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Abstract

An increasing number of genomic tracks such as DNA methylation, histone modifications or transcriptomes are being
produced to annotate genomes with functional states. The comparison of such high dimensional vectors obtained under
various experimental conditions requires the use of a distance or dissimilarity measure. Pearson, Cosine and Lp-norm
distances are commonly used for both count and binary vectors. In this article we highlight how enhancement methods
such as the contrast increasing mutual proximity or local scaling improves common distance measures. We present a
systematic approach to evaluate the performance of such enhanced distance measures in terms of separability of groups
of experimental replicates to outline their effect. We show that the mutual proximity applied on the various distance
measures drastically increases performance. Depending on the type of epigenetic experiment, mutual proximity coupled
together with Pearson, Cosine, L1, Yule or Jaccard distances, proves to be highly efficient in discriminating epigenomic
profiles.
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• Distance measures enhancements: We highlight how

common data science methods, such as the application of

the mutual proximity, enhance the performance of distance

measures.

• Differentiation of epigenomic datasets using enhanced

distance measurements: We evaluate different distance

measurements, both in their enhanced and non enhanced

variants, in their performance to separate data obtained

under the same experimental conditions (replicates), from

data obtained under different experimental conditions.

• Silhouette Index and Pearson correlation between

distance matrix elements: We outline why these indices

are efficient to evaluate the performance of different distance

measures in terms of cohesion and separability.

Introduction

In the last decade, advances in Next Generation Sequencing

(NGS) technologies enabled the generation of a large

number of epigenome tracks such as DNA methylation,

chromatin modifications, transcription factor binding sites,

DNA accessibility or transcription [1]. In most studies, multiple

tracks are compared in order to obtain a better understanding

on the interpretation of a genome sequence by the cell in specific

contexts. Such comparisons commonly distinguish healthy

cells from cancer cells or different cell types, occasionally

at different differentiation stages [2–4]. These comparisons

inevitably involve the choice of a distance or dissimilarity

measure d : V ×V → R+, a function that yields a non-negative

real scalar, the distance between two high dimensional vectors

containing the values of the genomic track at a given resolution.

Comparisons between performances of various distance

measures, in terms of clusterability, have been carried out on
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microarray data [5, 6]. Later on, such comparisons have been

extended to next-generation sequencing (NGS) data, focusing

today on single cell RNA-seq data. Kim et al. [7] studied the

impact of four different distance measures on the clustering

results of single cell RNA-Seq datasets and reported that

the most efficient metric in such a case shall be Pearson’s

correlation. A following analysis by Skinnider et al. [8] found

that Pearson’s correlation could be outperformed by using two

measures of proportionality described in [9].

Intrigued by papers published almost a decade ago that

tackle the problem of finding optimal distance measures for

high dimensional datasets [10–12] we systematically evaluated

different distance measures and tried known methods such as

the non-iterative contextual dissimilarity measure (NICDM)

[10] or the mutual proximity (MP) [11] to further improve the

distance measure.

In order to evaluate the performance of distance measures

under various techniques that shall improve them, we take

advantage of datasets that include multiple replicates. A

replicate being data recorded under the same experimental

conditions. To assess the quality of different distance measures

we rely on the fact that experimental replicates are supposed

to be almost identical and reasoned that a well-suited distance

measure would minimize the distance between such replicates

while maximizing the distance between the profiles determined

under different experimental conditions. We outline that

we designed our experiments relying only on replicate and

non-replicate datasets avoiding the bias or distance measure

dependency that clustering algorithms might introduce.

In cases where neither the MP nor the NICDM was applied

to enhance the distance measures contrast our results are

in agreement with the results obtained for single cell RNA-

seq profiles [7] as we found that correlation-based distance

measures (e.g. Pearson’s correlation) outperformed distance-

based metrics (e.g. Euclidean distance) for count profiles.

Applying the MP generally enhances contrast and performance

[11]. Further the MP raises the effectiveness to discern

ensembles of replicate results for the L1 norm to same level

as correlation based distances under MP for mRNA-seq and

miRNA-seq count profiles. This should yield an advantage in

computational efficiency as L1 can be implemented using fewer

machine instructions than correlation based distance measures.

Concerning binary profiles, that are for instance obtained after

the application of a peak caller, we find that both, Yule and

Jaccard distances, are performing well. The two binary distance

measures again see an improvement as MP is applied.

