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DEGENERATING KÄHLER-EINSTEIN CONES, LOCALLY
SYMMETRIC CUSPS, AND THE TIAN-YAU METRIC

OLIVIER BIQUARD AND HENRI GUENANCIA

ABSTRACT. Let X be a complex projective manifold and let D ⊂ X be a
smooth divisor. In this article, we are interested in studying limits when
β → 0 of Kähler-Einstein metrics ωβ with a cone singularity of angle 2πβ

along D. In our first result, we assume that X \ D is a locally symmetric
space and we show that ωβ converges to the locally symmetric metric and
further give asymptotics of ωβ when X \ D is a ball quotient. Our second
result deals with the case when X is Fano and D is anticanonical. We prove a
folklore conjecture asserting that a rescaled limit of ωβ is the complete, Ricci
flat Tian-Yau metric on X \D. Furthermore, we prove that (X, ωβ) converges
to an interval in the Gromov-Hausdorff sense.

CONTENTS

Introduction 1
1. Closing the cusps of locally symmetric spaces 5
2. The Calabi ansatz 10
3. Curvature calculations 14
4. Asymptotics of the conical KE metrics on ball quotients 16
5. Gluing with the Tian-Yau metric 21
6. Uniform Schauder estimate for cones 27
7. Schauder estimate for collapsed metrics 37
8. Convergence in the positive case: proof of Theorem B 45
References 49

INTRODUCTION

Let X be a complex projective manifold and let D ⊂ X be a smooth di-
visor. In many geometrically meaningful situations, one is able to construct
Kähler-Einstein metrics ω on the complement X◦ := X \ D of the divisor D.
Unless one imposes some growth condition near D, such a metric ω may not
be unique – one can typically find complete and incomplete KE metrics on the
same X◦, possibly with the same Einstein constant too.

The focus of the present paper is to investigate the relationship between
these different metrics in the specific setting of Kähler-Einstein metrics with
cone singularities along D. Recall that if β ∈ (0, 1), a Kähler metric ω on X◦
is said to have cone singularities along D with cone angle 2πβ if it is locally
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quasi-isometric to the model cone metric

ωβ,mod :=
idz1 ∧ dz̄1

|z1|2(1−β)
+ ∑

j>2
idzj ∧ dz̄j

on each coordinate chart (U, (zi)) where U ∩ D = (z1 = 0). Such a metric is
incomplete, has finite volume and automatically extends to a closed, positive
(1, 1)-current on X. There is an analogue of the Aubin-Yau (resp. Yau) theo-
rem guaranteeing the existence and uniqueness of a negatively curved (resp.
Ricci-flat) Kähler-Einstein metric ωβ with cone angle 2πβ along D under the
condition that the adjoint R-line bundle KX + (1− β)D is ample (resp. numer-
ically trivial), cf e.g. [Bre13, CGP13, GP16, JMR16]. The positive curvature case
is more complicated, in analogy with the absolute case D = ∅ and it involves
the properness of some suitable analogue of the Mabuchi or Ding functional.

Let us now shift our focus to the small angle regime, that is when 0 < β� 1.
We raise the following broad and somewhat vague question, which is closely
related to [CR15, Conjecture 1.11] and [Oda20, Conjecture 1.4] in the positive
curvature case.

Question. Let X be a complex projective manifold and let D ⊂ X be a smooth divisor.
Assume that for any 0 < β� 1, there exists a unique Kähler-Einstein metric ωβ with
cone angle 2πβ along D, i.e.

(0.1) Ric ωβ = σωβ + (1− β)[D]

for some σ = ±1. Do the metrics ωβ converge when β→ 0 to some canonical metric
on X◦, possibly after rescaling?

The aim of this paper is to provide an answer to the above question in two
different geometric situations, one for each sign of the curvature.

The negative case.
As recalled above, the existence of a KE metric solving (0.1) with σ = −1 is
equivalent to KX + (1− β)D being ample. For instance, if one assumes that
KX + D is ample, then the same will hold true for KX + (1− β)D as long as β
is small enough. In that situation, it was proved in [Gue20] that when β → 0,
the KE metric ωβ converges to the complete KE metric with Poincaré growth
constructed by R. Kobayashi [Kob84] and Tian-Yau [TY87].

Another interesting example is provided by toroidal compactifications of
ball quotients X◦ = Γ

∖
Bn , where Γ ⊂ Aut(Bn) is a torsion-free, discrete

subgroup. It is well-known that one can embed X◦ ↪→ X as a Zariski-open
subset of a projective orbifold X such that D := X \ X◦ is a disjoint union
of abelian varieties, cf § 1.1 for references and more details. Note that the
Bergman metric on Bn descends to the complex (complete) hyperbolic metric
ωhyp on X◦, which we normalize to have Ric ωhyp = −ωhyp. Moreover, KX +
(1− β)D is ample for 0 < β � 1 (but certainly not for β = 0 unless D = ∅)
and therefore X◦ also comes equipped with KE metrics ωβ with cone angle



DEGENERATING KÄHLER-EINSTEIN CONES 3

2πβ along D whenever β > 0 is small enough. The relationship between these
metrics is provided by the following

Theorem A. Let (X, D) be a toroidal compactification of a ball quotient X◦ =

Γ
∖

Bn , and let ωβ be the KE metric solving (0.1) for small β, with σ = −1. Then,
we have convergence

ωβ −→
β→0

ωhyp

both in C∞
loc(X◦) and weakly as currents on X. Moreover, we have precise asymptotics

of ωβ near D when β→ 0.

A few remarks are in order here.
(i) The asymptotics of ωβ in C0 are given in Theorem 4.5. They are ob-

tained by constructing a model metric on the normal bundle of D using
the Calabi Ansatz, cf § 2.

(ii) The first half of the statement (i.e. the convergence part) remains true in
the more general setting of quotients of bounded symmetric domains,
cf Theorem 1.1. In that case, D needs not be smooth anymore but has
simple normal crossings up to a finite cover.

(iii) Assume that the lattice Γ is arithmetic. By choosing the angles carefully
along each torus at the boundary, one can find a sequence ωβm of orb-
ifold KE metrics that can be globally desingularized so that (X◦, ωhyp)
is the limit of smooth, compact KE spaces up to the action of a larger and
larger group of isometries, cf § 4.3. In a nutshell, one can "close the com-
plex hyperbolic cusp". This gives the closest analog to the Dehn filling
of real hyperbolic cusps by Einstein manifolds, due to Thurston in di-
mension 3 and Anderson [And06] in higher dimension: in the complex
case, one cannot fill the cusp, but this is possible up to some larger and
larger covering. This answers a question of Misha Kapovich to the first
author several years ago.

The positive case.
In general, it is not so easy to characterize the existence of a metric ωβ solving
(0.1) with σ = 1, for small values of β. However, a result of Berman [Ber13]
(later generalized by Song-Wang [SW16]) asserts that if X is a Fano manifold
(that is,−KX is ample) and D ∈ |−KX| is smooth, then there exists β0 > 0 such
that for any 0 < β < β0, there exists a unique Kähler metric ωβ on X◦ such
that Ric ωβ = ωβ and ωβ has cone singularities with cone angle 2πβ along D,
i.e. ωβ solves (0.1).

The existence of such a metric had been conjectured by Donaldson [Don12,
§ 6] in relation with his program to prove that a K-stable Fano manifold admits
a Kähler-Einstein metric by using the continuity path Ric ωt = tωt +(1− t)[D]
involving metrics with cone singularities. He also predicted that the (conjec-
tural then) ωβ would actually converge to the Ricci flat complete Kähler metric
ωTY constructed by Tian and Yau in [TY90].

If n = 1, then the metrics ωβ on P1 \ {0, ∞} are completely explicit, given

by the expression ωβ = β2idz∧dz̄
|z|2(1−β)(1+|z|2β)2 and one sees immediately that β−2ωβ
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converges locally smoothly to the cylinder ωcyl = idz∧dz̄
4|z|2 while (P1, ωβ) con-

verges in the Gromov-Hausdorff sense to the interval ([0, π
2 ], dt2) (set r = |z|β

to that gβ = dr2+β2r2dθ2

(1+r2)2 and reparametrize by t = tan−1(r)), cf also [RZ20]. Our
second main result establishes the conjecture in full generality.

Theorem B. Let X be a Fano manifold of dimension n and let D ∈ | − KX| be a
smooth anticanonical divisor. Then up to a rescaling factor, the conic KE metrics ωβ

solving (0.1) with σ = 1 for small β converge to the Tian-Yau metric:

β−1− 1
n ωβ −→

β→0
ωTY

in C∞
loc(X \ D). Moreover, we have precise asymptotics of ωβ near D when β→ 0.

Finally fix a point p ∈ D, denote gβ the Riemannian metric associated to the Kähler

form ωβ and consider the renormalized volume forms νβ =
d volgβ

volgβ
(X)

. Then the spaces

(X, gβ, p, νβ) converge in the measured Gromov-Hausdorff sense to the interval(
[0, π

2 ], g∞ = 2
n+1 ds2, 0, ν∞ = d(− cos

2n
n+1 s)

)
.

As before, a few remarks:
(i) The fibers of the collapsing to an interval are the normal circle bundle

of the divisor D. The two endpoints of the interval correspond respec-
tively to the conical divisor D itself and to the Tian-Yau metric. Over
interior points of the interval, the fibres have two speeds of collapsing:
speed β for the circle directions and

√
β for the divisor directions. See

section 5.3 for a detailed discussion, a relevant picture, as well as the
computation of the other possible nontrivial Gromov-Hausdorff limits
of the rescaled metrics gβ: we obtain R+, R+ × D and R+ × Cn−1 at
s = 0, and at s = π

2 the previous Tian-Yau metric on X \ D and R+.
(ii) Several recent papers study cases of collapsing of Ricci flat Kähler met-

rics to an interval, for K3 surfaces [HSVZ22] or in higher dimension
[SZ19]. Our theorem probably gives the first general example of col-
lapsing of Kähler-Einstein metrics with positive Ricci: of course this is
made possible by the presence of a cone angle going to zero.

(iii) In the process of the proof, we construct the Kähler-Einstein metrics ωβ

for small β, therefore recovering Berman’s result.

Strategy of the proof.
Although Theorem A and Theorem B have a quite different flavor, their

proofs share a common approach. Indeed, in both proofs, we rely on the ex-
istence of a model metric living in the neighborhood of the zero section in the
normal bundle of D. That metric is provided by the Calabi Ansatz, cf § 2, and
its curvature is computed in the following section, § 3.

The proof of Theorem A goes as follows. We use pluripotential methods,
especially the comparison principle (quite suited in negative curvature), in or-
der to estimate the potential of ωβ with enough precision to establish the weak
convergence. The local smooth convergence away from D follows from a suit-
able use of Chern-Lu formula. In order to further compute the asymptotics of
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ωβ (at order zero), we show that ωβ is asymptotically close to the Calabi metric
constructed and analyzed in § 2. This relies on the previous step as well as the
application of the maximum principle and Chern-Lu formula, which in turn
uses crucially that the curvature of the Calabi metric is bounded, cf § 3.

The proof of Theorem B, technicallly more involved than the previous one,
relies on gluing methods. The general idea is to construct a model cone met-
ric ω̃β by gluing the Calabi metric ωβ,L near D and the Tian-Yau metric ωTY
away from D. For β � 1, the implicit function theorem allows us to find the
Kähler-Einstein metric ωβ = ω̃β + ddc ϕβ with a control on ϕβ and its covariant
derivatives that is sufficiently precise that one can derive the desired smooth
convergence β−1− 1

n ωβ → ωTY away from D as well as the global Gromov-
Hausdorff convergence of (X, ωβ) to an interval.

Some of the main technical steps include: estimating the curvature of the
Calabi metric; finely gluing the Calabi metric which lives on the normal bun-
dle L of D onto a neighborhood of D in X using a fibration in extremal disks;
establishing a Schauder estimate for the model cone metric on C∗ ×Cn−1 with
cone angle 2πβ which is uniform in β; establishing a uniform Schauder es-
timate in suitable weighted Hölder spaces for the family of collapsing cone
metrics ω̃β mentioned above. This is similar in spirit to other gluing problems,
especially the papers [HSVZ22, SZ19] mentioned above, but our techniques
are different.

Applying the techniques used for Theorem B to Theorem A would probably
enhance our C0 estimates for the metrics to estimates on all derivatives, at the
expense of a much more technical proof. On the other hand, the pluripotential
techniques seem to fall short in the context of Theorem B.

Acknowledgements. O.B. would like to thank Misha Kapovich for discus-
sions a long time ago about closing complex hyperbolic cusps. H.G. would
like to thank Benoît Cadorel for the many insightful discussions about toroidal
compactifications of quotients of bounded symmetric domains. The authors
would like to thank the referee for reading the manuscript carefully and for
the several suggestions that helped us improve the paper.

H.G has benefited from the support of the ANR project GRACK as well as
from the state aid managed by the ANR under the "PIA" program bearing the
reference ANR-11-LABX-0040, in connection with the research project HER-
METIC.

1. CLOSING THE CUSPS OF LOCALLY SYMMETRIC SPACES

1.1. Setup. Let X = Γ
∖Ω be an n-dimensional quotient of a bounded sym-

metric domain Ω by a torsion-free lattice Γ ⊂ Aut(Ω)◦. It is well-known that
X is a quasi-projective variety that can be compactified in several meaningful
ways.

The Satake-Baily-Borel compactification X ↪→ Xmin is a singular, minimal
compactification in the sense that given any normal compactification X ↪→ X′,
the identity morphism on X extends to a holomorphic map X′ → Xmin. The
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variety Xmin is normal, has log canonical singularities and KXmin
is ample. In a

modern terminology, Xmin is a (normal) stable variety.
The Ash-Mumford-Rapoport-Tai [AMRT10] toroidal compactification X ↪→

X is a compactification with finite quotient singularities such that X \X is a (re-
duced) divisor with simple normal crossings that we denote by D = ∑N

λ=1 Dλ.
Moreover, the birational morphism π : X → Xmin satisfies

KX + D = π∗KXmin
.

If Γ is neat, the toroidal compactification X is actually smooth. Moreover,
any torsion-free lattice Aut(Ω) admits a finite index subgroup which is neat.
As a result, one can find Γ′ < Γ with finite index such that Y = Γ′

∖Ω admits a
smooth toroidal compactification (Y, D′). Moreover, the finite étale morphism
f : Y → X extends uniquely to a finite cover f : Y → X and one has KY + D′ =
f ∗(KX + D).

In the case where Ω = Bn is the euclidean unit ball in Cn, Xmin \ X consist
of finitely many singular points {x1, . . . , xN} and D = tN

λ=1Dλ is a disjoint
union of abelian varieties Dλ with negative normal bundle, which are con-
tracted onto those singular points by π.

1.2. The Kähler-Einstein metric. The Bergman metric ωBerg on Ω is invariant
under the action of Aut(Ω) hence it descends to a Kähler-Einstein metric ωKE
on X. Moreover, one can prove that ωKE extends to a closed, positive current
ωKE ∈ c1(KX + D) and ∫

X
ωn

KE = c1(KX + D)n.

In particular, ωKE = π∗ωmin for some closed, positive current ωmin ∈ c1(KXmin
)

which coincides with the singular Kähler-Einstein metric constructed in [BG14].
If Γ′ < Γ has finite index, then the Kähler-Einstein metric of Y = Γ′

∖Ω is
simply f ∗ωKE where f : Y → X is the finite étale cover induced by the lattice
inclusion.

In the case where Ω = Bn and Γ is neat, one has a very precise description of
ωKE near D, cf. e.g. [Mok12, Eq. (8)]. In particular, if (z1, . . . , zn) is a system of
holomorphic coordinates on some open set U ⊂ X such that D∩U = (z1 = 0),
then ω|U is quasi-isometric to

(1.1)
idz1 ∧ dz̄1

|z1|2(− log |z1|)2 +
1

(− log |z1|)
n

∑
k=2

idzk ∧ dz̄k.

One can actually say much more and exhibit an exact formula for ωKE on a
small enough neighborhood U of D after identifying U with a neighborhood
of the zero section in the normal bundle ND/X → D of D, cf (4.5).

1.3. Monge-Ampère equation. One can write down the Monge-Ampère equa-
tion satisfied by ωKE. In order to do so, we pick:
· A Kähler metric ωXmin

∈ c1(KXmin
) and set χ := π∗ωXmin

. It is a smooth,
semipositive form on X. Recall that a Kähler metric on a singular complex
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space Y is defined to be a Kähler metric on the regular locus Yreg which is
locally the restriction of an ambient Kähler form under local embeddings Y ↪→

loc
CN . In particular, its bisectional curvature is bounded above locally near any
point.
· Holomorphic sections sλ ∈ H0(X,OX(Dλ)) such that Dλ = (sλ = 0) and

smooth hermitian metrics hλ on OX(Dλ). with Chern curvature form θλ :=
iΘhλ

(Dλ). We set s =
⊗

sλ, |s| := ∏k |sλ|hλ
, θ = ∑k θλ. Up to scaling hλ, one

can assume that |sλ|hλ
< e−1.

