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Abstract

Transformer-based pre-training techniques of
text and layout have proven effective in a num-
ber of document understanding tasks. Despite
this success, multimodal pre-training models
suffer from very high computational and mem-
ory costs. Motivated by human reading strate-
gies, this paper presents Skim-Attention, a new
attention mechanism that takes advantage of
the structure of the document and its lay-
out. Skim-Attention only attends to the 2-
dimensional position of the words in a doc-
ument. Our experiments show that Skim-
Attention obtains a lower perplexity than prior
works, while being more computationally ef-
ficient. Skim-Attention can be further com-
bined with long-range Transformers to effi-
ciently process long documents. We also show
how Skim-Attention can be used off-the-shelf
as a mask for any Pre-trained Language Model,
allowing to improve their performance while
restricting attention. Finally, we show the
emergence of a document structure represen-
tation in Skim-Attention.

1 Introduction

More and more companies have started automating
their document processing workflows by leveraging
artificial intelligence techniques. This had lead to
the emergence of a dedicated research topic, Doc-
ument Intelligence1 (DI), which encompasses the
techniques used to read, interpret and extract infor-
mation from business documents. Such documents
span multiple pages and contain rich multi-modal
information that include both text and layout. Ear-
liest approaches to analyzing business documents
rely on rule-based algorithms (Lebourgeois et al.,
1992; Amin and Shiu, 2001), but the success of
deep learning has put computer vision and natural
language processing (NLP) models at the heart of
contemporary approaches (Katti et al., 2018; Denk
and Reisswig, 2019). With the massive impact of

1https://sites.google.com/view/di2019

large pre-trained Transformer-based language mod-
els (Devlin et al., 2019; Radford et al., 2019), DI
researchers have recently started leveraging Trans-
formers.

At the core of the Transformer architecture is
self-attention, a powerful mechanism which contex-
tualizes tokens with respect to the whole sequence.
While being the key to the success of Transform-
ers, it is also its bottleneck: the time and memory
requirements of self-attention grow quadratically
with sequence length. As a consequence, only short
sequences can be processed (512 tokens or 1,024 at
most), making it impossible to capture long-term
dependencies. This is an important issue for DI
since texts can be very dense and long in busi-
ness documents. To allow efficient training on very
long sequences, there has been growing interest in
building model architectures that reduce the mem-
ory footprint and computational requirements of
Transformers (Dai et al., 2019; Kitaev et al., 2020;
Beltagy et al., 2020). This plethora of long-range
Transformers lie in one specific research direction:
capturing long-range dependencies by reducing the
cost of self-attention.

These Transformer architectures all operate on
serialized texts, i.e. one-dimensional sequences
of words, completely disregarding the document
layout. However, layout, i.e. the physical orga-
nization of a document’s contents, carries useful
information about the semantics of the text and
has a significant impact on readers’ understand-
ing (Wright, 1999). Thus, ignoring the document
layout leads to a considerable loss of information.
To address this issue, an orthogonal direction that
has gained traction recently is based on integrat-
ing layout information into Transformer-based lan-
guage models. Joint pre-training of text and layout
has allowed models to reach state-of-the-art per-
formance in several downstream tasks concerning
layout-rich documents (Xu et al., 2020b; Pramanik
et al., 2020; Xu et al., 2020a). Despite their effec-

https://sites.google.com/view/di2019


tiveness, these approaches all "read" the contents
token by token to compute attention. We claim
that one does not need to have read each word in
a document page to be able to understand a spe-
cific paragraph. Thus, we argue that, to efficiently
process long documents, it is a waste of effort and
computation to contextualize a token with respect
to the entire input sequence.

To shift towards processing long documents with
awareness of their structure, we propose to take
into account layout in a more intuitive and effi-
cient way. First, we present a quick cognitive
experiment wherein we show that layout plays a
fundamental role in humans’ comprehension of
documents. In light of this experiment, we claim
that one can already gather a lot of information
from the layout alone. As a consequence, we pro-
pose Skim-Attention, a new self-attention mech-
anism that is solely based on the 2-D position of
tokens in the page, independently from their se-
mantics. To exploit this mechanism, we introduce
Skimformer and SkimmingMask, two frameworks
for integrating Skim-Attention into Transformer
models. Skimformer is an end-to-end Transformer
language model that replaces self-attention with
Skim-Attention. Based on the tokens’ spatial lo-
cations, Skimformer computes the Skim-Attention
scores only once, before using them in each layer
of a text-based Transformer encoder. Skimformer
can also be adapted to long-range Transformers to
model longer documents. Conversely, Skimming-
Mask uses Skim-Attention as a mask to sparsify
attention in any Transformer language model. Each
token is restricted to its k most attended tokens, as
indicated by Skim-Attention, which allows for a
smaller context length.

In summary, our main contributions are as fol-
lows:

• We introduce Skim-Attention, a new attention
mechanism that leverages layout.

• We design two frameworks for integrating
Skim-Attention into Transformer models, and
show that they are more time and memory
efficient than LayoutLM.

• To the best of our best knowledge, this is the
first time layout is considered as a means for
reducing the cost of self-attention.

2 Related Work

2.1 Cognitive Background

The layout of a document, which refers to the ar-
rangement and organization of its visual and tex-
tual elements, has a significant influence on read-
ers’ behavior and understanding (Wright, 1999;
Kendeou and Van Den Broek, 2007; Olive and Bar-
bier, 2017). It has been shown that a well-designed
layout results in less cognitive effort (Britton et al.,
1982; Olive and Barbier, 2017) and facilitates com-
prehension of the conveyed information by helping
identify the document type and its constituents, as
well as providing cues regarding relationships be-
tween elements (Wright, 1999). Semiotic research
assumes that readers scan the document before tak-
ing a closer look at certain units (Kress et al., 1996),
a claim supported by eye-tracking experiments on
newspapers (Leckner, 2012). For all these reasons,
layout is a critical element for document under-
standing, which motivates its integration into mod-
eling. Inspired by these research findings, our work
focuses on exploiting layout in a similar fashion
as humans, since this can be key to a successful
model coping with long and complex documents.

