in contact
with the solid phase is assumed to be zero (physically, this
approximation is justified by the fact that the mesoscopic
lattice spacing used in Lattice Boltzmann extends far be-
yond the typical range of intermolecular forces responsi-
ble for adsorption). For the sake of simplicity, through-
out this article, a simple slit pore geometry is consid-
ered but the method derived here can be extended to any
pore geometry. While such a simple, i.e. slit, geometry
fails to capture morphological (pore shape) and topolog-
ical (pore connectivity) disorders, it allows illustrating
how the specificities of the adsorption thermodynamics
and kinetics at play affect tracer molecule dispersion in
porous media. In particular, by considering such a reg-
ular model, our approach allows identifying the role of
surface saturation (Langmuir adsorption) and collective
adsorption (cooperative adsorption) compared to simple
Henry-type adsorption. Moreover, as shown in this pa-
per, the use of the slit geometry allows verifying that
our approach recovers known analytical limits (e.g. Tay-
lor dispersion with and without adsorption). All Lattice
Boltzmann simulations are performed for 2D systems to
ensure that the computational burden remains reason-
able. In practice, this means that the porous system
shown in Fig. 1 corresponds to a slice of a slit pore.

The porous system depicted in Fig. 1(a) is subjected to
a stationary, laminar liquid flow – the so-called carrying
fluid – which is assumed to be entirely described through
its Stokes velocity field u(r). The latter is precalculated
using regular Lattice Boltzmann simulations which do
not account for the presence and, a fortiori, for adsorp-
tion of the tracer molecules. In practice, the resulting
Stokes flow is assumed to remain constant/independent
upon subsequent injection, diffusion, and adsorption of
the tracer molecules. As shown in Fig. 1(b), at a given
time t = 0, the free tracers are injected for a given dura-
tion ∆t0 which can be varied from a single to several time
steps ∆t0 = n∆t (with n an integer defined strictly posi-
tive and ∆t the Lattice Boltzmann integration timestep).
Different spatial distributions can be injected during the
injection time ∆t0: either a homogeneous distribution
c(r) = c0, ∀r or a heterogeneous distribution like a con-
centration slice c(r0) = c0 with r0 = (x0, y) such that x0

is a given lateral position within the slit pore.

As described below, the coupled dynamics resulting
from advection, diffusion, and adsorption can be deter-
mined by following the evolution in time of the free and
adsorbed tracer distributions. The variance σ2

x(t) of the
free tracer distribution c(r, t) along the direction x pro-
vides a direct measurement of the dispersion coefficient
D(t → ∞) with D(t) ∼ dσ2

x(t)/2dt. On the other hand,
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FIG. 1. Schematic representation of the simulation setup used
in our Lattice Boltzmann calculations. (a) A slit pore hav-
ing a length Lx and a width L is used as a simple reference
system to validate our Lattice Boltzmann method. In the ge-
ometry mesh shown here, each site is either a fluid site (white)
or a solid site (black). Fluid sites directly in contact with a
solid site adsorb tracers (grey). (b) The molecule concentra-
tion within the geometry is monitored as a function of time
t. These molecules are carried along the pore direction by a
flowing liquid whose velocity field corresponds to Stokes flow
(corresponding for this simple pore geometry to a Poiseuille
velocity profile with a maximum velocity umax). Starting
from a concentration peak injected at a given time t = 0 in
a slice located in x0, the density broadens as molecular diffu-
sion leads to tracer dispersion within the pore. The different
colors denote different times which increase from left to right
as the carrying fluid is transported along this direction). Un-
der laminar flow conditions, the concentration distribution in
the long time limit is given by Taylor regime where tracer dis-
persion leads to a concentration distribution with a Gaussian
shape.

the time evolution of the adsorbed tracer distribution
ca(r, t) allows determining the resulting adsorption kinet-
ics f(t) ∼ ca(r, t). In practice, while our Lattice Boltz-
mann calculations are performed using local volume con-
centrations c(r, t) and ca(r, t), most of our results will re-
port adsorbed quantities expressed as surface concentra-
tions Γ(r, t). Considering that Γ(r, t) = ca(r, t)∆x where
∆x is the lattice spacing used in the Lattice Boltzmann
calculations, the two quantities are strictly equivalent. In
particular, when expressed in Lattice Boltzmann units
(∆x = 1), the surface and bulk concentrations of ad-
sorbed tracers follow the same evolution Γ(r, t) ∼ ca(r, t)
[for the sake of clarity, in what follows, the different evo-
lution equations are reported using bulk concentrations
c(r, t) and ca(r, t)].

2. Algorithm and flow chart

Fig. 1 in the Supplemental Material shows a flow chart
presenting the algorithm corresponding to our extended
Lattice Boltzmann approach. Once the pore geometry
has been defined, the Stokes flow of the carrying fluid is
calculated using an independent Lattice Boltzmann sim-
ulation. The presentation of this first step is skipped
here as it corresponds to conventional Lattice Boltzmann
simulations for Stokes flow (leading to the conventional
Poiseuille flow for the slit pore geometry). In practice,
as a first order approach, the Stokes field is assumed to
remain constant as adsorption proceeds. While this cor-
responds to a simplified problem description, it is consid-
ered reasonable in many situations (see for instance Ref.
[42] where the distribution of water was found to be only
very weakly sensitive to ion adsorption). In particular,
this allows disentangling important effects such as the
role of specific adsorption regimes (thermodynamics and
kinetics) at constant flow field. In contrast, this prevents
from investigating more complex situations such as when
adsorption modifies the wetting/hydrodynamic bound-
ary properties of the solid surface [43] or when adsorption
can lead to pore blockage [44]. In any case, while this is
beyond the scope of the present paper, we note that the
approximation of a constant stokes flow could be released
by recalculating after each adsorption/diffusion step be-
low the modified Stokes field.