· A smooth volume form dV on X satisfying −Ric(dV) + θ = χ. Then
one can write the Kähler-Einstein metric ωKE on X as ωKE = χ + ddc ϕ̂ for
the unique χ-psh function ϕ̂ solution of the (non-pluripolar) Monge-Ampère
equation

(1.2) ωn
KE = (χ + ddc ϕ̂)n =

eϕ̂dV
|s|2 .

One knows that for any ε > 0, there exists a constant Cε such that the following
set of inequalities

(1.3) C1 > ϕ̂ > −(n + 1 + ε) log(− log |s|)− Cε

hold on X, cf. [DGG20, Prop. D].

1.4. Conic approximation. As π can be obtained as a sequence of blow ups
of smooth centers, there exist coefficients aλ ∈ Q+ such that −∑ aλDλ is π-
ample. In particular, for β > 0 small enough, the Q-line bundle KX + ∑λ(1−
βaλ)Dλ is ample. Moreover, up to scaling down the aλ (by the same factor),
one can assume that χ− θ̃ is a Kähler form, where θ̃ := ∑ aλθλ. The Monge-
Ampère equation

(1.4) (χ− βθ̃ + ddc ϕ̂β)
n =

eϕ̂β dV

∏λ |sλ|
2(1−βaλ)
hλ

has a unique solution ϕ̂β ∈ L∞(X) ∩ PSH(X, χ− βθ̃) by [Koł98]. Moreover, it
is well-known that

ω̂β := χ− βθ̃ + ddc ϕ̂β

is smooth outside D, has conic singularities along each Dλ with cone angle
2πβaλ (say if X is smooth, otherwise this will be true only after a finite cover)
and one has Ric ω̂β = −ω̂β on X = X \ D, cf e.g. [GP16]. In particular, we
have as currents

(1.5) Ric ω̂β = −ω̂β +
N

∑
λ=1

(1− βaλ)[Dλ].

1.5. Main result. The aim of this section is to prove the following result.

Theorem 1.1. The conic Kähler-Einstein metrics ω̂β solution of (1.5) converge to
ωKE when β→ 0, both weakly as currents on X and locally smoothly on X.
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Proof. We divide the proof in three steps. In the first two steps, we assume that
Γ is neat so that X is a smooth manifold. In the last step, we will explain how
to work with the finite quotient singularities that X has in general.

Step 1. Weak convergence.
Let β ∈ [0, 1

2 ] and let τβ ∈ (0, 1] be a number to be determined later. We set

ψ̂β :=
1

1− β
· (ϕ̂β + τβ);

this is a 1
1−β · (χ− βθ̃)-psh function with finite energy (even bounded if β > 0)

satisfying the Monge-Ampère equation

(1.6)
(

1
1− β

· (χ− βθ̃) + ddcψ̂β

)n

= e(1−β)ψ̂β+Fβ · dV
|s|2h

where Fβ = β ∑λ aλ log |sλ|2hλ
− n log(1− β)− τβ. We claim that for any β′ > β

small enough, one has

(1.7)
1

1− β′
· (χ− β′ θ̃) + ddcψ̂β > 0.

This follows from the identity

(1.8)
1− β

1− β′
· (χ− β′ θ̃) = (χ− βθ̃) +

β′ − β

1− β′
· (χ− θ̃)︸ ︷︷ ︸

>0

.

More precisely, we get(
1

1− β′
· (χ− β′ θ̃) + ddcψ̂β

)n

> (1− β)−n
(

1− β

1− β′
· (χ− β′ θ̃) + ddc ϕ̂β

)n

> (1− β)−n(χ− βθ̃ + ddc ϕ̂β)
n

= e(1−β′)ψ̂β+Fβ′+Hβ′ ,β · dV
|s|2h

where Hβ′,β = (β′ − β)(ψ̂β − log |s|2)− n log
(

1−β
1−β′

)
− τβ + τβ′ .

If we first choose β = 0, τβ′ = Cβ′ − n log(1− β′) where C > 0 is a constant
such that ϕ > log |s|2h − C, whose existence is guaranteed by (1.3), then we see
that Hβ′,0 > 0 so that ϕ̂ = ψ̂0 is a subsolution of (1.6), hence the comparison
principle yields

(1.9)
1

1− β
· ϕ̂β +

Cβ− n log(1− β)

1− β
> ϕ̂

Using the inequality above, we conclude that there is a constant C′ > 0 such
that ψ̂β > log |s|2 − C′ for any β. Then we set τβ := C′β − n log(1− β) and
it follows that Hβ′,β > 0. In other words, ψ̂β is a subsolution of the Monge-
Ampère equation satisfied by ψ̂β′ , hence

(1.10) ψ̂β′ > ψ̂β.
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The family (ψ̂β)β>0 is a decreasing family of quasi-psh functions with complex
Hessian uniformly bounded from below. It follows that they converge when
β approaches zero to a χ-psh function ϕ̃. It follows from (1.9) that ϕ̃ has finite
energy, is locally bounded on X has satisfies

(χ + ddc ϕ̃)n =
eϕ̃dV
|s|2

on X by Bedford-Taylor theory, hence also globally on X. By uniqueness of
such a solution (cf e.g. [BG14, Prop. 4.1]), we get ϕ̃ = ϕ̂, which proves the first
part of the proposition.

Step 2. Smooth convergence locally on X.
We apply Chern-Lu inequality to the identity map from (X, ω̂β) to (X, χ), cf
e.g. [Rub14, Proposition 7.1]. As Ric ω̂β = −ω̂β and the bisectional curvature
of (X, χ) is bounded from above, there is a constant A > 0 such that

(1.11) ∆ω̂β
log trω̂β

χ > −A(1 + trω̂β
χ).

Next, we have

∆ω̂β
(−ϕ̂β) = trω̂β

χ− n− ε trω̂β
θ̃

= trω̂β
χ− n + ε[trω̂β

(χ− θ̃)− trω̂β
χ]

> (1− β) trω̂β
χ− n

and, if |s̃|2 := ∏ |sλ|2aλ

hλ
,

∆ω̂β
log |s̃|2 = trω̂β

(−θ̃)

= trω̂β
(χ− θ̃)− trω̂β

χ

> − trω̂β
χ.

Fix some number δ ∈ (0, 1
4 ); it follows from the previous inequalities that the

following holds on X

∆ω̂β

[
log trω̂β

χ− (A + 1)ϕ̂β + δ log |s̃|2
]
> (1− (A + 1)β− δ) trω̂β

χ− B

where B = (n + 1)A + n. Up to decreasing β, one can assume without loss of
generality that (A + 1)β 6 1/2 so that (1− (A + 1)β− δ) > 1

4 . Set Hβ,δ :=
log trω̂β

χ − (A + 1)ϕ̂β + δ log |s̃|2; it is a smooth function on X which tends
to −∞ near D thanks to (1.3)-(1.9). At its maximum xβ,δ ∈ X \ D, one has
trω̂β

χ(xβ,δ) 6 4B. Therefore, one has, for any x ∈ X

log trω̂β
χ(x) = Hβ,δ(x) + (A + 1)ϕ̂β(x)− δ log |s̃|2(x)

6 Hβ,δ(xδ,β) + (A + 1)ϕ̂β(x)− δ log |s̃|2(x)

6 log 4B + [δ log |s̃|2 − (A + 1)ϕ̂β](xβ,δ) + (A + 1)ϕ̂β(x)− δ log |s̃|2(x)

6 Cδ − δ log |s̃|2(x)
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where we used the fact that ϕ̂β is uniformly bounded above (e.g. (1.10)) and
ϕ̂β > −(n + 2) log(− log |s|) + O(1) by (1.9). As a result, we get

χ 6
Cδ

|s̃|2δ
· ω̂β

uniformly on X, for any δ ∈ (0, 1/4). From the Monge-Ampère equation sat-
isfied by ω̂β and the fact that χ is a smooth Kähler form on X, we deduce that
given any compact subset V b X, there is a constant CV independent of β such
that

sup
V
|∆χ ϕ̂β| 6 CV .

Using standard bootstrapping arguments, we get uniform bounds on the higher
derivatives of ϕβ on compact subsets of X, which ends the proof of the theo-
rem in the case where Γ is neat.

Step 3. General case when Γ is not neat.
Let Γ′ < Γ be a neat, finite index sub-lattice. The quotient Y = Γ′

∖Ω admits a
smooth toroidal compactification (Y, D′), and let f : Y → X be the associated
finite cover. Set mλ to be the ramification order of f along Dλ, and set D′λ =
f−1(Dλ). In summary, one has

KY + ∑
λ

(1− βaλmλ)D′λ = f ∗(KX + ∑
λ

(1− βaλ)Dλ).

The Kähler-Einstein metrics ω̂′β := f ∗ω̂β have cone singularities along D′ with
cone angle 2π(1 − βaλmλ) along D′λ. That is, they satisfy Ric ω̂′β = −ω̂′β +

∑λ(1− βaλmλ)[D′λ]. Thanks to Steps 1-2 above, ω̂′β converge globally weakly
on Y and locally smoothly on Y towards the hyperbolic metric Y. Of course,
one needs to perform a harmless adjustment by replacing χ with f ∗χ. Since
the hyperbolic metric on Y is nothing but f ∗ωKE, cf. § 1.2, the theorem follows
immediately. �

2. THE CALABI ANSATZ

We now construct some explicit model Kähler metrics in the total space of a
holomorphic line bundle L over D. This technique goes back to Calabi [Cal79].

Model Setup. Let D be a compact Kähler manifold equipped with a Kähler
form θD and let (L, h) be a Hermitian holomorphic line bundle over D. We
make the following assumptions:

(i) Ric(θD) = 0.
(ii) iΘ(L, h) = σθD, σ = ±1.

We think of L as the normal bundle of D which will be a divisor in a com-
pact complex manifold X. The case σ = −1 corresponds to a quotient of a
ball: in that case D will be a torus. The case σ = 1 corresponds to that of an
anticanonical divisor in a Fano manifold X.

We consider the function t = log ‖v‖2
h defined on L \ D, the complement of

the zero section in the total space of L. We also have on L \ D a connection
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1-form η which coincides on each fibre of L with the angular form dθ, and
satisfies

dη = −ip∗Θ(L, h) = −σp∗θD,
where p is the projection p : L→ D. Then ξ = 1

2 dt+ iη is a (1,0)-form on L \D,
coinciding with dz

z in each fibre. In particular, dt ∧ η = iξ ∧ ξ̄ coincides with
idz∧dz̄
|z|2 in each fiber. In the following, one will identify p∗θD with θD and view

the latter as a (1, 1)-form on the total space L.

We are looking for a Kähler metric ω = i∂∂̄ϕ on L \ D whose Kähler poten-
tial ϕ = ϕ(t) only depends on t and such that

(2.1) Ric(ω) = σω.

One can compute the coefficients of the metric in the frame introduced above
as follows. First, dc ϕ = 1

i (∂− ∂̄)ϕ = 2ϕ′(t)η and, then the associated Kähler
form is

(2.2) ω = i∂∂ϕ =
1
2

ddc ϕ = ϕ′′dt ∧ η − σϕ′θD.

In particular, we have as necessary conditions

ϕ′′ > 0 and − σϕ′ > 0.

Let v be a (maybe local) parallel (n− 1, 0) form on D, then Ω = ξ ∧v satisfies
dΩ = idη ∧ v = 0, so Ω is holomorphic. Moreover, up to some positive
constant, |Ω|−2 = (−σϕ′)n−1ϕ′′. As Ric ω = i∂∂ log |Ω|2, in order for ω to
be a solution of (2.1), it is enough to see that ϕ is a solution of the following
equation

(2.3) (−σϕ′)n−1ϕ′′ = ce−σϕ

for some constant c > 0. This can be integrated into

(2.4) (−σϕ′)n+1 = a− bσe−σϕ

for constants a ∈ R and b = (n + 1)c > 0.
As we shall see, the solutions ϕ(t) will be defined on intervals of the form

(−∞, t0) for some arbitrary constant t0 ∈ R, and they will satisfy σϕ(t) → ∞
when t → −∞, that is when we go to the divisor D. It follows that a ≥ 0
and actually ϕ(t) ∼ −σa

1
n+1 t when t → −∞, which says that ω extends over

D with ω|D = a
1

n+1 θD. Coming back to the equation (2.4) we obtain the first
terms of the expansion of ϕ when t→ −∞, for some constant ϕ0:

(2.5) ϕ(t) ∼ −σa
1

n+1 t + ϕ0 +
b

(n + 1)a
e−σϕ0+a

1
n+1 t + · · ·

which shows that ω has actually a conical singularity around D with angle
2πa

1
n+1 , so the angle goes to zero when a → 0, this is the limit we want to

study.
Observe that if we have a solution ϕ1(t) of equation (2.4) with a = b = 1,

then ϕ1(βt) + ϕ0 is still a solution with a = βn+1 and b = βn+1eσϕ0 . We use this
remark to produce our model families (ϕβ(t)) with angle 2πβ degenerating to



12 OLIVIER BIQUARD AND HENRI GUENANCIA

zero:

Negative case.
(i) The potential ϕ1.
This is when σ = −1. The function ϕ1 satisfies (ϕ′1)

n+1 = 1 + eϕ1 so we can
take as solution ϕ1(t) = F−1

− (t) : (−∞, 0)→ R with F− : R→ (−∞, 0) defined
by

F−(x) = −
∫ +∞

x

dx

(1 + ex)
1

n+1
.

One can check that the precise behavior of ϕ1 at t = −∞ is given by

(2.6) ϕ1(t) = t + In +
eIn

n + 1
· et + O(e2t) when t→ −∞,

where the constant In is defined by

(2.7) In :=
∫ +∞

0

du

(eu + 1)
1

n+1
−
∫ 0

−∞

(eu + 1)
1

n+1 − 1

(eu + 1)
1

n+1
du

while at t = 0−, one has
(2.8)

ϕ1(t) = −(n + 1) log
(
−t

n + 1

)
+

1
n + 2

·
(
−t

n + 1

)n+1
+ O(t2(n+1)) when t→ 0−.

(ii) Degeneration.
We choose to fix b = 1 by taking

(2.9) ϕβ(t) = ϕ1(βt) + (n + 1) log β.

When β→ 0, (2.8) implies that ϕβ(t)→ −(n + 1) log( −t
n+1 ) which is the Kähler

potential of the hyperbolic cusp.

Positive case.
(i) The potential ϕ1.
In the positive case, σ = 1. The function ϕ1 satisfies (−ϕ′1)

n+1 = 1− e−ϕ1 and
we take ϕ1(t) = F−1

+ (−t) : (−∞, 0)→ R+ with F+ : R+ → R+ by

F+(x) =
∫ x

0

dx

(1− e−x)
1

n+1
.

Again, one can obtain the precise behavior of ϕ1 at t = −∞ as

(2.10) ϕ1(t) = −t− Jn +
eJn

n + 1
· et + O(e2t) when t→ −∞,

where the constant Jn is defined by

In :=
∫ +∞

0

1− (1− e−u)
1

n+1

(1− e−u)
1

n+1
du

while at t = 0−, one has

(2.11) ϕ1(t) = cn(−t)1+ 1
n (1 + O((−t)1+ 1

n ) when t→ 0−,
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where cn = ( n
n+1 )

n+1
n .

(ii) Degeneration.
We now choose the degeneration

(2.12) ϕβ(t) = ϕ1(βt).

Here the limit when β → 0 is just 0. More precisely, the asymptotics (2.11)
imply that when β→ 0 one has

(2.13) ϕβ(t) ∼
(
−nβt
n + 1

)1+ 1
n

.

Therefore the rescaling β−1− 1
n ϕβ converges to (− nt

n+1 )
1+ 1

n which is the Kähler
potential of a Ricci flat metric on L \ D, the Tian-Yau metric: it gives the as-
ymptotic behaviour of the Tian-Yau metric of X \ D near D.

We have seen a limit of ϕβ(t) when β → 0 on each compact set in t. To
understand the global geometry of our models, we write from (2.2)

(2.14) ωβ = i∂∂ϕβ = β2ϕ′′1 (βt)dt ∧ η − βσϕ′1(βt)θD.

The geometry is clear when one writes the associated Riemannian metric gβ,
after the change of variable u = βt ∈ (−∞, 0):

(2.15) gβ = 2ϕ′′1 (u)
( 1

4 du2 + β2η2)− βσϕ′1(u)gD.

The geometry collapses at speed
√

β in the directions of D, and β in the circle
directions. Observe that, up to a multiplicative constant, we have when u→ 0
the asymptotics ϕ′′1 (u) ∼ u−2 in the negative case, and u−1+ 1

n in the positive
case, from which it follows that the diameter is infinite in the negative case and
bounded in the positive case (as it should by Myers’s theorem). More precisely,
we have at u = 0 the following asymptotics
(2.16)

ϕ′1(u) = −c′n(−u)
1
n + O((−u)1+ 2

n ), ϕ′′1 (u) =
c′n
n
(−u)−1+ 1

n + O((−u)
2
n ).

with c′n =
( n

n+1

) 1
n .