2.2 Long-range Transformers

In the field of natural language processing, Trans-
formers have become the go-to component in the
modern deep learning stack. In recent years, there
has been a substantial growth in the number of
Transformer variants (long-range Transformers)
that improve computational and memory efficiency,
making it possible to extend the maximum se-
quence length and to incorporate long-term con-
text. Models such as Longformer (Beltagy et al.,
2020), Reformer (Kitaev et al., 2020), and Per-
former (Choromanski et al., 2020) are able to pro-
cess sequences of thousands of tokens or longer.
Although these models are highly efficient in reduc-
ing time and memory requirements, they consider
long documents as huge one-dimensional blocks of
texts: Reformer, for instance, has to read the 4,096
elements contained in the input sequence in order
to create buckets of similar elements. Hence, all
information about the document structure is lost.

Our approach is orthogonal to long-range Trans-
formers; instead of focusing only on architecture
optimization, we propose to leverage layout-rich
information.



2.3 Multi-modal Pre-training Techniques for
Document Understanding

Recently, multi-modal pre-training techniques have
become increasingly popular in the document un-
derstanding area (Xu et al., 2020b; Pramanik et al.,
2020; Garncarek et al., 2020; Wu et al., 2021). This
research direction consists in jointly pre-training
on textual and layout/visual information from a
large and heterogeneous collection of unlabeled
documents, learning cross-modal interactions in
an end-to-end fashion. Based on the BERT ar-
chitecture, Xu et al. (2020b) build LayoutLM, a
multi-modal Transformer model that ties spatial in-
formation with tokens through a point-wise summa-
tion to learn pre-trained embeddings for document
understanding tasks.

LayoutLM, along with most approaches in prior-
art, is not motivated by efficiency and cognitive
perspectives. The layout information is rather con-
sidered as an additional feature, and this approach
requires to "read" each individual token one by
one. As opposed to LayoutLM, in our proposed
approach, attention is computed exclusively on spa-
tial positions. This leads to improvements on time
and memory efficiency. In addition, our approach
can be plugged into any textual language model,
making it more flexible than LayoutLM, which re-
quires both text and layout to be learnt jointly in an
extensive pre-training stage.

3 Preliminary Experiments: Human
Evaluation

How much does the document layout help in com-
prehending long textual contents? How faster is
it for humans to find information in documents
when layout is provided? To answer these ques-
tions, we conduct a simple cognitive experiment
wherein we measure the amount of time needed
for human annotators to retrieve information from
both formatted and plain-text documents. Half of
the time, they are given access to the full layout,
and the other half, to plain text only (i.e., no layout
nor formatting).2

Table 1 reports the average time needed to re-
trieve information from the documents. We find
that it is 2.5× faster to answer questions from the
formatted documents, and that the variability in the
results is much lower in this case. These results

2For additional details regarding the experimental proto-
col, documents, questions and results, see Section A in the
appendix.

Average Standard Deviation
Formatted 6.05 1.73
Plain-text 15.18 9.06

Table 1: Average (std) time (in seconds) required to an-
swer questions from documents, depending on whether
layout is provided.

support the hypothesis that less cognitive effort is
spent when the document is formatted, emphasiz-
ing the importance of layout information in reading
comprehension.

We believe that machines could benefit from the
the document layout, just like humans, as a strategy
to retrieve information faster while expending less
effort. In particular, layout information could be of
great help in reducing the cost of self-attention in
Transformer models.

4 Proposed Approach

Using common sense, and in light of the cognitive
experiment previously reported, it is clear that the-
layout is of utmost importance for humans to under-
stand long documents. We propose to take into ac-
count layout by introducing Skim-Attention, a self-
attention module that computes attention solely
based on spatial positions. To process long and
layout-rich documents, we propose different ways
of integrating this mechanism into Transformer ar-
chitectures.

4.1 Background on Transformers

We first provide an overview of the well-established
Transformer, an encoder-decoder architecture com-
posed by stacking a series of Transformer blocks
on top of each other. Each block is characterized by
a self-attention module. Given an input sequence
encoded as a matrix X ∈ Rn×d, the operation for a
single layer is defined as:

α = Softmax
(
QK>√

d

)
V (1)

where Q, K and V are the Query, Key and Value
matrices obtained by a linear transformation of
X. More intuitively, the attention matrix, A =
QK>, provides text-based similarity scores for all
pairs of tokens in the sequence, while each row

in Softmax
(
QK>√

d

)
represents a distribution that

indicates how we need to aggregate information
from the input tokens (V) for the corresponding
output token (Q).



It is clear that the main limitation of Transform-
ers lies in the computational and memory require-
ments of the attention: to obtain the attention ma-
trix, inner products between each key and each
query need to be computed, resulting in a quadratic
complexity w.r.t. the input sequence length. This
operation is repeated at each layer, hence process-
ing longer sequence quickly becomes computation-
ally challenging. Finally, the standard Transformer
architecture considers documents as serialized se-
quences of texts, leading to a severe loss of infor-
mation when it comes to layout-rich documents.

4.2 Skim-Attention Overview

Our novel attention mechanism, Skim-Attention,
views documents as collections of boxes distributed
over a two-dimensional space, i.e., the page. In the
following, we provide details on how to encode
spatial positions into layout embeddings, before
describing our attention module.