Methods

Data collection

We obtained the epigenetic tracks annotating the human

genome (hg38) from the data generated by the Canadian

Epigenetics, Epigenomics, Environment and Health Research

Consortium (CEEHRC)1. We downloaded the following

datasets: Bisulfite-seq methylation data, H3K27ac, H3K27me3,

H3K36me3, H3K4me3 and H3K9me3 histone ChIP-seq data,

mRNA-seq, and miRNA-seq transcriptome data as well as plain

input DNA control data. All tracks were obtained for different

cell types, namely: CD19+, Basal, Glioma, Colorectal-normal,

1 Information about CEEHRC and the participating
investigators and institutions can be found at http:

//www.cihr-irsc.gc.ca/e/43734.html

Thyroid-normal cells as well as healthy T-Cells. A overview of

the obtained benchmark data is outlined in table 1. The data

includes binary signals for the ChIP-seq experiments. These

binary signals were generated by the CEEHRC consortium

using a peak caller which is part of their data processing

pipeline. For the Bisulfite-seq experiments we constructed two

binary signals by introducing a manual cutoff of the provided

fractional signal. The fractional signal is composed of values

between 0 and 1. As we chose thresholds of 25% and 75% values

below 0.25/0.75 were set to 0 and values above 0.25/0.75 to 1

respectively.

Data processing

All data has been extracted and ensembles of both 200 and

500 succeeding bases pairs were averaged. The means over 500

bases pairs allow us to verify the stability of our results. All

further results in the main article are presented for tracks that

were averaged to bins of 200 bases pairs. The relevant data

for means over 500 bases pairs is shown in tables S3 and S4

in the supporting information, from where it it is clear that

these results are equivalent to tables S1 and S2. Tables S1 and

S2, also found in the supporting information, outline in detail

results obtained for means over 200 bases pairs. libBigWig [13]

was used for the extraction, averaging and binning purpose.

Further data processing was performed using a set of custom

in house written tools that are available to the pubic as C

code2. These tools consist of sparse data handling routines,

that allow us to avoid storing parts of the epigenomic dataset

where no signal was recorded or where the signal equals to

zero, saving valuable computer memory and speeding up the

following implementations. All distance measures were carefully

reimplemented by hand in their enhanced and non enhanced

versions. Further the quality measurement indices outlined

herein have been coded in C as well.

Distance measures

In the presented study we assessed the following distance

measures for count profiles:

• Lp-norm: as defined by

d(x, y) =

(∑
i

|xi − yi|p
)1/p

, (1)

implemented for p = 1, the Manhattan distance, p = 2,

the Euclidean distance, p = 3, p = 4. Taking note that

fractional norms in theory should perform better for high

dimensional data we further used a value of p = 0.5 [14].

• Cosine distance:

d(x, y) = 1−
∑
i

xiyi√
x2
i

√
y2i
. (2)

• Pearson distance: which is closely related to the Cosine

distance and defined by:

d(x, y) = 1−
∑
i

(xi − x̄)(yi − ȳ)√
(xi − x̄)2

√
(yi − ȳ)2

, (3)

where x̄ and ȳ are the means of the components in the

vectors x and y.

2 In house developed data processing code is published at

https://gitlab.in2p3.fr/mnhn-tools/distanceboost-mp-nc

http://www.cihr-irsc.gc.ca/e/43734.html
http://www.cihr-irsc.gc.ca/e/43734.html
https://gitlab.in2p3.fr/mnhn-tools/distanceboost-mp-nc
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Table 1. The number of epigenetic tracks for each experiment and each cell type.

Bisulfite1 mRNA2,3 miRNA3 H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me3 H3K9me3 Control3

CD19+ 13 11 14 13 13 13 13 13 13 13

T-Cells 5 5 - 5 5 5 5 5 5 5

Basal 6 6 1 9 8 8 9 8 8 9

Glioma 12 11 12 12 12 12 12 12 12 12

Colorectal 15 15 15 15 15 15 15 15 15 15

Thyroid 9 7 9 9 9 9 9 9 9 9

1For binarisation prior to the application of Jaccard and Yule distance metrics data below either 25% and 75% methylation was set to zero and to one

above.

2Only expression data read in direction from 3’ to 5’ was considered.

