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ON OPTIMAL CLOAKING-BY-MAPPING TRANSFORMATIONS

YVES CAPDEBOSCQ AND MICHAEL S. VOGELIUS

Abstract. A central ingredient of cloaking-by-mapping is the diffeomorphisn
which transforms an annulus with a small hole into an annulus with a finite
size hole, while being the identity on the outer boundary of the annulus. The
resulting meta-material is anisotropic, which makes it difficult to manufacture.
The problem of minimizing anisotropy among radial transformations has been
studied in [4]. In this work, as in [4], we formulate the problem of minimizing
anisotropy as an energy minimization problem. Our main goal is to provide
strong evidence for the conjecture that for cloaks with circular boundaries,
non-radial transformations do not lead to lower degree of anisotropy. In the
final section, we consider cloaks with non-circular boundaries and show that in
this case, non-radial cloaks may be advantageous, when it comes to minimizing
anisotropy.

1. Introduction

A central ingredient in the construction of (approximate) cloaks by the passive
cloaking technique, known as “cloaking by mapping”, is the diffeomorphism, which
transforms an annulus with a small hole into an annulus with a finite size hole,
and which is the identity on the outer boundary of the annulus. The push-forward
of the background coefficient (say, the identity matrix) with the diffeomorphism
represents the meta-material needed for the cloak, and the finite size hole is the
area that may be used as a “hiding place” [6]. The fact that the diffeomorphism
is the identity on the outer boundary ensures that the perturbation in the “far
field” is that corresponding to a small inhomogeneity. The corresponding “lack of
cloaking”/visibility can be estimated by the volume of the small inhomogeneity.
The required meta-material is anisotropic, which presents a problem when it comes
to actual manufacture of the cloak. Typically a radial affine transformation has
been used [2, 3, 6, 7, 8], however, a very natural question arises, namely : “are
there transformations that lead to lower degree of anisotropy than the radial affine
transformation? ” In [4] it was shown that there are indeed better radial transfor-
mations than the affine, when it comes to minimizing anisotropy. In that paper the
meta-material obtained by “optimal radial transformation” is also shown to be quite
related to meta-materials obtained by other cloak enhancement strategies, employ-
ing additional layers [1, 5]. The focus of this note is to produce very strong evidence
for the conjecture that when the cloak takes the shape of a classical annulus, non-
radial transformations do not help in reducing the degree of anisotropy. Like in
[4], we formulate the problem of minimizing anisotropy as a variational problem
(minimization of an appropriate energy). Corollary 7 summarizes our main results.
Broadly speaking, we show that

• There exists a radial transformation, which is a stationary point for the
energy.
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• This radial transformation has smaller energy than all other transforma-
tions with “directional field” x

|x| .

• If the amplitude is kept fixed and radial, then any change in the “directional
field” away from x

|x| will increase energy.

In the final section of this note we consider the case when the outer (and inner)
boundary of the cloak are not circles, and we illustrate how the optimal radial trans-
formation for the circular case translates into a non-radial (optimal) transformation
for a non-circular cloak.

2. Preliminaries

For r > 0 we set

Br =
{

x ∈ R
2 : |x| < r

}

, and Cr =
{

x ∈ R
2 : |x| = r

}

.

Given ǫ > 0, we shall use the notation Φ for a bijective diffeomorphism B1 \Bǫ →

B1 \B 1
2

with Φ ∈ C1
(

B1 \Bǫ;B1 \B 1
2

)

, and Φ−1 ∈ C1
(

B1 \B 1
2
;B1 \Bǫ

)

. We

furthermore impose that

Φ|C1
= Id , and Φ (Cǫ) = C 1

2
.

One such transformation is the radial affine transformation, given by

x→

(

|x| − 1

2(1− ǫ)
+ 1

)

x

|x|
.

The push-forward of the identity matrix with the diffeomorphism Φ is given by

Φ* [I] (Φ(x)) =
DΦDΦT

|detDΦ|
(x) .

This is a positive definite matrix, and since we are in two dimensions, with deter-
minant 1. Let 0 < λ1(x) ≤ 1 ≤ λ2(x) denote the eigenvalues of Φ* [I] (Φ(x)). A
natural measure of the degree of anisotropy of Φ* [I] at the point Φ(x) is

|λ1(x) − 1|+ |λ2(x)− 1| = λ2(x) − λ1(x) =

√

(λ2(x)− λ1(x))
2

=

√

(λ1(x) + λ2(x))
2 − 4 .