Layout Embeddings Layout embeddings carry
information about the spatial position of the tokens.
Following LayoutLM (Xu et al., 2020b), the spatial
position of a token is represented by its bounding
box in the document page image, (x0, y0, x1, y1),
where (x0, y0) and (x1, y1) respectively denote the
coordinates of the top left and bottom right corners.
We discretize and normalize them to integers in
[0, ..., 1000]. Four embedding tables are used to
encode spatial positions: two for the coordinate
axes (x and y), and the other two for the bounding
box size (width and height). The final layout em-
bedding of a token, ` ∈ Rd` , located at position
(x0, y0, x1, y1) is defined by:

` = LayoutEmbx(x0) + LayoutEmby(y0)

+ LayoutEmbx(x1) + LayoutEmby(y1)

+ LayoutEmbw(x1 − x0)
+ LayoutEmbh(y1 − y0)

(2)

Skim-Attention We propose Skim-Attention, an
attention mechanism that leverages document lay-
out in a novel way. As opposed to standard self-
attention, Skim-Attention does not depend on the
text semantics (i.e. token representations), as it cal-
culates the attention using only the spatial positions
of the tokens, i.e. their layout embeddings `.

Formally, let X` = {`0, `1, . . . , `n} be an in-
put sequence of layout embeddings, and Q` =
W`

qX`,K` = W`
kX`, the Queries and Keys ob-

tained by linear transformations of the layout em-

beddings. For a single attention head, the Skim-
Attention matrix is defined by:

A` = Softmax

(
Q`
(
K`
)>

√
d`

)
(3)

Intuitively, A` captures the correlation between
two tokens based on their spatial positions: the
more similar two tokens are in terms of layout
embeddings, the higher their attention score.

Since attention is calculated only once, we want
the layout embeddings to be as meaningful as pos-
sible. Therefore, to obtain better layout represen-
tations, we contextualize them by adding a small
Transformer prior to computing Skim-Attention.

It is possible to combine Skim-Attention with
any long-range Transformer, as these approaches
are orthogonal. We adapt our approach by com-
puting the corresponding long-range attention only
once, based on layout instead of text semantics.

4.3 Skim-Attention in Transformers
We investigate two approaches to exploit Skim-
Attention: i) Skimformer, wherein self-attention
is replaced by Skim-Attention; and ii) Skimming-
Mask, where an attention mask is built from Skim-
Attention and fed to a Transformer language model.

Skimformer is a two-stage Transformer that re-
places self-attention with Skim-Attention. Inspired
by previous work in cognitive science, the intuition
behind this approach is to mimic how humans pro-
cess a document by i) skimming through the docu-
ment to extract its structure, and ii) reading the con-
tents informed by the previous step. Skimformer
accepts as inputs a sequence of token embeddings
and the corresponding sequence of layout embed-
dings. The model adopts a two-step approach: first,
the skim-attention scores are computed once and
only once using layout information alone; then,
these attentions are used in every layer of a Trans-
former encoder. The architecture of Skimformer is
depicted in Figure 1a.

For a given encoder layer k and a single head,
the traditional self-attention operation becomes:

α′k = A`Vt
k (4)

where A` is the skim-attention matrix obtained
through Eq. 3, and Vt

k = Wv,kXt is the Value
matrix produced by projecting the textual input3

3As opposed to BERT, we do not encode sequential posi-
tions into the text embeddings.
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(a) Skimformer model architecture. L denotes the number of
Transformer encoder layers. Q and K are the queries and keys
obtained by projecting the layout embeddings. V represents the
values produced by projecting the encoder layers’ textual inputs.
The attention is solely based on token spatial positions and com-
puted only once. The attention scores are then distributed to each
layer of a Transformer encoder.
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(b) SkimmingMask model architecture. The layout embeddings,
Key and Query projections are initialized from an already pre-
trained Skimformer model. By filtering the k most attended tokens
for each token, the Skim-Attention scores are then converted to
an attention mask and given as input to a text-based Transformer
model.

Figure 1: Our proposed model architectures: Skimformer (left) and SkimmingMask (right). Both models take
as input a sequence of tokens and a sequence of token bounding box coordinates. The input of each modality is
converted to an embedding sequence. Only the layout embeddings are used to compute Skim-Attention.

Xt = {t0, t1, . . . , tn} at layer k.
More intuitively, computing skim-attention

scores (Eq. 3) can be interpreted as skimming
through the document. Information about the se-
mantics (contained in V) is then routed based on
these similarity scores. This is done via Eq. 4 and
can be seen as reading the contents of the docu-
ment, focusing on the most relevant parts informed
by the skim-attention scores.

We train Skimformer using Masked Visual-
Language Modeling (MVLM), a pre-training task
that extends Masked Language Modeling (MLM)
with layout information. MVLM randomly masks
some of the input tokens but preserves their lay-
out embeddings. The model is then trained to re-
cover the masked tokens given the contexts. Hence,
MVLM helps capture nearby token features, lever-
aging both semantics and spatial information.

While we experimented with a standard Trans-
former model, it is worth noting that any language
model can be used as the backbone of Skimformer.

SkimmingMask For each token in a sequence,
Skim-Attention provides a ranking of the other to-
kens based on their layout-based similarity. Lever-
aging this, SkimmingMask uses Skim-Attention as
a mask to restrict the computation of self-attention
to a smaller number of elements for each token.
In this setting, Skim-Attention is viewed as an

independent, complementary module that can be
plugged into any language model. Given a se-
quence of layout embeddings, the corresponding
skim-attention matrix is converted to an attention
mask: based on the similarity scores provided in
the attention matrix, each token can only attend
to its k most similar tokens. The resulting mask
is then given as input to a text-based Transformer
language model with standard self-attention, and
is used to restrict self-attention for each element
in the input text sequence. This can be viewed as
sparsifying the standard self-attention matrix.

SkimmingMask is not trainable end-to-end with
the Transformer model it is plugged to, as creating
an attention mask from an attention matrix is not
a differentiable operation (we leave this for future
work). Thus, to train this model, the weights for
Skim-Attention need to be already trained, and we
naturally use the Skimformer weights. The overall
architecture of the model is illustrated in Figure 1b.