3No binarisation or peak calling was performed and hence no data is available for Yule and Jaccard distance measures.

Distances between binary signals were evaluated using the

Jaccard and Yule measures:

• Jaccard distance:

d(x, y) =
|a ∪ b| − |a ∩ b|
|a ∪ b|

, (4)

• Yule distance:

a = |{i : i ∈ x, i /∈ y}|,

b = |{i : i /∈ x, i ∈ y}|,

c = |{i : i ∈ x, y}|,

d = |{i : i /∈ x, y}|,

d(x, y) =
2ab

cd
. (5)

In order to avoid floating point precision issues that may

arise when summing a large number of elements, the Kahan

summation correction was applied [15].

Enhanced Distance Measures

The MP introduced by [11], transforms a classic distance

measure into a probability based distance measure improving

the contrast at the same time. This method has the advantage

that it does not require any prior knowledge of replicated

experiments or data that forms close ensembles in the

dataset. Knowing all pairwise distances between the different

experiments in a dataset the MP is given by:

mp(d(x, y)) =
|{i : d(x, i) > d(x, y)} ∩ {i : d(y, i) > d(x, y)}|

N
,

(6)

which can be evaluated straightforward by counting the number

of elements i having a distance to x and y greater than the

distance d(x, y). The mutual proximity mp(d(x, y)) is itself a

distance measure that increases the contrast in a dataset [11].

As the MP is probability based and normalized it can be used

to linearly combine distance measures with different properties

into a single distance measure:

dcombined =
∑
j

αjmp(dj(x, y)), (7)

under the condition for the weighting factors to be
∑

j αj = 1.

[11]. We used this property of the MP to create a mixed distance

measure:

d(x, y) =
1

2
[mp(dJ(x, y)) + mp(dY (x, y))] (8)

where dJ(x, y) represents the Jaccard distance and dY (x, y) the

Yule distance.

The second method to enhance distance measures that

we implemented is the Non-Iterative Contextual Dissimilarity

Measure (NICDM) as first proposed in [10]:

NICDM(d(x, y)) = d(x, y)

√
r̄2

rxry
, (9)

where rx is the mean of the distances in the ensemble, in

our case epigenetic sequencing experiments that have been

performed under the same experimental conditions, that x

belongs to and r̄ is the mean of all the means ri for all

ensembles. This method can either be used in an iterative

manner, together with a clustering algorithm or requires prior

knowledge of the dataset, in our case replicates of experiments.

A property that might prove to be problematic in real world

applications, where contrary to the data treated in this article,

such a knowledge might not be available.

Our code implements the MP and NICDM as highlighted

in equations (6) and (9), which we applied on all distance

measures outlined herein.

Benchmark Indices

In order to estimate the quality of each distance measure

we computed the Silhouette index [16] based on the close

ensembles formed by the same cell types, defined here as

experimental replicates. The Silhouette for a single pair of

ensembles was implemented as follows:

kj,int =
1

nint

nint∑
i

d(cint(i), cint(j))

kj,ext =
1

nint

next∑
i

d(cext(i), cint(j))

sj =


kj,int < kj,ext : 1− kj,int

kj,ext

kj,int = kj,ext : 0

kj,int > kj,ext :
kj,ext

kj,int
− 1

S =
1

nint

nint∑
j

sj , (10)

where cint/ext(i) is the i-th element (experiment under same

experimental conditions) belonging to the internal (same) /
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Separation

Cohesion

Fig. 1. Separation, measured by kj,ext and cohesion, measured by kj,int,

two wanted properties that the Silhouettes as outlined in equation (10)

and the Silhouette Index in equation (11) describe. If a dataset contains

an ensemble of datapoints, labeled to be of the same group that exerts

cohesion within its members while it is separated from differently labeled

datapoints, the Silhouette approaches +1.

external (different) cell type and nint is the number of elements

of the internal cell type. The Silhouette varies between −1 ≤
S ≤ +1 and is negative if the distances between elements

belonging to the same cell type (internal elements) to those

of a different cell type (external elements) are shorter then the

distances between all the “internal” elements of the same cell

type. If the Silhouette is positive the internal distances between

the elements of the same cell type are smaller than the external

distances to the elements of a different cell type. Therefore a

high quality distance measure should yield a positive Silhouette

index close to +1 [16]. We further make use of the Silhouette

Index, the arithmetic mean of Silhouettes obtained for all cell

type pairs (ci, cj) in a dataset:

SI =

∑
pairs S(ci, cj)

npairs

, (11)

Silhouettes, as well as the Silhouette Index are one of the

methods of choice as they efficiently tackle the problem

of comparing cohesion and separability. With cohesion

representing the pairwise intra cell type distances, and

separability the pairwise inter cell type distances as outlined

in figure 1. A high quality distance measure is thus expected

to minimize cohesion while it is at the same time maximizing

separation.