To see the behaviour of the metric near the divisor D, we consider the ex-
pansion at u = −∞ given as in (2.5) by

(2.17) ϕ′1(u) = −σ +
1

n + 1
eu + O(e2u)

from which follows, taking r = e
u
2 ∈ (0, 1),

gβ = 2
n+1 eu( 1

4 du2 + β2η2)+ βgD + O(eu)(2.18)

= 2
n+1

(
dr2 + β2r2η2)+ βgD + O(r2),(2.19)

where the O(r2) is with respect to gβ and is uniform with respect to β.
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3. CURVATURE CALCULATIONS

We now calculate the curvature of our model metrics ωβ on L \D. This gives
a control of the local geometry and will be also used in the Laplacian estimate.

The Kähler metric ω = i∂∂̄ϕ induces a hermitian metric h on the bundle
Ω1,0 of (1, 0)-forms on L \ D, and it will be convenient to compute its Chern
curvature tensor FΩ1,0

. At this point, we take an arbitrary Kähler potential
ϕ = ϕ(t). We will use the C∞ orthogonal splitting

Ω1,0 = Cξ ⊕ p∗Ω1,0
D .

From (2.2) we see that the Hermitian metric preserves this decomposition, and
is equal to

h =

(
(ϕ′′)−1

(−σϕ′)−1hΩ1,0
D

)
.

where hΩ1,0
D is the hermitian metric induced on Ω1,0

D by the Kähler metric θD.
From dξ = idη = −iσθD we deduce the ∂ and ∂ operators of Ω1,0 in this
splitting:

∂ =

(
∂ 0

a ∂
Ω1,0

D

)
, ∂ =

(
∂− ∂ log ϕ′′ − ϕ′′

−σϕ′ a
∗

0 ∂Ω1,0
D − ∂ log(−σϕ′)

)

Here a is the (0, 1)-form with values in Hom(C, Ω1,0
D ) = Ω1,0

D defined by aX =
Xydξ = −iσXyθD, and a∗ its adjoint a∗Xα = −iσΛ(α ∧ (Xyθ)). The familiar
form for the curvature is then

FΩ1,0
=

(
∂∂ log ϕ′′ − ϕ′′

−σϕ′ a
∗ ∧ a −∂( ϕ′′

−σϕ′ a
∗)

∂ha ∂∂ log ϕ′ + FΩ1,0
D − ϕ′′

−σϕ′ a ∧ a∗

)

so that iFΩ1,0
is given by

(3.1)(log ϕ′′)′′iξ ∧ ξ̄ − σ(log ϕ′′

−σϕ′ )
′θD −i( ϕ′′

−σϕ′ )
′ξ ∧ a∗

i log( ϕ′′

−σϕ′ )
′ξ ∧ a log(−σϕ′)′′iξ ∧ ξ̄ − σ log(−σϕ′)′(θD + ΘD) + iFΩ1,0

D


where the last ΘD is the 2-form with values in the endomorphisms of Ω1,0

D
defined by (ΘD)X,Y(α) = −(Xyα)(YyθD) for X ∈ T1,0 and Y ∈ T0,1.

Lemma 3.1. One has the following bounds for the curvature of the model Kähler
metric ωβ defined in (2.14):

• in the negative case (σ = −1), if D is flat, then the curvature is bounded;
• in the positive case (σ = 1), the curvature is bounded by

cst.
( 1

1− e−ϕβ
+

1

β(1− e−ϕβ)
1

n+1

)
.

Proof. For now, ω = i∂∂̄ϕ is still arbitrary, and only at the end we will choose
ϕ := ϕβ to be the potential constructed by the Calabi Ansatz above. Let X =
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λξ∗ + v with λ ∈ C, v ∈ T1,0
D and Y = µξ + α with µ ∈ C, α ∈ Ω1,0

D . We assume
that ‖ξ‖ω = ‖Y‖h = 1, so that

(3.2) |λ|2 6 1
ϕ′′

, ‖v‖2
θD
6

1
−σϕ′

, and |µ|2 6 ϕ′′, ‖α‖2
hD
6 −σϕ′

where hD is the metric on Ω1,0
D induced by θD. The hermitian matrix h · iFΩ1,0

X,X̄
is equal to|λ|2 (log ϕ′′)′′

ϕ′′ −
σ‖v‖2

θD
ϕ′′ log( ϕ′′

−σϕ′ )
′ −iλ̄a∗v

1
−σϕ′ log( ϕ′′

−σϕ′ )
′

iλav̄
1
−σϕ′ log( ϕ′′

−σϕ′ )
′ log(−σϕ′)′′

−σϕ′ |λ|
2 +

log(−σϕ′)′

ϕ′ (θD + ΘD)v,v̄ +
i
−σϕ′ F

Ω1,0
D

v,v̄


As a result, the expansion of 〈iFΩ1,0

X,X̄ Y, Y〉h involves the following terms

|λµ|2 (log ϕ′′)′′

ϕ′′
, |µ|2

‖v‖2
θD

ϕ′′
(log(

ϕ′′

−σϕ′
)′, λµ̄〈av̄, α〉hD log(

ϕ′′

−σϕ′
)′,

|λ|2‖α‖2
hD

log(−σϕ′)′′

−σϕ′
, ‖α‖2

hD

log(−σϕ′)′

ϕ′
(θD + ΘD)v,v̄,

1
ϕ′
〈iFΩ1,0

D
v,v̄ α, α〉hD .

Given the bounds (3.2), we see that we need to bound the quantities

(3.3)
(log ϕ′′)′′

ϕ′′
,

log(−σϕ′)′′

ϕ′′
,

(log ϕ′′)′

ϕ′
,

log(−σϕ′)′

ϕ′
,

while the term FΩ1,0
D (present only in the positive case) is bounded by cst.

−σϕ′ .
Up to an additive constant, we have ϕβ(t) = ϕ1(βt), so we see that the

factors β in (3.3) cancel and it is enough to bound these quantities for ϕ1, while
the term involving the curvature of D is bounded by cst.

−βϕ′1(βt) . We now use the
equation satisfied by ϕ1, that is

−σϕ′1 = (1− σe−σϕ1)
1

n+1 .

Taking x = e−σϕ1 we obtain x′ = x(1− σx)
1

n+1 . It is then convenient to write all
the quantities in terms of x. We have −σϕ′1 = (1− σx)

1
n+1 , therefore −σϕ′′1 =

1
n+1 x(1− σx)−

n−1
n+1 . Then one calculates all quantities in (3.3):

log(−σϕ′1)
′

ϕ′1
=

x
1− σx

,
log(−σϕ′1)

′′

ϕ′′1
=

n + 1− σx
(n + 1)(1− σx)

,

log(−σϕ′′1 )
′

ϕ′1
=

n + 1− 2σx
(n + 1)(1− σx)

,
log(−σϕ′′1 )

′′

ϕ′′1
=
−n2 + n + 2− 2σx
(n + 1)(1− σx)

.

If σ = −1 then 1− σx = 1 + eϕ ≥ 1 therefore all these quantities are bounded.
If σ = 1 then 1− σx = 1− e−ϕ and we obtain the bounds in the statement of
the lemma. �

In the positive case, the divisor D corresponds to ϕ→ +∞ so the curvature
is O(β−1) in all sets of the form u < −A < 0. At u = 0 the metric gβ from
(2.15) degenerates, but this part will be cut out since we will glue with the rest
of X.
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4. ASYMPTOTICS OF THE CONICAL KE METRICS ON BALL QUOTIENTS

4.1. Set-up. In this section, we borrow the setup and notation of § 1.1 and we
assume additionally that Ω = Bn is the complex hyperbolic space of dimen-
sion n. In this section, we assume that Γ is neat, so that X = Γ

∖
B can be

compactified smoothly by adding finitely many disjoint tori D1, . . . , DN of di-
mension n− 1. In general, this is only true up to the action of a finite group
(locally in the neighborhood of each torus). The Kähler-Einstein metric ωKE is,
up to a normalizing constant, the hyperbolic metric on X, described locally near
D by (1.1).

It will be important in the following to allow cone angles along Dλ that
are not necessarily of the form 2πβaλ for some given aλ > 0 and a single pa-
rameter β > 0 going to zero. For that reason and from now on, we denote
by β := (β1, . . . , βN) a N-tuple of positive numbers. Since the components
D1, . . . , DN of the boundary divisor D are disjoint, the divisor −∑λ aλDλ is
relatively ample for any aλ > 0. In particular, up to changing hλ one can
find δ0 > 0 such that χ − δθλ is semi-positive globally on X and Kähler on
X \ tµ 6=λDµ, for any δ 6 2δ0N. As a result, χ− ∑λ aλθλ is globally Kähler on
X for any aλ ∈ (0, 2δ0]. In the following, one will assume that βλ 6 δ0/2N for
any λ.

The Kähler-Einstein metric ω̂β = χ−∑N
λ=1 βλθλ + ddc ϕ̂β solution of

(4.1) Ric ω̂β = −ω̂β +
N

∑
λ=1

(1− βλ)[Dλ]

for ‖β‖ small enough solves the following Monge-Ampère equation

(4.2) (χ−
N

∑
λ=1

βλθλ + ddc ϕ̂β)
n =

eϕ̂β dV

∏λ |sλ|
2(1−βλ)
hλ

where dV is a smooth volume form such that −Ric(dV) + ∑N
λ=1 θλ = χ.

One can reproduce the arguments in the proof of Theorem 1.1 verbatim to
show that φ̂β almost decreases to φ̂ when β goes to zero. More precisely, one
can find a sequence of real numbers τβ → 0 such that 1

1−δ−1
0 ∑λ βλ

(φ̂β + τβ) de-

creases to φ̂ when β ↘ 0 component-wise. The main point is that if β′ > β
component-wise and if we set B = ∑ βλ (resp. B′ = ∑ β′λ), we have

1− δ−1
0 B

1− δ−1
0 B′

· (χ−∑ β′λθλ) =(χ−∑ βλθλ)

+
B′ − B
δ0 − B′

·
[
χ−∑

λ

(
δ0βλ +

δ0 − B
B′ − B

· (β′λ − βλ)
)

︸ ︷︷ ︸
∈(0,2δ0)

·θλ

]
.

which replaces the identity (1.8).
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Moreover, the Laplacian estimate from the proof of Theorem 1.1 carries over
with no significant change, and therefore

(4.3) ω̂β −→
β→0

ωKE in C∞
loc(U

∗)

4.2. Comparison to the model metric. We now aim to compare the global
Kähler-Einstein metric ω̂β to the model ωβ constructed via the Calabi Ansatz
in § 2. One

Given any torus D ∈ {D1, . . . , DN}, one can identify an open neighborhood
U of D in X to a neighborhood of the zero section in the total space of the
normal bundle L := ND/X → D. Moreover, L comes naturally equipped with
a smooth hermitian metric h such that θD := π · iΘ(L−1, h−1) is a flat Kähler
metric on D. We let p : U → D be the projection induced by the identification
of U to an open subset of the total space of L. Under this identification and
given a point (x, v) ∈ U (i.e. x ∈ D, v ∈ Lx), we can consider the quantity
‖v‖2

h and assume that ‖v‖2
h < e−1 on U. On U∗ := U \ D, the smooth function

t = log ‖v‖2
h : U∗ → (−∞,−1) satisfies

(4.4) i∂∂t = p∗θD.

Moreover, the Kähler-Einstein metric ωKE on X has an exact expression in re-
striction to U∗; namely

ωKE|U∗ = i∂∂
[
− (n + 1) log(−t)

]
.(4.5)

= (n + 1)
[ ξ ∧ ξ̄

(−t)2 +
p∗θD

−t

]
where ξ = 1

2 dt + iη has been defined in § 2. We have observed in ibid. that the
potential ϕ(t) = −(n + 1) log(−t) of ωKE is the limit of the potentials

ψβ := ϕβ(t) + (n + 1) log(n + 1)

of ωβ (cf. (2.9)) when β→ 0 and that the convergence is smooth on the compact
subsets of U \ D. In particular, we get

(4.6) ωβ −→
β→0

ωKE in C∞
loc(U

∗).

Let Ω = ξ ∧ v be the holomorphic n-form with logarithmic poles along D
constructed on U in the previous section.The Monge-Ampère equation solved
by ψβ reads

(i∂∂ψβ)
n = eψβ in2

Ω ∧Ω.

The Monge-Ampère equation solved by ω̂β has a similar form. Indeed, let ψχ

be a smooth potential for χ on U and let us set ψ̂β := ψχ − βt + ϕ̂β which
is well-defined on U∗. Recall that ϕ̂β ∈ L∞(U∗) so that ψ̂β − ϕβ is globally
bounded on U∗ (only qualitatively at this point). Moreover, we have

(i∂∂ψ̂β)
n = eψ̂β+Fβ in2

Ω ∧Ω
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where Fβ is a smooth function on U∗, globally bounded independently of β,
i.e. ‖Fβ‖L∞(U∗) 6 C1.

Lemma 4.1. The following bound holds

(4.7) ‖ψ̂β − ψβ‖L∞(U) 6 C1.

Proof. This is a simple application of the maximum principle. Indeed, let δ > 0
arbitrarily small and let H = Hβ,δ := ψ̂β − ϕβ + δt. Since Hβ,δ goes to −∞
along D, its maximum is attained at a point x = xβ,δ ∈ U \ D at which the
complex Hessian of H is non-positive. In particular, we get i∂∂ψ̂β 6 i∂∂ψβ −
δθD 6 i∂∂ψβ at x. Taking the top wedge product and using the Monge-Ampère
equations above, we find H(x) 6 −Fβ(x) + δt(x) 6 C1. In particular, H 6 C1
everywhere on U∗ and passing to the limit when δ→ 0, we get the first half of
(4.7). The other half is obtained in a similar way. �

Remark 4.2. In the lemma above, we could have use Bedford-Taylor’s compar-
ison principle instead of the maximum principle (with the tweak by δt), see
e.g. [CKZ11, Lemma 3.4].

Next, we claim that ω̂β and ωβ are uniformly quasi-isometric on U∗.

Lemma 4.3. There exists C2 > 0 independent of β such that

(4.8) C−1
2 ωβ 6 ω̂β 6 C2ωβ.

Proof. Consider the smooth function

Hβ := log trω̂β
ωβ on U∗.

Since Ric ω̂β = −ω̂β and the holomorphic bisectional curvature of ωβ is bounded
above independently of β by Lemma 3.1, an application of Chern-Lu formula
(see e.g. [Rub14, Proposition 7.1]) yields a constant B > 0 independent of β
such that

(4.9) ∆ω̂β
Hβ > −1− BeHβ on U∗.

Thanks to (4.3)- (4.6), we have

(4.10) Hβ 6 (n + 1) on ∂U

for β small enough.
Since ∆ω̂β

(ψβ − ψ̂β) = eHβ − n and i∂∂t > 0, we get for any δ > 0

∆ωε

(
Hβ − (B + 1) · (ψβ − ψ̂β) + δt

)
= eHβ − n(B + 1)− 1.

The maximum of the function inside the Laplacian is attained at x ∈ U \ D. If
x ∈ ∂U, then (4.7)-(4.10) and the inequality t 6 0 imply that Hβ 6 (n + 1) +
2(B + 1)C1 − δt on U∗. If x ∈ U, then the maximum principle implies that
Hβ 6 (B + 1)(n + 2C1) + 1− δt on U∗. Passing to the limit when δ → 0, one
finds Hβ 6 C2 on U∗. The result follows (up to enlarging C2) since the Monge-
Ampère of ωβ and ω̂β are commensurable - which itself relies on the estimate
(4.7). �
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Since we know that ωβ and ω̂β are asymptotically close at any order away
from D, one can improve Lemma 4.3 as follows.

Lemma 4.4. There exists a sequence of numbers εβ ↘ 0 such that

(4.11) (1− εβ)ωβ 6 ω̂β 6 (1 + εβ)ωβ on U∗.

Proof. We introduce for any δ > 0 the quantities

Fβ := log

(
ω̂n

β

ωn
β

)
and Fβ,δ := Fβ + δt.

The function Fβ is bounded on U and smooth away from D. If we can show
that Fβ converges uniformly to 0 on U, then we will be done since we know
that ω̂β and ωβ are uniformly quasi-isometric thanks to Lemma 4.3. First, we
observe that

(4.12) lim
β→0
‖Fβ‖L∞(∂U) = 0

thanks to (4.3)- (4.6). Let x ∈ U be a point where Fβ,δ attains its maximum. If
x ∈ ∂U, we have Fβ,δ 6 ‖Fβ‖L∞(∂U) which goes to zero by (4.12). Otherwise,
x ∈ U∗ and we have ddcFβ,δ(x) 6 0. Since both metrics are Kähler-Einstein
with the same constant, we have ddcFβ = ω̂β −ωβ. In particular, we get at the
point x the following inequality

ω̂β(x) 6 ωβ(x)− δddct 6 ωβ(x)

It follows that Fβ(x) 6 0, hence Fε,δ 6 0. Passing to the limit when δ → 0, we
obtain that in any case, supU Fβ 6 o(1) when β→ 0.