We note that SkimmingMask is a new way to
cluster tokens: all tokens belonging to the same
group have a high similarity to each other regarding
their respective layout position. This makes Skim-
mingMask a concurrent approach to Reformer,
which reduces the cost of self-attention by clus-
tering tokens into chunks. As opposed to the latter,
the concept of similarity is not based on text se-



mantics but on the document structure. Moreover,
SkimmingMask does not require the semantic of
each token, but only their layout features. Because
each token is viewed as a bounding box whose char-
acteristics are only its size and position, the repre-
sentation space of layout features is much smaller
than that of the text, which spans a vocabulary of
more than 30k sub-words. As a consequence, com-
puting attention based on layout could require a
smaller latent space dimension than for text, corre-
sponding to less computational efforts. This is also
the case for humans: as demonstrated in section
3, it is much easier to retrieve information from
documents when the layout is provided.

5 Experiments

5.1 Data

Pre-training Data To pre-train our models on
a wide variety of document formats, we select
three datasets with various non-trivial document
layouts: DocBank (Li et al., 2020), RVL-CDIP
(Harley et al., 2015) and PubLayNet (Zhong et al.,
2019). We combine them by randomly selecting
25k documents from each dataset, for a total of
75K documents. We discard the provided labels
and consider these data as unannotated. The re-
sulting dataset is referred to as MIX. As a first
evaluation metric, we can compare the perplexity
for the different language models on MIX.

DocBank DocBank is a large-scale dataset
that contains 500K English document pages from
papers extracted from arXiv.com. These articles
span a variety of disciplines (e.g. Physics, Mathe-
matics, and Computer Science), which is beneficial
to train more robust models. Pages are split into a
training set, validation set and test set with a ratio of
8:1:1. As the authors already extracted the text and
bounding boxes using PDFPlumber,4 there is no
need for an OCR system or a PDF parser. To build
our subset, we extract 25k document pages: 20k
from the full training set, 2,500 from the validation
set and 2,500 from the test set.

RVL-CDIP RVL-CDIP is a large collection of
400k scanned document images from various cat-
egories (e.g. letter, form, advertisement, invoice).
The wide range of layouts, as well as the low im-
age quality, allows to train more robust models. We
select 25k documents from the RVL-CDIP dataset

4https://github.com/jsvine/pdfplumber

available on Kaggle,5 which amounts to half of the
training images from the full dataset (160k images).
The text and word bounding boxes are extracted
using Tesseract.6 We split the data into 80% for
training, 10% for validation and 10% for test.

PubLayNet PubLayNet comprises over 360
thousand document images from PubMed Central™

Open Access. The medical publications contained
in the collection have similar layouts, but the text
density coupled with the small image size add to
the robustness of the trained models. We extract the
first training split among the 7 available on IBM
Data Asset eXchange7 and use the first 20k im-
ages as our training set. For the validation and test
sets, we keep the first 2,500 images in each split.
Because OCR accuracy is too low without any pre-
processing, we apply a few image processing op-
erations (i.e. rescaling, converting to grayscale,
applying dilation and erosion) on each image in
order to improve text extraction.

Dataset for Document Layout Analysis In ad-
dition to perplexity, we evaluate our approach on a
downstream task, document layout analysis. Doc-
ument layout analysis consists in associating each
token with its corresponding category: abstract, au-
thor, caption, date, equation, footer, list, paragraph,
reference, section, table, title and figure.8

We use a subset of the full DocBank dataset,
created by selecting 10k document pages (distinct
from the ones used for pre-training): 8,000 from
the full training set, 1,000 from the validation set
and 1,000 from the test set. We refer to this dataset
as DocBank-LA. Each document page is organized
as a list of words with bounding boxes, colors,
fonts and labels. We use the precision, recall and
F1 score defined by Li et al. (2020).

5.2 Experimental Settings

For reproducibility purposes, we make the code
publicly available.9

Baselines We compare our models with three
baselines: i) the text-only BERT, ii) the multi-
modal LayoutLM, and iii) the text-only Long-

5https://www.kaggle.com/nbhativp/first-half-training
6https://github.com/tesseract-ocr/tesseract
7https://developer.ibm.com/exchanges/data/all/

publaynet/
8We actually discard the Figure label, as 1) our models do

not take image features into account, and 2) the text associated
with such elements is always the same, making the task trivial.

9https://github.com/recitalAI/skim-attention

https://github.com/jsvine/pdfplumber
https://www.kaggle.com/nbhativp/first-half-training
https://github.com/tesseract-ocr/tesseract
https://developer.ibm.com/exchanges/data/all/publaynet/
https://developer.ibm.com/exchanges/data/all/publaynet/
https://github.com/recitalAI/skim-attention


Model Test Perplexity
BERT (Devlin et al., 2019) 357.11
LayoutLM (Xu et al., 2020b) 45.86
Skimformer 33.77

Longformer (Beltagy et al., 2020) 333.28
LongSkimformer 32.02

Table 2: Test perplexity on the MIX dataset after
10k optimization steps. Each model was trained from
scratch. Bold denotes the best score.

former for long documents. Note that the Lay-
outLM architecture is based on BERT, with addi-
tional layout components. For fair comparison, all
our models designed for short sequences are based
on BERT as well, as detailed below.

Pre-training For BERT, LayoutLM and Long-
former, we use their default architecture. Fol-
lowing the BERT base model, Skimformer con-
sists of a 12-layer Transformer encoder with 12
attention heads and a hidden size set to 768 for
both text and layout embeddings, amounting to
99M parameters. We further add a 2-layer Trans-
former encoder to contextualize the layout em-
beddings, which increases the number of param-
eters to 113M. To test Skim-Attention on longer
documents, we build LongSkimformer, a combi-
nation of Skim-Attention and Longformer. Ev-
ery model is trained from scratch on the MIX
dataset for 10k steps. We set the maximum se-
quence length to n = 512 for every model except
for Longformer and LongSkimformer, for which
n = 2, 048. Skimformer, LongSkimformer and
LayoutLM are pre-trained using MVLM, while
BERT and Longformer are pre-trained with MLM.
For more implementation details, see Section B in
the appendix.