To further improve our benchmarking capabilities we also

compute the Pearson correlation P between the elements of a

distance matrix Di,j(d(xi, yj)) and the elements of a matrix

Mi,j where:

Mi,j =

{
0 : (xi ∈ ci) ∧ (yj ∈ ci)
1 : otherwise

. (12)

ci in this equation corresponds to different ensembles that

group together replicate experiments belonging to the same

cell types, indexed by i. Thus the matrix is 0 if x and y

are of the same cell type and 1 otherwise. The matrix Mi,j

is especially interesting as it represents the perfect MP for

the perfect distance measure. The matrix Mi,j represents a

perfect distance matrix, built from a hypothesized perfect

distance metric where all intra ensemble pairwise distances,

distances between experiments of the same cell type, yield 0,

while pairwise inter ensemble distances and hence, distances

concerning experiments of two different cell types, yield 1. The

Pearson correlation between the matrix elements of the distance

matrix Di,j , dependent on the distance metric used, and Mi,j :

P =
∑
∀i,j

Mi,jDi,j(d(xi, yj))√
(Mi,j − M̄)2

√
(Di,j − D̄)2

, (13)

with M̄ and D̄ being the arithmetic means of matrix elements,

is thus our second benchmark index. P shall just as SI approach

+1 the better suited the distance measure is. This P benchmark

index is directly derived from commonly used Mantel statistics

[17] which is frequently used to compare different distance

measures. The sole differences are:

1. As we perfectly know our dataset, matrix elements

D(i, j) and M(i, j) in both matrices provide distances

between the same profiles i, j. Therefore we can completely

avoid the critiqued (c.f. G. Guillot and F. Rousset [18])

randomization/permutation procedure that normally is

applied on one of the matrices.

2. We compare the distance matrix obtained from a certain

distance measure to a fabricated perfect distance matrix

that has the properties of an optimal distance measure

applied on our dataset M(i, j). Traditional Mantel

Statistics on the other hand compares empirically measured

distance matrices [17] where knowledge about such an

optimal distance matrix M(i, j) is not available.

We point out that the SI and P indices can be computed

without performing clustering and hence, allow us to obtain

an unbiased view on the subject if the MP or the NICDM

enhance distance measures used for epigenetic profiles or not.

Further this approach allows us to find the best combinations

of enhancement functions coupled with classical distance

measures. The study was purposeful designed in this way in

order to evaluate the effects of different distance measures

independent from clustering algorithms.

Benchmark indices for the binary profiles of the Bisulfite-

seq experiment are calculated by taking the mean SI =
1
2 [SI(25%)+SI(75%)] and P = 1

2 [P (25%)+P (75%)] for profiles

generated from a 25% and 75% cutoff of the fractional data

provided by the CEEHRC, CIHR consortiums.

Results

In order to evaluate distance measures for all the variety

of experiments that can be found in the epigenomic

toolbox, we used datasets for DNA methylation (Bisulfite-

seq), gene expression (mRNA-seq), microRNA (miRNA-

seq), localized histone modifications (H3K27Ac, H3K4me1,

H3K4me3 ChIP-seq) and spreading histone modifications

(H3K27me3, H3K9me3, H3K36me3 ChIP-seq) as demonstrated

in table 1. For all these datasets, we evaluated the following

dissimilarity measures: Count profiles were differentiated using
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the Lp distance with p = 0.5, 1, 2, 3, 4, the Cosine and

Pearson dissimilarity, respectively outlined in equations (1),

(2), (3). Further binary profile distances were evaluated using

the Jaccard and Yule distances, as described by equations (4)

and (5). For each dissimilarity measure we also applied both

the MP or the NICDM procedures that transforms the distance

matrix for all datasets found in table 1. In order to assess the

ability of each measure, with or without the application of the

MP and NCDIM procedures, to discriminate profiles that come

from the replicates of the same experiment with other profiles,

we computed two indices: The Silhouette index SI and the

Pearson index P which are outlined in equations (11) and (13).