To minimize this we must minimize traceΦ* [I] (Φ(x)). As a way of minimizing the
aggregate anisotropy we shall seek to minimize1

Ip(Φ) =

∫

B1\Bǫ

(traceΦ* [I])
p (Φ(x)) dx

for a fixed choice of 1 ≤ p <∞, and

I∞(Φ) = max
x∈B1\Bǫ

traceΦ* [I] (Φ(x)) = max
y∈B1\B 1

2

traceΦ* [I] (y) ,

corresponding to p = ∞. Note that λ is an eigenvalue for Φ* [I] (Φ(x)), with
eigenvector v, if and only if λ is an eigenvalue for

DΦTDΦ

|detDΦ|
(x) ,

1In a slight deviation from [4], the domain of integration of the energy functional is B1 \ Bǫ,
not the transformed domain B1 \B 1

2

.
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with eigenvector DΦT (x)v, and thus

traceΦ* [I] (Φ(x)) = trace

[

DΦTDΦ

|detDΦ|

]

(x) .

Proposition 1. Let Φ be represented in terms of its polar decomposition

Φ = exp(ψ)φ ,

where the directional field φ is in C1(B1 \ Bǫ;S1) and logarithmic amplitude ψ is
in C1(B1 \Bǫ;R). Then

trace
(

DΦTDΦ
)

= |Φ|2
(

|Dφ|2 + |Dψ|2
)

.

Proof. Differentiating we find

DΦ = exp(ψ)φDψT + exp(ψ)Dφ .

Since φTφ = 1, we have

φTDφ = 0 , and DφTφ = 0 ,

and therefore

DΦTDΦ = exp(2ψ)
(

DψφT +DφT
) (

φDψT +Dφ
)

= |Φ|2
(

DφTDφ+DψDψT
)

.

By taking the trace we arrive at the desired conclusion. �

It is well known that φ, being in C1
(

B1 \Bǫ;S1
)

, admits a canonical lift θ =

arg (φ) ∈ C1
(

B1 \Bǫ;R/2πZ
)

2 such that

φ = (cos θ, sin θ)
T
.

We write

J =

[

0 −1
1 0

]

, er =
x

|x|
, and eθ = J

x

|x|
.

Proposition 2. The matrix Dφ has rank one; furthermore

Range(Dφ) = Span(φ)⊥ , and Ker(Dφ) = Span(Dθ)⊥ .

We denote by D̂ψ,Dθ the angle defined by

cos
(

D̂ψ,Dθ
)

=
1

|Dψ| |Dθ|
Dψ ·Dθ , and

sin
(

D̂ψ,Dθ
)

=
1

|Dψ| |Dθ|
det (Dψ,Dθ) ·

Then

traceΦ* [I] (Φ(x)) =
1

∣

∣

∣
sin
(

D̂ψ,Dθ
)∣

∣

∣

(

|Dθ|

|Dψ|
+

|Dψ|

|Dθ|

)

(x) ≥

(

|Dθ|

|Dψ|
+

|Dψ|

|Dθ|

)

(x)

with equality only when Dψ ·Dθ = 0.

2A function θ : B1 \ Bǫ → R/2πZ is an element of C1
(

B1 \Bǫ;R/2πZ
)

iff given any point

x ∈ B1 \ Bǫ there exists an open neighborhood ωx of x, relative to B1 \ Bǫ, and a repre-
sentative of θ (mod 2π) that lies in C1(ωx;R). Notice that the globally defined derivative of

θ ∈ C1
(

B1 \Bǫ;R/2πZ
)

, Dθ, lies in C0
(

B1 \Bǫ;R2
)

.
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Proof. We calculate
Dφ = (Jφ)DθT ,

which immediately leads to the statements about Range(Dφ) and Ker(Dφ), and
which also gives

Dθ = (Dφ)T (Jφ) .

As a consequence

detDΦ = det
(

φDψT + (Jφ)DθT
)

exp (2ψ)

= det (Dψ,Dθ) |Φ|2

= |Dθ| |Dψ| sin
(

D̂ψ,Dθ
)

|Φ|2 .

Here we have used that detDΦ 6= 0, since Φ is a bijective diffeomorphism of B1 \Bǫ

onto B1 \B 1
2
; consequently det (Dψ,Dθ) 6= 0 and |Dψ| |Dθ| > 0 and sin

(

D̂ψ,Dθ
)

(and D̂ψ,Dθ) is well-defined. It now follows that

traceΦ* [I] (Φ(x)) =

(

|Dθ|2 + |Dψ|2
)

|Dθ| |Dψ|
∣

∣

∣sin
(

D̂ψ,Dθ
)∣

∣

∣

(x)

=
1

∣

∣

∣sin
(

D̂ψ,Dθ
)∣

∣

∣

(

|Dθ|

|Dψ|
+

|Dψ|

|Dθ|

)

