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BACKGROUND & AIMS: Increased de novo lipogenesis creates
excess intrahepatic fat and lipotoxins, propagating liver damage
in nonalcoholic steatohepatitis. TVB-2640, a fatty acid synthase
inhibitor, was designed to reduce excess liver fat and directly
inhibit inflammatory and fibrogenic pathways. We assessed the
safety and efficacy of TVB-2640 in patients with nonalcoholic
steatohepatitis in the United States. METHODS: 3V2640-CLIN-
005 (FASCINATE-1) was a randomized, placebo-controlled,
single-blind study at 10 US sites. Adults with �8% liver fat,
assessed by magnetic resonance imaging proton density fat
fraction, and evidence of liver fibrosis by magnetic resonance
elastography �2.5 kPa or liver biopsy were eligible. Ninety-
nine patients were randomized to receive placebo or 25 mg
or 50 mg of TVB-2640 (orally, once-daily for 12 weeks). The
primary end points of this study were safety and relative
change in liver fat after treatment. RESULTS: Liver fat
increased in the placebo cohort by 4.5% relative to baseline; in
contrast TVB-2640 reduced liver fat by 9.6% in the 25-mg
cohort (n ¼ 30; least squares mean: –15.5%; 95% confidence
interval, –31.3 to –0.23; P ¼ .053), and 28.1% in the 50-mg
cohort (n ¼ 28; least squares mean: –28.0%; 95% confidence
interval, –44.5 to –11.6; P ¼ .001). Eleven percent of patients in
the placebo group achieved a �30% relative reduction of liver
fat compared to 23% in the 25-mg group, and 61% in the 50-
mg group (P < .001). Secondary analyses showed improve-
ments of metabolic, pro-inflammatory and fibrotic markers.
TVB-2640 was well tolerated; adverse events were mostly mild
and balanced among the groups. CONCLUSIONS: TVB-2640
significantly reduced liver fat and improved biochemical,
inflammatory, and fibrotic biomarkers after 12 weeks, in a
dose-dependent manner in patients with nonalcoholic steato-
hepatitis. ClinicalTrials.gov, Number NCT03938246.
© 2021 by the AGA Institute. Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
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onalcoholic fatty liver disease (NAFLD) encom-
Npasses a progressive, histologically recognizable
range of liver disease from simple steatosis to nonalcoholic
steatohepatitis (NASH) without fibrosis, NASH with fibrosis,
and, ultimately, cirrhosis. The risk of mortality increases
along the histologic spectrum of disease and is significantly
higher than the general population controls at all stages.1

The global prevalence of NAFLD, estimated at 24% in
2017, is expected to increase along with rates of obesity and
type 2 diabetes (T2D).2 This will drive pressure on health
care systems by increasing the burden of patients with liver
disease fueling the ongoing rise in NASH as an indication for
liver transplantation, cardiovascular disease, and both he-
patocellular and extrahepatic cancers. There are currently
no approved therapeutics in the United States or European
Union for this emerging epidemic and limited options for
improving their hepatic and cardiovascular health.3

Increased intrahepatic fat and the generation of lipotoxic
metabolites initiate and drive the progression of NAFLD by
damaging hepatocytes, stimulating inflammatory responses,
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

The enzyme fatty acid synthase is responsible for
increased lipogenesis and the excess levels of hepatic
fat and lipotoxins driving liver damage in patients with
nonalcoholic steatohepatitis (NASH).

NEW FINDINGS

Administration of TVB-2640, a fatty acid synthase
inhibitor, resulted in a �30% reduction of liver fat
relative to baseline in 61% of patients. Improvements of
biomarkers of hepatocyte damage, metabolism,
lipotoxicity, inflammation, and fibrosis were also
observed.

LIMITATIONS

The short duration and lack of liver biopsy did not allow
for direct observation of liver tissue improvement. The
single-blind design did not eliminate the potential for
some bias in patient counseling.