Document Layout Analysis As DocBank con-
tains fine-grained token-level annotations, we con-
sider the document layout analysis task as a se-
quence labeling task. Each model pre-trained on
MIX is fine-tuned on this downstream task for 10
epochs. Section B of the appendix provides a de-
tailed description of the settings used. For the Skim-
mingMask models, we selected the hyperparameter
k on validation, i.e. the number of tokens that can
be attended to.10
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Figure 2: Model perplexity on the MIX validation set
with respect to the number of optimization steps. All
models are trained from scratch.

Skim-Attention Input Test Perplexity
Layout 36.41
1D position 54.39
Uniform layout 421.97
Degraded layout 103.39
Contextualized layout 33.77

Table 3: Ablation study on the MIX dataset, where per-
plexity on the test set is reported. All models were
trained from scratch. Bold denotes the best score.

5.3 Results and Discussion

5.3.1 Perplexity
In Table 2, we report the perplexity on the
MIX dataset. We observe that Skimformer and
LongSkimformer respectively outperform BERT
and Longformer by a huge margin, while improv-
ing perplexity by more than 10 points over Lay-
outLM. In addition, Figure 2 demonstrates that
Skimformer converges much faster than BERT, and
slightly more than LayoutLM.

Ablation Study We further conduct an ablation
study about the influence of the Skim-Attention
inputs on Skimformer’s performance. The results
are listed in Table 3. To estimate the impact of
the input type, we consider a Skimformer model i)
wherein Skim-Attention is based on sequential po-
sitions (1D position), ii) the bounding boxes are all
set to the same fixed value, preventing the model to
gather any information about the true location (Uni-
form layout), iii) they are replaced by their centers
(Degraded layout), and iv) the layout embeddings
are contextualized (Contextualized Layout).

We can see that replacing spatial with sequen-

10We tested k ∈ [512, 384, 256, 128].



tial positions results in an increase in perplexity,
indicating that layout information is crucial for the
Language Model. It is also observed that assigning
the same bounding box to every token leads to a
severe drop in performance. Coupled with the per-
plexity obtained with a degraded layout, this shows
that the model’s performance is greatly impacted
by the layout input quality. At last, contextualiz-
ing the layout inputs through a small Transformer
brings slight improvements over computing Skim-
Attention directly on the layout embeddings.

Finally, we benchmark Skimformer and Lay-
outLM on both speed and peak memory usage for
training. Results provided in Figure 5 of the ap-
pendix show that Skimformer is more time and
memory efficient than LayoutLM.

5.3.2 Document Layout Analysis
Table 4 reports the performance on DocBank-LA,
the sequence length processed, the number of times
attention is computed and the ratio of the total cal-
culation unit (n2 × Nb Skim-Attn + Seq. Len2 ×
Nb Standard Attn, where n is the length of the ini-
tial sequence on which Skim-Attention is applied;
and Seq. Len is the length obtained after apply-
ing SkimmingMask) to that of BERT/LayoutLM
and Longformer. All models were pre-trained from
scratch on MIX.

Skimformer is substantially superior to BERT,
improving the F1 score by 15% while reducing the
number of attentions computed by four. We ex-
perimented with plugging the layout embeddings
learnt by Skimformer in a BERT model. The re-
sulting model, BERT+SkimEmbeddings, resem-
bles LayoutLM in terms of architecture.11 Results
show that BERT+SkimEmbeddings performs on
par with LayoutLM despite simply combining sep-
arately pre-trained modalities, as opposed to the
latter which requires an extensive joint training.

For the SkimmingMask models (see the last two
rows in Table 4), the models attend to only the
top-k 128 tokens. Compared to LayoutLM, this
reduction to the quadratic factor allows to obtain
the same downstream results with only 31.25% of
the computational burden. Compared to BERT, it
even obtains an absolute improvement of more than
6% in term of F1 score.

LongSkimformer benefits from both Skim-

11In BERT+SkimEmbeddings, the layout embeddings are
first projected into the same dimensional space as the text
embeddings. In this way, we can plug the layout embeddings
from any Skimformer model, in particular smaller ones.

Attention and Longformer’s gain in efficiency. It
outperforms Longformer by 5% while requiring
four times less attention operations, and the use
of Longformer’s linear attention allows LongSkim-
former to process sequences four times larger than
Skimformer can.

5.4 Attention Visualization

Figure 3 shows the attention maps produced by
Skimformer on a sample document.12 Given a se-
mantic unit (either title or abstract in our example),
we select the corresponding tokens and compute
their average attention over the whole document.
We observe, both qualitatively and quantitatively,
that tokens attend mainly to other elements in the
same semantic unit, thus creating clusters of to-
kens that are relevant to each other. This shows
that the model has grasped the concept of semantic
unit with only self-supervision, enabling the emer-
gence of a document structure representation. We
argue that these structure-aware clusters could pave
the way for long text encoding and unsupervised
document segmentation.

6 Conclusion

We present Skim-Attention, a new structure-aware
attention mechanism. We conduct extensive experi-
ments to show the effectiveness of Skim-Attention,
both as an end-to-end model (Skimformer) and as
a mask for any language model (Skim-Attention).
We hope this work will pave the way towards a
new research direction for efficient attentions. For
future works, we will investigate how to integrate
image features, and explore tasks that require cap-
turing longer-range dependencies.
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Skimming Seq. Nb Attentions Total
Model Mask Len Original* Skim-Attn Compute Rec. Prec. F1
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and LongSkimformer.
** Attention is computed twice (by a 2-layer Transformer) during layout contextualization, then once by Skim-Attention.