(x) ≥
|Dθ|

|Dψ|
(x) +

|Dψ|

|Dθ|
(x) ,

with equality if and only of Dψ is normal to Dθ, and therefore in the kernel of
Dφ. �

3. The radial transformation case

For the general case of a radial transformation φ = x
|x| , and ψ = f (|x|) . Then

Dθ = 1
|x|J

x
|x| and Dψ = f ′ (|x|) x

|x| . The transformation

Φ = exp(ψ)φ

is a bijective C1 diffeomorphism of B1 \Bǫ onto B1 \B 1
2

with

Φ|C1
= Id , and Φ (Cǫ) = C 1

2
,

if and only if

f(ǫ) = − log 2 , f(1) = 0 , and f ∈ C1([ǫ, 1]) with f ′(r) > 0 for all r ∈ [ǫ, 1].

In this case, sin
(

D̂ψ,Dθ
)

= 1, and

traceΦ* [I] (Φ(x)) =
1

|x| f ′ (|x|)
+ |x| f ′ (|x|) .

Proposition 3. Suppose 1 ≤ p <∞, and let Ip denote the energy

Ip (f) :=

∫

B1\Bǫ

(traceΦ* [I])
p (Φ(x))dx = 2π

∫ 1

ǫ

(

1

rf ′ (r)
+ rf ′ (r)

)p

rdr ,

with values in (0,∞), defined on the convex set

C =

{

f ∈ C1 ([ǫ, 1]) : f ′ > 0 , f (ǫ) = − log 2, f (1) = 0

}

.

Then
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• Ip has a unique minimizer, fp, in C.
• fp lies in C∞([ǫ, 1]), and is the unique solution in C to the Euler–Lagrange

equation
(

(

1

rf ′
p (r)

+ rf ′
p (r)

)p−1
(

−
1

(

f ′
p

)2 + r2

))′

= 0 in [ǫ, 1] . (E-L)

Proof. We start by establishing (part of) the last statement concerning the existence
of a unique solution to the Euler–Lagrange equation (E-L). By integration, any C1

solution to (E-L) must satisfy

G(rf ′
p(r)) =

C

r2

for some constant C, with the function G : R+ → R given by

G(t) =

(

1

t
+ t

)p−1 (

−
1

t2
+ 1

)

.

Now suppose 1 < p < ∞. A simple calculation shows that G is monotonically
increasing, with G(1) = 0, limt→0+ G(t) = −∞ and limt→∞G(t) = ∞. G−1 : R →
R+ is thus well defined, and fp has the form

fp(r) =

∫ r

ǫ

f ′
p(t)dt− log 2 =

∫ r

ǫ

t−1G−1

(

C

t2

)

dt− log 2 ,

for some constant C. The constant C must be chosen so that fp satisfies the

boundary condition fp(1) = 0. As C →
∫ 1

ǫ
t−1G−1

(

C
t2

)

dt − log 2 is continuous
and monotonically increasing, with

∫ 1

ǫ

t−1G−1

(

C

t2

)

dt− log 2 →

{

| log ǫ| − log 2 > 0 when C → 0

− log 2 < 0 when C → −∞
,

it follows immediately that there exists a unique value C0 < 0 for which the bound-
ary condition fp(1) = 0 is satisfied. This shows the uniqueness of the solution to
the Euler–Lagrange equation in C. Furthermore, the formula

fp(r) =

∫ r

ǫ

t−1G−1

(

C0

t2

)

dt− log 2

clearly gives rise to a C∞ function in C which solves the equation (E-L), thus
establishing the existence. A slightly modified argument works for p = 1, and in
that case we find the (even more) explicit formula

f1 : r → log





3r +
√

9r2 + 16 (2− ǫ)
(

1
2 − ǫ

)

4 (2− ǫ)



 .

We now proceed to show that fp is the unique minimizer of Ip in C. Since the

function (0,∞) ∋ x →
(

1
x
+ x
)p

∈ (0,∞) is strictly convex, it follows immediately
that Ip is strictly convex on C. Now suppose there existed a function g ∈ C with
Ip(g) < Ip(fp). The convexity of the functional Ip implies that

d

dτ
|τ=0Ip(fp + τ(g − fp)) ≤ Ip(g)− Ip(fp) < 0 ,
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or
∫ 1

ǫ

(

1

rf ′ (r)
+ rf ′ (r)

)p−1
(

−
1

(

f ′
p

)2 + r2

)

(g − fp)
′dr < 0 ,

in contradiction with the fact that fp is a solution to the Euler-Lagrange equation
(E-L). This verifies that fp is a minimizer of Ip in C. The fact that the minimizer
is unique follows immediately from the strict convexity of Ip. �

Remark. The logarithmic amplitude f1 gives rise to the transformation

Φ1 =





3 |x|+
√

9 |x|2 + 16 (2− ǫ)
(

1
2 − ǫ

)

4 (2− ǫ)





x

|x|
.

