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ON OPTIMAL CLOAKING-BY-MAPPING TRANSFORMATIONS

Yves Capdeboscq1,* and Michael S. Vogelius2

Abstract. A central ingredient of cloaking-by-mapping is the diffeomorphism which transforms an
annulus with a small hole into an annulus with a finite size hole, while being the identity on the
outer boundary of the annulus. The resulting meta-material is anisotropic, which makes it difficult to
manufacture. The problem of minimizing anisotropy among radial transformations has been studied
in Griesmaier and Vogelius [Inverse Prob. 30 (2014) 17]. In this work, as in Griesmaier and Vogelius
[Inverse Prob. 30 (2014) 17], we formulate the problem of minimizing anisotropy as an energy mini-
mization problem. Our main goal is to provide strong evidence for the conjecture that for cloaks with
circular boundaries, non-radial transformations do not lead to lower degree of anisotropy. In the final
section, we consider cloaks with non-circular boundaries and show that in this case, non-radial cloaks
may be advantageous, when it comes to minimizing anisotropy.

Mathematics Subject Classification. 35R30, 78A46.
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1. Introduction

A central ingredient in the construction of (approximate) cloaks by the passive cloaking technique, known
as “cloaking by mapping”, is the diffeomorphism, which transforms an annulus with a small hole into an
annulus with a finite size hole, and which is the identity on the outer boundary of the annulus. The push-
forward of the background coefficient (say, the identity matrix) with the diffeomorphism represents the meta-
material needed for the cloak, and the finite size hole is the area that may be used as a “hiding place” [8].
The fact that the diffeomorphism is the identity on the outer boundary ensures that the perturbation in the
“far field” is that corresponding to a small inhomogeneity. The corresponding “lack of cloaking”/visibility
can be estimated by the volume of the small inhomogeneity. The required meta-material is anisotropic, which
presents a problem when it comes to actual manufacture of the cloak. Typically a radial affine transformation
has been used [4, 5, 8–10], however, a very natural question arises, namely : “are there transformations that
lead to lower degree of anisotropy than the radial affine transformation? ” In [6] it was shown that there
are indeed better radial transformations than the affine, when it comes to minimizing anisotropy. In that
paper the meta-material obtained by “optimal radial transformation” is also shown to be quite related to
meta-materials obtained by other cloak enhancement strategies, employing additional layers [3, 7]. The focus
of this note is to produce very strong evidence for the conjecture that when the cloak takes the shape of
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a classical annulus, non-radial transformations do not help in reducing the degree of anisotropy. Like in [6],
we formulate the problem of minimizing anisotropy as a variational problem (minimization of an appropriate
energy). Corollary 4.4 summarizes our main results. Broadly speaking, we show that

– There exists a radial transformation, which is a stationary point for the energy.
– This radial transformation has smaller energy than all other transformations with “directional field” 𝑥

|𝑥| .
– If the amplitude is kept fixed and radial, then any change in the “directional field” away from 𝑥

|𝑥| will increase
energy.

In the final section of this note we consider the case when the outer (and inner) boundary of the cloak are not
circles, and we illustrate how the optimal radial transformation for the circular case translates into a non-radial
(optimal) transformation for a non-circular cloak.

2. Preliminaries

For 𝑟 > 0 we set
𝐵𝑟 =

{︀
𝑥 ∈ R2 : |𝑥| < 𝑟

}︀
, and 𝐶𝑟 =

{︀
𝑥 ∈ R2 : |𝑥| = 𝑟

}︀
.

Given 0 < 𝜖 < 1/2, we shall use the notation Φ for a bijective diffeomorphism 𝐵1 ∖ 𝐵𝜖 → 𝐵1 ∖ 𝐵 1
2

with

Φ ∈ 𝐶1
(︁
𝐵1 ∖𝐵𝜖;𝐵1 ∖𝐵 1

2

)︁
, and Φ−1 ∈ 𝐶1

(︁
𝐵1 ∖𝐵 1

2
;𝐵1 ∖𝐵𝜖

)︁
. We furthermore impose that

Φ|𝐶1
= 𝐼𝑑, and Φ(𝐶𝜖) = 𝐶 1

2
.

One such transformation is the radial affine transformation, given by

𝑥→
(︂
|𝑥| − 1

2(1− 𝜖)
+ 1
)︂
𝑥

|𝑥|
·

The push-forward of the identity matrix with the diffeomorphism Φ is given by

Φ*[𝐼](Φ(𝑥)) =
𝐷Φ𝐷Φ𝑇

|det𝐷Φ|
(𝑥).

This is a positive definite matrix, and since we are in two dimensions, with determinant 1. Let 0 < 𝜆1(𝑥) ≤
1 ≤ 𝜆2(𝑥) denote the eigenvalues of Φ*[𝐼](Φ(𝑥)). A natural measure of the degree of anisotropy of Φ*[𝐼] at the
point Φ(𝑥) is

|𝜆1(𝑥)− 1|+ |𝜆2(𝑥)− 1| = 𝜆2(𝑥)− 𝜆1(𝑥) =
√︁

(𝜆2(𝑥)− 𝜆1(𝑥))2

=
√︁

(𝜆1(𝑥) + 𝜆2(𝑥))2 − 4.

To minimize this we must minimize trace Φ*[𝐼](Φ(𝑥)). As a way of minimizing the aggregate anisotropy we shall
seek to minimize1

𝐼𝑝(Φ) =
∫︁
𝐵1∖𝐵𝜖

(trace Φ*[𝐼])𝑝(Φ(𝑥)) d𝑥

for a fixed choice of 1 ≤ 𝑝 <∞, and

𝐼∞(Φ) = max
𝑥∈𝐵1∖𝐵𝜖

trace Φ*[𝐼](Φ(𝑥)) = max
𝑦∈𝐵1∖𝐵 1

2

trace Φ*[𝐼](𝑦),

1In a slight deviation from [6], the domain of integration of the energy functional is 𝐵1∖𝐵𝜖, not the transformed domain 𝐵1∖𝐵 1
2
.
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corresponding to 𝑝 = ∞. Note that 𝜆 is an eigenvalue for Φ*[𝐼](Φ(𝑥)), with eigenvector 𝑣, if and only if 𝜆 is an
eigenvalue for

𝐷Φ𝑇𝐷Φ
|det𝐷Φ|

(𝑥),

with eigenvector 𝐷Φ𝑇 (𝑥)𝑣, and thus

trace Φ*[𝐼](Φ(𝑥)) = trace
[︂
𝐷Φ𝑇𝐷Φ
|det𝐷Φ|

]︂
(𝑥).