The mean results with and without the application of either the

MP or NICDM are highlighted in table 2 and 3. Table 2 outlines

the performance according to the P index: Here the application

of the NICDM only provided an improvement on the L1, L2, L3,

L4 as well as the Jaccard and Yule distance measures. Under the

same conditions the MP provided improvements for all distance

measures, outperforming the NICDM in most cases. In the

same manner table 3 outlines how all distance measures see

a performance increase according to the SI index if the MP or

the NICDM is applied. We however do not see a clear advantage

of using the NICDM in comparison to the more flexible MP. For

in depth details we refer the reader to tables S1 and S2 in the

supplemental material where exact values for each dataset are

shown. From tables S1 and S2 we further assembled Figure

2 which highlights the results for all distance/dissimilarity

measures with and without application of the MP. In these

diagrams best performing distance measures find themselves

in the upper right corner, while weak performing distance

measurements are found around the origin in the lower left

corner. A clear shift to the upper right corner is visible as the

MP is applied onto the different distance measures. In the case

of the Yule and Jaccard distances the effect on our benchmark

indices that are bound to the interval [0,1] can yield a boost of

0.3, greatly increasing the effectiveness of the distance measure

in terms of separation and cohesion.

Finally we would like to point out that our distance

measures, in both MP improved and non-improved form,

applied on binary data, either obtained through a simple

threshold as in the case of bisulfite-seq, or as provided by

the datasets processed with the peak calling pipeline of the

CEEHRC consortium, performed better then simple count or

intensity profiles. This could be explained by a feature selection

during the binarisation process. The highest scores for the

SI and P indices were obtained with either bisulfite-seq or

H3K27ac CHiP-seq experiments, underlying the superiority of

these assays to discriminate between cell types. mRNA-seq

counts and normalized datasets were also found to perform

well at this task in cases where the L1, Pearson or Cosine

dissimilarity measures enhanced by MP were used. This result

further holds for miRNA experiments. Concerning histone

modifications, we found that local modifications (H3K27Ac,

H3K4me1 and H3K4me3) are better suited to discriminate

profiles from different cell types than propagating tri-methyl

marks (H3K36me3, H3K27me3 and H3K9me3). As expected,

the control datasets for ChIP-seq experiments were not efficient

in separating groups of experimental replicates.

Intriguingly the Yule distance performs well in terms of the

SI index but is much less efficient in terms of our P index.

For the Jaccard distance the effect seems to be reversed, and

the distance performs better for P than for SI. This lead us

to the idea to combine both distances using the MP as shown

in equation (8). In both cases applying the MP on the two

measures, Jaccard and Yule, without combining them however

yielded almost the same results, improving the weak indices for

both distance measures so that both distance measures where

rejoining themselves exerting almost the same performance.

Discussion

The presented results highlight how classical distance measures

that are used to discern individual epigenetic profiles can be to

a great extend improved by applying the MP. In cases where

peak finding or binarisation is possible the Yule and Jaccard

distances are leading combined with the application of the MP

to the best results. However certain datasets such as those from

mRNA-seq experiments are not well suited for binarisation. In

such cases, we refer the reader to figure 2 in order to find

the best distance measure for the application. L1, Pearson

or Cosine, distances again together with MP seem to perform

best on high dimensional datasets of this kind. We could not

find an advantage using fractional norms as suggested in [14].

In several cases, especially when applied to binary data, the

MP shows a drastic increase of performance and we strongly

recommend its usage in order to increase contrast as one

compares epigenomic signals. We did not find a clear advantage

of the NICDM over MP, and see its application difficult as it

requires prior knowledge that one might want to discover in

the dataset in using the distance measure, i.e. clustering the

dataset. The MP can further be used to combine the properties

of different distance measures, which we tried for the Yule and

the Jaccard distance. As both the Yule and the Jaccard distance

by themselves underwent a strong performance increase as we

applied the MP, a mixture of both as outlined by equation (8)

did not yield better results.
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Fig. 2. The performance of different distance measures under the Silhouette Index SI and the Pearson correlation of distance matrix elements to a

perfect distance matrix P as shown in equations (11) and (13) respectively.
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