We compute

I1(f1) = 2π

∫ 1

ǫ

(

1

f ′
1 (r)

+ r2f ′
1 (r)

)

dr = 2π

(

1− ǫ2 +
2

3
(2ǫ− 1)2

)

.

By comparison, the radial affine transformation

Φra =

(

|x| − 1

2(1− ǫ)
+ 1

)

x

|x|
,

with logarithmic amplitude

fra(r) = log

(

r − 1

2(1− ǫ)
+ 1

)

.

has

I1 (fra) = 2π

∫ 1

ǫ

(

1

f ′
ra (r)

+ r2f ′
ra (r)

)

dr = 2π
(

1− ǫ2 + ln 2 (2ǫ− 1)2
)

≥ I1(f1) .

Equality occurs only when ǫ = 1
2 (when the associated transformations are both

the identity). �

Turning to maximum norm, we consider the minimization

I∞ = inf
f∈C

sup
[ǫ,1]

(

1

rf ′ (r)
+ rf ′ (r)

)

.

We note that

I∞ = inf
K>1

{

1

K
+K : ∃f ∈ C with sup

r∈[ǫ,1]

{

1

rf ′ (r)
+ rf ′ (r)

}

≤
1

K
+K

}

≥ inf
K>1

{

1

K
+K : ∃f ∈ C with

1

K
|log r| ≤ |f (r)|

}

≥ inf

{

1

K
+K :

|log ǫ|

log 2
≤ K

}

=
log 2

|log ǫ|
+

|log ǫ|

log 2
.

Here we have used that, if f ∈ C and if K > 1, then

1

rf ′ (r)
+ rf ′ (r) ≤

1

K
+K in (ǫ, 1) =⇒

1

Kr
≤ f ′ (r) ≤

K

r
in (ǫ, 1)

=⇒
1

K
|log r| ≤ |f(r)| ≤ K |log r| in (ǫ, 1) .
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On the other hand, the function

(3.1) f∞(r) =
log 2

| log ǫ|
log r

lies in C, and has I∞(f∞) = log 2
| log ǫ| +

| log ǫ|
log 2 . It now follows immediately that f∞ is

a minimizer of I∞ in C. The following graph shows the logarithmic amplitudes fra
(dashed orange line), f1, f2, f3, f5, f8, f13 and f∞ (solid lines from red to blue),
for ǫ = 1/100.

4. Optimality of radial transforms

We now return to the general, two dimensional case. By introducing u = ψ and
V = −JDθ in the formula

traceΦ* [I] (Φ(x)) =
|Dψ|2 + |Dθ|2

det (Dψ,Dθ)
(x) ,

we obtain

traceΦ* [I] (Φ(x)) =
|Du|2 + |V |2

Du · V
(x) .

Similarly, by introducing u = θ and V = JDψ, we obtain

traceΦ* [I] (Φ(x)) =
|Du|2 + |V |2

Du · V
(x) .

We thus notice that the problem of minimizing

Ip(Φ) =

∫

B1\Bǫ

(traceΦ* [I])
p (Φ(x))dx

with respect to ψ given θ, and with respect to θ, given ψ merely differs by a change
of the convex test set for u (essentially relating to boundary conditions). Let
arg ∈ C∞(B1 \Bǫ;R/2πZ)

3 denote the standard argument function. We introduce
the convex sets

Cθ = C2,α(B1 \Bǫ;R/2πZ) ∩ { u|C1
= arg } and

Cψ = C2,α(B1 \Bǫ;R) ∩ { u|Cǫ = − log 2 , u|C1
= 0 } ,

3The space C∞(B1 \ Bǫ;R/2πZ) is defined as {u ∈ C1(B1 \ Bǫ;R/2πZ) : Du ∈ C∞(B1 \

Bǫ;R2) }. Similarly C2,α(B1\Bǫ;R/2πZ) = {u ∈ C1(B1\Bǫ;R/2πZ) : Du ∈ C1,α(B1\Bǫ;R2) }
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for some fixed α > 0.

Proposition 4. Given C = Cψ and a fixed V ∈ C0
(

B1 \Bǫ;R2
)

, or C = Cθ and a

fixed V ∈ C0
(

B1 \Bǫ;R2
)

, and given n ≥ 1, we introduce

Cn =

{

u ∈ C : Du · V ≥
1

n
and ‖u‖

C2,α(B1\Bǫ) ≤ n

}

.