Proposition 2.1. Let Φ be represented in terms of its polar decomposition

Φ = exp(𝜓)𝜑,

where the directional field 𝜑 is in 𝐶1(𝐵1 ∖𝐵𝜖;𝒮1) and the logarithmic amplitude 𝜓 is in 𝐶1(𝐵1 ∖𝐵𝜖; R). Then

trace
(︀
𝐷Φ𝑇𝐷Φ

)︀
= |Φ|2

(︁
|𝐷𝜑|2 + |𝐷𝜓|2

)︁
.

Proof. Differentiating we find
𝐷Φ = exp(𝜓)𝜑𝐷𝜓𝑇 + exp(𝜓)𝐷𝜑.

Since 𝜑𝑇𝜑 = 1, we have
𝜑𝑇𝐷𝜑 = 0, and 𝐷𝜑𝑇𝜑 = 0,

and therefore

𝐷Φ𝑇𝐷Φ = exp(2𝜓)
(︀
𝐷𝜓𝜑𝑇 +𝐷𝜑𝑇

)︀(︀
𝜑𝐷𝜓𝑇 +𝐷𝜑

)︀
= |Φ|2

(︀
𝐷𝜑𝑇𝐷𝜑+𝐷𝜓𝐷𝜓𝑇

)︀
.

By taking the trace we arrive at the desired conclusion. �

It is well known that 𝜑, being in 𝐶1
(︀
𝐵1 ∖𝐵𝜖;𝒮1

)︀
, admits a canonical lift 𝜃 = arg(𝜑) ∈ 𝐶1

(︀
𝐵1 ∖𝐵𝜖; R/2𝜋Z

)︀
2

such that
𝜑 = (cos 𝜃, sin 𝜃)𝑇 .

We write

𝐽 =
[︂

0 −1
1 0

]︂
, e𝑟 =

𝑥

|𝑥|
, and e𝜃 = 𝐽

𝑥

|𝑥|
·

Proposition 2.2. The matrix 𝐷𝜑 has rank one; furthermore

Range(𝐷𝜑) = Span(𝜑)⊥, and Ker(𝐷𝜑) = Span(𝐷𝜃)⊥.

We denote by 𝐷𝜓,𝐷𝜃 the angle defined by

cos
(︁
𝐷𝜓,𝐷𝜃

)︁
=

1
|𝐷𝜓||𝐷𝜃|

𝐷𝜓 ·𝐷𝜃, and

sin
(︁
𝐷𝜓,𝐷𝜃

)︁
=

1
|𝐷𝜓||𝐷𝜃|

det(𝐷𝜓,𝐷𝜃)·

Then

trace Φ*[𝐼](Φ(𝑥)) =
1⃒⃒⃒

sin
(︁
𝐷𝜓,𝐷𝜃

)︁⃒⃒⃒(︂ |𝐷𝜃|
|𝐷𝜓|

+
|𝐷𝜓|
|𝐷𝜃|

)︂
(𝑥) ≥

(︂
|𝐷𝜃|
|𝐷𝜓|

+
|𝐷𝜓|
|𝐷𝜃|

)︂
(𝑥)

with equality only when 𝐷𝜓 ·𝐷𝜃 = 0.

2A function 𝜃 : 𝐵1 ∖ 𝐵𝜖 → R/2𝜋Z is an element of 𝐶1
(︀
𝐵1 ∖𝐵𝜖; R/2𝜋Z

)︀
iff given any point 𝑥 ∈ 𝐵1 ∖ 𝐵𝜖 there exists an open

neighborhood 𝜔𝑥 of 𝑥, relative to 𝐵1 ∖𝐵𝜖, and a representative of 𝜃 (mod 2𝜋) that lies in 𝐶1(𝜔𝑥; R). Notice that the globally defined

derivative of 𝜃 ∈ 𝐶1
(︀
𝐵1 ∖𝐵𝜖; R/2𝜋Z

)︀
, 𝐷𝜃, lies in 𝐶0

(︀
𝐵1 ∖𝐵𝜖; R2

)︀
.
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Proof. We calculate
𝐷𝜑 = (𝐽𝜑)𝐷𝜃𝑇 ,

which immediately leads to the statements about Range(𝐷𝜑) and Ker(𝐷𝜑), and which also gives

𝐷𝜃 = (𝐷𝜑)𝑇 (𝐽𝜑).

As a consequence

det𝐷Φ = det
(︀
𝜑𝐷𝜓𝑇 + (𝐽𝜑)𝐷𝜃𝑇

)︀
exp(2𝜓)

= det(𝐷𝜓,𝐷𝜃)|Φ|2

= |𝐷𝜃||𝐷𝜓| sin
(︁
𝐷𝜓,𝐷𝜃

)︁
|Φ|2.

Here we have used that det𝐷Φ ̸= 0, since Φ is a bijective diffeomorphism of 𝐵1 ∖𝐵𝜖 onto 𝐵1 ∖𝐵 1
2
; consequently

det(𝐷𝜓,𝐷𝜃) ̸= 0 and |𝐷𝜓||𝐷𝜃| > 0 and sin
(︁
𝐷𝜓,𝐷𝜃

)︁
(and 𝐷𝜓,𝐷𝜃) is well-defined. It now follows that

trace Φ*[𝐼](Φ(𝑥)) =

(︁
|𝐷𝜃|2 + |𝐷𝜓|2

)︁
|𝐷𝜃||𝐷𝜓|

⃒⃒⃒
sin
(︁
𝐷𝜓,𝐷𝜃

)︁⃒⃒⃒ (𝑥)

=
1⃒⃒⃒

sin
(︁
𝐷𝜓,𝐷𝜃

)︁⃒⃒⃒(︂ |𝐷𝜃|
|𝐷𝜓|

+
|𝐷𝜓|
|𝐷𝜃|

)︂
(𝑥) ≥ |𝐷𝜃|

|𝐷𝜓|
(𝑥) +

|𝐷𝜓|
|𝐷𝜃|

(𝑥),

with equality if and only of 𝐷𝜓 is normal to 𝐷𝜃, and therefore in the kernel of 𝐷𝜑. �

3. The radial transformation case

For the general case of a radial transformation 𝜑 = 𝑥
|𝑥| , and 𝜓 = 𝑓(|𝑥|). Then 𝐷𝜃 = 1

|𝑥|𝐽
𝑥
|𝑥| and 𝐷𝜓 =

𝑓 ′(|𝑥|) 𝑥
|𝑥| . The transformation

Φ = exp(𝜓)𝜑

is a bijective 𝐶1 diffeomorphism of 𝐵1 ∖𝐵𝜖 onto 𝐵1 ∖𝐵 1
2

with

Φ|𝐶1
= 𝐼𝑑, and Φ(𝐶𝜖) = 𝐶 1

2
,

if and only if
𝑓(𝜖) = − log 2, 𝑓(1) = 0, and 𝑓 ∈ 𝐶1([𝜖, 1]) with 𝑓 ′(𝑟) > 0 for all 𝑟 ∈ [𝜖, 1].