Table 4: Model performance (in %) on the DocBank-LA dataset. Seq. Len indicates the number of tokens at-
tended with either standard attention (for Skimformer, BERT-based and LayoutLM-based models), or Longformer
attention (for Longformer and LongSkimformer). Nb Attention represents the number of times attention (original
and Skim-Attention) is computed and stored. Total Compute specifies the ratio of the final computational cost (#
operations needed to compute attention) w.r.t. BERT/LayoutLM or Longformer. Each model was pre-trained from
scratch on MIX, then fine-tuned on DocBank-LA.
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Skim-Attention: Learning to Focus
via Document Layout – Appendix

A Preliminary Experiments: Human
Evaluation

To evaluate the impact of layout on readers’ under-
standing, we conduct an experiment in which we
measure the amount of time required for human
annotators to answer questions from both format-
ted and non-formatted documents. We hand-pick
four document pages from the DocBank dataset (Li
et al., 2020), and create a plain-text version out of
each of these documents by flattening them. This
results in eight pages: the four original document
pages, and their serialized versions with no layout
nor formatting. The original, formatted document
pages are displayed in figure 4. We create two basic
questions for each document (answers are provided
in italic):

• Document (a) :

– Who are the authors of this paper ? E.C
Merkle, D. Furr, S. Rabe-Hesketh.

– What are the keywords ? Bayesian infor-
mation criteria, conditional likelihood,
cross-validation, DIC, IRT, leave-one-
cluster out, marginal likelihood, MCMC,
SEM, WAIC.

• Document (b) :

– What paper did N.D. Tracas and P.M.
Zerwas write ? e + e – Colliders: The
Window To Z’s Beyond The Total Energy.

– Who does the author thank ? The or-
ganizers, those who contributed to the
content of the discussion (J. Bagger, M.
Berggren, J. Kanlinowski, W. Kilian, J.
List, J. Mnich, M. Peskin, F. Richard, G.
Wilson), P. Zerwas.

• Document (c) :

– What is proposed in this paper ? A Rein-
forced Neural Extractive Summarization
model to extract a coherent and informa-
tive summary from a single document.

– What is compared in table 3 ? Hu-
man evaluation in terms of informative-
ness(Inf), coherence(Coh) and overall
ranking.

• Document (d) :

– When was this paper submitted ? May
2028, 2020.

– What are the keywords of this paper
? Touchscreen keyboards, gesture input,
model-based design, Monte Carlo simu-
lation.

Four annotators are asked to answer these ques-
tions. Each of them alternates between fully for-
matted contents (i.e. the original document page)
and plain text. We decide that annotators 1 and 3
have access to the document layout for documents
1 and 3, while annotators 2 and 4, for documents 2
and 4.

Given a document, the instructions are as fol-
lows:

1. Read the entire document, then the questions;

2. Start the timer;

3. Find the answer to the first question (without
writing it down);

4. Stop the timer and check if the answer is cor-
rect;

• If this is the case, write down the time in-
dicated by the timer, then reset it and an-
swer the second question by re-iterating
steps 2 to 4.

• If not, resume timer until you find the
correct answer.

5. Proceed to the next document.

Formatted Plain-text
Doc 1 2.95 ± 0.43 10.85 ± 5.67
Doc 2 4.29 ± 1.54 14.44 ± 11.25
Doc 3 7.75 ± 0.38 20.81 ± 10.26
Doc 4 9.20 ± 4.57 14.65 ± 9.06

Table 5: Time (in seconds) required to retrieve informa-
tion per document and document type (formatted/non-
formatted). Standard deviation is also reported.

Results per document and document type (i.e.,
formatted or non-formatted) are given in table 5.
The entirety of the results is reported in table 6.

B Implementation Details

Pre-training For BERT, LayoutLM and Long-
former, we use the PyTorch implementation from
Hugging Face’s Transformers library (Wolf et al.,
2020).



Bayesian model assessment: Use of conditional vs marginal
likelihoods
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University of Missouri

D. Furr and S. Rabe-Hesketh
University of California, Berkeley

Abstract
Typical Bayesian methods for models with latent variables (or random ef-
fects) involve directly sampling the latent variables along with the model
parameters. In high-level software code for model definitions (using, e.g.,
BUGS, JAGS, Stan), the likelihood is therefore specified as conditional on
the latent variables. This can lead researchers to perform model comparisons
via conditional likelihoods, where the latent variables are considered model
parameters. In other settings, typical model comparisons involve marginal
likelihoods where the latent variables are integrated out. This distinction
is often overlooked despite the fact that it can have a large impact on the
comparisons of interest. In this paper, we clarify and illustrate these issues,
focusing on the comparison of conditional and marginal Deviance Informa-
tion Criteria (DICs) and Watanabe-Akaike Information Criteria (WAICs) in
psychometric modeling. The conditional/marginal distinction corresponds
to whether the model should be predictive for the clusters that are in the
data or for new clusters (where “clusters” typically correspond to higher-level
units like people or schools). Correspondingly, we show that marginal WAIC
corresponds to leave-one-cluster out (LOcO) cross-validation, whereas con-
ditional WAIC corresponds to leave-one-unit (LOuO). These results lead to
recommendations on the general application of these criteria to models with
latent variables.

Keywords: Bayesian information criteria, conditional likelihood, cross-
validation, DIC, IRT, leave-one-cluster out, marginal likelihood, MCMC,
SEM, WAIC.
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(a)

from the left- and right-handed couplings extracted from forward-backward asymmetries and
charge asymmetries in two-fermion processes, different high-scale models can be discriminated
(cf. e.g. [25]).

One final remark: if something similar like the 2 TeV anomaly in WW/WZ/ZZ at the end
of the 8 TeV run or the 750 GeV anomaly in diphotons will remain at the end of run II or the
high-lumi run, then the ILC is the only option in the near future to comfirm or refute such a
signal.