One can proceed similarly with Gβ,δ = log
(

ωn
β

ω̂n
β

)
+ δt to see that infU Fβ >

o(1) when β→ 0. The lemma is proved. �

To finish this section, we put together the Laplacian estimate (4.11) with the
asymptotics (2.6)-(2.8), which yields

Theorem 4.5. The conical Kähler-Einstein metric ω̂β has the following behavior on
U as β approaches zero:

• On {βt→ 0}, it is quasi-isometric to

ωKE = (n + 1)
[ iξ ∧ ξ̄

(−t)2 +
θD

−t

]
with quasi-isometry constant converging to 1 as βt→ 0.
• On {βt→ −∞}, it is quasi-isometric to

anβ2 · eβtiξ ∧ ξ̄ + βθD

with quasi-isometry constant converging to 1 as βt → −∞ and β → 0 and
where an = eIn

n+1 , In being defined in (2.7).
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• Elsewhere, i.e. on {−C 6 βt 6 C−1}; it is quasi-isometric to

β2 · eβtiξ ∧ ξ̄ + βθD

with quasi-isometry constant uniformly bounded as β→ 0.

The picture below illustrates the result.

ωhyp√
β

4.3. Ramified covers. In Set-up 4.1, assume additionally that Γ is arithmetic,
so that Γ can be realized as the integral points G(Z) of an algebraic group G
defined over Z. Given an integer m > 1, the congruence subgroup Γ(m) =

Ker
[

G(Z)→ G
(

Z
/

mZ
) ]

induces an étale cover

πm : Γ(m)

∖
B → Γ

∖
B .

Let Xm := Γ(m)

∖
B and let Xm be a log smooth compactification of Xm. The

étale cover πm : Xm → X can be uniquely extended to a cover πm : Xm → X.
Up to taking a further cover, one can assume that πm is Galois, with group Λm.
Moreover, Mumford shows in [Mum77, p270-271] that πm is highly ramified
along D in the following sense. Let νm,λ be the ramification order of πm along
Dλ. Then, given any integer ` > 1, there exists m = m(`) such that `|νm,λ for
any λ = 1, . . . , N.

Pick ` arbitrary large and consider the ramified cover πm : Xm → X for
m = m(`) as above. Set βm := ( 1

νm,1
, . . . , 1

νm,N
) and consider the conical Kähler-

Einstein metric ωβm with cone angles 2π(βm)λ along Dλ. By the choice of βm,
ωβm is an orbifold Kähler metric for the pair (X, ∑λ(1− 1

νm,λ
)Dλ), hence ωm :=

π∗mωβm is a genuine Kähler-Einstein metric on the compact Kähler manifold
Xm, i.e.

Ric ωm = −ωm on Xm.

As ` → +∞, so does m and βm converges to 0, so that ωβm converges to the
hyperbolic (Bergman) metric on X by the previous results. Schematically, one
can summarize the situation as below

(Xm, ωm)
/

Λm −→
m→+∞

(Γ
∖

B , ωBerg).
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5. GLUING WITH THE TIAN-YAU METRIC

We now pass to the setting of a compact Fano manifold X of dimension
n > 2 endowed with a smooth anticanonical divisor D ⊂ X. Note that D is
connected by the Lefschetz hyperplane theorem. We denote by L the normal
bundle of D. The objects on L constructed in section 2 will now carry an index
L (hL, ΩL, ϕβ,L, ωβ,L, etc.) to distinguish them from the objects constructed on
X.

5.1. The Tian-Yau metric. The Tian-Yau metric was obtained in [TY90] and
precise asymptotics are derived in [Hei12]. A nice summary is written in
[HSVZ22, § 3], and the asymptotics written below are taken from this refer-
ence.

We choose the holomorphic (n− 1)-form v on D of section 2 so that i(n−1)2

n v∧
v = ωn−1

D . We have a global holomorphic n-form Ω on X with a simple pole
along D, normalized by v = ResDΩ, so that the form induced by Ω on L is
ΩL = ξ ∧ p∗v.

The normal bundle L gives the infinitesimal neighbourhood of D in X. One
can identify a neighbourhood of D in X with a disc bundle in L: one method
uses the Riemannian exponential of a Hermitian metric on X, but we prefer
a more intrinsic identification using the theory of extremal discs, which pro-
duces a (non-holomorphic) fibration in holomorphic discs. The theory was
especially used by Lempert [Lem92] to study fillings of 3-dimensional Cauchy-
Riemann manifolds, both on the pseudoconvex and pseudoconcave sides, and
also by Bland-Duchamp [BD91]. We will use the following proposition, whose
proof is similar to that for 3-dimensional pseudoconcave domains [Lem92,
Theorem 10.1]; it can also be extracted from the general statement in [Biq02,
Theorem 4.1], which is valid for any signature of the (non degenerate) Levi
form.

Proposition 5.1. There exists a diffeomorphism Φ : ∆L → UL ⊂ X from the disc
bundle ∆L ⊂ L to a neighbourhood UL ⊂ X of D, such that φ := Φ∗ JX − JL ∈
Ω0,1(T1,0) satisfies φ|D = 0, φ is a section of (p∗Ω0,1

D )⊗ ker η1,0 (that is, φ is purely
horizontal), and φ is holomorphic along the discs of ∆L.

Moreover Φ∗Ω = v (1− φ)∗ΩL, where v is a function on ∆L such that v|D = 1
and v is holomorphic along the discs.

The advantage of this canonical diffeomorphism is to simplify a number of
estimates or calculations, for example in Lemma 5.2, for a potential ϕ depend-
ing only of the distance in the normal bundle, we will see that the Kähler form
i∂∂ϕ is the same when calculated with respect to JL or JX.

We still denote t = log ‖v‖2
hL

, which via the diffeomorphism Φ we can also
see as a function on UL. We modify the function t on {−2 ≤ t ≤ −1} to get a
smooth function t̃ on X \ D such that

(5.1) t̃ =

{
t on t ≤ −2,
−1 on t ≥ −1 and X \UL.
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We denote ωTY,L = ( n
n+1 )

1+ 1
n i∂∂(−t)1+ 1

n the Tian-Yau metric defined on
{t < 0} ⊂ L, and gTY,L the corresponding Riemannian metric. From (2.2)
it is given by the formula

(5.2) ωTY,L = ( n
n+1 )

1
n
( 1

n (−t)−1+ 1
n dt ∧ η + (−t)

1
n θD

)
.

Take some Hermitian metric h on K−1
X such that h|D = hL, and with positive

curvature on X. In order to construct such a metric, we can first extend hL to
a positively curved metric h̃ on a neighborhood of D using a distance function
(cf e.g. [DP04, Proposition 3.3(i)]). Then, extend h̃ arbitrarily to X, and consider
h := h̃e−A|s|2 where s is a section of OX(D) cutting out D, | · | is a hermitian
metric on the latter bundle with positive curvature and A > 0 is a large enough
constant.

Note that h|D is only well-defined up to a constant, which will be fixed later
in order to have (5.7). Then, the asymptotics of ωTY,L coincide with those of
the metric

(5.3) ω0 = i∂∂
(
− n

n+1 log |Ω−1|2h
)1+ 1

n

on X \ D, with the corresponding Riemannian metric g0. More precisely, for
any ε > 0:

|∇j
gTY,L(Φ

∗Ω−ΩL)|gTY,L = O(e(
1
2−ε)t),(5.4)

|∇j
gTY,L(Φ

∗g0 − gTY,L)|gTY,L = O(e(
1
2−ε)t).(5.5)

This comes from the fact that the objects on L and on X \D coincide near D up
to order O(z) = O(e

t
2 ), but then the form of the metric (5.2) introduces powers

of t in the estimates for the differences and their derivatives, so we simply
write O(e(

1
2−ε)t) which will be enough for us.

The Tian-Yau metric on X \ D is a Kähler metric ωTY = i∂∂ϕTY satisfying

(5.6) ωn
TY =

in2

n + 1
Ω ∧Ω

and asymptotic to our Tian-Yau metric ωTY,L near D. Of course (5.6) implies
that it is Ricci flat. For a suitable (unique) normalization of h, we have the
asymptotics

(5.7) ϕTY =
(
− n

n+1 log |Ω−1|2h
)1+ 1

n + ψ, |∇j
gTY,L ψ|gTY,L = O(e−ε

√
−t)

for all j ≥ 0 and for some ε > 0. Compared to [HSVZ22], we have a different
normalization of the constants in order to match our models of section 2. The
rate e−ε

√
−t comes from the fact that harmonic functions which go to zero in

the metric g0 have exponential decay in
√
−t.

5.2. The gluing. We now define Kähler metrics ωβ on X, with a cone singular-
ity of angle 2πβ around D, which are close to be Kähler-Einstein with constant
1, by gluing the metrics ωβ,L of section 2 with the Tian-Yau metric ωTY. This is
done by gluing the corresponding Kähler potentials around tβ = −β−1+µ for
some µ ∈ (0, 1), which will be fixed in the final argument in section 8.2.
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We define on X \ D

(5.8) ϕβ =

{
χ( t

tβ
)Φ∗ϕβ,L + (1− χ( t

tβ
))β1+ 1

n ϕTY on UL,

β1+ 1
n ϕTY on X \UL,

where χ : R+ → R+ is a nondecreasing function such that χ(u) = 1 for u ≥ 2
and χ(u) = 0 for u ≤ 1

2 . We denote ωβ = i∂∂ϕβ and gβ the corresponding
Kähler form and Riemannian metric.

This metric is very close to our model ωβ,L for t < tβ/2:

Lemma 5.2. For any ε > 0, one has for β small enough, uniformly with respect to β:

(5.9) |∇j
gβ,L(gβ − gβ,L)|gβ,L =

{
O(e(

1
2−ε)t) for t ≤ 2tβ,

O((−βt)(1−
j
2 )(1+

1
n )) for 2tβ ≤ t ≤ 1

2 tβ.

Proof. The main point here is the uniformity with respect to β. For t ≤ 2tβ, we
have the same potential ϕβ,L but with respect to two different complex struc-
tures, that of L and of X, that we shall denote JL and JX. It follows from Propo-
sition 5.1 that JX − JL vanishes on the vertical directions of L, and reduces to
an endomorphism of ker η. Since on t ≤ 2tβ both Kähler forms have potential
ϕβ,L(t), and JLdt = JXdt = 2η, it follows that actually ωβ,L = 1

2 dJLdϕβ,L co-
incides with ωβ = 1

2 dJXdϕβ,L on t ≤ 2tβ. Therefore gβ − gβ,L = ωβ,L(·, (JX −
JL)·), so estimating gβ − gβ,L on this region is the same as estimating JX − JL.

Since JX − JL vanishes on D, it follows from formula (2.14) that

(5.10) |JX − JL|gβ,L = O(e
t
2 )

uniformly in β, since the factor −βϕ′1(βt) in front of θD does not change the
norm of the endomorphisms. The covariant derivatives include terms 1

β
√

ϕ′′1 (βt)
∂
∂t

and 1√
−βϕ′1(βt)

∂
∂x (for x coordinate on D). From the behaviour of ϕ1 given in

(2.10) it follows that the worst coefficient introduced by a covariant deriva-
tive is β−1e−β t

2 . As a result, for any ε > 0, we have for β small enough and
t ≤ 2tβ = 2β−1+µ, uniformly in β,

(5.11) |∇j
gβ,L(JX − JL)|gβ,L = O(e(

1
2−ε)t).

Now pass to the region 2tβ ≤ t ≤ 1
2 tβ. Here we have

ϕβ = β1+ 1
n ϕTY(t) + χ( t

tβ
)
(

ϕβ,L(t)− β1+ 1
n ϕTY(t)

)
,

with

ϕTY(t) =
( −nt

n+1

)1+ 1
n + ψ, ψ = O(e−ε

√
−t),

ϕβ,L(t) =
(−βnt

n+1

)1+ 1
n + O((−βt)2(1+ 1

n )).

(The second line is actually a complete expansion in powers of (−βt)1+ 1
n ).

Since tβ = −β−1+µ goes to −∞, the term coming from ψ is negligible and
we obtain

β1+ 1
n ϕTY(t)− ϕβ,L(t) = O

(
(−βt)2(1+ 1

n )
)
.
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The Kähler form ωβ,L is asymptotic to the Tian-Yau form

β1+ 1
n ωTY,L = β1+ 1

n ( n
n+1 )

1
n
( 1

n (−t)−1+ 1
n dt ∧ η + (−t)

1
n θD

)
.

Therefore we have∣∣∇j(β1+ 1
n ϕTY(t)− ϕβ,L(t))

∣∣
β1+ 1

n gTY,L
= O

(
(−βt)(2−

j
2 )(1+

1
n )
)
.

On the other hand, |∂j
t(χ(

t
tβ
))| = O(t−j

β ) = O(t−j) so we have the same esti-

mate on the derivatives of χ( t
tβ
):∣∣∇j(χ( t

tβ
))
∣∣

β1+ 1
n gTY,L

= O
(
(−βt)−

j
2 (1+

1
n )
)
.

Since ϕβ − ϕβ,L = (1− χ( ·tβ
))
[

β1+ 1
n ϕTY − ϕβ,L

]
we eventually obtain

(5.12)
∣∣∇j(ϕβ(t)− ϕβ,L(t))

∣∣
β1+ 1

n gTY,L
= O

(
(−βt)(2−

j
2 )(1+

1
n )
)
.

Since the difference JX − JL is exponentially small, differentiating the estimate
(5.12) gives the lemma. �

We will solve the Kähler-Einstein equation Ric(ωβ + i∂∂ϕ) = ωβ + i∂∂ϕ
under the form

(5.13) Pβ(ϕ) := log
(ωβ + i∂∂ϕ)n

in2 Ω ∧Ω
+ (ϕβ + ϕ)− Cβ = 0

where the constant Cβ is the constant obtained for the model Calabi metric
gβ,L, that is Cβ = C1 + (n + 1) log β. One can calculate C1 = − log(n + 1), in
accordance with (5.6) when one checks that the Tian-Yau metric must be the
limit of ωβ

β1+ 1
n

when β→ 0. We can now estimate the initial error term:

Lemma 5.3. For any ε > 0, one has for β small enough, uniformly with respect to β:

(5.14) |∇j
gβ

Pβ(0)|gβ
=

{
O(e(

1
2−ε)t) t ≤ 2tβ,

O((−βt̃)(1−
j
2 )(1+

1
n )) t̃ ≥ 2tβ.

Proof. This follows from the estimates in Lemma 5.2:

• The form ωβ,L solves ωn
β,L = Cβeϕβ,L in2

ΩL ∧ΩL, therefore on t ≤ 2tβ,
since ωβ and Ω differ from ωβ,L and ΩL respectively by an exponen-
tially decreasing term, we obtain the estimate of the lemma.
• On t̃ ≥ 1

2 tβ the Tian-Yau form ωTY is Ricci flat and solves (5.6), so the
error term in (5.14) is ϕβ = O((−βt̃)1+ 1

n ) (and the corresponding esti-
mates for the derivatives).
• On the gluing region 2tβ ≤ t ≤ 1

2 tβ, the estimates from lemma 5.2 are
still sufficient to prove (5.14).

�
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5.3. Convergence of (X, gβ) and its rescalings. In this section, we determine
all possible Gromov-Hausdorff limits of our model space (X, ε−1

β gβ, p) where
p is a fixed point and (εβ)β is non-decreasing family of positive numbers. At
the very end of the paper, we will see that the results of this section continue
to hold for the Kähler-Einstein metric ĝβ, cf Lemma 8.4.

Case A. Convergence of (X, gβ, p) and limit renormalized measure. In the following,
we will use the variable u = βt, so that the gluing region is−2βµ ≤ u ≤ − 1

2 βµ;
we set uβ := −βµ. For later purposes, we extend the variable u to the whole
X by setting ũ = βt̃, so that ũ = β in X \UL. We have the form (2.15) for the
metric, which we rewrite here:

gβ,L = 2ϕ′′1 (u)(
1
4 du2 + β2η2)− βϕ′1(u)gD.

Next, we have by Lemma 5.2 the following estimates

(5.15) gβ =


gβ,L + O(e−βµ−1

) if u 6 2uβ,
gβ,L + O(βµ(1+ 1

n )) if 2uβ 6 u 6 1
2 uβ,

β1+ 1
n gTY if u > 1

2 uβ.

At this point, we can already see that the size of (u > 2uβ) with respect to gβ

goes to zero, hence that zone does not contribute to the limit.
To go further, it is convenient to introduce the moment map x = −ϕ′1(u) ∈

(0, 1) and then set cos(s) = x
n+1

2 for s ∈ (0, π
2 ). Relying on the identities

xn+1 = 1− ex and ϕ′′1 = 1
n+1

1−xn+1

xn−1 , we get

(5.16) gβ,L =
2

n + 1
ds2 +

2
n + 1

sin2 s

cos(s)2 n−1
n+1

β2η2 + β cos(s)
2

n+1 gD.

Given (5.9), we easily see that (X, gβ, p) converges to

(X∞, g∞, p∞) =

{
([0, π

2 ],
2

n+1 ds2, 0) if p ∈ D,
([0, π

2 ],
2

n+1 ds2, 1) otherwise.

Moreover, the normalized measures νβ =
dvolgβ

volgβ
(X)

converge to the measure

ν∞ = c sin s cos(s)
n−1
n+1 ds for some c > 0. In other words,

ν∞ = d(− cos
2n

n+1 s).