Once the Stokes field has been determined, tracers are
injected at a time t = 0 according to a well defined time
and space distribution as shown in Fig. 1(b). For a given
Stokes flow, starting from such initial conditions, the dis-
persion and adsorption kinetics of the free and adsorbed
tracers are computed by incrementing the time t in a
discretized manner t → t + ∆t. Each time increment
∆t involves three intermediate steps which redistribute
the free and adsorbed tracers due to collision, adsorp-
tion, and propagation. The collision and propagation
steps, which are identical to those used in conventional
Lattice Boltzmann calculations, only apply to the free
tracer distribution c(r, t). On the other hand, the ad-
sorption step applies to both the free and adsorbed tracer
molecules as it corresponds to a kinetic equation that re-
distributes molecules between c(r, t) and ca(r, t). In prac-
tice, as described hereafter for each step, these different
intermediate steps apply to the free molecule subdistri-
bution gq(r, t) which corresponds to the density of free
tracers having a velocity vq along the direction q at a
position r and time t (we recall that the tracer velocity
vq should not be confused with the Stokes field u corre-
sponding to the carrying liquid). We perform our sim-
ulations with the D2Q9 lattice classification so that the
particles are allowed to stream in 9 directions following
the velocity set vq (with q ∈ {0, .., qm = 8}). The immo-
bile (zero velocity) population corresponds to the index 0.
The D2Q9 velocity set involves four “coordinate” veloc-
ities vq = (±1, 0), (0,±1) and four “diagonal” velocities
vq = (±1,±1).
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Let us introduce the different free tracer distributions
gq(r, t), g̃q(r, t) and ˜̃gq(r, t) obtained after the propaga-
tion, collision and adsorption steps, respectively. Be-
cause these different functions are normalized, the con-
centrations in free tracers after the collision, adsorp-
tion, and propagation steps are readily obtained as
c̃(r, t) =

∑
q g̃q(r, t), ˜̃c(r, t) =

∑
q

˜̃gq(r, t), and c(r, t) =∑
q gq(r, t). For reasons that will become clearer be-

low when introducing the different intermediate steps, we
do not need to introduce the molecule distributions for
the adsorbed tracers (for these molecules, we only con-
sider the total concentration ca which is directly linked
to c because of overall density conservation). More-
over, while the q-components gq(r, t) of the distribution
g(r, t) are redistributed during the collision/propagation
steps (as physically expected), their fraction x̃q(r, t) =
g̃q(r, t)/c̃(r, t) = g̃q(r, t)/

∑
q g̃q(r, t) remains unaffected

during the adsorption step [i.e. x̃q(r, t) = ˜̃xq(r, t)]. This
approximation consists of assuming that the velocity dis-
tribution vq among the different components q are not
changed during the adsorption step despite the change in
the total number of free tracers within the overall time
step ∆t, i.e. ∆c(r, t) = −∆ca(r, t) (where the symbol ∆
indicates that the difference is taken between the colli-
sion step ˜ and the adsorption step ˜̃). This approxima-
tion can be also rationalized by invoking that, regardless
of their velocity, all tracers get adsorbed with the same
adsorption rate. Reciprocally, this approximation also
implies that all desorbing tracers are reintroduced in the
free tracer population according to a velocity distribution
that verifies the current q-component distribution.

• Collision. At a given time step t, the components
gq(r, t) at each site r are redistributed among the site
populations to mimic molecule collisions [45, 46]:

g̃q(r, t) = Ω[g(r, t)]q (1)

where g(r, t) denotes the set of q-components gq(r, t)
and Ω[g(r, t)]q the collision operator which transfers
momentum between the different q-components. The
Two-Relation-Time method (TRT) is an extended Lat-
tice Boltzmann scheme where the collision operator in-
volves different relaxation rates for the symmetric and
anti-symmetric components. The symmetric and anti-
symmetric components are defined as g+

q = (gq + gq̄)/2

and g−q = (gq − gq̄)/2 for q ∈ {1, ..., qm/2} (for q = 0,

we have g+
0 = g0 and g−0 = 0). In the TRT approach,

the update rule for the symmetric and anti-symmetric
equilibrium components e±q is performed separately with

two relaxation parameters: λ+ for all symmetric non-
equilibrium components n+

q = g+
q −e+

q and λ− for all anti-

symmetric non-equilibrium components n−q = g−q − e−q .

For the zero velocity, e+
0 = e0 and e−0 = 0. The collision

update rule for the TRT scheme is given by the following

equations applied to q ∈ {1, .., qm/2} [47]:

g̃q(r, t) = gq(r, t) + λ+n+
q + λ−n−q

g̃q̄(r, t) = gq̄(r, t) + λ+n+
q − λ−n−q

g̃0(r, t) = g0(r, t) (1 + λ+)− λ+e0

(2)

The equilibrium components for the D2Q9 scheme
are [47]: 

e+
q (r, t) = c(r, t)E+

q

e−q (r, t) = c(r, t)E−q

e+
0 (r, t) = e0 = c(r, t)E0

e−0 (r, t) = 0

(3)

with 

E+
q = t∗qve +

t∗q
2

[3(u · vq)2 − u2]

E−q = t∗q(u · vq)

E0 = 1−
qm∑
q=1

E+
q (r, t)

(4)

where the diffusion-scale equilibrium parameter ve is de-
fined as ve = (Dxx+Dyy)/2. In the above equation, t∗q =
{1/3; 1/12} are the isotropic weights while u = {ux, uy}
is the advective velocity with u2 = u2

x + u2
y. The diffu-

sion coefficients are taken as Dxx = Dyy = Dm/Λ
−.