Suppose CN0
6= ∅, for some N0 ≥ 1. Given any 1 ≤ p < ∞, the functional

Fp : Cn → R, n ≥ N0, defined by

u→ Fp(u) =

∫

B1\Bǫ

(

|Du|2 + |V |2

Du · V

)p

dx

is strictly convex, continuous, and attains its infimum on Cn at a unique minimizer.
If the unique minimizer, u, lies in int(Cn)

4, then it satisfies the associated Euler-
Lagrange equation

(4.1) div





(

|Du|2 + |V |2

Du · V

)p−1(

2Du

Du · V
−

|Du|2 + |V |2

(Du · V )2
V

)



 = 0 in B1 \Bǫ ,

and in the case C = Cθ, the additional boundary condition

(4.2)

(

2Du

Du · V
−

|Du|2 + |V |2

(Du · V )
2 V

)

·
x

|x|
= 0 on Cǫ .

Conversely, if there exists a solution to equation (4.1) (and equation (4.2) in case
C = Cθ) which lies in C ∩ {Du · V > 0 on B1 \Bǫ }, then, for some N ≥ 1, this is
the unique minimizer of Fp in Cn, for any n ≥ N . Consequently this u is also the

unique minimizer of Fp in C ∩ {Du · V > 0 on B1 \Bǫ }.

For the proof of Proposition 4 we shall need the following lemma.

Lemma 5. For any 1 ≤ p <∞, and any A > 0, the function Gp [A] : (0,∞)×R →
R+, given by

(x, y) →

(

A

x
+
x

A
+
x

A

( y

x

)2
)p

is convex. Furthermore,

Gp [A] (x, y)−
2A4

(A2 +M2)
3

(

x2 + y2
)

is convex on BM = {(x, y) : x2 + y2 < M2 }.

Proof. The function x→ A
x
+ x
A

is strictly convex and positive valued on (0,∞)×R.

The map (x, y) → 1
A
y2

x
is convex and positive on (0,∞)×R. Indeed, its Hessian has

eigenvalues 0 and 2
A
x2+y2

x3 . The sum of two convex (and positive valued) functions
is convex (and positive valued), and the composition of it with z → zp, a monotoni-
cally increasing and convex function on (0,∞), results in a convex (positive valued)
function.

To establish the second assertion, we compute lower bounds for D2Gp [A]. It is
a fact that the lowest eigenvalue of a symmetric positive definite matrix is bounded

4The interior is formed relative to Cψ or Cθ with the C2,α topology, respectively.
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below by the quotient of the determinant over the trace. We compute that for
p ≥ 1,

det
(

D2Gp [A]
)

tr (D2Cp [A])
>

4p

p+ 1
Gp [A]

A4

(A2 + x2 + y2)
3 ≥ 4

A4

(A2 + x2 + y2)
3 .

In particular, on the ball BM = {(x, y) : x2 + y2 < M2 } we have

D2Gp [A] (x, y) >
4A4

(A2 +M2)3
I .

This immediately leads to the second assertion of the lemma. �

We are now ready for the proof of Proposition 4.

Proof. Given u ∈ Cn, we define

PV (Du) = Du ·
V

|V |
, and PV ⊥ (Du) = Du ·

JV

|V |
.

Then
(

|Du|2 + |V |2

Du · V

)p

=

(

|V |

PV (Du)
+
PV (Du)

|V |
+
PV (Du)

|V |

(

PV ⊥ (Du)

PV (Du)

)2
)p

= Gp[ |V | ] (PV (Du), PV ⊥(Du)) .

Note that CN0
6= ∅ implies inf |V | > 0. On Cn, |PV (Du)|2 + |PV ⊥ (Du)|2 ≤ n2, and

therefore for any u, v ∈ Cn, n ≥ N0, and any τ ∈ [0, 1]

Gp [ |V | ] (PV (D (τu + (1− τ) v)) , PV ⊥ (D (τu+ (1− τ) v)))

≤ τGp [ |V | ] (PV (Du) , PV ⊥ (Du)) + (1− τ)Gp [ |V | ] (PV (Dv) , PV ⊥ (Dv))

−τ (1− τ)K |D (u− v)|2 ,

with

K =
2 inf |V |4

(

n2 + sup |V |2
)3 > 0 .