The asymptotic behavior of (X, gβ) is summarized by the picture below.
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√
β

√
β1+ 1

n

s
0 π

2

β1+ 1
n gTY

gβ,L

2πβ

Case B. Convergence of (X, ε−1
β gβ, p) with εβ → 0. First we consider the case

p ∈ D. In other words, we work near s = 0. Clearly, the zone (u > 2uβ) does
not contribute to the limit since it escapes any ball centered at p of fixed radius.
From (5.15)-(5.16) we get

gβ '
2

n + 1
(ds2 + s2β2η2) + βgD

and the limit of (X, ε−1
β gβ, p) when p ∈ D is

(R+, dt2, 0) if β� εβ � 1,
(R+ × D, dt2 + gD, (0, p)) if εβ = β,
(R+ ×Cn−1, dt2 + gCn−1 , (0, 0)) if εβ � β.

where the R+ factor comes from the rescaling t = ε−1/2
β s.

Second we consider the case when p ∈ X \D. In other words, we work near
s = π

2 . It is convenient to set σ = π
2 − s.

Let us first consider the case where εβ 6 β1+ 1
n . In that case, the "Tian-Yau"

zone (u > 1
2 uβ) has size of order ε

− 1
2

β β
µ
2 (1+

1
n ) → +∞ with respect to ε−1

β gβ

hence the limit is that of (X \ D, ε−1
β β1+ 1

n gTY, p).

From now on, one can assume that εβ � β1+ 1
n . Therefore, the compact part

is contracted and everything is concentrated near the zone where u ∼ 0, where
the asymptotics (2.16) hold for gβ,L as well as for β1+ 1

n gTY. Given (5.15), we get
in terms of the variable σ ' (−u)

n+1
2n

(5.17) gβ '
2

n + 1
(dσ2 +

β2

σ2 n−1
n+1

η2) + βσ
2

n+1 gD.
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In a ball centered at p of fixed radius for ε−1
β gβ, we have ε−

1
2 σ / 1 (since

ε−1/2
β σ(p)� 1), so that

ε−1
β βσ

2
n+1 / (ε−1

β β1+ 1
n )

n
n+1 � 1.

Moreover, we have σ ' β
n+1
2n (since u 6 −β), hence

ε−1
β

β2

σ2 n−1
n+1
/ ε−1

β β1+ 1
n � 1.

From (5.17), we can deduce that in this case the limit is just a ray.

In summary, if p ∈ X \ D the limit of (X, ε−1
β gβ, p) is{

(R+, dt2, 0) if β1+ 1
n � εβ � 1,

(X \ D, gTY, p) if εβ = β1+ 1
n ,

and for εβ � β1+ 1
n we only have the trivial bubble Cn.

6. UNIFORM SCHAUDER ESTIMATE FOR CONES

6.1. Preliminaries. In this section, we consider the flat Kähler metric on C∗ ×
Cn−1 with cone angle 2πβ along D := (z1 = 0), that is

ddc(|z1|2β + ‖z′‖2) = β2|z1|2(β−1)idz1 ∧ dz̄1 +
n

∑
j=2

idzj ∧ dz̄j

where z′ = (z2, . . . , zn). Using the real coordinates r := |z1|β, θ := arg(z1), the
Riemannian metric associated that Kähler metric is

ḡβ := (dr2 + β2r2dθ2) + gCn−1 .

It will be convenient to introduce the notation

ĝβ := dr2 + β2r2dθ2

for the one-dimensional complex cone with cone angle 2πβ at 0 ∈ C.

On balls.
We are interested in the behavior of ḡβ near the divisor when β approaches 0.
When n = 1, the zone {C > |z1| > 1/C} is collapsed onto a point which is at
distance exactly one of the origin. This means that the asymptotic geometry
is concentrated extremely close to the divisor. In the following, we will only
consider with points p at distance at most 1

2 from the origin with respect to ḡβ;
in particular, |z1(p)| 6 2−1/β converges exponentially fast to zero.

If p ∈ Cn and ρ > 0, we denote by Bp(ρ) the geodesic ball of radius ρ

centered at p, with respect to ḡβ. If p ∈ D, then Bp(ρ) = {q = (rq, θq, z′); r2
q +

‖z′ − z′(p)‖2 < ρ2}.
In the following, we set Bβ := B0(

1
2 ) for the ball centered at the origin with

radius 1/2 with respect to ḡβ. It will be convenient to also set B′β := B0(
1
4 ). As



28 OLIVIER BIQUARD AND HENRI GUENANCIA

explained above, we will exclusively focus on the behavior of ḡβ on Bβ. Punc-
tured balls B∗ are defined as B \ D.

We decompose the gradient of ḡβ as ∇ḡβ = (D′, D′′) where D′ = (D1, D2)

with D1 = ∂r, D2 = 1
βr ∂θ and D′′ = (D3, . . . , D2n) where D2j−1 = ∂xj , D2j = ∂yj

if zj = xj + iyj. The laplacian is

∆ḡβ
= ∂2

r +
1
r

∂r +
1

β2r2 ∂2
θ︸ ︷︷ ︸

=∆ĝβ

+∆Cn−1 .

In complex coordinates, the first order derivatives are given by

∂r =
1

β|z1|β
(z1∂z1 + z̄1∂z̄1), and

1
βr

∂θ =
i

β|z1|β
(z1∂z1 − z̄1∂z̄1)

while the second order derivatives are

(6.1) ∂2
r =

1
β2|z1|2β

(
2|z1|2∂2

z1 z̄1
+ (1− β)(z1∂z1 + z̄1∂z̄1) + (z2

1∂z1 + z̄2
1∂z̄1)

)
and

(6.2)
1

β2r2 ∂2
θ =

−1
β2|z1|2β

(
z2

1∂2
z1
+ z1∂z1 − 2|z1|2∂2

z1 z̄1
+ z̄1∂z̄1 + z̄2

1∂z̄1

)
.

For any real number α ∈ (0, 1), we define the Cα norm with respect to ḡβ in
the classical way. That is, if p ∈ Bβ i.e. if f ∈ C0(Bβ), then

‖ f ‖α = sup
x,y∈Bβ

| f (x)− f (y)|
dḡβ

(x, y)α
.

We defined the C2,α norm of a function f on Bβ as

‖ f ‖α = ‖ f ‖0 + ‖∇ḡβ f ‖0 +
2n

∑
i=1

2n

∑
j=3
‖DiDj f ‖α + ‖∆ĝβ

f ‖α.

This means that we do not require a control on the derivatives D2
1 f , D2

2 f ,
D1D2 f , D2D1 f , following Donaldson [Don12].

The main result of this section is the following

Theorem 6.1 (Weak Schauder estimate). Let u ∈ L∞(Bβ) solve ∆ḡβ
u = f for

some f ∈ Cα(Bβ). Then u ∈ C2,α(Bβ) and there exists a constant C = C(n, α, δ)
such that for all β ∈ (0, 1− δ] one has

‖u‖C2,α(B′β)
6 C

(
‖ f ‖Cα(Bβ) + ‖u‖C0(Bβ)

)
.

The novelty of the result above relies on the uniformity of the "Schauder
constant" C above with respect to β (say when β → 0), since the result for
fixed β has been known for a while. It is initially due to Donaldson [Don12]
and was later reproved and generalized via many different methods, cf [GS21,
GY21, DE21].
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We will follow the approach of Bin Guo and Jian Song [GS21], itself based
on an original and quite direct proof of the usual Schauder estimate by Xu-Jia
Wang [Wan06].

In what follows, we will systematically assume that β < 1
2 .

6.2. Gradient estimates. In this section, we provide two types of gradient es-
timates for the metric ḡβ that will be useful later.

Lemma 6.2. Assume that n = 1. Let u ∈ L∞(B0(ρ)), smooth outside 0 solving
∆ĝβ

u = f . Then there exists a constant C > 0 such that for any r 6 ρ

2β , one has

|∇ĝβ u|(r, θ) 6 C
[ 1

β

(
r
ρ

) 1
β

· 1
r

sup
B0(ρ)

|u|+ r sup
B0(ρ)

| f |.
]

Remark 6.3. A trivial but crucial observation is that when r 6 ρ/2, we have
1
β (

r
ρ )

1
β → 0 when β → 0. In particular, and this is all we will use in the

following, the latter quantity is bounded when β approaches zero.

Proof. The function v(z) := u(ρ1/βz) is defined for |z| 6 1 and satisfies ∆euclv(z) =
ρ2 β2

|z|2(1−β) f (ρ1/βz). Classically, we have

(6.3) v(z) = h(z) + ρ2
∫
|w|<1

β2

|w|2(1−β)
f (ρ1/βw) log

∣∣∣∣ z− w
1− w̄z

∣∣∣∣ |dw|2︸ ︷︷ ︸
=:I(z)

,

where h is the harmonic function on the unit disk D ⊂ C whose boundary
values are v|∂D. In particular, there exists a universal constant C1 such that

sup
|z|6 1

2

|∇euclh(z)| 6 C1 sup
|z|=1
|v(z)| = C1 sup

B0(ρ)

|u|.

In particular, we get for |ρ−1/βz| 6 1/2 (or, equivalently, r 6 2−βρ):

(6.4) |∇ĝβ h(ρ−1/βz)| 6 C1

β

(
r
ρ

) 1
β

· 1
r

sup
B0(ρ)

|u|,

which takes care of the first part in the RHS of (6.3). To take care of the inte-
gral summand I(z), we assume that |z| 6 1/2 so that∇eucl I(z) is controlled by
ρ2β2 sup | f | ·

∫
|w|<1

|dw|2
|w|2(1−β)·|z−w| . Performing the change of variable x := w/z in

the integral, we get |z|2β−1
∫
|x|<1/|z|

|dx|2
|x|2(1−β)·|x−1| . There are three zones: around

x = 0 the integral is equivalent to 1/β, around x = 1 we have uniform integra-
bility while around |x| = 1/|z| it is equivalent to |z|1−2β hence it is uniformly
integrable too. All in all, we find that |∇eucl I(z)| . βρ2|z|2β−1 · sup | f |. In
terms of ḡβ-gradient, this means that

|∇ĝβ I(ρ−1/βz)| . 1
β

r
1
β−1

ρ−1/β · βρ2|ρ−1/βz|2β−1 · sup | f | = r · sup | f |.

Combined with (6.4), this yields the desired gradient estimate for u. �
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We will also need the following gradient estimate in any dimension for har-
monic functions:

Lemma 6.4. Let u ∈ L∞(Bp(ρ)) be a harmonic function, i.e. ∆ḡβ
u = 0. Assume

that either p = 0 or ρ < r(p). Then there exists a universal constant C = C(n) > 0
such that

sup
Bp(ρ/2)

|∇ḡβ u| 6 C
ρ

sup
Bp(ρ)

|u|.

In particular, for any integer ` > 0 that

sup
Bp(ρ/2)

|(D′′)`u| 6 C(n, `)
ρ`

sup
Bp(ρ)

|u|; sup
Bp(ρ/2)

|(D′′)`D′u| 6 C(n, `)
ρ`+1 sup

B0(ρ)

|u|

as well as, if p is not on the divisor
(6.5)∣∣∣∇ḡβ

[
∂r(D′′)`u

]
(z)
∣∣∣+ ∣∣∣∣∇ḡβ

[ 1
βr

∂θ(D′′)`u
]
(z)
∣∣∣∣ 6 C(1 +

r(p)
r

) ·
‖u‖L∞(Bp(ρ))

ρ`+2 .

Proof. Following [GS21, Lemma 2.4 & Proposition 2.2], one can approximate
ḡβ by smooth metrics ḡβ,ε with non-negative Ricci curvature and use Cheng-
Yau’s gradient estimate [CY75] to get the first two sets of inequalities. For the
last estimate, set v := (D′′)`u and observe that 1

β ∂θv is harmonic on Bp(ρ) and
therefore ∣∣∣∣ 1β ∂θv

∣∣∣∣ 6 C
r‖u‖L∞(Bp(ρ))

ρ`+1 on Bp(ρ/2)

thanks to the previous gradient estimate. Here, C = C(n, `) and may change
from line to line. Iterating that argument, we get

(6.6)
∣∣∣∣∇ḡβ

1
β

∂θv
∣∣∣∣ 6 C

r(p)‖u‖L∞(Bp(ρ))

ρ`+2 on Bp(ρ/2).

Since |∇ḡβ 1
βr ∂θv| 6 1

r2

∣∣∣ 1
β ∂θv

∣∣∣+ 2
r

∣∣∣∇ḡβ 1
β ∂θv

∣∣∣, we get

|∇ḡβ
1
βr

∂θv| 6 C(
ρ

r
+

r(p)
r

) ·
‖u‖L∞(Bp(ρ))

ρ`+2

which provides half of the desired inequality. For the second half, observe that
∇ḡβ ∂rv involves the following terms: ∂2

r v, 1
r ∂r(

1
β ∂θv) and ∇′′∂rv. The last term

is controlled by the gradient estimate already established for the harmonic
function D′′v and the second one is controlled by (6.6). Finally, the first one
can be written ∂2

r v = ∆ḡβ
v︸︷︷︸

=0

− 1
r ∂rv− 1

β2r2 ∂2
θv− ∆Cn−1 v and the estimate follows

from the previous ones. �

In Lemma 6.4 above, one can adapt the proof of the estimate (6.5) in the

case where p = 0 is centered on the divisor, and the RHS becomes C
‖u‖L∞(Bp(ρ))

rρ`+1 ,
which turns out to be too coarse for our later purposes. Instead, we will use the
input of Lemma 6.2 to obtain the following estimate, valid for balls centered
on the divisor.
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Lemma 6.5. Let u ∈ L∞(B0(ρ)) be a harmonic function, i.e. ∆ḡβ
u = 0. There exists

C = C(n, `) such that for all z = (r, θ, z′) in B0(ρ/4), one has∣∣∣∇ĝβ
[
(D′′)`u

]
(z)
∣∣∣+ ∣∣∣∣∇ĝβ

[ 1
β

∂θ(D′′)`u
]
(z)
∣∣∣∣ 6 C

‖u‖L∞(B0(ρ))

ρ`+1 ·
(

1
β

(
r
ρ

) 1
β−1

+
r
ρ

)
as tas

(6.7)
∣∣∣∇ĝβ

[
∂r(D′′)`u

]
(z)
∣∣∣ 6 C

‖u‖L∞(B0(ρ))

ρ`+2 ·
(

1
β

(
r
ρ

) 1
β−2

+ 1

)
.

Proof. The two important points are that ∆ḡβ
commutes with both D′′ and ∂θ

and that for any ḡβ-harmonic function w, one has ∆ĝβ
w = −∆Cn−1 w. Set v :=

(D′′)`u. By Lemma 6.4,

sup
B0(ρ/2)

[
|v|+ | 1

β
∂θv|

]
6 C
‖u‖L∞(B0(ρ))

ρ`+1

so that the first inequality now easily follows from Lemma 6.2.
The second inequality requires a bit more work. We start by decomposing

∇ḡβ ∂rv = (∂2
r v,

1
βr

∂2
rθv, D′′∂rv)

and observing that the last two components are controlled on B0(ρ/4) by

sup
B0(ρ/2)

[
|∇ĝβ D′′v|+ 1

r
|∇ĝβ

1
β

∂θv|
]]

,

which in turn is controlled by M :=
‖u‖L∞(B0(ρ))

ρ`+2 · ( 1
β

(
r
ρ

) 1
β−2

+ 1) thanks to the

first inequality. We are left to estimating ∂2
r v. We write

∂2
r v = ∆ĝβ

(v)− 1
r

∂rv− 1
β2r2 ∂2

θv

= −∆Cn−1(v)−
1
r

∂rv− 1
β2r2 ∂2

θv

and observe that each summand is controlled by

sup
B0(ρ/2)

[
|(D′′)2v|+ 1

r

[
|∇ĝβ v|+ |∇ĝβ

1
β

∂θv|
]]
6 CM

thanks to the first inequality again. The lemma is proved. �

6.3. Strategy of the proof of Theorem 6.1. The main idea is to consider, for a
given point p ∈ Bβ a sequence of functions (uκ) defined on neighborhoods Uκ

of p getting smaller and smaller when κ increases and such that{
∆ḡβ

uκ = f (p) on Uκ

uκ|∂Uκ
= u|∂Uκ

More precisely, let us set λ := 1
2 , r(p) := d(p, D) and choose Uκ = Bp(λκ) if

r(p) > λκ and Uκ := Bp̃(2λκ) otherwise, where p̃ is the projection of p onto
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D under the natural map Cn → Cn−1, (z1, . . . , zn) → (z2, . . . , zn). Note that if
sin(βπ)r(p) < ρ < r(p), then the geodesic ball Bp(ρ) is essentially an annulus
(times an euclidean ball).

Since uκ− 1
n−1‖z′‖2 is harmonic, uκ enjoys all the regularity properties shared

by harmonic functions.

The strategy is, given two indices i, j and two points p, q ∈ Bβ, to estimate
DiDju(p)− DiDju(q) by the analogous quantity for uκ, for some κ = κ(p, q)
chosen carefully. More precisely, the choice of κ with be such that λκ ' 8d
where d = d(p, q). In particular, Uκ will contain Bp(2d) and thus the geodesic
joining p to q.

6.4. C2 estimates. It is convenient to write ω(r) for the modulus of continuity
of f . By assumption, one has ω(r) = O(rα). By considering u− uκ ± ω(λκ) ·[
(r− r(p))2 + ‖z′ − z′(p)‖2], one easily deduces from the maximum principle

that

(6.8) ‖u− uκ‖L∞(Uκ) 6 C(n)λ2κω(λκ).