With the TRT scheme, two important relaxation nu-
merical parameters Λ± and Λ must be chosen to ensure
that the solutions correspond to a stable algorithm lead-
ing to a physically correct picture. These parameters are
linked to the relaxation constants λ± as follows [47]:{

Λ = Λ+Λ−

Λ± = −(1/2 + 1/λ±) for − 2 < λ± < 0
(5)

As mentioned by Ginzburg et al. [47], an optimal TRT
subclass requires to choose Λ+ and Λ− such that Λ = 1/4
(in this work, we use Λ+ = 4 and Λ− = 1/16). The veloc-
ity field u is obtained from the Stokes simulation results
at equilibrium. At the end of this collision step, the local
free tracer molecule concentration is readily obtained as
c̃(r, t) =

∑
q g̃q(r, t).

• Adsorption. The treatment used for the adsorption
step depends on the exact adsorption mechanism and un-
derlying kinetics considered. The different regimes con-
sidered in this article – Henry, Langmuir, and cooperative
adsorption – will be described specifically in the following
section. From a very general viewpoint, the adsorption
step simply follows the first order kinetic equation which
leads to the adsorption isotherm. In practice, starting
from the free and adsorbed tracer concentrations [c̃(r, t)
and c̃a(r, t)] obtained after the collision step at time t, the

adsorption step leads to updated concentrations ˜̃c(r, t)

and ˜̃ca(r, t). As already mentioned, the distribution ratio
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˜̃xq between the different q-components is assumed to be
unaffected during the adsorption step. Using the concen-
tration definition, i.e. ˜̃c(r, t) =

∑
q

˜̃gq(r, t), we choose to
redistribute the variation induced by the adsorption oper-
ator A(c̃, c̃a) = ∆c(r, t) = ˜̃c(r, t)− c̃(r, t) between the dif-

ferent ˜̃gq components in a homogeneous and proportional
manner. The latter implies that the molecule distribu-
tions ˜̃gq(r, t) after the adsorption step obey the following
evolution equation:

˜̃gq(r, t) = g̃q(r, t)− x̃q(r, t)A(c̃, c̃a) (6)

where x̃q(r, t) = g̃q(r, t)/c̃(r, t) is the fraction of particles
following a velocity set vq at time t and position r. The
explicit expression for the adsorption operator A(c̃, c̃a)
will be detailed in section II.3 as it specifically depends
on the adsorption kinetics under consideration.
• Propagation. At a given time step t, after the colli-
sion/adsorption intermediate steps described above, the

distribution components ˜̃gq(r, t) at each site r are re-
distributed among the neighboring sites [45, 46]. The
change induced by this propagation step in the free tracer
distribution between t and t+ ∆t can be expressed as:

gq(r + vq∆t, t+ ∆t) = ˜̃gq(r, t) (7)

This simple propagation scheme displaces the molecule
distribution ˜̃gq(r, t) using the velocity set {vq}. In more
detail, the molecules still located at node r at time t after
the collision and the adsorption steps are transferred to
node r + vq∆t at the end of each iteration.

3. Adsorption mechanisms and kinetics

Adsorption kinetics is known to significantly impact
the transport of molecules in porous media. Here, in an
attempt to shed light on the interplay of tracer adsorp-
tion and transport, we employ the Lattice Boltzmann
approach introduced above to consider different adsorp-
tion models. We consider the Henry, the Langmuir and
the cooperative adsorption models introduced in our re-
cent work on surfactant adsorption [32]. While the Henry
adsorption isotherm is effective in the low concentration
range, the Langmuir adsorption isotherm accounts for
site saturation as the surface concentration of adsorbed
tracers increases. The cooperative model allows account-
ing for adsorbate molecule interactions as well as for pos-
sible cooperative effects on adsorption thermodynamics
and kinetics (as will be discussed in more detail below,
cooperative refer in this context to adsorbate collective
effects upon adsorption such as lateral interactions and
surface aggregation). In what follows, we present the
adsorption/kinetic equations that should be specifically
implemented to consider these different regimes in our
extended Lattice Boltzmann approach.
Henry adsorption. The Henry model is the simplest
adsorption isotherm. The adsorbed amount is assumed
to be proportional to the bulk concentration of adsorbate

molecules. The underlying kinetics for this adsorption
isotherm is defined as:

∂Γ

∂t
= kAcΓ

∞ − kDΓ (8)

where kA and kD are the adsorption and desorption rates
and Γ∞ the surface density of adsorbing sites. The solu-
tion resulting from Eq. (8) is given by:

Γ(t) = Γ∞kc[1− e−kDt] with k = kA/kD (9)

With this simple model, the adsorbed amount increases
linearly with the bulk molecule concentration c. To
mimic Henry adsorption, the adsorption step in the ex-
tended Lattice Boltzmann method proposed here simply
follows the first order kinetic equation leading to a linear
adsorption isotherm. Starting from the free and adsorbed
tracer concentrations obtained after the collision step –
c̃(r, t) and c̃a(r, t) – the adsorption kinetics can be writ-
ten as:

˜̃ca(r, t) = pAc̃(r, t) + [1− pD]c̃a(r, t) (10)

˜̃c(r, t) = c̃(r, t)− pAc̃(r, t) + pD c̃a(r, t) (11)

where pA and pD are the adsorption and desorption rates
in Lattice Boltzmann units. The symbols ˜ and ˜̃

indicate quantities obtained after the intermediate col-
lision and adsorption steps, respectively. Physical val-
ues for pA and pD can be obtained from the compari-
son with the physical kinetic equation, i.e. ∂Γ(r, t)/∂t =
kAc(r, t)−kDΓ(r, t) (with the surface concentration read-
ily obtained from the adsorbed tracer concentration,
i.e. Γ(r, t) = ca(r, t)∆x). Considering that kA is in
m.s−1 and kD in s−1, such a comparison shows that
pA = kA∆t/∆x and pD = kD∆t. The expression of
the operator A(c̃, c̃a) for the definition of the molecule

distributions ˜̃gq(r, t) in Eq. (6) becomes for the Henry
adsorption:

A(c̃, c̃a) =
[
pAc̃(r, t)− pD c̃a(r, t)

]
(12)

Surface saturation. To cover a wider concentration
range, we now turn to the Langmuir adsorption model
in which molecules are assumed to adsorb on well de-
fined sites at the solid surface. All sites are identical and
each site can adsorb only one molecule so that adsorp-
tion only leads to monolayer adsorption. The energy of
each adsorbed molecule is independent of the neighbor-
ing sites (no lateral interactions between neighboring ad-
sorbed molecules). For very small concentrations c, the
Langmuir model is equivalent to the Henry model. The
underlying kinetic equation for Langmuir adsorption is
defined as:

∂Γ

∂t
= kAc(Γ

∞ − Γ)− kDΓ (13)

whose solution is given by:

Γ(t) = [1− e−kD(1+kc)t]
Γ∞kc

1 + kc
with k = kA/kD (14)



7

The Langmuir adsorption model is a simple non-linear
equation which accounts for surface saturation upon ad-
sorption; the adsorbed concentration ca(r, t) cannot ex-
ceed c∞a . Adsorption increases rapidly with concentra-
tion in the low concentration range and then reaches a
plateau asymptotically as the surface sites become sat-
urated with already adsorbed molecules. Implementing
the Langmuir model in our Lattice Boltzmann approach
simply requires to modify Eqs. (10) and (11) to account
for surface saturation:

˜̃ca(r, t) =pAc̃(r, t)

[
1− c̃a(r, t)

c∞a

]
+ (1− pD)c̃a(r, t) (15)

˜̃c(r, t) =c̃(r, t)− pAc̃(r, t)
[
1− c̃a(r, t)

c∞a

]
+ pD c̃a(r, t)

(16)

where c(r, t) and ca(r, t) denote the free and adsorbed
tracer concentrations. As already stated, the symbols
˜ and ˜̃ indicate quantities obtained after the interme-
diate collision and adsorption steps, respectively. Like
for the Henry regime, the adsorption parameters pA, pD
and c∞a can be derived by formally writing the anal-
ogy with the Langmuir adsorption kinetics ∂Γ(r, t)/∂t =
[1− Γ(r, t)/Γ∞] kAc(r, t) − kDΓ(r, t) (where the maxi-
mum surface concentration is defined as Γ∞ = c∞a ∆x).
This leads to the same definition for pA and pD as
with the Henry model: pA = kA∆t/∆x and pD =
kD∆t. Moreover, due to mass balance condition, the
q-components of the free tracer distribution ˜̃gq(r, t) af-
ter the adsorption step are generated by an adsorption
operator A(c̃, c̃a) in Eq. (6) defined as:

A(c̃, c̃a) = pAc̃(r, t)

[
1− c̃a(r, t)

c∞a

]
− pD c̃a(r, t) (17)

Cooperative adsorption. A cooperative adsorption
model was recently introduced to describe the adsorption
of complex molecules such as surfactants. Full details can
be found in Ref. [32] so that we only provide the main
ingredients here. One defines a surface critical concentra-
tion cs, which corresponds to the minimum concentration
to observe the formation of aggregated (self-assembled)
structures at the solid surface. While only adsorption of
individual monomers m occurs below cs, both individ-
ual monomers m and aggregated monomers m′ adsorb
on the surface sites s for c ≥ cs. The adsorption of the
individual monomers follow the Henry or the Langmuir
adsorption kinetics as defined above. In contrast, a dif-
ferent kinetic equation for the adsorption/desorption of
aggregated monomers is introduced:

∂Γm′(c, t)

∂t
=k′A (Γm′) c

[
Γ∞ − Γm(c,∞)

− βΓm′(c, t)
]
− k′D (Γm′) Γm′(c, t)

(18)

where Γm′(c, t) is the surface concentration in aggregated
monomers m′ while Γm(c,∞) is the surface concentra-
tion of individual adsorbed monomers m. The parame-
ter β accounts for the fact that the adsorption of a single

monomer in aggregated objects only occupies a fraction
β of the surface site. The adsorption and desorption rates
k′A and k′D explicitly depend on the surface concentration
Γm′ . At equilibrium, this kinetic equation leads to the
following solution for a bulk concentration c:

Γm′(c,∞) = [Γ∞ − Γm(c,∞)]
k′(Γm′)c

[1 + βck′(Γm′)]
(19)

where k′(Γm′) = k′A(Γm′)/k′D(Γm′).

To implement the cooperative adsorption model into
the Lattice Boltzmann approach introduced above, we
distinguish two adsorbed concentrations: the concen-
tration of adsorbed isolated monomers ca,m(r, t) and
the concentration of adsorbed aggregated monomers
ca,m′(r, t). The total surface concentration of adsorbed
monomers is simply the sum of the two concentrations:
ca(r, t) = ca,m(r, t) + ca,m′(r, t). For c < cs, the situ-
ation is simple as only isolated monomers get adsorbed
so that the interplay of adsorption kinetics and molecule
transport can be described using the Lattice Boltzmann
approach using either the Henry or Langmuir regime (de-
pending on the type of adsorption isotherm observed). In
contrast, for c(r, t) ≥ cs, both the adsorption of individ-
ual and aggregated monomers must be considered.