In this case, sin
(︁
𝐷𝜓,𝐷𝜃

)︁
= 1, and

trace Φ*[𝐼](Φ(𝑥)) =
1

|𝑥|𝑓 ′(|𝑥|)
+ |𝑥|𝑓 ′(|𝑥|).

Proposition 3.1. Suppose 1 ≤ 𝑝 <∞, and let 𝐼𝑝 denote the energy

𝐼𝑝(𝑓) :=
∫︁
𝐵1∖𝐵𝜖

(trace Φ*[𝐼])𝑝(Φ(𝑥)) d𝑥 = 2𝜋
∫︁ 1

𝜖

(︂
1

𝑟𝑓 ′(𝑟)
+ 𝑟𝑓 ′(𝑟)

)︂𝑝
𝑟 d𝑟,

with values in (0,∞), defined on the convex set

𝒞 =
{︂
𝑓 ∈ 𝐶1([𝜖, 1]) : 𝑓 ′ > 0, 𝑓(𝜖) = − log 2, 𝑓(1) = 0

}︂
.

Then



CLOAKING-BY-MAPPING TRANSFORMATIONS 307

– 𝐼𝑝 has a unique minimizer, 𝑓𝑝, in 𝒞.
– 𝑓𝑝 lies in 𝐶∞([𝜖, 1]), and is the unique solution in 𝒞 to the Euler–Lagrange equation(︃(︂

1
𝑟𝑓 ′𝑝(𝑟)

+ 𝑟𝑓 ′𝑝(𝑟)
)︂𝑝−1

(︃
− 1(︀

𝑓 ′𝑝
)︀2 + 𝑟2

)︃)︃′
= 0 in [𝜖, 1]. (E-L)

Proof. We start by establishing (part of) the last statement concerning the existence of a unique solution to
the Euler–Lagrange equation (E-L). By integration, any 𝐶1 solution to (E-L) must satisfy

𝐺(𝑟𝑓 ′𝑝(𝑟)) =
𝐶

𝑟2

for some constant 𝐶, with the function 𝐺 : R+ → R given by

𝐺(𝑡) =
(︂

1
𝑡

+ 𝑡

)︂𝑝−1(︂
− 1
𝑡2

+ 1
)︂
.

Now suppose 1 < 𝑝 < ∞. A simple calculation shows that 𝐺 is monotonically increasing, with 𝐺(1) = 0,
lim𝑡→0+ 𝐺(𝑡) = −∞ and lim𝑡→∞𝐺(𝑡) = ∞. 𝐺−1 : R → R+ is thus well defined, and 𝑓𝑝 has the form

𝑓𝑝(𝑟) =
∫︁ 𝑟

𝜖

𝑓 ′𝑝(𝑡)d𝑡− log 2 =
∫︁ 𝑟

𝜖

𝑡−1𝐺−1

(︂
𝐶

𝑡2

)︂
d𝑡− log 2,

for some constant 𝐶. The constant 𝐶 must be chosen so that 𝑓𝑝 satisfies the boundary condition 𝑓𝑝(1) = 0. As
𝐶 →

∫︀ 1

𝜖
𝑡−1𝐺−1

(︀
𝐶
𝑡2

)︀
d𝑡− log 2 is continuous and monotonically increasing, with∫︁ 1

𝜖

𝑡−1𝐺−1

(︂
𝐶

𝑡2

)︂
d𝑡− log 2 →

{︃
| log 𝜖| − log 2 > 0 when 𝐶 → 0
− log 2 < 0 when 𝐶 → −∞

,

it follows immediately that there exists a unique value 𝐶0 < 0 for which the boundary condition 𝑓𝑝(1) = 0
is satisfied. This shows the uniqueness of the solution to the Euler–Lagrange equation in 𝒞. Furthermore, the
formula

𝑓𝑝(𝑟) =
∫︁ 𝑟

𝜖

𝑡−1𝐺−1

(︂
𝐶0

𝑡2

)︂
d𝑡− log 2

clearly gives rise to a 𝐶∞ function in 𝒞 which solves the equation (E-L), thus establishing the existence3. A
slightly modified argument works for 𝑝 = 1, and in that case we find the (even more) explicit formula

𝑓1 : 𝑟 → log

⎛⎝3𝑟 +
√︁

9𝑟2 + 16(2− 𝜖)
(︀

1
2 − 𝜖

)︀
4(2− 𝜖)

⎞⎠·
We now proceed to show that 𝑓𝑝 is the unique minimizer of 𝐼𝑝 in 𝒞. Since the function (0,∞) ∋ 𝑥→

(︀
1
𝑥 + 𝑥

)︀𝑝 ∈
(0,∞) is strictly convex, it follows immediately that 𝐼𝑝 is strictly convex on 𝒞. Now suppose there existed a
function 𝑔 ∈ 𝒞 with 𝐼𝑝(𝑔) < 𝐼𝑝(𝑓𝑝). The convexity of the functional 𝐼𝑝 implies that

d
d𝜏

⃒⃒⃒
𝜏=0

𝐼𝑝(𝑓𝑝 + 𝜏(𝑔 − 𝑓𝑝)) ≤ 𝐼𝑝(𝑔)− 𝐼𝑝(𝑓𝑝) < 0,

3With 𝑧𝑝(𝑡) = 𝐺−1(𝐶/𝑡2), 𝐶 < 0, one has the formula

∫︁
𝑡−1𝑧𝑝(𝑡) =

1

2
log

1 + 𝑧𝑝(𝑡)

1− 𝑧𝑝(𝑡)
+ (𝑝− 1)

(︂
arctan 𝑧𝑝(𝑡)−

1

2
𝑧𝑝(𝑡)

)︂
+ const

for the indefinite integral of 𝑧𝑝(𝑡)/𝑡. This formula proves extremely useful when computing the 𝑓𝑝’s, and in particular their 𝜖 → 0
limits, numerically.
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or ∫︁ 1

𝜖

(︂
1

𝑟𝑓 ′(𝑟)
+ 𝑟𝑓 ′(𝑟)

)︂𝑝−1
(︃
− 1(︀

𝑓 ′𝑝
)︀2 + 𝑟2

)︃
(𝑔 − 𝑓𝑝)′ d𝑟 < 0,

in contradiction with the fact that 𝑓𝑝 is a solution to the Euler–Lagrange equation (E-L). This verifies that 𝑓𝑝
is a minimizer of 𝐼𝑝 in 𝒞. The fact that the minimizer is unique follows immediately from the strict convexity
of 𝐼𝑝. �

Remark. The logarithmic amplitude 𝑓1 gives rise to the transformation

Φ1 =

⎛⎝3|𝑥|+
√︁

9|𝑥|2 + 16(2− 𝜖)
(︀

1
2 − 𝜖

)︀
4(2− 𝜖)

⎞⎠ 𝑥

|𝑥|
·

We compute

𝐼1(𝑓1) = 2𝜋
∫︁ 1

𝜖

(︂
1

𝑓 ′1(𝑟)
+ 𝑟2𝑓 ′1(𝑟)

)︂
d𝑟 = 2𝜋

(︂
1− 𝜖2 +

2
3

(2𝜖− 1)2
)︂
.