By the triangle inequality, these inequality extend to quantify the harmonic
functions

hκ := uκ+1 − uκ

on Uκ+1 along with their derivatives thanks to Lemma 6.4

(6.9) ‖D′′hκ‖L∞(Uκ+2) 6 C(n)λκω(λκ); ‖(D′′)2hκ‖L∞(Uκ+2) 6 C(n)ω(λκ).

For κ � 1, one can define on Uκ a single-valued branch w = zβ
1 realizing an iso-

morphic biholomorphism between (Uκ, ḡβ) and a euclidean ball (Beucl(λ
κ), geucl).

Using this, one gets that whenever p /∈ D,

(6.10) lim
κ→+∞

D′′uκ(p) = D′′u(p); lim
κ→+∞

(D′′)2uκ(p) = (D′′)2u(p),

cf [GS21, Lemma 2.8]. Write (D′′)2uκ = (D′′)2u1 + ∑κ−1
j=1 (D′′)2(uj+1 − uj) on

Uκ and then combine (6.10), (6.9) and Lemma 6.4 to obtain

(6.11) ‖(D′′)2u‖L∞(B′β)
6 C(n, α)

[
‖u‖L∞(Bβ) + ‖ f ‖Cα(Bβ)

]
.

Since ∆ĝβ
u = f −∑2n

j=3 D2
j u, (6.11) provides a bound for ‖∆ĝβ

u‖L∞(B′β)
in terms

of ‖u‖L∞(Bβ) and ‖ f ‖L∞(Bβ).

6.5. Cα estimates for the tangential derivatives. Let p, q ∈ B′β
∗ and let d =

dḡβ
(p, q). By [GS21, Proposition 2.3], we have

(6.12)
∣∣(D′′)2u(p)− (D′′)2u(q)

∣∣ 6 C(n, α)
[
d‖u‖L∞(Bβ) + dα‖ f ‖Cα(Bβ)

]
.

For the reader’s convenience, we recall the main steps. We introduce the func-
tions vκ playing the role of uκ but for the point q instead of p. Choose κ such
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that d ' λκ+3 and assume r(p) = min(r(p), r(q)) 6 2d for simplicity. We have
essentially three terms to treat

(D′′)2u(p)− (D′′)2uκ(p)︸ ︷︷ ︸
=:(I)

; (D′′)2uκ(p)− (D′′)2uκ(q)︸ ︷︷ ︸
=:(II)

; (D′′)2uκ(q)− (D′′)2vκ(q)︸ ︷︷ ︸
=:(III)

.

The first term is easy to handle:

|(I)| = lim
N→+∞

∣∣∣∣∣ N

∑
j=κ

(D′′)2hj(p)

∣∣∣∣∣ 6 C(n)
+∞

∑
j=κ

ω(λj) 6 C(n, α)dα‖ f ‖Cα(Bβ).

For the second term, we use the gradient estimate (6.4) for the harmonic func-
tion (D′′)2hj (2 6 j 6 κ − 1):

sup
Bp̃(λj)

|∇ḡβ(D′′)2hj| 6 C(n)λ−jω(λj)

and after integration along the geodesic joining p anq q (which lies in Bp̃(λκ)∗)∣∣(D′′)2uj+1(p)− (D′′)2uj+1(q)
∣∣ 6 ∣∣(D′′)2uj(p)− (D′′)2uj(q)

∣∣+C(n)dλ−jω(λj)

and by iterating

|(II)| 6
∣∣(D′′)2u2(p)− (D′′)2u2(q)

∣∣+ C(n)dα‖ f ‖Cα(Bβ).

The first term in the RHS is almost harmonic on a ball of definite size, so by
using the gradient estimate (6.4), on can dominate it by C(n)d‖u‖L∞(Bβ). As
for the third term, the function uκ − vκ is well-defined on Bq̃(λκ), it is almost
harmonic and its sup-norm on that ball is of order λ2κω(λκ) by (6.8). The gra-
dient estimate for harmonic functions (Lemma 6.4) then provides the desired
estimate.

6.6. Cα estimates for the normal-tangential derivatives. In this paragraph,
we explain the following estimate, cf [GS21, Propositions 2.4&2.5]. The argu-
ment is somehow simplified here because we can choose an angle 2πβ < π;
this will simplify the application of Lemma 6.5. Let p, q ∈ B′β

∗ and let d =

dḡβ
(p, q); then

(6.13)
2

∑
i=1

2n

∑
j=3

∣∣DiDju(p)− DiDju(q)
∣∣ 6 C(n, α)

[
d‖u‖L∞(Bβ) + dα‖ f ‖Cα(Bβ)

]
.

Again, we will only highlight the main steps, and focus on the i = 1 case;
i.e. we estimate the Hölder constant of ∂rDju for any j > 3. The case i = 2,
i.e. estimating 1

βr ∂θ Dju is very similar. Borrowing the notation from § 6.5,
Lemma 6.4 shows that the harmonic function hκ satisfies

(6.14) sup
Uκ+2

|∇ḡβ D′′hκ| 6 C(n)ω(λκ).

Similarly to (6.10), we have

(6.15) lim
κ→+∞

∂ruκ(p) = ∂ru(p); lim
κ→+∞

∂rD′′uκ(p) = ∂rD′′u(p),
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cf [GS21, Lemma 2.10]. To estimate ∂rD′′u(p) − ∂rD′′u(q), we fix the inte-
ger κ so that d ' λκ+3 and we need to analyze the analogous terms (I)’ :=
∂rD′′u(p)− ∂rD′′uκ(p),

(II)’ := ∂rD′′uκ(p)− ∂rD′′uκ(q),

and (III)’ := ∂rD′′uκ(q)− ∂rD′′vκ(q). The first term is dealt with just as in § 6.5
and the third one relies on the same arguments as before along with (6.14)-
(6.15), cf [GS21, Lemma 2.11]. In the following, we thus focus on (II)’. As for
its analog (II), the key point is to estimate

(II)” := ∂rD′′hj(p)− ∂rD′′hj(q),

for any 2 6 j 6 κ − 1 since u2 is almost harmonic on Bp̃(λ) and Lemma 6.5
shows that the ḡβ-gradient of ∂rD′′u2 is bounded on that ball. Set wj := ∂rD′′hj,
defined on Uj+1. We distinguish two cases.
• Case 1. Uκ is centered on the divisor.

In particular, any Uj (2 6 j 6 κ − 1) is centered on the divisor as well. The
estimate (6.7) in Lemma 6.5 shows that for β small enough (β < 1

2 would
suffice), ∇ḡβ wj is bounded on Bp̃(

3
2 λj) ⊃ Bp(2d) by C(n)λ−jω(λj).

• Case 2. Uκ is centered at p.
Necessarily, we have r(p) > λκ ' 8d. Along a geodesic γ(t) joining p to q,
we have the inequality r(γ(t)) > r(p)

2 since the distance from p to a point p′

with r(p′) 6 r(p)/2 is at least r(p)/2 > 2d. The geodesic γ lies in Bp(λκ)
hence equation (6.5) in Lemma 6.4 shows that for any j, ∇ḡβ wj is bounded by
C(n)λ−jω(λj) along γ.

The case by case analysis above has therefore shown that |wj(p)− wj(q)| 6
C(n)λ−jω(λj) · d and we can conclude as in § 6.5.

6.7. Strong Schauder estimate. In this section, we intend to improve Theo-
rem 6.1 by controlling the Cα norm of the non-mixed derivatives of order two
of a solution u of the equation ∆ḡβ

u = f , that is to get an estimate of ‖∇2
ḡβ

u‖Cα .
As we will later see, it all comes down to the following one-dimensional prob-
lem.

Proposition 6.6. Assume that n = 1. Let u ∈ L∞(Bβ) solve ∆ḡβ
u = f for some

f ∈ Cα(Bβ). Then u ∈ C2,α(Bβ) and there exists a constant C = C(n, α) such that
for all β ∈ (0, 1

4 ] one has

(6.16) ‖u‖C2,α(B′β)
6 C

(
‖ f ‖Cα(Bβ) + ‖u‖C0(Bβ)

)
.

Corollary 6.7 (Strong Schauder estimate). The full Schauder estimate (6.16) holds
in any dimension.

Here, the C2,α norm D ⊂ Bβ is defined by

‖u‖C2,α = sup
Bβ

∑
0≤j≤2

|∇ju|ḡβ
+ [∇2u]α
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where

(6.17) [v]α = sup
x,y∈Bβ; |r(x)−r(y)|< r(x)

2

|v(x)− v(y)|
dḡβ

(x, y)α
.

This Hölder semi-norm is quite convenient to manipulate as we will see
later, and it is well-known that it is equivalent to the usual Hölder semi-norm
‖v‖α := supx,y

|v(x)−v(y)|
dḡβ

(x,y)α .

Remark 6.8. By classical arguments (see e.g. [Don12, § 4.2], [GS18, § 3.5]), the
result of Corollary 6.7 for the flat cone metric extends to perturbations ∆ḡβ

+

aβ · ∇2 + bβ · ∇, provided the tensors aβ and bβ are small enough in Cα norm.
It is easy to check that the uniformity with respect to β is preserved provided
aβ and bβ are uniformly small, more precisely for some ε = ε(n, α) > 0 small
enough, one has for all β ∈ (0, 1

4 ]

‖aβ‖Cα(ḡβ) + ‖bβ‖Cα(ḡβ) < ε.

Proof of Proposition 6.6. The proof of Proposition 6.6 consists in three steps. First,
we show that is is enough to prove the estimate for functions u which vanish
on ∂Bβ and whose integral on every circle {r = cst} is zero. Next, we show
that for such functions u, the norm ‖u/r2+α‖C0 is controlled by ‖u‖C0 + ‖ f ‖Cα .
Finally, we combine the previous results and Schauder’s estimate for the cylin-
drical metric to conclude.

• Step 1. The reduction step. First, we decompose u = h + v where h is har-
monic on Bβ with h|∂Bβ

= u|∂Bβ
and v solving ∆ḡβ

v = f , v|∂Bβ
≡ 0. All the usual

derivatives of h are controlled by it sup norm, itself controlled by its boundary
value, hence by ‖u‖C0 . Moreover, the formulas (6.1)-(6.2) show that ‖∇3

ḡβ
h‖C0

is controlled by β−3r1/β−3‖∇3
euclh‖C0 . Therefore, Schauder’s estimate for v im-

plies that for u.
Next, we write C∗ = R∗+× S1 and we expand v in Fourier series v = v0(r) +

ṽ where ṽ = ∑n>1 vn(r)einθ . The function ṽ has integral zero on each circle,
hence ṽ|∂Bβ

≡ 0. As v0(r) = 1
2πr

∫
|z|=r v, both ‖v0‖C0 and ‖ṽ‖C0 are controlled

by ‖v‖C0 . Since ∆ḡβ
respects the decomposition, the Fourier series expansion

of f = f0(r) + f̃ is given by ∆ḡβ
v0 + ∆ḡβ

ṽ. It is easy to check that ‖ f0‖Cα 6
‖ f ‖Cα . From this one infers two things: first, ‖v0‖C2,α is under control (e.g. by
explicitly solving the ODE (∂2

r + r−1∂r)v0 = f0) and next, f̃ is Cα and ‖ f̃ ‖Cα is
under control as well.

Therefore, Schauder’s estimate for ṽ implies Schauder’s estimate for v, hence
for u as well. This shows that it is enough to restrict ourselves to functions u
which vanish on ∂Bβ and whose integral on each circle {|z| = r} is zero.

• Step 2. The improved uniform estimate. In this step, we show that for u
satisfying u|∂Bβ

≡ 0 and
∫
|z|=r u = 0 for any r, then there exists a constant
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C > 0 independent of β such that

(6.18) ‖u/r2+α‖C0(B′β)
6 C‖ f ‖Cα(Bβ).

Set ρ := 1
2 . From (6.3), we have

(6.19) u(z) = ρ2
∫
|w|<1

β2

|w|2(1−β)
f (ρ1/βw) log

∣∣∣∣ρ−1/βz− w
1− ρ−1/β z̄

∣∣∣∣ |dw|2.

The integral of u along any circle {|w| = s} is zero, so the same is true for f .
This implies that

u(z) = ρ2
∫
|w|<1

β2

|w|2(1−β)
f (ρ1/βw) log

∣∣∣∣ρ−1/βz/w− 1
1− ρ−1/β z̄w̄

∣∣∣∣ |dw|2

= β2|z|2β
∫
|t|>ρ−1/β|z|

f (ρ1/βw) log
∣∣∣∣ t− 1
1− ρ−2/β|z|2/t

∣∣∣∣ |dt|2
|t|2+2β

after performing the change of variables t := ρ−1/βz/w. Since f (0) = 0, we
have | f | 6 Cα‖ f ‖Cα · rα and therefore∣∣∣∣u(z)r2+α

∣∣∣∣ 6 Cα‖ f ‖Cα · β2
∫
|t|>ρ−1/β|z|

log
∣∣∣∣ t− 1
1− ρ−2/β|z|2/t

∣∣∣∣ |dt|2
|t|2+2β︸ ︷︷ ︸

=:I(z)

.

We are left to bounding the integral I(z) uniformly for all β and all z ∈ B′β.
When |t| is very small, say |t| 6 ε, then ρ−1/β|z| < ε and the log term is a
O(t) + O(ρ−1/β|z|) = O(t) hence this portion of the integral is dominated by
β2
∫ ε

s=0
ds
s2β = O(1). For the rest of the integral, we first observe that for z ∈ B′β,

we have |ρ−2/β|z|2/t| 6 ρ1/β hence

β2
∫
|t|>ε
− log |1− ρ−2/β|z|2/t| |dt|2

|t|2+2β
6 β2

∫ +∞

s=ε

ds
s1+2β

= O(1).

We are left to estimating β2
∫
|t|>ε log |t − 1| |dt|2

|t|2+2β . The region ε 6 |t| 6 2 is
trivially dealt with, while the remaining region is estimated by∫ +∞

s=2

log s
s1+2β

ds =
1

γβ

[
s−γβ(log s− 1

γβ
)
]+∞

2
= O(β−2)

where γ = (2 + α). The estimate (6.18) is now proved.

• Step 3. Schauder estimates for the cylinder. Set t := log r so that ḡβ = r2gc

where gc := dt2 + β2dθ2 to be the cylindrical metric on R× S1, where the cir-
cle has length 2πβ. It is complete with bounded curvature hence it satisfies
uniform Schauder estimates independent of β and the chosen ball of a given
radius (small balls may not be simply connected but one can pass to the uni-
versal cover).

Let us pick an arbitrary point x0 ∈ B′β and set r0 := r(x0). We define the
regions D := {|t− t0| < 2} and D′ := {|t− t0| < 1}; these depend on the base
point x0. On D, the function r

r0
= et−t0 has bounded gc-derivatives at every
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order (and the same holds for its inverse), and these bounds are independent of
x0. On D, we have ‖∇j

gc u‖C0 ∼ rj
0‖∇

j
ḡβ

u‖C0 and ‖v‖Cα
gc (D) ∼ rα

0‖v‖Cα
ḡβ
(D) by the

definition of the Hölder norm for ḡβ, cf (6.17). By the same token, ‖r2 f ‖Cα
gc (D) ∼

r2+α
0 ‖ f ‖Cα

ḡβ
(D).

This implies that

‖u‖C2,α
ḡβ

(D′) . r−2−α
0 ‖u‖C2,α

gc (D′)(6.20)

6 C(‖u/r2+α
0 ‖C0(D) + ‖ f ‖Cα

ḡβ
(D))

where the last inequality follows from Schauder estimates for the cylindrical
metric, since ∆gc u = r2 f . Putting (6.18) and (6.20) together, we conclude that
‖u‖C2,α

ḡβ
(D′) 6 C‖ f ‖Cα

ḡβ
(D) for some constant C independent of β and x0. By

varying the point x0 across B′β and using the first reduction step, we obtain the
proposition. �

Proof of Corollary 6.7. We are left to showing that the Cα norms of ∂2
r u and 1

βr2 ∂2
θu

are controlled by ‖u‖C0 + ‖ f ‖Cα . We will treat the term v := ∂2
r u, the other one

being entirely similar. Let x, y ∈ B′β which we write (z1, z′1) and (z2, z′2) where
z′i ∈ Cn−1 for i = 1, 2. We set t = (z2, z′1) and decompose the difference
v(x)− v(y) = (v(x)− v(t)) + (v(t)− v(y)). On the slice Sz′1

:= C∗ × {z′1}, the
function u satisfies ∆ĝβ

u = f −∆Cn−1 u and the Cα norm of the RHS is controlled
by Theorem 6.1. By Proposition 6.6, we get that

|v(x)− v(t)| 6 Cdĝβ
(z1, z2)

α 6 Cdḡβ
(x, y)α

where C is some uniform multiple of ‖u‖C0 + ‖ f ‖Cα .
We now have to take care of v(t) − v(y). The geodesic from t to y lies in

the "euclidean slice" S̃z2 = {z2} × Cn−1 so we only have to estimate D′′v =
∂2

r D′′u along S̃z2 . But this is entirely similar to what has been done in § 6.6 by
using almost harmonic approximations and relying on (6.5)-(6.7) depending
on whether dḡβ

(t, y) = deucl(z′1, z′2) dominates or not r(t) = r(y) = |z2|β. �

7. SCHAUDER ESTIMATE FOR COLLAPSED METRICS

In this section we establish the uniform Schauder estimates which are at the
heart of our argument. The important point here is the existence of different
scales at which we can look at the geometry, since the metrics gβ,L (hence gβ)
collapse much quicker in the circle direction of the bundle L over D (scale β)
than in the directions of D (scale

√
β). Since we have here two different speeds

for the collapsing, we call this geometry ‘2-collapsed’. We will also need to
consider an intermediate ’1-collapsed’ geometry, more precisely:

• 1-collapsed geometry: this is a scale at which the circle collapses but
the divisor does not collapse; this roughly amounts to consider the met-
rics 1

β gβ, which turn out to have controled curvature so that we can
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obtain Schauder estimates from standard arguments far from the divi-
sor D, and near the divisor D with the conical singularities from the
estimates developed in section 6; this is done in section 7.2;
• 2-collapsed geometry: this is the scale of gβ,L, and it turns out that in

our problem we need estimates at this scale, on balls of fixed radius, say
$, for gβ,L; this corresponds to balls of larger and larger radius $√

β
in

the 1-collapsed geometry of 1
β gβ,L; we obtain these estimates in section

7.3 from a global estimate on some limit of 1
β gβ,L.