To simplify the problem, we assume that the ad-
sorption of isolated monomers is an instantaneous
process: ca,m(r, t) = ca,m(r,∞) ∀t. With this
approximation, we can recast the adsorption kinet-
ics defined in Eq. (18) by: ∂Γm′(r, t)/∂t =
[1− (βΓm′(r, t) + Γm(r,∞))/Γ∞] k′Ac(r, t)− k′DΓm′(r, t)
where k′A and k′D depend on the adsorbed amount
Γm′(r, t) = ca,m′(r, t)∆x. In practice, assuming β = 1
and constant adsorption/desorption rates k′A and k′D al-
lows recovering the Langmuir adsorption model. This
cooperative model can be implemented in our Lattice
Boltzmann approach by modifying the kinetic evolution
described in Eqs. (10) and (11) as follows:

˜̃ca,m′(r, t) = p′Ac̃(r, t)

[
1− βc̃a,m′(r, t) + ca,m(r,∞)

c∞a

]
+(1− p′D)c̃a,m′(r, t) (20)

˜̃c(r, t) = c̃(r, t)−p′Ac̃(r, t)
[
1− βc̃a,m′(r, t) + ca,m(r,∞)

c∞a

]
+p′D c̃a,m′(r, t) (21)

where c∞a = Γ∞/∆x, p′A = k′A∆t/∆x and p′D = k′D∆t.
Finally, at the end of the adsorption step, the adsorbed
amount ˜̃ca(r, t) = ca,m(r,∞)+˜̃ca,m′(r, t) is obtained from
Eq. (6) with the operator A(c̃, c̃a) given by:

A(c̃, c̃a) = p′Ac̃(r, t)

[
1− βc̃a,m′(r, t) + ca,m(r,∞)

c∞a

]
−p′D c̃a,m′(r, t) (22)
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III. ADSORPTION KINETICS UNDER NO
FLOW CONDITIONS

In this section, we present the results from the Lat-
tice Boltzmann approach for different adsorption mod-
els: Henry and cooperative adsorption models (for the
sake of brevity, the results for the Langmuir adsorption
model are discussed in detail in the Supplementary Ma-
terial). We consider here static conditions, i.e. under
no flow condition, as we first aim at validating the cor-
rect adsorption kinetics implementation for each model.
In more detail, we check that the Lattice Boltzmann ap-
proach introduced above correctly generates the different
adsorption isotherms Γ(c,∞) as well as the underlying
adsorption kinetics Γ(c, t). In practice, for such simula-
tions performed in the absence of any liquid flow, each
fluid node is filled at a time t = 0 with a concentra-
tion c0 (i.e. c(r, t = 0) = c0; ∀r). The evolution of the
surface concentration Γ as a function of time t is then
monitored together with the asymptotic value of Γ(c,∞)
at infinite time as a function of the remaining free tracer
concentration c. At first, the influence of the initial con-
centration c0 on the adsorption behavior is considered.
The numerical adsorption kinetics is then compared with
the analytical solution of the kinetics equation. Adsorp-
tion is only considered at an adsorbing site located far
from the pore entrance/exit to avoid numerical instabili-
ties/artifacts. Typically, for the slit pore considered here
having a length Lx = 1000∆x, the adsorbed amount in
the slice located at x = 200∆x is monitored.

A. Henry adsorption

As shown in Fig. 2, the Henry adsorption model pre-
dicts a linear relationship between the adsorbed amount
Γ and the free tracer concentration c. Starting from dif-
ferent initial concentrations c0, our Lattice Boltzmann
approach converges towards a final solution that perfectly
matches the theoretical prediction corresponding to the
solid black line. For each initial concentration c0, the
dashed line indicates the time evolution of the adsorbed
amount which eventually reaches the equilibrium value.
Such time evolution indicates that the adsorption kinetics
follows nearly a vertical line (i.e. at constant free tracer
concentration c) even if a small inflection towards the ad-
sorption isotherm is observed when reaching equilibrium.
This result can be explained by the fact that the adsorp-
tion/desorption ratio kH = 0.01 chosen here is very low;
therefore, the bulk concentration in such static simula-
tions does not change much since the adsorbed concen-
tration corresponds to a very small contribution of the
overall bulk concentration, ca ∼ kHc. Yet, close inspec-
tion of the time evolution of the free tracer concentration
c at the adsorbing sites (i.e. open circles) reveals an inter-
esting behavior. Starting from the initial concentration
c0 at t = 0, c slightly decreases in the first time steps
due to rapid adsorption in the adsorbing sites. How-

ever, after a number of iterations (i.e. timesteps), the
depletion of free tracers near the surface due to adsorp-
tion induces a diffusive flux of free tracers from the bulk.
This leads to an increase in the free tracer concentration
until equilibrium is reached (where, as expected, the fi-
nal bulk concentration is only slightly smaller than the
initial value c0 due to the large reservoir size in the con-
sidered pore geometry). Overall, the results above indi-
cate that the Henry adsorption isotherm as implemented
in our Lattice Boltzmann scheme allows reproducing the
thermodynamic equilibrium described using this canon-
ical model. Let us now consider more specifically the
adsorption kinetics as predicted using the Lattice Boltz-
mann approach including adsorption/desorption. Fig. 3
shows that the adsorption kinetics obtained using the
Lattice Boltzmann calculations matches within numeri-
cal errors the known analytical solution corresponding to
Eq. (9). This result further validates our model by show-
ing that it provides an accurate and reliable description
of the Henry adsorption kinetics. As shown in the Sup-
plemental Material, the same agreement was obtained for
the Langmuir regime which is not presented here for the
sake of clarity (see discussion in paragraph “Langmuir
adsorption model under no flow conditions”).
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FIG. 2. Henry adsorption isotherm Γ(c) for a Henry constant
kH = pA/pD = 0.01 with pA = 0.0005 and pD = 0.05. The
adsorbed amount corresponds to the surface concentration Γ.
The black solid line is the theoretical prediction Γ = kHc
while the open circles are the results from the Lattice Boltz-
mann calculations. Each color corresponds to a given initial
concentration c0 as indicated in the graph. For each color,
the dashed line presents the time evolution of the adsorbed
amount Γ(t). The insert shows the concentration of free trac-
ers in the adsorbing sites as a function of time.