By comparison, the radial affine transformation

Φ𝑟𝑎 =
(︂
|𝑥| − 1

2(1− 𝜖)
+ 1
)︂
𝑥

|𝑥|
,

with logarithmic amplitude

𝑓𝑟𝑎(𝑟) = log
(︂

𝑟 − 1
2(1− 𝜖)

+ 1
)︂
.

has

𝐼1(𝑓𝑟𝑎) = 2𝜋
∫︁ 1

𝜖

(︂
1

𝑓 ′𝑟𝑎(𝑟)
+ 𝑟2𝑓 ′𝑟𝑎(𝑟)

)︂
d𝑟 = 2𝜋

(︁
1− 𝜖2 + ln 2(2𝜖− 1)2

)︁
≥ 𝐼1(𝑓1).

Equality occurs only when 𝜖 = 1
2 (when the associated transformations are both the identity). �

Turning to maximum norm, we consider the minimization

ℐ∞ = inf
𝑓∈𝒞

sup
[𝜖,1]

(︂
1

𝑟𝑓 ′(𝑟)
+ 𝑟𝑓 ′(𝑟)

)︂
.

We note that

ℐ∞ = inf
𝐾>1

{︃
1
𝐾

+𝐾 : ∃𝑓 ∈ 𝒞 with sup
𝑟∈[𝜖,1]

{︂
1

𝑟𝑓 ′(𝑟)
+ 𝑟𝑓 ′(𝑟)

}︂
≤ 1
𝐾

+𝐾

}︃

≥ inf
𝐾>1

{︂
1
𝐾

+𝐾 : ∃𝑓 ∈ 𝒞 with
1
𝐾
|log 𝑟| ≤ |𝑓(𝑟)|

}︂
≥ inf

{︂
1
𝐾

+𝐾 :
|log 𝜖|
log 2

≤ 𝐾

}︂
=

log 2
|log 𝜖|

+
|log 𝜖|
log 2

·

Here we have used that, if 𝑓 ∈ 𝒞 and if 𝐾 > 1, then

1
𝑟𝑓 ′(𝑟)

+ 𝑟𝑓 ′(𝑟) ≤ 1
𝐾

+𝐾 in (𝜖, 1) =⇒ 1
𝐾𝑟

≤ 𝑓 ′(𝑟) ≤ 𝐾

𝑟
in (𝜖, 1)

=⇒ 1
𝐾
|log 𝑟| ≤ |𝑓(𝑟)| ≤ 𝐾|log 𝑟| in (𝜖, 1).
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On the other hand, the function

𝑓∞(𝑟) =
log 2
| log 𝜖|

log 𝑟 (3.1)

lies in 𝒞, and has 𝐼∞(𝑓∞) = log 2
| log 𝜖| + | log 𝜖|

log 2 .
It now follows immediately that 𝑓∞ is a minimizer of 𝐼∞ in 𝒞. The following graph shows the amplitudes

exp 𝑓𝑟𝑎 (dashed orange line), exp 𝑓1, exp 𝑓2, exp 𝑓3, exp 𝑓5, exp 𝑓8, exp 𝑓13 and exp 𝑓∞ (solid lines from red to
green), for 𝜖 = 1/1000. For illustration we have included the limiting amplitude of exp 𝑓3 as 𝜖 tends to zero.
This is shown as a dotted line next to exp 𝑓3.

The optimal radial map for the 𝐿∞ norm given by

Φ∞ : 𝑥→ exp 𝑓∞(|𝑥|) 𝑥
|𝑥|

= |𝑥|
log 2
|log 𝜖|−1

𝑥

is very similar to the one computed in [6] for a slightly different criterion. It is well approximated by one of the
radial changes of variable suggested in [11] for an appropriate parameter choice. The maps associated with all
these amplitudes are radial, but the materials obtained by push-forward transformations are not isotropic. A
number of articles have investigated how to best achieve similar cloaking effects with layers of isotropic materials
[1–3,6,7,11]. In this context we note that, it is well known from homogenization theory that the field responses
of effective anisotropic impedance matrices are well approximated by those arising from constructs based on
multiple fine isotropic laminates. The 𝐿𝑝 optimal maps Φ𝑝(𝑥) = exp 𝑓𝑝(|𝑥|) 𝑥

|𝑥| , 1 ≤ 𝑝 < ∞ (just as Φ𝑟𝑎) have
non-trivial limits as 𝜖→ 0, corresponding to maps of the punctured unit disk to the annulus 𝐵1 ∖𝐵1/2. However,
the map Φ∞ degenerates as 𝜖→ 0, as it approaches 𝑥

|𝑥| , except for a vanishing boundary layer. The 𝐿𝑝 optimal
maps Φ𝑝, 1 ≤ 𝑝 <∞, to the best of our knowledge, do not appear in other works.

4. Optimality of radial transforms

We now return to the general, two dimensional case. By introducing 𝑢 = 𝜓 and 𝑉 = −𝐽𝐷𝜃 in the formula

trace Φ*[𝐼](Φ(𝑥)) =
|𝐷𝜓|2 + |𝐷𝜃|2

det(𝐷𝜓,𝐷𝜃)
(𝑥),
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we obtain

trace Φ*[𝐼](Φ(𝑥)) =
|𝐷𝑢|2 + |𝑉 |2

𝐷𝑢 · 𝑉
(𝑥).

Similarly, by introducing 𝑢 = 𝜃 and 𝑉 = 𝐽𝐷𝜓, we obtain

trace Φ*[𝐼](Φ(𝑥)) =
|𝐷𝑢|2 + |𝑉 |2

𝐷𝑢 · 𝑉
(𝑥).