3 Summary

In this talk I tried to collect the facts in favor of a future high-energy lepton collider (that
is capable to reach at least 500 GeV) with the focus lying on new physics beyond the SM. Both
the two main SM pillars, the Higgs boson and top quark measurements serve as indirect tools
for new physics searches, but there is also a plethora of direct search opportunities at such a
machine. Most prominent examples are dark matter searches, searches for other light weakly
coupling particles, and a scan over all weakly interacting particles. The interplay of the ILC
with the LHC, but more importantly with future hadron machines is elucidated. Conditions,
or better, scenarios for possible BSM discoveries at the ILC have been given. Several prime
examples for the BSM potential of the ILC have been highlighted.
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maries extracted by RNES are of higher quality than sum-
maries produced by previous works.

Table 2: Performance comparison on CNN/Daily Mail test
set, evaluated with full-length F1 ROUGE scores (%). All
scores of RNES are statistically significant using 95% con-
fidence interval with respect to previous best models.

Model R-1 R-2 R-L
Lead-3 39.2 15.7 35.5
(Nallapati et al. 2016) 35.4 13.3 32.6
(Nallapati et al. 2017) 39.6 16.2 35.3
(See et al. 2017) 39.53 17.28 35.38
NES 37.75 17.04 33.92
RNES w/o coherence 41.25 18.87 37.75
RNES w/ coherence 40.95 18.63 37.41

Though RNES with the coherence reward achieves higher
ROUGE scores than baselines, there is a small gap between
its score and that of RNES trained without coherence model.
This is because that the coherence objective and ROUGE
score do not always agree with each other. Since ROUGE
is simply computed based on n-grams or longest common
subsequence, it is ignorant of the coherence between sen-
tences. Therefore, enhancing coherence may lead to a drop
of ROUGE. However, the 95% confidence intervals of the
two RNES models overlap heavily, indicating that their dif-
ference in ROUGE is insignificant.

Table 3: Comparison of human evaluation in terms of infor-
mativeness(Inf), coherence(Coh) and overall ranking. Lower
is better.

Model Inf Coh Overall
RNES w/o coherence 1.183 1.325 1.492
RNES w/ coherence 1.125 1.092 1.209

We also conduct a qualitative evaluation to find out
whether the introduction of coherence reward improves the
coherence of the output summaries. We randomly sample
50 documents from the test set and ask three volunteers to
evaluate the summaries extracted by RNES trained with or
without coherence as the reward. They are asked to compare
and rank the outputs of two models regarding three aspects:
informativeness, coherence and overall quality. The better
one will be given rank 1, while the other will be given rank
2 if it is worse. In some cases, if the two outputs are iden-
tical or have the same quality, the ranks could be tied, i.e.,
both of them are given rank 1. Table 3 shows the results of
human evaluation. RNES model trained with coherence re-
ward is better than RNES model without coherence reward
in all three aspects, especially in the coherence. The result
indicates that the introduction of coherence effectively im-
proves the coherence of extracted summaries, as well as the
overall quality. It is surprising that summaries produced by
RNES with coherence are also more informative than RNES
without coherence, indicating that ROUGE might not be the
gold standard to evaluate informativeness as well.

Table 4 shows a pair of summary produced by RNES with

or without coherence. The summary produced by RNES
without coherence starts with pronoun ‘That’ which is refer-
ring to a previously mentioned fact, and hence it may lead to
confusion. In contrast, the output of RNES trained with co-
herence reward includes the sentence “The earthquake dis-
aster . . . ” before referring to this fact in the second sentence,
and therefore is more coherent and readable. This is because
the coherence model gives a higher score to the second sen-
tence if it can form a coherent sentence pair with the first
sentence. In REINFORCE training, if the second sentence
receives a high coherence score, the action of extracting the
first sentence before the second one will be strengthened.
This example shows that coherence model is indeed effec-
tive in changing the behavior of RNES towards extracting
summaries that are more coherent.

Table 4: Examples of extracted summary.
Reference: Peter Spinks from the Sydney Morning Herald re-
ported on Amasia. Within 200 million years, he said the new
supercontinent will form. One researcher recently travelled to
Nepal to gather further information. He spotted that India, Eura-
sia and other plates are slowly moving together.
RNES w/o coherence: That’s according to one researcher who
travelled to the country to study how the Indian and Eurasian
plates are moving together. And using new techniques, re-
searchers can now start examining the changes due to take
place over the next tens of millions of years like never before.
Earth’s continents are slowly moving together, and in 50 to 200
million years they are expected to form a new supercontinent
called Amasia. In 2012 a study suggested this may be centered
on the North Pole. The idea that Earth is set to form a new
supercontinent-dubbed Amasia - is not new.
RNES w/ coherence: The earthquake disaster in Nepal has
highlighted how Earth’s land masses are already in the pro-
cess of forming a new supercontinent. That’s according to
one researcher who travelled to the country to study how the In-
dian and Eurasian plates are moving together. And using new
techniques, researchers can now start examining the changes
due to take place over the next tens of millions of years like
never before. Earth’s continents are slowly moving together, and
in 50 to 200 million years they are expected to form a new su-
percontinent called Amasia.

Conclusion
In this paper, we proposed a Reinforced Neural Extractive

Summarization model to extract a coherent and informative
summary from a single document. Empirical results show
that the proposed RNES model can balance between the
cross-sentence coherence and importance of the sentences
effectively, and achieve state-of-the-art performance on the
benchmark dataset. For future work, we will focus on im-
proving the performance of our neural coherence model and
introducing human knowledge into the RNES.
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Abstract

Gesture typing is a method of text entry that is ergonomically well-suited to the form factor of
touchscreen devices and allows for much faster input than tapping each letter individually. The
QWERTY keyboard was, however, not designed with gesture input in mind and its particular
layout results in a high frequency of gesture recognition errors. In this paper, we describe a
new approach to quantifying the frequency of gesture input recognition errors through the use of
modeling and simulating realistically imperfect user input. We introduce new methodologies for
modeling randomized gesture inputs, efficiently reconstructing words from gestures on arbitrary
keyboard layouts, and using these in conjunction with a frequency weighted lexicon to perform
Monte Carlo evaluations of keyboard error rates or any other arbitrary metric. An open source
framework, Dodona, is also provided that allows for these techniques to be easily employed
and customized in the evaluation of a wide spectrum of possible keyboards and input methods.
Finally, we perform an optimization procedure over permutations of the QWERTY keyboard to
demonstrate the effectiveness of this approach and describe ways that future analyses can build
upon these results.