IMPACT

TVB-2640 produced positive effects on multiple
parameters of liver damage in patients with NASH.
These results support further development of TVB-2640
for the treatment of this disease.
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CLINICAL
LIVER
and activating profibrotic stellate cells in the liver.4–6 The de
novo lipogenesis (DNL) pathway, in which the enzymes
acetyl-CoA-carboxylase (ACC) and fatty acid synthase
(FASN) convert metabolites of simple dietary sugars into the
fatty acid palmitate, plays a major role in creating excess fat
in the liver and generating certain lipotoxic molecules. In-
sulin resistance and blood glucose may further stimulate
DNL in NAFLD patients resulting in increased intrahepatic
triglyceride levels.7

Lipotoxicity is a major contributor to the pathogenic
mechanisms driving the progressive nature of NASH.
Palmitate itself can directly cause liver injury and NASH in
experimental models.8 This saturated fatty acid directly
activates the Nod-like receptor family pyrin domain con-
taining 3 inflammasome in inflammatory cells and in hepatic
stellate cells.9,10 In addition, palmitate is a building block for
other pro-inflammatory and pro-fibrotic lipotoxins,
including certain ceramides, sphingomyelins, and diac-
ylglycerols (DAGs). NASH patients have increased levels of
ceramides that promote insulin resistance, inflammation,
and production of reactive oxygen species.11,12 In addition
to ceramides, specific DAGs, especially with palmitate acyl
chain, potently activate protein kinase C isoforms in liver
and muscle, which blunts the peripheral and hepatic insulin
responses.13

Adult mice in which the FASN gene was genetically
inactivated in the liver showed no discernable differences
from their wild-type littermates, particularly there were no
alterations of metabolic markers, including plasma tri-
glycerides or liver tissues.14 A paradoxical result was
observed in that significant hepatic steatosis developed
when these FASN knockout animals were fed a laboratory
derived zero-fat diet lacking all sources of fat.
FLA 5.6.0 DTD � YGAST64480_proof
Suprapharmacologic doses of TVB-2640 did not cause he-
patic steatosis, even in animals dosed daily from 4 to 39
weeks. Preclinical studies validated that FASN inhibition not
only reduces intrahepatic fat, but also inhibits diet-induced
inflammation and insulin resistance in murine NASH
models.15 Ex vivo studies have shown that FASN inhibition
reduces fibrogenesis in human hepatic stellate cells.16

TVB-2640 is a selective, potent, reversible inhibitor of
human FASN enzymatic activity. This once-daily oral com-
pound has been evaluated in more than 200 human sub-
jects. We established the mechanism of action of TVB-2640
in a Phase 1 clinical study.17 DNL was measured in healthy
adult subjects with metabolic comorbidities by measuring
conversion of [13C]-acetate to labeled palmitate before and
after 10 daily doses of 50 mg, 100 mg, or 150 mg of TVB-
2640. DNL was reduced at all doses and in a dose-
dependent manner; 150 mg resulted in nearly complete
inhibition. Based on results of these preclinical and clinical
studies, we designed this randomized, placebo-controlled
phase 2 study (FASCINATE-1) to assess safety and test the
effect of TVB-2640 on liver fat and markers of liver and
metabolic health in NASH patients.
Methods
Study Design and Participants

This randomized, multicenter placebo-controlled, single-
blinded clinical study, 3V2640-CLIN-005, FASCINATE-1,
enrolled subjects with clinical or histologic evidence of NASH
(ClinicalTrials.gov, Number NCT03938246). This study was
performed in accordance with ethical principles of the Decla-
ration of Helsinki and consistent with the International Con-
ference on Harmonization, Good Clinical Practice, and
applicable regulatory requirements.