We thus notice that the problem of minimizing

𝐼𝑝(Φ) =
∫︁
𝐵1∖𝐵𝜖

(trace Φ*[𝐼])𝑝(Φ(𝑥)) d𝑥

with respect to 𝜓 given 𝜃, and with respect to 𝜃, given 𝜓 merely differs by a change of the convex test set for
𝑢 (essentially relating to boundary conditions). Let arg ∈ 𝐶∞

(︀
𝐵1 ∖𝐵𝜖; R/2𝜋Z

)︀
4 denote the standard argument

function. We introduce the convex sets

𝒞𝜃 = 𝐶2,𝛼
(︀
𝐵1 ∖𝐵𝜖; R/2𝜋Z

)︀
∩ {𝑢|𝐶1 = arg} and

𝒞𝜓 = 𝐶2,𝛼
(︀
𝐵1 ∖𝐵𝜖; R

)︀
∩ {𝑢|𝐶𝜖 = − log 2, 𝑢|𝐶1 = 0},

for some fixed 𝛼 > 0.

Proposition 4.1. Given 𝒞 = 𝒞𝜓 and a fixed 𝑉 ∈ 𝐶0
(︀
𝐵1 ∖𝐵𝜖; R2

)︀
, or 𝒞 = 𝒞𝜃 and a fixed 𝑉 ∈ 𝐶0

(︀
𝐵1 ∖𝐵𝜖; R2

)︀
,

and given 𝑛 ≥ 1, we introduce

𝒞𝑛 =
{︂
𝑢 ∈ 𝒞 : 𝐷𝑢 · 𝑉 ≥ 1

𝑛
and ‖𝑢‖𝐶2,𝛼(𝐵1∖𝐵𝜖) ≤ 𝑛

}︂
.

Suppose 𝒞𝑁0 ̸= ∅, for some 𝑁0 ≥ 1. Given any 1 ≤ 𝑝 <∞, the functional 𝐹𝑝 : 𝒞𝑛 → R, 𝑛 ≥ 𝑁0, defined by

𝑢→ 𝐹𝑝(𝑢) =
∫︁
𝐵1∖𝐵𝜖

(︃
|𝐷𝑢|2 + |𝑉 |2

𝐷𝑢 · 𝑉

)︃𝑝
d𝑥

is strictly convex, continuous, and attains its infimum on 𝒞𝑛 at a unique minimizer. If the unique minimizer,
𝑢, lies in int(𝒞𝑛)5, then it satisfies the associated Euler–Lagrange equation

div

⎛⎝(︃ |𝐷𝑢|2 + |𝑉 |2

𝐷𝑢 · 𝑉

)︃𝑝−1(︃
2𝐷𝑢
𝐷𝑢 · 𝑉

− |𝐷𝑢|2 + |𝑉 |2

(𝐷𝑢 · 𝑉 )2
𝑉

)︃⎞⎠ = 0 in 𝐵1 ∖𝐵𝜖, (4.1)

and in the case 𝒞 = 𝒞𝜃, the additional boundary condition(︃
2𝐷𝑢
𝐷𝑢 · 𝑉

− |𝐷𝑢|2 + |𝑉 |2

(𝐷𝑢 · 𝑉 )2
𝑉

)︃
· 𝑥
|𝑥|

= 0 on 𝐶𝜖. (4.2)

Conversely, if there exists a solution to (4.1) (and (4.2) in case 𝒞 = 𝒞𝜃) which lies in 𝒞 ∩{︀
𝐷𝑢 · 𝑉 > 0 on 𝐵1 ∖𝐵𝜖

}︀
, then, for some 𝑁 ≥ 1, this is the unique minimizer of 𝐹𝑝 in 𝒞𝑛, for any 𝑛 ≥ 𝑁 .

Consequently this 𝑢 is also the unique minimizer of 𝐹𝑝 in 𝒞 ∩
{︀
𝐷𝑢 · 𝑉 > 0 on 𝐵1 ∖𝐵𝜖

}︀
.

4The space 𝐶∞
(︀
𝐵1 ∖𝐵𝜖; R/2𝜋Z

)︀
is defined as

{︀
𝑢 ∈ 𝐶1

(︀
𝐵1 ∖𝐵𝜖; R/2𝜋Z

)︀
: 𝐷𝑢 ∈ 𝐶∞

(︀
𝐵1 ∖𝐵𝜖; R2

)︀}︀
. Similarly

𝐶2,𝛼
(︀
𝐵1 ∖𝐵𝜖; R/2𝜋Z

)︀
=
{︀
𝑢 ∈ 𝐶1

(︀
𝐵1 ∖𝐵𝜖; R/2𝜋Z

)︀
: 𝐷𝑢 ∈ 𝐶1,𝛼

(︀
𝐵1 ∖𝐵𝜖; R2

)︀}︀
.

5The interior is formed relative to 𝒞𝜓 or 𝒞𝜃 with the 𝐶2,𝛼 topology, respectively.
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For the proof of Proposition 4.1 we shall need the following lemma.

Lemma 4.2. For any 1 ≤ 𝑝 <∞, and any 𝐴 > 0, the function 𝐺𝑝[𝐴] : (0,∞)× R → R+, given by

(𝑥, 𝑦) →
(︂
𝐴

𝑥
+
𝑥

𝐴
+
𝑥

𝐴

(︁𝑦
𝑥

)︁2
)︂𝑝

is convex. Furthermore,

𝐺𝑝[𝐴](𝑥, 𝑦)− 2𝐴4

(𝐴2 +𝑀2)3
(︀
𝑥2 + 𝑦2

)︀
is convex on 𝐵𝑀 =

{︀
(𝑥, 𝑦) : 𝑥2 + 𝑦2 < 𝑀2

}︀
.

Proof. The function 𝑥→ 𝐴
𝑥 + 𝑥

𝐴 is strictly convex and positive valued on (0,∞)×R. The map (𝑥, 𝑦) → 1
𝐴
𝑦2

𝑥 is
convex and positive on (0,∞) × R. Indeed, its Hessian has eigenvalues 0 and 2

𝐴
𝑥2+𝑦2

𝑥3 . The sum of two convex
(and positive valued) functions is convex (and positive valued), and the composition of it with 𝑧 → 𝑧𝑝, a
monotonically increasing and convex function on (0,∞), results in a convex (positive valued) function.