B. Cooperative adsorption

To further validate the robustness of the implemented
lattice Boltzmann approach, we now consider the cooper-
ative model introduced above. The model data used are
taken from Ref. [32] in which the adsorption of TX100
surfactants in porous silica was considered. To make our
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FIG. 3. Comparison between the adsorption kinetics Γ(t) pre-
dicted using Lattice Boltzmann simulations and the analyti-
cal expression for the Henry adsorption regime. These data
are obtained for an adsorption isotherm corresponding to the
Henry regime with a Henry constant kH = 0.01 (pA = 0.0005
and pD = 0.05). The initial concentration is c0 = 10. The
open symbols correspond to the numerical solution using the
Lattice Boltzmann model while the dashed line indicates the
analytical expression for Henry kinetics as described in Eq.
(9).

validation as complete as possible, the following packing
fractions β will be considered: β = 0.2, 0.5, and 1. We
first test the ability of the Lattice Boltzmann approach to
generate adsorption isotherms predicted using the coop-
erative adsorption model. Like with the Henry and Lang-
muir regimes, this test is performed for a system taken
under no flow conditions. The specificity of the cooper-
ative adsorption model lies in its ability to describe col-
lective effects induced by lateral surface interactions and
surface aggregation of adsorbing molecules. As already
discussed, in this model, such cooperative effects only
manifest themselves for bulk concentrations above the so-
called critical surface concentration cs (below this value,
the model simply assumes that isolated monomer adsorp-
tion follows a Henry or Langmuir adsorption isotherm).
As a first validation test, we aim at verifying the abil-
ity of the Lattice Boltzmann approach to accurately pre-
dict the total adsorbed amount Γ(c) = Γm(c) + Γ′m(c) in
equilibrium with a bulk concentration c (we recall that
Γm(c) and Γ′m(c) are the adsorbed amount of isolated
and aggregated monomers, respectively). Fig. 4 shows
the adsorbed amount Γ(c) as a function of the bulk con-
centration c. Both the results obtained using the Lattice
Boltzmann approach and the predictions of the thermo-
dynamic model are shown. In this figure, the colored
dashed lines indicate the time evolution of the adsorbed
amount Γ(c, t). For different initial concentrations vary-
ing between c0 = 50 to c0 = 700, the results of the
Lattice Boltzmann calculations are in perfect agreement
with the theoretical predictions. As discussed above for
the Henry regime, the time evolution seems to follow a
nearly vertical line – i.e. at constant bulk concentration
– due to the very large reservoir size with respect to the

number of adsorbing sites. Indeed, with the cooperative
model, applied to the data of TX100 surfactant adsorp-
tion on quartz silica, the adsorption constant is such that
k′ < 0.02 so that the overall adsorbed amount represents
a very small fraction of the total bulk concentration. The
blue, red and green colors in Fig. 4 correspond to different
aggregation numbers/packing fractions β. The influence
of this important parameter was tested for the same ini-
tial concentration. In more detail, two examples were
considered: c0 = 100 and c0 = 200 which are respec-
tively below and above the critical surface concentration
cs ∼ 115. The results in Fig. 4 show that, regardless
of the aggregation number considered, the Lattice Boltz-
mann model accurately predicts the adsorbed amount
derived using the cooperative adsorption model.
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FIG. 4. Cooperative adsorption model for the adsorption of
TX100 surfactants onto silica (all details can be found in
Ref. [32]). The adsorbed amount is expressed as the sur-
face concentration Γ as a function of the bulk concentration
c. The black solid line denotes the theoretical adsorption
isotherm as predicted using the cooperative model while the
black circles denote the experimental data. The colored sym-
bols correspond to the kinetic results obtained using the Lat-
tice Boltzmann calculations. The different colors denote the
results of the cooperative model with different aggregation
constants: β = 0.2 (blue), β = 0.5 (red), and β = 1.0 (green).
Each dotted line indicates the time evolution of the adsorbed
amount Γ(t) for a specific aggregation constant β and an ini-
tial concentration c0. cs is the surface aggregation concentra-
tion while CMC is the critical micelle concentration.

To study the kinetics of the cooperative model using
the Lattice Boltzmann algorithm, we follow the time evo-
lution of the adsorbed amount of aggregated monomers
Γm′ (in fact, this is the only relevant choice that can
be made since the adsorption kinetics for individual ad-
sorbed monomers is assumed to be instantaneous in the
cooperative adsorption model). Using the same data set
discussed in the previous paragraph, an initial concen-
tration c0 larger than the critical surface concentration
cs is considered (typically, c0 = 250). The cooperative
adsorption model is a simple – versatile and adjustable –
model since various adsorption kinetics can be described
by tuning the values used for p′A and p′D (and hence
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k′) [32]. In the framework of this cooperative adsorp-
tion model, we validate in what follows the kinetics de-
scribed by the Lattice Boltzmann approach by selecting
the two following situations: (1) a constant adsorption
rate p′A ∼ ν1 [Fig. 5(a)] and a constant desorption rate
p′D ∼ ν0 [Fig. 5(b)]. The dashed lines in Fig. 5 present
the analytical kinetics as predicted using the cooperative
adsorption model while the symbols correspond to the
data obtained using the Lattice Boltzmann calculations.
Such a comparison indicates that the results from the an-
alytical kinetic equation are correctly reproduced by the
Lattice Boltzmann model.
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FIG. 5. Comparison between the adsorption kinetics pre-
dicted using the Lattice Boltzmann simulations and the an-
alytical expression for the cooperative adsorption model for
TX100 on silica for an initial concentration c0 = 250. The
dashed lines denote the adsorption kinetics as determined by
solving numerically Eq. (18). In more detail, these data show
Γm′ as a function of time t. The open symbols correspond
to the numerical results obtained using the lattice Boltzmann
model. For each data set, the colors denote the results from
the cooperative model with different aggregation constants:
β = 0.2 (blue), β = 0.5 (red), and β = 1.0 (green). Panel
(a) corresponds to data with p′A ∼ ν1 and p′D ∼ ν1/k