The study population included male and female subjects
aged 18 years and older with magnetic resonance imaging
proton density fat fraction (MRI-PDFF) �8% and either biopsy-
proven NASH within 2 years before randomization or magnetic
resonance elastography �2.5 kPa during screening to sample a
population of patients with NASH and fibrosis.18 Women of
childbearing potential were allowed to enroll after a negative
test for pregnancy and agreement to maintain appropriate
contraception during the study and for 3 months after the final
dose. All patients were instructed to take their dose with food
in the morning from days 1 to 8 and evenings with food
thereafter. Forty-nine patients were enrolled at 10 sites in the
United States between April and July 2019 and dosed with
either 25 mg TVB-2640 or placebo daily for 12 weeks (ran-
domized 2:1). After completion of this first cohort, a Safety
Review Committee composed of independent hepatology,
ophthalmology, and dermatology experts reviewed adverse
events, including any eye and skin reports, vital signs, elec-
trocardiogram data, and laboratory values of interest. The
Safety Review Committee recommended escalation of TVB-
2640 to the planned 50-mg dose. Fifty patients were enrolled
between December 2019 and February 2020 and dosed with
either 50 mg TVB-2640 or placebo daily (randomized 2:1). Five
extended their dosing period and end of dosing MRI-PDFF
beyond 12 weeks due to the impact of COVID-19 restrictions
on study visits. Patients on stable diabetes-modifying agents or
� 12 August 2021 � 1:07 pm � ce
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Randomization and Blinding
At each dose, subjects were randomly assigned to TVB-

2640 or placebo at a 2:1 ratio, with randomization stratified
by T2D status. The randomization system used was the IBM
Randomization and Trial Supply Management System. A
single-blind randomization list was created by the study
statistician and per-protocol eligible subjects were entered
into the system at the site level. The IBM wizard system
interface used the defined stratification variable (T2D) and
randomly assigned the subject to active or placebo in a 2:1
ratio. Study and site staff were assigned access based on role
on study as defined by the site-specific delegation logs. The
IBM system followed Good Clinical Practice and is Part 11-
compliant. Personnel responsible for reading and interpret-
ing MRI-PDFF images were blinded to the subjects’ treatment
assignment group, as were laboratories conducting biomarker
assays. Study patients were blinded; all other study personnel
were unblinded.
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Procedures
Subjects had an MRI-PDFF measured before the start of

treatment (predose), at the end of the initial 12-week treatment
period and at week 16, four weeks after completing the treat-
ment period. During the study, safety was assessed by vital
signs (oral temperature, pulse, respiratory rate, and blood
pressure); 12-lead electrocardiogram; physical examination,
including ophthalmologic examination if necessary; and clinical
laboratory testing (hematology, chemistry, and urinalysis).
Upper limit of normal values for alanine aminotransferase
(ALT) were 41 U/L for male subjects and 33 U/L for female
subjects according to the central laboratory. Blood samples for
pharmacokinetics were collected from a portion of subjects in
each TVB-2640 cohort at 2, 4, 6, and 24 hours after the first
dose and immediately predose and at 2, 4, and 6 hours post
dose at week 2. Bioanalytical analysis using a validated liquid
chromatography-mass spectrometry method and pharmacoki-
netic calculations were performed by Alturas.

Lipidomic analyses were performed at One Way Liver, S.L.
(Derio, Spain) by ultra-high-performance liquid chromatog-
raphy (UHPLC-MS) analyzing methanol and chloroform/meth-
anol extracts.19 For metabolites within their corresponding
linear detection range, univariate statistical analysis was con-
ducted using the Wilcoxon rank test for the comparisons. Tri-
palmitin was quantitated by using a calibration curve prepared
from a stock standard solution of tripalmitin (TG 16:0/16:0/
16:0) (Larodan, Sweden). Patient plasma extracts were mixed
with sodium chloride (50 mM) and chloroform/methanol (2:1)
in 1.5 mL microtubes on ice, vortexed, incubated for 1 hour at
–20�C and centrifuged. The organic phase was dried, recon-
stituted in acetonitrile/isopropanol (1:1), centrifuged, and
transferred to vials for UHPLC-MS analysis as described pre-
viously.19 An appropriate test mixture of standard compounds
was analyzed before and after the entire set of randomized
sample injections in order to examine the retention time sta-
bility, mass accuracy, and sensitivity of the system. Metab-
olomics data were preprocessed using the TargetLynx
application manager for MassLynx 4.1 (Waters Corp, Milford,
FLA 5.6.0 DTD � YGAST64480_proof
MA). The [M þ NH4]
þ ion adduct of tripalmitin was followed,