To establish the second assertion, we compute lower bounds for 𝐷2𝐺𝑝[𝐴]. It is a fact that the lowest eigenvalue
of a symmetric positive definite matrix is bounded below by the quotient of the determinant over the trace. We
compute that for 𝑝 ≥ 1,

det
(︀
𝐷2𝐺𝑝[𝐴]

)︀
tr(𝐷2𝐶𝑝[𝐴])

>
4𝑝
𝑝+ 1

𝐺𝑝[𝐴]
𝐴4

(𝐴2 + 𝑥2 + 𝑦2)3
≥ 4

𝐴4

(𝐴2 + 𝑥2 + 𝑦2)3
·

In particular, on the ball 𝐵𝑀 =
{︀

(𝑥, 𝑦) : 𝑥2 + 𝑦2 < 𝑀2
}︀

we have

𝐷2𝐺𝑝[𝐴](𝑥, 𝑦) >
4𝐴4

(𝐴2 +𝑀2)3
𝐼.

This immediately leads to the second assertion of the lemma. �

We are now ready for the proof of Proposition 4.1.

Proof. Given 𝑢 ∈ 𝒞𝑛, we define

𝑃𝑉 (𝐷𝑢) = 𝐷𝑢 · 𝑉
|𝑉 |

, and 𝑃𝑉 ⊥(𝐷𝑢) = 𝐷𝑢 · 𝐽𝑉
|𝑉 |

·

Then (︃
|𝐷𝑢|2 + |𝑉 |2

𝐷𝑢 · 𝑉

)︃𝑝
=

(︃
|𝑉 |

𝑃𝑉 (𝐷𝑢)
+
𝑃𝑉 (𝐷𝑢)
|𝑉 |

+
𝑃𝑉 (𝐷𝑢)
|𝑉 |

(︂
𝑃𝑉 ⊥(𝐷𝑢)
𝑃𝑉 (𝐷𝑢)

)︂2
)︃𝑝

= 𝐺𝑝[ |𝑉 | ](𝑃𝑉 (𝐷𝑢), 𝑃𝑉 ⊥(𝐷𝑢)).

Note that 𝒞𝑁0 ̸= ∅ implies inf|𝑉 | > 0. On 𝒞𝑛, |𝑃𝑉 (𝐷𝑢)|2 + |𝑃𝑉 ⊥(𝐷𝑢)|2 ≤ 𝑛2, and therefore for any 𝑢, 𝑣 ∈ 𝒞𝑛,
𝑛 ≥ 𝑁0, and any 𝜏 ∈ [0, 1]

𝐺𝑝[ |𝑉 | ](𝑃𝑉 (𝐷(𝜏𝑢+ (1− 𝜏)𝑣)), 𝑃𝑉 ⊥(𝐷(𝜏𝑢+ (1− 𝜏)𝑣)))
≤ 𝜏𝐺𝑝[ |𝑉 | ](𝑃𝑉 (𝐷𝑢), 𝑃𝑉 ⊥(𝐷𝑢)) + (1− 𝜏)𝐺𝑝[ |𝑉 | ](𝑃𝑉 (𝐷𝑣), 𝑃𝑉 ⊥(𝐷𝑣))

− 𝜏(1− 𝜏)𝐾|𝐷(𝑢− 𝑣)|2,
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with

𝐾 =
2 inf|𝑉 |4(︁

𝑛2 + sup|𝑉 |2
)︁3 > 0.

For 𝑢, 𝑣 ∈ 𝒞𝑛, and 𝜏 ∈ [0, 1], we thus get

𝐹𝑝(𝜏𝑢+ (1− 𝜏)𝑣) ≤ 𝜏𝐹𝑝(𝑢) + (1− 𝜏)𝐹𝑝(𝑣)− 𝜏(1− 𝜏)𝐾
∫︁
𝐵1∖𝐵𝜖

|𝐷(𝑢− 𝑣)|2 d𝑥,

and so 𝐹𝑝 is strictly convex on 𝒞𝑛. In regards to continuity, let 𝑢𝑚 be a sequence in 𝒞𝑛 with 𝑢𝑚 → 𝑢 in the 𝐶1

topology. Then the functions
𝑥→ 𝐺𝑝[ |𝑉 | ](𝑃𝑉 (𝐷𝑢𝑚), 𝑃𝑉 ⊥(𝐷𝑢𝑚))(𝑥)

are measurable, non negative, uniformly bounded, and converge pointwise to the function

𝑥→ 𝐺𝑝[ |𝑉 | ](𝑃𝑉 (𝐷𝑢), 𝑃𝑉 ⊥(𝐷𝑢))(𝑥).

Thanks to the Lebesgue Dominated Convergence Theorem, this implies

lim𝐹𝑝(𝑢𝑚) = 𝐹𝑝(𝑢).

Since 𝒞𝑛 is compact with respect to the 𝐶1 topology, the 𝐶1 continuity of 𝐹𝑝 implies the existence of a minimizer.
The convexity of 𝒞𝑛 and the strict convexity of 𝐹𝑝 yields the uniqueness of the minimizer. A computation shows
that for any 𝑢 ∈ 𝒞𝑛, 𝐹𝑝 is Gâteaux-differentiable at 𝑢, and its differential is given by

⟨𝐷𝐹𝑝(𝑢), ℎ⟩ =
∫︁
𝐵1∖𝐵𝜖

𝑝

(︃
|𝐷𝑢|2 + |𝑉 |2

𝐷𝑢 · 𝑉

)︃𝑝−1(︃
2𝐷𝑢
𝐷𝑢 · 𝑉

− |𝐷𝑢|2 + |𝑉 |2

(𝐷𝑢 · 𝑉 )2
𝑉

)︃
·𝐷ℎd𝑥,

for ℎ ∈ 𝐶1. Note that 𝑢 ∈ 𝒞𝑛 is the unique minimizer if and only if for all 𝑣 ∈ 𝒞𝑛 there holds

⟨𝐷𝐹𝑝(𝑢), 𝑣 − 𝑢⟩ ≥ 0. (4.3)

If the minimizer lies in the interior of 𝒞𝑛, (4.3) implies

⟨𝐷𝐹𝑝(𝑢), ℎ⟩ = 0

for all ℎ ∈ 𝐶2,𝛼 ∩ {ℎ = 0 on 𝐶𝜖 and 𝐶1}, if 𝒞 = 𝒞𝜓, and for all ℎ ∈ 𝐶2,𝛼 ∩ {ℎ = 0 on 𝐶1}, if 𝒞 = 𝒞𝜃; in
other words, 𝑢 satisfies the Euler–Lagrange equation (4.1) (or (4.1) and (4.2) when 𝒞 = 𝒞𝜃). Conversely, if
𝑤 ∈ 𝒞 ∩

{︀
𝐷𝑢 · 𝑉 > 0 on 𝐵1 ∖𝐵𝜖

}︀
satisfies (4.1) (and (4.2) if 𝒞 = 𝒞𝜃), then, for some 𝑁 , it lies in 𝒞𝑛 for all

𝑛 ≥ 𝑁 , and it satisfies ⟨𝐷𝐹𝑝(𝑤), 𝑣 − 𝑤⟩ = 0 (in particular ≥ 0) for all 𝑣 ∈ 𝒞𝑛; 𝑤 is thus the unique minimizer
of 𝐹𝑝 in 𝒞𝑛 for any 𝑛 ≥ 𝑁 . It follows immediately that 𝑤 is a minimizer of 𝐹𝑝 in 𝒞 ∩

{︀
𝐷𝑢 · 𝑉 > 0 on 𝐵1 ∖𝐵𝜖

}︀
.