Notation. Since we have a lot of constants appearing in our estimates, from
now we simplify the notation by introducing the relations

A / B resp. A ≈ B

defined by the fact that there is some constant Cn depending only on the di-
mension n (and certainly not on β) such that

A ≤ CnB resp. C−1
n B ≤ A ≤ CnB.

7.1. Functional spaces. We now define the functional spaces in which we will
solve the equation. These are weighted Hölder spaces.

With the notation of section 5.3, we define a weight on X by

(7.1) wβ = χ(−ũ)− (1− χ(−ũ))ũ

so that wβ = 1 for u ≤ −2 and wβ = ũ for u ≥ − 1
2 .

Fix a real number δ. For any section f of a tensor bundle, we define the
weighted norm (which depends on β):

(7.2) ‖ f ‖C`,α
δ

= sup ∑
0≤j≤`

wδ+ j
2 (1+

1
n )

β |∇j f |gβ
+ [wδ+ `

2 (1+
1
n )

β ∇` f ]α

where the semi-norm [ f ]α is also weighted:

(7.3) [ f ]α = sup
dgβ

(x,y)<ρ(βw
1
n
β (x))

1
2

(
βw

1
n
β

) α
2 | f (x)− f (y)|

dgβ
(x, y)α

.

One can be surprised by these definitions, since (7.2) and (7.3) do not corre-
spond to the same weight: roughly speaking the norm ‖ f ‖C0 + [ f ]α is a Cα

norm with respect to the metric β−1w−
1
n gβ, a metric which looks like:

• β−1gβ on u ≤ −1: this has bounded curvature by Lemma 3.1;
• β−1− 1

n gβ, that is gTY on the compact part of X \UL;
in both cases the point is that the geometry is controlled so that there are uni-
form Schauder estimates.

On the other hand, the C` norm defined by (7.2) has a different weight,

motivated by the fact that |∇jw•β|gβ
= O(w•−

j
2 (1+

1
n )

β ), so it is well-adapted to
functions depending on u only: we will see that these are the functions on
which we have the worst estimates, because the other directions collapse.
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Remark 7.1. Despite the presence of the weight, one still has the usual estimate
for products in Hölder spaces: ‖ f g‖Cα ≤ ‖ f ‖Cα‖g‖Cα . This is because for the
standard Hölder norms one has actually [ f g]α ≤ ‖ f ‖C0 [g]α + [ f ]α‖g‖C0 , so

adding our weight βw
1
n
β does not change the estimate.

7.2. 1-collapsed Schauder estimate. From Lemma 3.1 we have the following
bound for the curvature of gβ,L:

(7.4) |K(gβ,L)| /
( 1
(−ϕ′1(u))n+1 +

1
−βϕ′1(u)

)
.

Since ϕ′1(u) ∼ cn(−u)
1
n when u → 0, then for u < − β

A for some A > 0 which
will be fixed below, we have for B = cst.(1 + A),

(7.5) |K(gβ,L)| ≤
B

−βϕ′1(u)
.

Since u = βt, the region u < − β
A corresponds to the region t < − 1

A in the Tian-
Yau space, that is the exterior of a compact region. We choose that compact
region large enough, that is A > 0 small enough, so that the asymptotics of
the Tian-Yau metric written in section 5.1 are valid. From the estimate (5.9) on
the difference gβ − gβ,L we see that (7.5) remains true for gβ. For simplicity we
write the sequel for gβ,L but these bounds imply that our estimates will remain
true for the small perturbation gβ.

Since ϕ′′1 (u) ≈ eu by (2.17), the distance rD from the divisor is of order rD ≈
e

u
2 . Therefore a region rD > ε corresponds to u > 2 log ε + cst.

We will also use the function r0(u) which is the distance to the point u = 0,
so that when u→ 0 one has

r0(u) ≈ |u|
1
2+

1
2n .

Note ρ the injectivity radius of the metric gD, and fix a finite number of balls
of radius ρ covering D. Near some u0 < − β

A we can consider the rescaled
metric h =

gβ,L
−βϕ′1(u0)

. This is the metric where only the S1 fibres are collapsed,

at speed
√

β (‘1-collapse’). For u ≈ u0 the curvature of h is uniformly bounded

and h ' ϕ′′1 (u)
−4βϕ′1(u0)

(2du2 + β2η2) + gD. Because of the S1-bundle over D, small
balls of radius ρ for h are not simply connected but we can use Schauder esti-
mates in local universal coverings. We define the domain

Du0(τ) =
{
|r0(u)− r0(u0)| ≤ τ

√
βwβ(u0)

1
n
}

and we assume the extra condition rD(u0) > ε
√

β, that is u0 > log β+ 2 log ε+
cst. Said otherwise, we only look at points at a fixed, positive distance to the
divisor D with respect to h. We can then check that Du0(ρ) ⊂ Bh(u0, Cρ) and
that on Du0(ρ), we have u0

u / 1 (this can be done easily by treating each case
u0 ≈ −∞,−1, 0 separately and using the assumption rD(u0) > ε

√
β.) These

considerations lead to the following Schauder estimate for the metric h outside
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the divisor:

(7.6) ‖ f ‖C2,α
h (Du0 (

1
2 ρ)) /

(
‖ f ‖C0(Du0 (ρ))

+ ‖∆h f ‖Cα
h (Du0 (ρ))

)
which we rewrite in terms of gβ using the weighted norm (7.3):

(7.7) ‖∇2 f ‖Cα
0 (Du0 (

1
2 ρ)) /

1

βwβ(u0)
1
n
‖ f ‖C0(Du0 (ρ))

+ ‖∆gβ
f ‖Cα

0 (Du0 (ρ))
.

Note that this estimate extends everywhere:
• Near the divisor we have the same by taking balls centered on the divi-

sor and applying the uniform Schauder estimate established in section
6 to the metric h =

gβ

β . More precisely, if u0 = −∞ and ρ > 0 is small

enough one has D−∞(ρ) = {r < ρ
√

β} which is topologically a disk in
C times D. The change of variable R = r/

√
β in (2.19) gives

h =
gβ

β
=

2
n + 1

(
dR2 + β2R2η2)+ gD + O(βR2).

Maybe up to scaling again by a large constant, we see that we have
locally a uniformly small (in the sense of Remark 6.8) perturbation of
the product of the cone metric dR2 + β2R2dθ2 with the flat metric, and
therefore we can apply Corollary 6.7 to get

‖ f ‖C2,α
h (D−∞( 1

2 ρ)) /
(
‖ f ‖C0(D−∞(ρ)) + ‖∆h f ‖Cα

h (D−∞(ρ))

)
and the corresponding inequality (7.7) in terms of gβ (with the weighted
norm - in this region we have wβ ≡ 1) is also valid for D−∞(ρ). There-
fore, it holds any u0 < − β

A .
• On the Tian-Yau part X \ UL, this is the standard Schauder estimate,

since the scaling factor with the Tian-Yau metric is βwβ(u0)
1
n = β1+ 1

n .

7.3. 2-collapsed Schauder estimate. Our aim now is to give an estimate more
suitable for the scale of gβ, where the the divisor D is also collapsed at speed√

β, and the circle at speed β (‘2-collapse’). More precisely, we want to replace
by a better coefficient the factor 1

βwβ(u0)
1
n

in (7.7). For u0 bounded away from

zero, this is just the scaling factor 1
β . We do this in two steps: decomposing in

Fourier series along the circle, a direct application of the maximum principle
gives the required estimates on nonzero modes. For zero modes, the argument
is more complicated: instead of estimates on balls of radius 1√

β
as above, we

would like estimates on balls of fixed radius, say ρ if u is far from 0 or −∞.
In the rescaled metric 1

β gβ,L this corresponds to a cylinder of length approxi-
mately ρ√

β
, converging to an infinite cylinder. The estimates on this limit will

provide the estimates we need.
For small values of ε and u0 away from the divisor, we define the region

(7.8) Eu0(ε) = {|r0(u)− r0(u0)| ≤ εr0(u0)}.
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If u0 = −∞ that is we consider the divisor D, we use

(7.9) E−∞(ε) = {|rD(u)| ≤ ε}.
Notice that for ε > 0 and u0 small, ϕ′1(u) and ϕ′′1 (u) do not vary much in Eu0(ε),
that is remain comparable to their value at u0.

The regions Eu0 correspond to the scale of the geometry of gβ, and are there-
fore very large for the geometry of the previously used h =

gβ,L
−βϕ′1(u0)

. We then
obtain the better estimate:

Proposition 7.2.

(7.10) ‖∇2 f ‖Cα
0 (Eu0 (

1
2 ε)) / ‖∆gβ

f ‖Cα
0 (Eu0 (ε))

+ wβ(u0)
−1− 1

n ‖ f ‖C0(Eu0 (ε))
.

Remark that on the Tian-Yau part X \ UL the function wβ takes the value
β so this is the same estimate as in (7.7). But the important point is that on
{u 6 −1} the factor wβ does not depend on β, contrarily to the initial estimate
(7.7). We deduce the following corollary:

Corollary 7.3. One has the following uniform estimate, for all functions f on X:

‖ f ‖C2,α
δ
/ ‖ f ‖C0

δ
+ ‖∆gβ

f ‖Cα

δ+1+ 1
n

.

�

Remark 7.4. The estimate ‖ f ‖C2,α
δ
/ ‖ f ‖C0

δ
+ ‖Lβ f ‖Cα

δ+1+ 1
n

follows for any oper-

ator of the shape say Lβ = ∆gβ
+ c where c is a constant, as one sees imme-

diately using the interpolation estimate ‖ f ‖Cα / ε−α‖ f ‖C0 + εα‖ f ‖C1 for any
fixed 0 < ε� 1.

The rest of this section is devoted to the proof of the estimate (7.10). Again
from the bounds on gβ − gβ,L it is sufficient to prove the estimate on gβ,L.

First step. We first decompose along each circle into Fourier series f = ∑Z f`
and control nonconstant modes. Here, more precisely, we see L as a S1 bundle
over R− × D, and f` is induced from a section F` of p∗L−` over R− × D by
the formula f`(x) = 〈F`(p(x)), x⊗`〉. On p∗L−` over D we have the rough
Laplacian −∆D := ∇∗∇ constructed from the given connection on L and the
metric gD.

The Laplacian of the metric gβ,L preserves the Fourier decomposition and
acts on F` by

∆gβ,L F` =
2

ϕ′′1 (u)
(
∂2

uF` −
`2

4β2 F`
)
+

2(n− 1)
ϕ′1(u)

∂uF` +
1

−βϕ′1(u)
∆DF`(7.11)

= ∆R−×DF` −
`2

2ϕ′′1 (u)β2 F`.

Lemma 7.5. Fix ε > 0 small enough and ` 6= 0. We have the estimate

(7.12) sup
Eu0 (

1
2 ε)

| f`| /
β

`2 sup
Eu0 (ε)

(
wβ(u0)

1
n |∆ f`|+ wβ(u0)

−1| f`|
)
.
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It follows that

(7.13) sup
Eu0 (

1
2 ε)

| f − f0| / β sup
Eu0 (ε)

(
wβ(u0)

1
n |∆( f − f0)|+ wβ(u0)

−1| f − f0|
)
.

Proof. Let us first explain how to derive (7.13) from (7.12). Set g := f − f0. The
function F` can be recovered as an integral of ge−i`· along each circle. Hence
for ` 6= 0, we have sup | f`| 6 sup |g| and similarly sup |∆ f`| 6 sup |∆g|. Now
we can just sum all the estimates (7.12) for ` ∈ Z∗ and get (7.13).

We now get to proving (7.12). We use the inequality

(7.14)
1
2

∆R−×D|F`|2 ≥ 〈∆R−×DF`, F`〉 = 〈∆F`, F`〉+
`2

2ϕ′′1 (u)β2 |F`|
2

twice.
First, if f` vanishes at ∂Eu0(ε), then from the maximum principle and the

fact that ϕ′′1 (u) / ϕ′′1 (u0) on Eu0(ε) we have

sup
Eu0 (ε)

|F`| /
β2ϕ′′1 (u0)

`2 sup
Eu0 (ε)

|∆F`|

and the result follows since β
|u0| ≤ A and ϕ′′1 (u) ≈ u−1+ 1

n when u→ 0.
Therefore it is sufficient to consider the case where ∆ f` = 0. Indeed, let h`

be the harmonic function on Eu0(ε) with same boundary values as f` and let
g` := f` − h`. By what was said above, we have

sup
Eu0 (ε)

|g`| /
β

`2 sup
Eu0 (ε)

wβ(u0)
1
n |∆ f`|

hence

sup
Eu0 (

1
2 ε)

| f`| /
β

`2 sup
Eu0 (ε)

wβ(u0)
1
n |∆ f`|+ sup

Eu0 (
1
2 ε)

|h`|.

Recall that supEu0 (ε)
|h`| = supEu0 (ε)

| f`|. So, if we assume that supEu0 (
1
2 ε) |h`| /

β
`2 wβ(u0)−1 supEu0 (ε)

|h`|, we are done.
Let us consider the comparison function g(u) = a cosh(b(u− u0)). Then

1
2

∆g =
∂2

ug
ϕ′′1 (u)

+ (n− 1)
∂ug

ϕ′1(u)
≤
( b2

ϕ′′1 (u)
− (n− 1)b

ϕ′1(u)

)
g

≤ `2

2β2ϕ′′1 (u)
g

if we take b = γ `
β for some small constant γ > 0, thanks to the condition

u 6 − β
A for A small enough. Combining with (7.14) we obtain

(7.15) ∆(|F`|2 − g) ≥ `2

ϕ′′1 (u)β2 (|F`|
2 − g).
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Choose a large enough so that |F`|2 ≤ g at ∂Eu0(ε), then it follows from (7.15)
that |F`|2 ≤ g on Eu0(ε), which in particular on Eu0(

ε
2 ) we obtain

sup
Eu0 (

ε
2 )

|F`|2 /
cosh( 1

2 εγ `
β u0)

cosh(εγ `
β u0)

sup
Eu0 (ε)

|F`|2.

Since x := |u0|
β ≥

1
A , we certainly have

cosh( 1
2 εγ `

β u0)

cosh(εγ `
β u0)

/
1

(x`)4 ≤
A2

(x`2)2

which gives (7.12).
The case where u0 = −∞ (that is centered on the divisor) is similar, so we

only highlight the modifications to perform. To obtain the inequality

(7.16) sup
E−∞(ε)

|F`| /
β2

`2 sup
E−∞(ε)

|∆F`|

we can modify E−∞(ε) and assume that its boundary is {u = 2 log ε}. Let us
set uε := u− 2 log ε so that ∆uε =

2(n−1)
ϕ′1(u)

= O(1) and fix δ > 0. Then, we apply

the maximum principle to |F`|2 + δuε to obtain, for any fixed x:

|F`(x)|2 6 β2

`2 sup
E−∞(ε)

|∆F`| · sup
E−∞(ε)

|F`| − δuε(x) + O(δ)

and we get (7.16) by taking δ → 0 and passing to the supremum over x ∈
E−∞(ε). The next step is very similar to the case u0 6= −∞ but one chooses

instead g(u) = ae
`u
β , satisfying ∆g 6 2`2

β2 ϕ′′1 (u)
g. Then we apply the maximum

principle using the same barrier function as before, to obtain supE−∞( ε
2 )
|F`| 6

e−
`
β log 2 supE−∞(ε) |F`|. The conclusion follows from the inequality e−

`
β log 2 /

β2

`2 . �

Combining (7.13) with the local Schauder estimate (7.7) for g = f − f0, we
obtain

(7.17) ‖∇2g‖Cα
0 (Eu0 (

1
2 ε)) / ‖∆gβ,L g‖Cα

0 (Eu0 (ε))
+ wβ(u0)

−1− 1
n ‖g‖C0(Eu0 (ε))

,

which is the estimate stated in Proposition 7.2.