with a m/z ¼ 824.771.
Serum protein biomarkers were measured as follows: PRO-

C3 by enzyme-linked immunosorbent assay at Nordic Biosci-
ence (Herlev, Denmark), plasma N-terminal propeptide of type
III procollagen (PIIINP) and tissue inhibitor of metal-
loproteinase 1 (TIMP1) by enzyme-linked immunosorbent
assay at Siemens (Berkeley, CA), fibroblast growth factor-21
(FGF-21) by MesoScale Discovery at Precision for Medicine,
cytokeratin-18 (CK18) proteolytic fragment CK18 (M30) and
intact CK18 (M65) by monoclonal antibody enzyme-linked
immunosorbent assay at Cerba.

Outcomes
Safety of the drug for all randomized subjects who received

at least 1 dose was the primary safety end point. The primary
efficacy end point was the relative change in liver fat between
baseline and after 12 weeks of treatment measured by MRI-
PDFF as described previously.20 Patients were considered
eligible for efficacy analysis per protocol if they had at least 8
weeks of continuous dosing. Secondary outcomes included
MRI-PDFF responder criteria assessment as defined by a rela-
tive reduction in MRI-PDFF of �30% given its association with
histologic response.21–23

Statistical Analyses
Power calculations used the 2-sided Wilcoxon rank sum test

to test pairwise treatment differences of the primary efficacy
end point for each dose group with placebo at the 0.05 type I
error level. If the standard deviation of the primary efficacy end
point is 30 and both pairwise treatment differences are 24, then
30 evaluable patients per treatment group provides at least
80% overall power to detect both pairwise treatment
differences.

A fixed-sequency approach was taken for the primary end
point (relative reduction in MRI-PDFF), whereby if significant
at .05 in the 50 mg:pooled placebo comparison, then the anal-
ysis was done for 25 mg:pooled placebo. If both of these pair-
wise comparisons for the primary end point were significant at
.05, then this testing strategy was repeated for the key sec-
ondary efficacy end point (percent of subjects with at least a
30% reduction in MRI-PDFF). This approach maintains a study-
wide a level at .05 for these comparisons. Each TVB-2640 dose
group was compared to the pooled placebo group using an F
test from an analysis of covariance model with fixed effects for
the stratification factor (diabetes presence/absence) and
treatment group (ie, TVB-2640 dose groups and pooled pla-
cebo) and with the baseline MRI-PDFF value as a covariate.

Sagimet Biosciences funded this study and employees and
consultants of the company participated in the study design,
patient safety, data analyses, and writing of the manuscript. All
authors had access to the study data and reviewed and
approved the final manuscript.
Results
A total of 416 subjects were screened at 10 clinical sites

with NASH expertise in the United States and 99 were
randomized. Forty-nine patients were randomly assigned to
receive either placebo or 25 mg TVB-2640 in a 1:2 ratio.
� 12 August 2021 � 1:07 pm � ce
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After an interim assessment of safety by the independent
Safety Review Committee, the trial continued as planned by
enrolling an additional 50 patients who were randomly
assigned to receive either placebo or 50 mg TVB-2640 in a
1:2 ratio (Supplementary Figure 1). All 99 patients were
included in the safety assessment; the 85 patients who had
an end-of-treatment MRI-PDFF treatment were included in
the efficacy and biomarker analyses. Two patients dis-
continued the study early due to a treatment-emergent
adverse event (TEAE) and 5 patients had an end of treat-
ment MRI-PDFF later than planned between 12 and 16
weeks of treatment as a result of COVID-19 visit restrictions
and were not included in the primary efficacy analysis.