For u, v ∈ Cn, and τ ∈ [0, 1], we thus get

Fp (τu + (1− τ) v) ≤ τFp (u)+ (1− τ)Fp (v)− τ (1− τ)K

∫

B1\Bǫ

|D (u− v)|2 dx ,

and so Fp is strictly convex on Cn. In regards to continuity, let um be a sequence
in Cn with um → u in the C1 topology. Then the functions

x→ Gp [ |V | ] (PV (Dum) , PV ⊥ (Dum)) (x)

are measurable, non negative, uniformly bounded, and converge pointwise to the
function

x→ Gp [ |V | ] (PV (Du) , PV ⊥ (Du)) (x) .

Thanks to the Lebesgue Dominated Convergence Theorem, this implies

limFp (um) = Fp (u) .

Since Cn is compact with respect to the C1 topology, the C1 continuity of Fp implies
the existence of a minimizer. The convexity of Cn and the strict convexity of Fp
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yields the uniqueness of the minimizer. A computation shows that for any u ∈ Cn,
Fp is Gâteaux-differentiable at u, and its differential is given by

〈DFp(u), h〉

=

∫

B1\Bǫ

p

(

|Du|2 + |V |2

Du · V

)p−1(

2Du

Du · V
−

|Du|2 + |V |2

(Du · V )
2 V

)

·Dh dx ,

for h ∈ C1. Note that u ∈ Cn is the unique minimizer if and only if for all v ∈ Cn
there holds

(4.3) 〈DFp(u), v − u〉 ≥ 0.

If the minimizer lies in the interior of Cn, equation (4.3) implies

〈DFp(u), h〉 = 0

for all h ∈ C2,α ∩ {h = 0 on Cǫ and C1 }, if C = Cψ, and for all h ∈ C2,α ∩ {h =
0 on C1 }, if C = Cθ ; in other words, u satisfies the Euler-Lagrange equation
equation (4.1) (or equation (4.1) and equation (4.2) when C = Cθ). Conversely, if
w ∈ C ∩ {Du · V > 0 on B1 \Bǫ } satisfies equation (4.1) (and equation (4.2) if C =
Cθ), then, for someN , it lies in Cn for all n ≥ N , and it satisfies 〈DFp(w), v − w〉 = 0
(in particular ≥ 0) for all v ∈ Cn; w is thus the unique minimizer of Fp in Cn for
any n ≥ N . It follows immediately that w is a minimizer of Fp in C ∩ {Du · V >

0 on B1 \ Bǫ }. The uniqueness of this minimizer follows from the strict convexity
of Fp on Cn for any n. �

Corollary 6. A global C2,α minimizer (ψ, θ) of Ip, subject to ψ = − log 2 at |x| = ǫ,

ψ = 0 and θ = arg at |x| = 1, and det (Dψ,Dθ) > 0 on B1 \Bǫ, satisfies

div

((

|Dψ|2 + |Dθ|2

det (Dψ,Dθ)

)p(

2Dψ

|Dψ|2 + |Dθ|2
+

JDθ

det (Dψ,Dθ)

))

= 0,

and

div

((

|Dψ|2 + |Dθ|2

det (Dψ,Dθ)

)p(

2Dθ

|Dψ|2 + |Dθ|2
−

JDψ

det (Dψ,Dθ)

))

= 0.

Furthermore,
(

|Dψ|2 + |Dθ|2

det (Dψ,Dθ)
JDψ − 2Dθ

)

·
x

|x|
= 0 on {|x| = ǫ} .

Proof. The ψ component of this global minimizer automatically lies in int(Cn) with
C = Cψ and V = −JDθ for some n, and it is a minimizer of Fp in Cn. The first
equation of this corollary is now simply the Euler-Lagrange equation (4.1) for such
a minimizer. Similarly, the θ component of this global minimizer lies in int(Cn)
with C = Cθ and V = JDψ for some n, and is a minimizer of Fp in Cn. The two
last equations of this corollary are simply the Euler-Lagrange equation (4.1) and
the boundary condition (4.2) satisfied by such a minimizer. �

Corollary 7. Let fp be the function introduced in Proposition 3. The transforma-
tion x → fp(|x|)

x
|x| , or rather the function pair (fp(|x|), arg(x)) satisfies the three

Euler-Lagrange equations from Corollary 6. As a consequence

(4.4) Ip(fp(|x|)
x

|x|
) ≤ Ip(ψ(x)

x

|x|
) ,
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Fp

(

eψ(x)
x

|x|

)

Fp

(

eψ(x)ϕ(x)
)

Fp

(

efp(|x|)
x

|x|

)

Fp

(

ef(|x|)ϕ(x)
)

≥

≥

Figure 4.1. Illustration of the conclusions of Corollary 7.