Keywords: touchscreen keyboards, gesture input, model-based design, Monte Carlo simulation

1. Introduction

The advent of smartphones and tablets has made the use of touchscreen keyboards pervasive
in modern society. However, the ubiquitous QWERTY keyboard was not designed with the
needs of a touchscreen keyboard in mind, namely accuracy and speed. The introduction of
gesture or stroke-based input methods significantly increased the speed that text could be entered
on touchscreens [Montgomery (1982); Zhai and Kristensson (2003); Zhai et al. (2009); Kushler
and Marsden (2006)]. However, this method introduces some new problems that can occur when
the gesture input patterns for two words are too similar, or sometimes completely ambiguous,
leading to input errors. An example gesture input error is illustrated in Figure 1. A recent study
showed that gesture input has an error rate that is about 5-10% higher compared to touch typing
[Bi et al. (2013)]. With the fast and inherently imprecise nature of gesture input the prevalence
of errors is unavoidable and the need to correct these errors significantly slows down the rate
of text entry. The QWERTY keyboard in particular is poorly suited as a medium for swipe
input. Characteristics such as the “u”, “i”, and “o” keys being adjacent lead to numerous gesture
ambiguities and potential input errors. It is clearly not the optimal layout for gesture input.
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(d)

Figure 4: Documents selected for our preliminary cognitive experiment.



Doc 1 Doc 2 Doc 3 Doc 4
Q1 Q2 AVG Q1 Q2 AVG Q1 Q2 AVG Q1 Q2 AVG

A 1 1.48 3.81 2.65 19.52 25.27 22.40 11.91 4.12 8.02 12.98 29.12 21.05
A 2 9.23 4.44 6.84 5.12 5.63 5.38 24.5 31.62 28.06 7.02 4.92 5.97
A 3 3.76 2.76 3.26 7.19 5.77 6.48 9.19 5.77 7.48 3.93 12.55 8.24
A 4 8.66 21.05 14.86 3.49 2.9 3.20 15.9 11.2 13.55 6.9 17.96 12.43

Table 6: Time (in seconds) taken by each annotator to answer each question. Average per document is also reported.
Yellow cells indicate that the document layout was provided for corresponding documents and annotators.

Each model is trained from scratch on the MIX
dataset for 10k steps with a batch size of 8, except
for Longformer which was trained with a smaller
batch size of 4 due to memory limitations. We
use the Adam optimizer with weight decay fix
(Loshchilov and Hutter, 2017), a weight decay of
0.01 and (β1, β2) = (0.9, 0.999). The learning
rate is set to 1e−4 and linearly warmed up over the
first 100 steps. The maximum sequence length is
set to n = 512, with the exception of Longformer
and LongSkimformer, for which n = 2, 048. Fol-
lowing BERT, we mask 15% of the text tokens in
MVLM, among which 80% are replaced by a spe-
cial token [MASK], 10% are replaced by a random
token, and 10% remains the same.

Document Layout Analysis Each model pre-
trained on MIX is fine-tuned on DocBank’s doc-
ument layout analysis task for 10 epochs, with a
learning rate of 5e−5 and a batch size of 8 (except
for Longformer which was fine-tuned with a batch
size of 4). The models are extended with a token-
classification head on top, consisting of a linear
layer followed by a softmax layer, and are trained
using cross-entropy.

For SkimmingMask, we select the Skim-
Attention module from the Skimformer model pre-
trained from scratch on MIX. We then plug it into
a BERT model, also pre-trained from scratch on
MIX. The resulting model is fine-tuned with the
same settings as described previously.

C Benchmark

Using Hugging Face’s Transformers benchmark-
ing tools (Wolf et al., 2020), we benchmark Skim-
former and LayoutLM on both speed and required
memory for pre-training. We consider the base
variant of LayoutLM, and use the implementation
from the Transformers library. In addition to the
full Skimformer, we evaluate a variant in which the
small Transformer contextualizing layout embed-
dings is removed (Skimformer-no-context). The
batch size is fixed to 8, and memory and time per-

formance is evaluated for the following sequence
lengths: 8, 32, 128 and 512. We use Python 3.7.10,
PyTorch 1.8.1+cu101 (Paszke et al., 2019), and
Transformers 4.6.0.dev0. All experiments were
conducted on one Tesla T4 with 15GB of RAM.

Figure 5b reports the time (figure 5a) and peak
memory consumption (figure 5b) with respect to
the sequence length.

D Attention Visualization

Figure 6 contains the attention maps obtained by
Skimformer on two documents sampled from Pub-
LayNet (Zhong et al., 2019). For each sample, we
average the attention scores of tokens belonging
to a given semantic unit, and map the result to the
document image. In the first document (figure 6a),
we focus on the top table (left) and the bottom one
(right). In the second sample (figure 6b), we inves-
tigate the title (left), the authors (center) and the
abstract (right).



(a) Time usage for pre-training. (b) Memory usage for pre-training.

Figure 5: Comparison of time and memory usage for LayoutLM (green), Skimformer with layout contextualizer
(orange) and without (blue). Results are plotted against sequence length.

(a) Skim-attention maps corresponding to the top table (left) and the bottom table (right).

(b) Skim-attention maps corresponding to the title (left), the authors (center) and the abstract (right).

Figure 6: Skim-Attention maps on two sample documents.