′ while
panel (b) corresponds to data with p′A ∼ ν0k′ and p′D ∼ ν0.

IV. ADSORPTION KINETICS UNDER FLOW
CONDITIONS

As already stated, the Lattice Boltzmann approach
presented in this article enables studying the transport
of adsorbing molecules under dynamical conditions. In
more detail, in the presence of a flowing liquid character-
ized by its Stokes flow u, these Lattice Boltzmann sim-
ulations allow investigating the adsorption kinetics un-
der flowing conditions. The interplay between molecule
adsorption and their advective/diffusive transport can
be described analytically using the classical advection-
diffusion-adsorption equation

∂c(r, t)

∂t
+ u · ∇c(r, t)−∇ · [Dm∇c(r, t)] +

∂ca(r, t)

∂t
= 0

(23)
where c(r, t) and ca(r, t) are the free and adsorbed tracer
concentrations, respectively. u is the Stokes flow veloc-
ity while Dm is the molecular self-diffusion coefficient of
the free tracers. In what follows, the latter equation will
be used under simple, specific adsorption conditions –
namely, the Henry regime – to validate the ability of our
Lattice Boltzmann approach for adsorption to describe
adsorption under flow conditions. Like in the rest of this
article, a simple slit pore geometry is used with a length
Lx = 10000∆x and a width L = 41∆x. The Lattice
Boltzmann simulations are performed by monitoring the
evolution of the free and adsorbed tracer concentrations
after injecting a pulse in the set-up considered in Fig. 1.
In more detail, within the flowing fluid, an initial tracer
concentration c0 is injected for a given time ∆t0 = ∆t in
all sites located at a lateral position x0 (i.e. c(r0, t) = c0;
∀r0 = (x0, y)). After such injection, the tracer disper-
sion in the pore geometry is monitored while imposing
surface adsorbing conditions corresponding to the Henry
regime. Such a simple adsorption model was chosen as it
will provide reference data when studying more complex
adsorption kinetics.

A. Dispersion of adsorbing tracers

Adding adsorbing surface conditions to the problem of
tracer dispersion in a flowing fluid drastically affects the
well-known Taylor dispersion regime [48, 49]. In particu-
lar, the resulting – effective – dispersion coefficient is in-
fluenced by the adsorption kinetics. Several authors have
reported observations on the dispersive regime in the
transport of adsorbing tracer molecules [7, 8, 22, 25, 27].
Some of these works provide important insights into the
impact of adsorption on the Taylor regime in slit pore
geometries [7]. However, these studies did not consider
the transient phase where adsorption kinetics is coupled
with (advective) transport effects before reaching the dis-
persive limit. In a first step, the validity of our Lattice
Boltzmann approach for adsorption was verified for an
analytically known situation. More precisely, in what
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follows, we consider the dispersion of tracer molecules in
a slit pore where adsorption proceeds through a simple
Henry model. Formally, this problem was addressed us-
ing a statistical physics approach by Levesque et al. [38].
Using a stochastic treatment, these authors were able to
derive an analytical expression for the effective dispersion
coefficient for such an ideal yet complex problem. In the
long time limit, for a Henry adsorption isotherm with ad-
sorption/desorption constants kA, kD (corresponding to
a Henry constant kH = kA/kD), the effective dispersion
coefficient Dads is given by:

Dads

Dm
= 1 +

Pe2

(L+ 2kH)3
×[

102LkH
2 + 18L2kH + L3

210
+

2DmkH
kD

]
(24)

where Dm is the molecular diffusion coefficient, L the
characteristic channel width, u the mean flow velocity,
and Pe = uL/Dm the Peclet number.

Fig. 6 compares the results from the Lattice Boltzmann
approach with the theoretical predictions corresponding
to Eq.(24). The data are compared for different Peclet
numbers Pe and Henry constants kH . While the solid
lines correspond to the predictions using the analytical
expression, the symbols denote our simulation results.
As can be seen in Fig. 6, the Lattice Boltzmann simu-
lations yield numerical predictions that are in very good
agreement with the analytical solution for the effective
dispersion coefficient Dads/Dm. While the agreement is
excellent for all Pe numbers when kH is small, a small
departure between the two data sets is noticed for high
Pe numbers when kH is large (the Lattice Boltzmann cal-
culations slightly underestimate the effective dispersion
coefficient Dads). This small discrepancy can be assigned
to different effects. First, Levesque et al. considered the
asymptotic dispersive regime (i.e. no transient regime).
Second, we note that the Lattice Boltzmann approach
used here is sensitive to the choice of the lattice spac-
ing so that the impact of the latter must be investigated
systematically. To investigate such possible numerical ef-
fects, the influence of the mesh resolution on the accuracy
of the predictions was checked. The same simulation was
conducted with different node numbers to describe the
pore width L – typically, different node numbers from 9
to 151 were considered. As shown in Fig. 4 in the Sup-
plemental Material, the difference between the dispersion
coefficient obtained by means of Lattice Boltzmann cal-
culations and the analytical expression given in Eq. (24)
decreases with increasing the node number. In all cases,
such differences remain within a few % at most. Typ-
ically, the difference is less that 1% provided the node
number > 20.