for any ψ ∈ Cψ ∩ {Dψ(x) · x
|x| > 0 on B1 \ Bǫ } . The last two Euler-Lagrange

equations from Corollary 6 are actually satisfied by any pair (f(|x|), arg(x)), with
f ∈ {f ∈ C2,α([ǫ, 1]) : f ′ > 0 , f(ǫ) = − log 2 , f(1) = 0 }. As a consequence

(4.5) Ip(fp(|x|)
x

|x|
) ≤ Ip(f(|x|)

x

|x|
) ≤ Ip(f(|x|)φ(x)) ,

for any φ(x) = (cos(θ(x)), sin(θ(x))t, with θ ∈ Cθ ∩ {Dθ · J x
|x| > 0 on B1 \Bǫ } and

any f ∈ {f ∈ C2,α([ǫ, 1]) : f ′ > 0 , f(ǫ) = − log 2 , f(1) = 0 }.

Proof. Direct calculations verify that the first Euler-Lagrange equation from Corol-
lary 6 is satisfied by (fp(|x|), arg(x)), and that the last two Euler-Lagrange equa-
tions from Corollary 6 are satisfied by any pair (f(|x|), arg(x)), with f ∈ {f ∈
C2,α([ǫ, 1]) : f ′ > 0 , f(ǫ) = − log 2 , f(1) = 0 }. The inequality (4.4) now fol-
lows immediately from the last statement in Proposition 4 in the case C = Cψ and
V = −JD arg(x) = 1

|x|
x
|x| . The first inequality in (4.5) is a direct consequence of

(4.4). The second inequality follows from the last statement in Proposition 4 in the
case C = Cθ and V = JDf(|x|) = f ′(|x|)J x

|x| . �

5. Optimal cloaks for simply connected domains

So far our study has focused on the situation where the cloaks are constructed
from diffeomorphisms of the classical annulus B1 \Bǫ to the classical annulus B1 \
B 1

2
, and the corresponding push-forwards of the identity matrix. In a more general

setting, one could consider instead three simply connected domains, ωǫ ⊂ ω 1
2
⊂ Ω

containing the origin (where ωǫ is comparable to Bǫ) and a bijective diffeomorphism
Ψǫ : Ω \ ωǫ → Ω \ ω 1

2
, such that Ψǫ = Id on ∂Ω and Ψǫ (∂ωǫ) = ∂ω 1

2
. As before,

the material parameters of the cloak would be the push-forward of I by Ψǫ. Any
smooth globally minimizing transformation would still satisfy the Euler-Lagrange
equations of Corrollary 6, if we continue to use the energy Ip.

The goal of this section is to show that for general geometries one should (naturally)
not expect the optimal transformations to be radial. As we demonstrate this, we
also derive a process for the construction of optimal transformations (based on
a slightly revised energy). Suppose Ω is a bounded, smooth, simply connected
domain containing the origin. Due to the Riemann Mapping Theorem, there exists



ON OPTIMAL CLOAKING-BY-MAPPING TRANSFORMATIONS 12

x

y

x

y

x

y

x

y

Ψ Ψ−1

Ψǫ

Φǫ

Figure 5.1. Cloaking by mapping where Ω = sinh (B1), with ǫ = 1/10.

a unique (complex) analytic map Ψ such that Ψ(0) = 0, DΨ(0) = aI for some
a > 0 and Ψ is a one-to-one mapping from Ω onto B1. By the maximum modulus
principle min{|x| : x ∈ Ω} ≤ 1/a ≤ max{|x| : x ∈ Ω}. Set ωǫ = Ψ−1 (Bǫ), and

ω 1
2
= Ψ−1

(

B 1
2

)

. By construction, 0 ∈ ωǫ ⊂ ω 1
2
⊂ Ω . Provided ǫ is small enough,

ωǫ is approximately B ǫ
a
, in the sense that

∀x ∈ Cǫ

∣

∣

∣
Ψ−1 (x)−

x

a

∣

∣

∣
≤

1

2
max
B1/2

∣

∣D2Ψ−1
∣

∣ ǫ2 .

Given Φǫ ∈ C1
(

B1 \Bǫ;B1 \B 1
2

)

a (possibly optimal) bijective diffeomorphism

with Φǫ|C1
= Id , and Φǫ (Cǫ) = C 1

2
, we define

(5.1) Ψǫ := Ψ−1 ◦ Φǫ ◦Ψ.

Figure 5.1 shows some of the “rays" of the map Ψǫ (Φǫ being radial) in the case

Ψ−1 = sinh, Ω = sinh (B1), ω 1
2
= sinh

(

B 1
2

)

and ωǫ = sinh (Bǫ) . The green curves

on the left are mapped to proper subsets of themselves, shown as red curves on the
right. Clearly the transformation Ψǫ is no longer radial.