Baseline demographics and disease characteristics were
generally consistent among the groups as well as between
the 2 placebo cohorts enrolled during the 2 separate time
periods. The median age was 55 years, 46% of patients were
female, and most were White, with 72% identifying as
Hispanic or Latino. As expected for a NASH population, the
Table 1.Patient Demographic Characteristics

Characteristic Placebo (n

Male, n (%) 14 (45.2

T2D, n (%) 17 (54.8

Ethnicity, Hispanic, n (%) 25 (80.6

Age, y, median (Q1, Q3) 52 (46, 5

Weight, kg, median (Q1, Q3) 83.7 (74.0, 9

Body mass index, kg/m2, median (Q1, Q3) 31.2 (29.3, 3

ALT, U/L, median (Q1, Q3) 25 (16, 4

AST, U/L, median (Q1, Q3) 21 (15, 3

Alkaline phosphatase, U/L, median (Q1, Q3) 82 (72, 9

GGT, U/L, median (Q1, Q3) 33 (22, 5

Glucose (fasting), mg/dL, median (Q1, Q3) 108 (86, 1

HbA1c, %, median (Q1, Q3) 6.4 (5.9, 8

Insulin (fasting) mU/mL, median (Q1, Q3) 17 (15, 2

HOMA-IR, median (Q1, Q3) 5.7 (3.7, 6

Apolipoprotein B, mg/dL, median (Q1, Q3) 100 (84, 1

Total-chol, mg/dL, median (Q1, Q3) 192 (162, 2

LDL-chol, mg/dL, median (Q1, Q3) 116 (98, 1

HDL-chol, mg/dL, median (Q1, Q3) 43 (39, 5

TG, mg/dL, median (Q1, Q3) 157 (123, 2

CK18 (M30), U/L, median (Q1, Q3) 224 (174, 4

MRI-PDFF, %, median (Q1, Q3) 15.3 (11.8, 2

MRE, kPa, median (Q1, Q3) 3.0 (2.7, 3

PRO-C3, ng/mL, median (Q1, Q3) 15.2 (10.85, 1

AST, aspartate aminotransferase; GGT, g-glutamyl transpeptida
Assessment of Insulin Resistance; MRE, magnetic resonance e

FLA 5.6.0 DTD � YGAST64480_proof
median liver fat content was 15.6%, the majority of patients
had T2D and the median body mass index was 32.6 kg/m2

(Table 1). Other disease characteristics were consistent with
NASH, including the median magnetic resonance elastog-
raphy liver stiffness of 3.0 kPa (consistent with the presence
of fibrosis) and 12 patients had a pre-existing liver biopsy
with fibrosis stages ranging from F1 to F3.

Drug levels in the plasma were consistent with prior
studies of TVB-2640 in humans; the half-life in the plasma
was approximately 10–12 hours, Cmax occurred approxi-
mately at 4–5 hours and steady-state was evident by day 8
with an approximately 1.3- to 1.6-fold higher exposure
compared to day 1, and relatively low variability between
patients (Figure 1A). The overall exposure of drug in the 25-
mg cohort (area under the curve0–24 6580 ng/h * mL) was
increased by 2.6-fold in the 50-mg cohort (area under the
curve0–24 16,800 ng/h * mL), consistent with a linear dose
proportionality, observed in prior studies with doses
ranging from 25 mg to 200 mg in humans (data on file).
¼ 31) 25 mg (n ¼ 33) 50 mg (n ¼ 35)

) 18 (54.5) 22 (62.9)

) 25 (75.8) 13 (37.1)

) 22 (66.7) 24 (68.6)

8) 58 (53, 62) 55 (44, 62)

6.8) 95.4 (84.9, 105.6) 92.0 (83.0, 101.0)

5.1) 34.0 (29.7, 38.1) 32.8 (29.6, 35.2)

6) 28 (23, 36) 29 ( 24, 43)

0) 21 (17, 26) 23 (20, 30)

8) 76 (62, 92) 74 (58,103)