The uniqueness of this minimizer follows from the strict convexity of 𝐹𝑝 on 𝒞𝑛 for any 𝑛. �

Corollary 4.3. A global 𝐶2,𝛼 minimizer (𝜓, 𝜃) of 𝐼𝑝, subject to 𝜓 = − log 2 at |𝑥| = 𝜖, 𝜓 = 0 and 𝜃 = arg at
|𝑥| = 1, and det(𝐷𝜓,𝐷𝜃) > 0 on 𝐵1 ∖𝐵𝜖, satisfies

div

(︃(︃
|𝐷𝜓|2 + |𝐷𝜃|2

det(𝐷𝜓,𝐷𝜃)

)︃𝑝(︃
2𝐷𝜓

|𝐷𝜓|2 + |𝐷𝜃|2
+

𝐽𝐷𝜃

det(𝐷𝜓,𝐷𝜃)

)︃)︃
= 0,

and

div

(︃(︃
|𝐷𝜓|2 + |𝐷𝜃|2

det(𝐷𝜓,𝐷𝜃)

)︃𝑝(︃
2𝐷𝜃

|𝐷𝜓|2 + |𝐷𝜃|2
− 𝐽𝐷𝜓

det(𝐷𝜓,𝐷𝜃)

)︃)︃
= 0.

Furthermore, (︃
|𝐷𝜓|2 + |𝐷𝜃|2

det(𝐷𝜓,𝐷𝜃)
𝐽𝐷𝜓 − 2𝐷𝜃

)︃
· 𝑥
|𝑥|

= 0 on {|𝑥| = 𝜖}.
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Figure 1. Illustration of the conclusions of Corollary 4.4.

Proof. The 𝜓 component of this global minimizer automatically lies in int(𝒞𝑛) with 𝒞 = 𝒞𝜓 and 𝑉 = −𝐽𝐷𝜃 for
some 𝑛, and it is a minimizer of 𝐹𝑝 in 𝒞𝑛. The first equation of this corollary is now simply the Euler–Lagrange
(4.1) for such a minimizer. Similarly, the 𝜃 component of this global minimizer lies in int(𝒞𝑛) with 𝒞 = 𝒞𝜃 and
𝑉 = 𝐽𝐷𝜓 for some 𝑛, and is a minimizer of 𝐹𝑝 in 𝒞𝑛. The two last equations of this corollary are simply the
Euler–Lagrange (4.1) and the boundary condition (4.2) satisfied by such a minimizer. �

Corollary 4.4. Let 𝑓𝑝 be the function introduced in Proposition 3.1. The transformation 𝑥 → 𝑓𝑝(|𝑥|) 𝑥
|𝑥| , or

rather the function pair (𝑓𝑝(|𝑥|), arg(𝑥)) satisfies the three Euler–Lagrange equations from Corollary 4.3. As a
consequence

𝐼𝑝

(︂
𝑓𝑝(|𝑥|)

𝑥

|𝑥|

)︂
≤ 𝐼𝑝

(︂
𝜓(𝑥)

𝑥

|𝑥|

)︂
, (4.4)

for any 𝜓 ∈ 𝒞𝜓 ∩
{︁
𝐷𝜓(𝑥) · 𝑥

|𝑥| > 0 on 𝐵1 ∖𝐵𝜖
}︁
. The last two Euler–Lagrange equations from Corollary 4.3 are

actually satisfied by any pair (𝑓(|𝑥|), arg(𝑥)), with 𝑓 ∈
{︀
𝑓 ∈ 𝐶2,𝛼([𝜖, 1]) : 𝑓 ′ > 0, 𝑓(𝜖) = − log 2, 𝑓(1) = 0

}︀
. As a

consequence

𝐼𝑝

(︂
𝑓𝑝(|𝑥|)

𝑥

|𝑥|

)︂
≤ 𝐼𝑝

(︂
𝑓(|𝑥|) 𝑥

|𝑥|

)︂
≤ 𝐼𝑝(𝑓(|𝑥|)𝜑(𝑥)), (4.5)

for any 𝜑(𝑥) = (cos(𝜃(𝑥)), sin(𝜃(𝑥))𝑡, with 𝜃 ∈ 𝒞𝜃 ∩
{︁
𝐷𝜃 · 𝐽 𝑥

|𝑥| > 0 on 𝐵1 ∖𝐵𝜖
}︁

and any 𝑓 ∈{︀
𝑓 ∈ 𝐶2,𝛼([𝜖, 1]) : 𝑓 ′ > 0, 𝑓(𝜖) = − log 2, 𝑓(1) = 0

}︀
.

Proof. Direct calculations verify that the first Euler–Lagrange equation from Corollary 4.3 is satisfied by the
pair (𝑓𝑝(|𝑥|), arg(𝑥)), and that the last two Euler–Lagrange equations from Corollary 4.3 are satisfied by any pair
(𝑓(|𝑥|), arg(𝑥)), with 𝑓 ∈

{︀
𝑓 ∈ 𝐶2,𝛼([𝜖, 1]) : 𝑓 ′ > 0, 𝑓(𝜖) = − log 2, 𝑓(1) = 0

}︀
. The inequality (4.4) now follows

immediately from the last statement in Proposition 4.1 in the case 𝒞 = 𝒞𝜓 and 𝑉 = −𝐽𝐷 arg(𝑥) = 1
|𝑥|

𝑥
|𝑥| . The

first inequality in (4.5) is a direct consequence of (4.4). The second inequality follows from the last statement
in Proposition 4.1 in the case 𝒞 = 𝒞𝜃 and 𝑉 = 𝐽𝐷𝑓(|𝑥|) = 𝑓 ′(|𝑥|)𝐽 𝑥

|𝑥| . �

5. Optimal cloaks for simply connected domains

So far our study has focused on the situation where the cloaks are constructed from diffeomorphisms of the
classical annulus 𝐵1 ∖𝐵𝜖 to the classical annulus 𝐵1 ∖𝐵 1