Second step. We can now restrict the proof of Proposition 7.2 to the case when
f is circle invariant. In that case (7.11) reduces to

∆gβ,L f = 2
∂2

u f`
ϕ′′1 (u)

+ 2(n− 1)
∂u f

ϕ′1(u)
+

1
−βϕ′1(u)

∆D f

=
1

−βϕ′1(u)
(
∂2

v f + ∆D f
)
,
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where dv2 =
ϕ′′1 (u)
−2βϕ′1(u)

du2 and we choose v(u0) = 0. We now restrict to the case
where for every u one has

(7.18)
∫
{u}×D

f = 0.

We also suppose that we are not close to the divisor D, that is rD(u0) > ε.
On each slice {u} × D the function f is therefore orthogonal to the kernel of
∆D, which corresponds to erasing the critical weight 0 of the cylindrical Lapla-
cien ∂2

v + ∆D. It follows that this Laplacian is an isomorphism C2,α(R× D) →
Cα(R× D), see for example [LM85, formula (2.3)]. In particular we have, still
under condition (7.18),

(7.19) sup
R×D
| f | / sup

R×D
|(∂2

v + ∆D) f |.

A quick elementary derivation of (7.19) is as follows: suppose (∂2
v + ∆D) f =

g, note E(a) =
∫
[−a,a]×D |d f |2 and F(a) =

∫
[−a,a]×D |g|

2. The hypothesis on
f implies that for each v we have

∫
{v}×D |dD f |2 ≥ λ2

1

∫
{v}×D | f |

2, where λ2
1

is the first nonzero eigenvalue of ∆D. By elliptic regularity and translation
invariance, it is enough to prove that E(1) / sup |g|2. By integration by parts
we have

(7.20) E(a) = −
∫
[−a,a]×D

f g +
( ∫

v=a
−
∫

v=−a

)
f ∂v f .

But |
∫

v=a f ∂v f | ≤ 1
2

∫
v=a

1
λ1
|∂v f |2 + λ1| f |2 ≤ 1

2λ1

∫
v=a |d f |2. Since E′(a) =

(
∫

v=a +
∫

v=−a)|d f |2, it follows from (7.20) that λ1E(a)− E′(a) ≤ F(a)
λ1

, and after

integration E(1) ≤
∫ +∞

1
e−λ1(a−1)

λ1
F(a)da ≤ (sup |g|2) 2

λ1

∫ +∞
1 ae−λ1(a−1)da.

The region Eu0(ε) gives only a bounded region in R×D, of diameter 2d with
respect to the variable v. Using a cut-off function for d

2 ≤ |v| ≤ d, we deduce
from (7.19) combined with the interpolation inequality ‖∂v f ‖2

∞ / ‖∂2
v f ‖∞ ·

‖ f ‖∞ the following estimate

(7.21) sup
[− d

2 , d
2 ]×D
| f | / sup

[−d,d]×D

[
|(∂2

v + ∆D) f |+ 1
d2 | f |

]
.

Now we come back to the variable u: we have d2 ≈ ϕ′′1 (u0)
−βϕ′1(u0)

wβ(u0)2, so we

obtain (remember −ϕ′1(u0) ≈ wβ(u0)
1
n ):

(7.22) sup
Eu0 (

ε
2 )

| f | / βwβ(u0)
1
n sup

Eu0 (ε)

|∆gβ,L f |+ 1
ϕ′′1 (u0)wβ(u0)2 | f |.

Combining with (7.7) we finally get

(7.23) ‖∇2 f ‖Cα
0 (Eu0 (

1
2 ε)) / ‖∆gβ

f ‖Cα
0 (Eu0 (ε))

+
1

ϕ′′1 (u0)wβ(u0)2 ‖ f ‖C0(Eu0 (ε))
.

Since ϕ′′1 (u) ≈ wβ(u)−1+ 1
n if rD(u) > ε, the estimate (7.10) follows in that case.
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For the case where u0 = −∞, that is Eu0(ε) is centered on the divisor D, we
proceed similarly, except that the limit after rescaling is a half-cylinder instead
of a cylinder. The same estimate (7.10) follows.

Third step. There remains only the case of a function f (u) of the variable u
alone. But it is then almost obvious that the weight wβ(u)1+ 1

n , which equals
|u|1+ 1

n for u small enough, is the correct weight for the operator ∆gβ,L .

8. CONVERGENCE IN THE POSITIVE CASE: PROOF OF THEOREM B

8.1. Bound on the inverse of the linearisation. We first give a bound on the
inverse of the linearisation Lβ = 1

2 ∆gβ
+ 1 of the operator Pβ defined in (5.13).

We first prove:

Proposition 8.1. Fix δ ∈ (0, 1). There exists a constant c such that for any function
f on X such that

∫
X f d volgβ

= 0 one has

(8.1) ‖ f ‖C2,α
δ
≤ c‖Lβ f ‖Cα

δ+1+ 1
n

.

We deduce:

Corollary 8.2. Fix δ ∈ (0, 1). The operator Lβ : C2,α
δ → Cα

δ+1+ 1
n

satisfies

(8.2) ‖L−1
β ‖ / β−

1
n−δ.

Proof of Corollary 8.2. The constant function 1 satisfies ‖1‖Cδ
= 1 as soon as

δ ≥ 0. Since Lβ(1) = 1, the estimate (8.1) is also satisfied on constants.
Set δ′ := δ + 1 + 1

n . Given f ∈ Cα
δ′ we decompose f = f̄ + f1 with f̄ con-

stant and
∫

X f1d volgβ
= 0. We have L−1

β f = L−1
β f1 + f̄ so by (8.1), we have

‖L−1
β f ‖Cα

δ
/ ‖ f ‖Cα

δ′
+ | f̄ | and we are reduced to showing that

(8.3) | f̄ | / β−
1
n−δ‖ f ‖C0

δ′
.

Now it follows from (5.9) that on {u 6 −βµ/2}, we have d volgβ
≈ βnd volgX

for some fixed Riemannian metric gX on X while on {ũ > −βµ/2}, we have
gβ = β1+ 1

n gTY and, in particular,
∫
{ũ>−βµ/2} d volgβ

= O(βn+1−µ). It follows
that Vol(gβ) ≈ βn.

Now, since | f | ≤ ‖ f ‖C0
δ′

w−δ′

β we have,

| f̄ | ≤ 1
Vol(gβ)

∫
x
| f |d volgβ

/
‖ f ‖C0

δ′

βn

∫
X

w−δ′

β d volgβ
.

One checks that since δ′ > 1, the main contribution of the last integral is on
the Tian-Yau part X \ UL, and is of order βn+1−δ′ . We therefore get | f̄ | /
β1−δ′‖ f ‖C0

δ′
and (8.3) is proved. This ends the proof of the corollary. �
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The rest of this section is devoted to the proof of Proposition 8.1.
Suppose (8.1) is not true. By Corollary 7.3 and Remark 7.4 there exist func-

tions fβ such that
∫

X fβd volgβ
= 0 and

‖ fβ‖C0
δ
= 1, ‖Lβ fβ‖Cα

δ+1+ 1
n
→ 0,

while ‖ fβ‖C2,α
δ

is bounded. Fix xβ ∈ X such that wβ(xβ)
δ| fβ(xβ)| = 1. We then

analyze the various cases depending on the limit of xβ.

First case. The xβ’s converge to D and u(xβ) < η < 0.
For now, we restrict the functions fβ on UL and see them as functions on a

fixed neighborhood U = {‖v‖2
h < e−1} of the zero section in L. In this proof

only, we emphasize the dependence of u in β and denote it uβ. We use the

diffeomorphism Φβ : L \ D → L \ D, v 7→ ‖v‖
1
β−1 · v, so that Φ∗βuβ = u : v 7→

log ‖v‖2
h and Uβ := Φ−1

β (U) = {‖v‖2
h < e−β} is essentially independent of β.

Of course, Φ∗βgβ is still given by (2.15), but there is no more hidden dependence
on β in that expression. Set Fβ = Φ∗β fβ. Since ‖ fβ‖C2,α

δ
remains bounded, we can

extract a limit Fβ → f . It turns out that f depends on u only because the norm
‖d fβ‖C0

δ+1
involves a factor β−1 in the circle direction or β−1/2 in the divisor D

direction. It is possible that yβ := Φ−1
β (xβ) satisfies u(yβ) → −∞ but the C1

bound on Fβ ensures that one can find another point zβ with η > u(zβ) > −C
and |Fβ(zβ)| > 1

2 for some C > 0.
Therefore we have a non-zero limit f (u) for u ∈ (−∞, 0) which satisfies

sup |w|δ| f | = 1,(8.4)

f ′′(u)
ϕ′′1 (u)

+ (n− 1)
f ′(u)
ϕ′1(u)

+ f (u) = 0,(8.5)

where w(u) = 1 if u 6 −2 and w(u) = u if u > −1/2. Note that the limit
Laplacian

(8.6) ∆ν∞ :=
1
2
( 1

ϕ′′1 (u)
∂2

u +
n− 1
ϕ′1(u)

∂u
)

is the Bakry-Emery Laplacian of (g∞, ν∞), a general fact in measured Gromov-
Hausdorff convergence.

Moreover
1
βn

∣∣∣∣∫ũ≥−β
fβd volgβ

∣∣∣∣ ≤ β1−δ‖ fβ‖C0
δ

so if δ < 1 we have that
1
βn

∫
X

fβd volgβ
→ c

∫ 0

−∞
f (u)ϕ′′1 (u)ϕ′1(u)

n−1du

for some constant c, so the limit f (u) satisfies

(8.7)
∫ 0

−∞
f (u)ϕ′′1 (u)ϕ′1(u)

n−1du = 0.
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The function ϕ′1(u) is an obvious solution of (8.5), it corresponds to the di-
lation vector field in the bundle L. It satisfies ϕ′1(u) → −1 when u → −∞,
while the other solution is f = gϕ′1 with g =

∫ du
(1−e−ϕ1 )

. By (2.10), f (u) ≈ u
near −∞ (it corresponds to the Green function near D). But this is ruled out
by (8.4). Therefore we see that up to a constant we must have f (u) = ϕ′1(u),
which gives a contradiction with (8.7).

Second case. The xβ’s still converge to D but we can extract a limit only in the
intermediate region between the normal bundle L and the Tian-Yau metric on
X \ D: this is the case where u(xβ) → 0 but 1

β u(xβ) → −∞. It is similar to the
previous one; set εβ := −u(xβ), v := u

εβ
and consider the rescaled functions

hβ := εδ
β fβ. It satisfies hβ 6 |v|−δ while on the compact sets of v ∈ (−∞, β

εβ
],

the metric gβ is asymptotically close to

ε
1+ 1

n
β

(
1
n |v|

−1+ 1
n ( 1

2 dv2 + 2
( β

εβ

)2
η2) +

β

εβ
· |v| 1

n gD

)
by (2.16), with β

εβ
→ 0.

Geometrically this amounts to saying that we have the following conver-
gence in the measured Gromov-Hausdorff sense: for some constant C > 0,

(
X, ε

−1− 1
n

β gβ, xβ,
d volgβ

volgβ
(B(xβ, 1))

)
−→

(
(−∞, 0),

1
2n
|v|−1+ 1

n dv2,−1, Cdv
)
.

Our Hölder estimates imply similarly to the previous case that hβ has a
non-zero limit h which is a function of v only. Since Lβ = 1

2 (∆gβ
+ 1) =

ε
−1− 1

n
β ( 1

2 ∆
ε
−1− 1

n
β gβ

+ ε
1+ 1

n
β ), the constant term in Lβ disappears in the limit, so

the limit function h is harmonic with respect to the limit Bakry-Emery Lapla-
cian, which is now given by equation (8.6) with ϕ′(u) = (−u)

1
n . Finally this

gives the equation

n(−v)1− 1
n ∂2

vh− (n− 1)(−v)−
1
n ∂vh = 0.

Hence h is a linear combination of the harmonic functions 1 and |v| 1
n , but it

also satisfies h 6 |v|−δ. We derive a contradiction when v→ −∞.

Third case. The xβ’s converge in the Tian-Yau part: u(xβ) = O(β). This is
similar: after rescaling, we get a nonzero limit f which is a nonzero harmonic
function on the Tian-Yau space X \ D with | f | ≤ |t̃|−δ. This implies f = 0,
which is a contradiction.

8.2. Resolution of the Kähler-Einstein equation. We first control the qua-
dratic terms of the equation:

Lemma 8.3. For δ ≥ 0 and any function ϕ we have

(8.8) ‖(∂∂ϕ)2‖Cα
δ
/ β−δ‖∂∂ϕ‖2

Cα
δ
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Proof. From Remark 7.1 we see that for δ = 0 we have the estimate. The weight
wδ

β introduces a coefficient w−δ
β in the estimates, which is maximal when the

weight wβ is minimal, that is on the Tian-Yau part where the value of wβ is β.
The lemma follows. �

End of the proof of Theorem B. Decompose Pβ into an affine part and a higher or-
der term part:

Pβ(ϕ) = Pβ(0) + Lβ(ϕ) + Qβ(ϕ).

It follows from the lemma that if ‖∂∂ϕ‖Cα

δ+1+ 1
n
< εβ1+ 1

n+δ for a small enough

ε > 0, then

(8.9) ‖Qβ(ϕ)−Qβ(ψ)‖Cα

δ+1+ 1
n
/ β−1− 1

n−δ‖ϕ− ψ‖C2,α
δ

(
‖ϕ‖C2,α

δ
+ ‖ψ‖C2,α

δ

)
.

On the other hand from (5.14) we have |Pβ(0)| / ũ1+ 1
n for u ≥ −2βµ,

and |Pβ(0)| / e(
1
2−ε) u

β for u ≤ −2βµ. These bounds give the worst control

of sup |wδ+1+ 1
n

β Pβ(0)| around u = −βµ and it follows that ‖Pβ(0)‖C0
δ+1+ 1

n

/

βµ(2(1+ 1
n )+δ). Adding the seminorm [·]α does not change the bound and we get

(8.10) ‖Pβ(0)‖Cα

δ+1+ 1
n
/ βµ(2(1+ 1

n )+δ).

Fix δ small enough (the precise bound will be fixed below). Given the bound
(8.2), together with (8.9) and (8.10), standard fixed point arguments (see for
example [BM11, Lemma 1.3]) now imply that if

(8.11) βµ(2(1+ 1
n )+δ) � β1+ 3

n+3δ

then the equation Pβ(ϕ) = 0 has a unique solution ϕ(β) in a ball of radius
εβ1+ 2

n+2δ in C2,α
δ , and this solution actually satisfies

(8.12) ‖ϕ(β)‖C2,α
δ
/ βµ(2(1+ 1

n )+δ)− 1
n−δ.

Observe that for µ = 1 the inequality (8.11) is satisfied if 2δ < 1− 1
n . Now

fix δ < 1
2 (1−

1
n ). We use the flexibility of fixing µ ∈ (0, 1) as close to 1 as we

want, which geometrically corresponds to gluing more near the Tian-Yau part
(then the error is smaller since the Calabi ansatz gives an exact solution up to
exponentially small terms). So we fix µ < 1 so that (8.11) is satisfied, and these
values of δ and µ enable us to solve the problem. Moreover for any ε > 0 we
can find values of (µ, δ) close to (1, 0) so that (8.12) gives the following bound
on the solution ϕ(β):

(8.13) ‖ϕ(β)‖C2,α
δ
/ β2+ 1

n−ε.

By [Ber15, Theorem 7.3], the Kähler-Einstein metric ω̂β := ωβ + i∂∂ϕ(β) is
the unique Kähler-Einstein metric with cone angle 2πβ along D, i.e. satisfying
Ric ω̂β = ω̂β + (1− β)[D]. Given any compact set M b X \ D, we have for
β� 1:

wβ|M ≡ β, ωβ|M = β1+ 1
n ωTY, ‖β−1− 1

n ∂∂ϕ(β)‖ωTY / β1−ε−δ
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where the last estimate follows by (8.13). In particular, ‖β−1− 1
n ω̂β−ωTY‖ωTY =

O(β1−ε−δ) on M, and we are done with the first part of Theorem B, since higher
estimates are obtained as usual by bootstrapping.

At this point of the proof, we are essentially done but for exposition pur-
poses, we collect the remaining statements in Theorem B and the remarks fol-
lowing it in:

Lemma 8.4. Given p ∈ X and a non-decreasing family (εβ) of positive numbers, the
pointed Gromov-Hausdorff limits of the rescaled Kähler-Einstein metric (X, ε−1

β ĝβ, p)
coincide with that of the model space (X, ε−1

β gβ, p) given in section 5.3.

Proof of Lemma 8.4. The estimate (8.13) shows that ‖∂∂̄ϕ(β)‖gβ
/ β1−δ−ε, so

that, in particular, |ĝβ − gβ|gβ
/
√

β, or equivalently

|ε−1
β ĝβ − ε−1

β gβ|ε−1
β gβ
/
√

β,

and the lemma follows immediately from the definition of pointed Gromov-
Hausdorff convergence. �

The proof of Theorem B is now complete. �
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[DP04] Jean-Pierre Demailly and Mihai Păun. Numerical characterization of the Kähler
cone of a compact Kähler manifold. Ann. of Math. (2), 159(3):1247–1274, 2004.
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