8) 32 (22, 40) 39 (25, 49)

67) 152 (103, 187) 98 (80, 124)

.6) 7.1 (6.2, 8.3) 5.8 (5.5, 6.4)

4) 23 (13, 37) 22 (14, 32)

.7) 8.4 (4.0, 14.1) 5.0 (3.7, 7.8)

26) 109 (90, 117) 104 (89, 124)

29) 194 (161, 203) 189 (167, 225)

39) 127 (104, 136) 114 (94, 153)

3) 40 (36, 54) 44 (37, 51)

48) 159 (113, 218) 163 (124, 262)

01) 301 (209, 506) 257 (159, 476)

2.2) 14.3 (10.4, 22.3) 15.8 (12.3, 19.6)

.4) 2.9 (2.7, 3.2) 3.0 (2.8, 3.2)

8.60) 17.3 (14.4, 19.80) 17.0 (12.7, 25.3)

se; HbA1c, hemoglobin A1c; HOMA-IR, Homeostatic Model
lastography; Q1, first quartile; Q3, third quartile.
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Figure 1. Pharmacokinetic and pharmacodynamic assessments. (A) Plasma pharmacokinetic profile of TVB-2640 in 25-mg
and 50-mg cohorts. Plasma levels of TVB-2640 were measured on day 1 (2, 4, 6, and 24 hours post dose) and day 8 (pre-
dose, 2, 4, and 6 hours post dose). On day 8, the predose value is also graphed at 24 hours. Mean/standard deviation of n ¼ 12
(25 mg) and 16 (50 mg). (B) Tripalmitin, pharmacodynamic marker of FASN inhibition. Tripalmitin levels in plasma were
quantitated by UHPLC-MS. Results are presented as pairwise % change at week 12 compared to baseline. *P < .05; ***P <
.001 vs placebo from an analysis of covariance model with fixed effects for the stratification factor (diabetes and treatment
group), with baseline value as a covariate.
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FASN inhibition was assessed by measurement of serum
tripalmitin, a triglyceride (TG) in which all 3 acyl chains are
palmitate and its serum level provides an estimate of DNL.24

Tripalmitin increased by 26% in the placebo group and was
reduced by 21% in the 25-mg cohort and by 40% in the 50-
mg cohort (P < .01 and P < .0001, respectively) after 12
weeks of treatment (Figure 1B). Decreased tripalmitin was
evident by week 4 of dosing at 50 mg with a median
decrease of 21% (P < .05) from baseline, the earliest post-
baseline timepoint tested (not tested for 25 mg). The
reduction in this pharmacodynamic marker demonstrates
significant inhibition of FASN and hepatic DNL by TVB-2640.

Safety data were collected from a total of 99 patients, of
whom 68 were treated with TVB-2640. Overall, 62 patients
(63%) experienced at least 1 TEAE, all of which were
assessed by the investigator as grade 1/mild except for 1
grade 2 urinary tract infection and 1 increased appetite at
25 mg, and 1 shortness of breath at 50 mg; all 3 resolved
without dose adjustment. No on-treatment serious adverse
events occurred in any dose group. Overall, the most com-
mon TEAEs, regardless of drug-relatedness, among TVB-
2640–treated patients were headache (6 patients [9%]),
peripheral edema, rash, and upper respiratory tract infec-
tion (4 patients [6%]), and bronchitis, diarrhea, nausea, and
urinary tract infection (3 patients [4%]) and hyper-
triglyceridemia (noted as unrelated to treatment; 2 patients
[5.7%]) (Table 2). Two patients (3%) discontinued TVB-
2640 due to a TEAE, 1 due to mild eye allergy on day 2 of
study and the other due to mild conjunctivitis; both at the
25-mg dose; no discontinuations for a TEAE occurred in the
50-mg dose cohort (Table 2).