For any x ∈ ∂Ω, Ψ(x) lies on C1, and thus Φǫ ◦ Ψ(x) = Ψ (x). It follows that
Ψǫ (x) = x, in other words: Ψǫ = Id on ∂Ω. Similarly, we obtain that Ψǫ (∂ωǫ) =
∂ω 1

2
. (Ψǫ)⋆ [I] therefore produces an approximate cloak (with same approximate

invisibility as that of (Φǫ)⋆[I]). From composition of transformations we obtain

(Ψǫ)⋆ [I] =
(

Ψ−1
)

⋆
[(Φǫ)⋆ [Ψ⋆ [I]]] .

Lemma 8. There holds

trace (Ψǫ)⋆ [I] = (trace (Φǫ)⋆ [I]) ◦Ψ .
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Proof. Since Ψ is conformal, DΨ = γQ with γ a positive scalar and Q an orthogonal
matrix. We are in 2d, and so this implies

Ψ⋆ [I] (y) =
(DΨ) (DΨ)

T

| detDΨ|
◦Ψ−1 (y) = I .

Similarly,

(

Ψ−1
)

⋆
[A] (x) =

(

DΨ−1
)

A
(

DΨ−1
)T

| detDΨ−1|
◦Ψ(x)

= QT (x)A (Ψ (x))Q (x) ,

where we have used that
(

DΨ−1
)

(Ψ(x)) = (DΨ)
−1

(x) = 1
γ
QT (x). In summary,

we conclude that (Ψǫ)⋆ [I] is given by the formula

(Ψǫ)⋆ [I] (x) = QT (x) (Φǫ)⋆ [I] (Ψ (x))Q (x) ,

and the statement about the traces follows. �

If Φǫ is a transformation which minimizes the anisotropy of (Φǫ)⋆[I], using the
measure Ip for some 1 ≤ p <∞, then it follows immediately from Lemma 8 above
that Ψǫ minimizes anistropy of (Ψǫ)⋆[I], using the slightly modified measure

Ĩp (Ψǫ) =

∫

Ω\ωǫ

(trace(Ψǫ)∗[I])
p
(Ψǫ(x)) | detΨ(x)| dx .

A similar statement holds for p = ∞. In that case there is no change in the measure
of anisotropy.

Acknowledgements The research of MSV was partially supported by NSF
Grant DMS-12-11330. Part of this work was carried out while MSV was visiting
the University of Copenhagen and the Danish Technical University. This visit was
made possible through support from the Nordea Foundation and the Otto Mo/nsted
Foundation. This study also contributes to the IdEx Université de Paris ANR-18-
IDEX-0001.

References

1. H. Ammari, H. Kang, H. Lee, and M. Lim, Enhancement of near cloaking using generalized

polarization tensors vanishing structures. I: The conductivity problem, Commun. Math. Phys.
317 (2013), no. 1, 253–266.

2. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Invisibility and inverse problems, Bull.
Am. Math. Soc., New Ser. 46 (2009), no. 1, 55–97.

3. A. Greenleaf, M. Lassas, and G. Uhlmann, On nonuniqueness for Calderón’s inverse problem,
Math. Res. Lett. 10 (2003), no. 5-6, 685–693.

4. R. Griesmaier and M. S. Vogelius, Enhanced approximate cloaking by optimal change of vari-

ables, Inverse Probl. 30 (2014), no. 3, 17, Id/No 035014.
5. H. Heumann and M. S. Vogelius, Analysis of an enhanced approximate cloaking scheme for

the conductivity problem, Asymp. Anal. 87 (2014), 223–246.
6. R. V. Kohn, H. Shen, M. S. Vogelius, and M. I. Weinstein, Cloaking via change of variables in

electric impedance tomography, Inverse Probl. 24 (2008), no. 1, 21, Id/No 015016.
7. G. W. Milton and N-A. P. Nicorovici, On the cloaking effects associated with anomalous lo-

calized resonance, Proceedings: Mathematical, Physical and Engineering Sciences 462 (2006),
no. 2074, 3027–3059.

8. J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science 312

(2006), no. 5781, 1780–1782.



ON OPTIMAL CLOAKING-BY-MAPPING TRANSFORMATIONS 14

Université de Paris and Sorbonne Université, CNRS, Laboratoire Jacques-Louis
Lions (LJLL), F-75006 Paris, France

Email address: yves.capdeboscq@u-paris.fr

Department of Mathematics, Rutgers University, New Brunswick, New Jersey
08901, USA

Email address: vogelius@math.rutgers.edu