2
, and the corresponding push-forwards of the identity

matrix. In a more general setting, one could consider instead three simply connected domains, 𝜔𝜖 ⊂ 𝜔 1
2
⊂ Ω
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Figure 2. Cloaking by mapping where Ω = sinh(𝐵1), with 𝜖 = 1/10.

containing the origin (where 𝜔𝜖 is comparable to 𝐵𝜖) and a bijective diffeomorphism Ψ𝜖 : Ω ∖ 𝜔𝜖 → Ω ∖ 𝜔 1
2
,

such that Ψ𝜖 = 𝐼𝑑 on 𝜕Ω and Ψ𝜖(𝜕𝜔𝜖) = 𝜕𝜔 1
2
. As before, the material parameters of the cloak would be the

push-forward of 𝐼 by Ψ𝜖. Any smooth globally minimizing transformation would still satisfy the Euler–Lagrange
equations of Corollary 4.3, if we continue to use the energy 𝐼𝑝. We note that the convexity properties estab-
lished in Proposition 4.1 suggest a possible numerical strategy to search for a minimizer, namely: alternatingly
performing a minimization with respect to angle (for fixed logarithmic amplitude) and a minimization with
respect to logarithmic amplitude (for fixed angle).

The goal of this section is to show that for general geometries one should (naturally) not expect the optimal
transformations to be radial. As we demonstrate this, we also derive a process for the construction of optimal
transformations (based on a slightly revised energy). Suppose Ω is a bounded, smooth, simply connected domain
containing the origin. Due to the Riemann Mapping Theorem, there exists a unique (complex) analytic map Ψ
such that Ψ(0) = 0,𝐷Ψ(0) = 𝑎𝐼 for some 𝑎 > 0 and Ψ is a one-to-one mapping from Ω onto 𝐵1. By the maximum
modulus principle min{|𝑥| : 𝑥 ∈ Ω} ≤ 1/𝑎 ≤ max{|𝑥| : 𝑥 ∈ Ω}. Set 𝜔𝜖 = Ψ−1(𝐵𝜖), and 𝜔 1

2
= Ψ−1

(︁
𝐵 1

2

)︁
. By

construction, 0 ∈ 𝜔𝜖 ⊂ 𝜔 1
2
⊂ Ω. Provided 𝜖 is small enough, 𝜔𝜖 is approximately 𝐵 𝜖

𝑎
, in the sense that

∀𝑥 ∈ 𝐶𝜖
⃒⃒⃒
Ψ−1(𝑥)− 𝑥

𝑎

⃒⃒⃒
≤ 1

2
max
𝐵1/2

⃒⃒
𝐷2Ψ−1

⃒⃒
𝜖2.

Given Φ𝜖 ∈ 𝐶1
(︁
𝐵1 ∖𝐵𝜖;𝐵1 ∖𝐵 1

2

)︁
a (possibly optimal) bijective diffeomorphism with Φ𝜖|𝐶1

= 𝐼𝑑, and Φ𝜖(𝐶𝜖) =
𝐶 1

2
, we define

Ψ𝜖 := Ψ−1 ∘ Φ𝜖 ∘Ψ. (5.1)

Figure 2 shows some of the “rays” of the map Ψ𝜖 (Φ𝜖 being radial) in the case Ψ−1 = sinh, Ω = sinh(𝐵1),
𝜔 1

2
= sinh

(︁
𝐵 1

2

)︁
and 𝜔𝜖 = sinh(𝐵𝜖). The green curves on the left are mapped to proper subsets of themselves,

shown as red curves on the right. Clearly the transformation Ψ𝜖 is no longer radial.
For any 𝑥 ∈ 𝜕Ω, Ψ(𝑥) lies on 𝐶1, and thus Φ𝜖 ∘ Ψ(𝑥) = Ψ(𝑥). It follows that Ψ𝜖(𝑥) = 𝑥, in other words:

Ψ𝜖 = 𝐼𝑑 on 𝜕Ω. Similarly, we obtain that Ψ𝜖(𝜕𝜔𝜖) = 𝜕𝜔 1
2
. (Ψ𝜖)⋆[𝐼] therefore produces an approximate cloak
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(with same approximate invisibility as that of (Φ𝜖)⋆[𝐼]). From composition of transformations we obtain

(Ψ𝜖)⋆[𝐼] =
(︀
Ψ−1

)︀
⋆
[(Φ𝜖)⋆[Ψ⋆[𝐼]]].

Lemma 5.1. There holds
trace(Ψ𝜖)⋆[𝐼] = (trace(Φ𝜖)⋆[𝐼]) ∘Ψ.

Proof. Since Ψ is conformal, 𝐷Ψ = 𝛾𝑄 with 𝛾 a positive scalar and 𝑄 an orthogonal matrix. We are in 2d, and
so this implies

Ψ⋆[𝐼](𝑦) =
(𝐷Ψ)(𝐷Ψ)𝑇

|det𝐷Ψ|
∘Ψ−1(𝑦) = 𝐼.

Similarly,

(︀
Ψ−1

)︀
⋆
[𝐴](𝑥) =

(︀
𝐷Ψ−1

)︀
𝐴
(︀
𝐷Ψ−1

)︀𝑇
|det𝐷Ψ−1|

∘Ψ(𝑥)

= 𝑄𝑇 (𝑥)𝐴(Ψ(𝑥))𝑄(𝑥),

where we have used that
(︀
𝐷Ψ−1

)︀
(Ψ(𝑥)) = (𝐷Ψ)−1(𝑥) = 1

𝛾𝑄
𝑇 (𝑥). In summary, we conclude that (Ψ𝜖)⋆[𝐼] is

given by the formula
(Ψ𝜖)⋆[𝐼](𝑥) = 𝑄𝑇 (𝑥)(Φ𝜖)⋆[𝐼](Ψ(𝑥))𝑄(𝑥),

and the statement about the traces follows. �

If Φ𝜖 is a transformation which minimizes the anisotropy of (Φ𝜖)⋆[𝐼], using the measure 𝐼𝑝 for some 1 ≤ 𝑝 <∞,
then it follows immediately from Lemma 5.1 above that Ψ𝜖 minimizes anistropy of (Ψ𝜖)⋆[𝐼], using the slightly
modified measure

𝐼𝑝(Ψ𝜖) =
∫︁

Ω∖𝜔𝜖

(trace(Ψ𝜖)*[𝐼])𝑝(Ψ𝜖(𝑥)) |det Ψ(𝑥)|d𝑥.

A similar statement holds for 𝑝 = ∞. In that case there is no change in the measure of anisotropy.
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