B. Transport in adsorption/desorption conditions

As mentioned in the previous section, available stud-
ies accounting for surface adsorption in the presence of a

flowing fluid consider the dispersive limit – especially the
influence of such adsorption conditions on the resulting
Taylor dispersion coefficient. Here, we intend to use the
Lattice Boltzmann scheme presented in this paper to in-
vestigate the interplay between adsorption kinetics and
advective/dispersive transport. As shown in Fig. 7, the
transient regime where adsorption kinetics and advec-
tive/diffusive transport are coupled can be investigated
by probing the variance of the tracer displacement as a
function of time t after injection at a given time t = 0
and location x = x0. While the adsorption kinetics is
found to drastically affect the dispersion coefficients at
every timestep, the typical evolution shown in Fig. 7 re-
mains similar to the non-adsorbing situation (for compar-
ison, this figure shows both the data for adsorbing and
non-adsorbing tracers). The different transition regimes
between molecular diffusion, advection-dominated flow,
and dispersion are still observed. In the short time range,
a first plateau is observed as the molecules get dispersed
through molecular diffusion. In the intermediate time
range, a transient regime is observed as the dispersion
coefficient rapidly increases with time. This transient
regime corresponds to the so-called advection-dominated
flow where the flowing liquid involves a heterogeneous –
i.e. position dependent – velocity distribution which in-
creases the dispersion of the tracer molecules. Finally, in
the long time range, a second plateau is observed as the
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FIG. 6. Normalized dispersion coefficient for adsorbing
molecules carried in a slit pore geometry by a liquid flow
(obeying a simple Poiseuille flow). The data are presented
as a function of the Peclet number which characterizes the
diffusion/advection rate. Adsorption is described using a
simple Henry law with different Henry constants kH . The
symbols correspond to the results from the Lattice Boltz-
mann calculations using the adsorption scheme. The data
show Dads/Dm = D(t→∞)/Dm where D(t) corresponds to
the derivative of the displacement variance with respect to
time. The lines correspond to the analytical expression for
Dads/Dm as derived by Levesque et al. [see Eq (24) in main
text]. Different kH are considered but, in all cases, a fixed
desorption rate pD = 0.01 is used. The red, black, green and
blue symbols denote data obtained for kH = 0.1, 1, 5 and 10,
respectively.
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system reaches the Taylor dispersive regime for the ad-
sorbing tracer molecules. The asymptotic value obtained
at infinite time yields the effective dispersion coefficient
Dads/Dm.
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FIG. 7. Time evolution of the time derivative of the dis-
placement variance D(t) for adsorbing molecules in a slit pore
geometry. D(t) is normalized to the molecular diffusion coeffi-
cient Dm of the free tracer molecules. The dashed line denotes
the case with non-adsorbing molecules while the solid line cor-
responds to the data for molecules that adsorb according to
a simple Henry adsorption isotherm with kH = 5 (pA = 0.05
and pD = 0.01)). In both cases, tracers are carried by a
flowing liquid described through its Stokes flow. The system
is characterized by its Peclet number Pe = 50 and an ini-
tial concentration c0 = 20. The different transport regimes –
molecular diffusion, advection-dominated transport and dis-
persion – are observed in the short, intermediate, and long
time ranges, respectively.

V. CONCLUSION

A Lattice Boltzmann approach was proposed to de-
scribe the impact of any adsorption kinetics/type on

transport in porous media. In the spirit of previous works
[6, 8, 9], by adding an adsorption step between the col-
lision and propagation steps in the Lattice Boltzmann
algorithm, adsorption of tracer (solute) molecules car-
ried by a flowing fluid (solvent) is accounted for at each
lattice site adjacent to the solid surface. In the present
work, through the use of a general adsorption operator,
any adsorption thermodynamics model and underlying
kinetic equation can be implemented (from simple ad-
sorption regimes to complex adsorption phenomena in-
volving lateral interactions between adsorbed molecules
and even surface self-assembly). At every lattice site, two
molecule populations are considered: free and adsorbed
tracers. At each iteration in the numerical method, the
adsorption kinetics is taken into account by applying
its underlying kinetic equation to both the free and ad-
sorbed tracer concentrations. This approach has the ad-
vantage that it allows the use of different adsorption ki-
netics/models: as shown in this paper, this includes the
Henry model with a simple first order adsorption kinet-
ics, the Langmuir model and the impact of surface sat-
uration, and more complex adsorption models such as
cooperative adsorption arising from adsorbate lateral in-
teractions and surface aggregation.

This algorithm has been validated using a simple pore
geometry in which solute adsorption proceeds under ei-
ther static (stationary) or dynamic (transient) condi-
tions. Under static conditions, our numerical method
correctly predicts the known theoretical solution – when
available – for the different adsorption models. In partic-
ular, such a simple numerical method allows predicting
correctly both the adsorption isotherm Γ(c) and its un-
derlying adsorption kinetics Γ(t). Under dynamic con-
ditions, the accuracy of our method has been estab-
lished by recovering dispersion coefficients predicted from
a known analytical solution for the simple Henry adsorp-
tion regime. As illustrated in this paper, this general
approach allows studying the effects of adsorption ther-
modynamics and kinetics on transport in porous media.
In practice, this method provides a simple computational
fluid tool to simulate tracer injection with different re-
sulting transport mechanisms (diffusion, advection and
dispersion).
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