The primary efficacy end point was change in liver fat by
MRI-PDFF imaging at 12 weeks.22,23 TVB-2640 treatment
resulted in significant relative and absolute reductions of
liver fat compared to placebo in a dose-dependent manner.
FLA 5.6.0 DTD � YGAST64480_proof
In the placebo group, relative liver fat increased on average
by 4.5% ± 35.9% relative to baseline during the 12-week
dosing period. In contrast, there was a relative reduction
of liver fat of 9.6% ± 29.1% in the 25-mg cohort (P ¼ .053)
and 28.1% ± 28.0% (P ¼ .001) in the 50-mg cohort
(Figure 2A). Lean absolute liver fat reduction was 0.3% in
the placebo arm compared to 1.8% (P ¼ NS) in the 25-mg
arm and 5.1% in the 50 mg arm (P ¼ .001) (Figure 2B).
The overall trends were not significantly impacted by T2D
status, magnetic resonance elastography liver stiffness, or
liver fat values at baseline. In addition, body weight changes
were negligible in each of the 3 cohorts and there was no
observed correlation between body weight change and liver
fat change. To provide further evidence that the reduction of
liver fat was due to the pharmacological activity of TVB-
2640, MRI-PDFF was assessed at week 16, four weeks
after treatment was stopped. Ninety-three percent of the
patients had a third MRI-PDFF measured at week 16. Liver
fat in placebo-treated patients was similar between week 16
and week 12 (4.6% and 4.5%, respectively, compared to
baseline). In contrast liver fat had begun to increase in both
the 25-mg and 50-mg TVB-2640 cohorts (–7.0% and
–13.1%, respectively, compared to baseline; not significant
compared to placebo).

A dose-dependent increase in response rate was
observed among the 3 cohorts and the majority of patients
treated with 50 mg TVB-2640 achieved an MRI-PDFF
response. Eleven percent (n ¼ Q3 of 27) of placebo patients
had a �30% relative reduction in liver fat content vs 23%
(n ¼ 7 of 30) of patients treated with 25 mg TVB-2640 (P ¼
NS) and 61% (17 of 28) of patients treated with 50 mg (P <
.001) (Figure 2C). Furthermore, only 1 patient in the placebo
group (3.7%) had a relative reduction of �50% liver fat,
compared to 4 (13.3%) and 6 (21.4%) in the 25-mg and
50-mg TVB-2640–treated cohorts, respectively (Figure 2D).
� 12 August 2021 � 1:07 pm � ce
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Table 2.Safety Profile of TVB-2640 in Patients With Nonalcoholic Steatohepatitis

Variable Placebo (n ¼ 31) 25 mg TVB-2640 (n ¼ 33) 50 mg TVB-2640 (n ¼ 35)

Most common TEAE reported for �5%
of patients in any cohort (regardless
of attribution to drug or not), n (%)
Headache 2 (6.3) 4 (12.1) 2 (5.7)
Peripheral edema/swelling 0 3 (9.1) 1 (2.9)
Rash 1 (3.1) 3 (9.1) 1 (2.9)
Upper respiratory infection 1 (3.1) 2 (6.1) 2 (5.7)
Bronchitis 0 3 (9.1) 0
Diarrhea 1 (3.1) 3 (9.1) 0
Hypertriglyceridemia 2 (6.3) 1 0 2 (5.7)a

Nausea 0 3 (9.1) 0
Urinary tract infection 0 2 (6.1) 1 (2.9)

Summary of TEAEs
Any
Grade 1 11 (35) 18 (54.5) 11 (31.4)
Grade 2 8 (25.8) 7 (21.2) 7 (20.0)

Leading to drug withdrawal 0 2 (6.1) 0
Serious adverse event 0 0 0

Death 0 0 0
Drug-related
Grade 1 3 (9.7) 10 (30.3) 9 (25.7)
Grade 2 1 (3.2) 2 (6.1)b 1 (2.9)c

aThese hypertriglyceridemia events unrelated to drug.
b25 mg: urinary tract infection and increased appetite, both resolved without dose adjustment.
c50 mg: shortness of breath, resolved without dose adjustment.
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Markers of liver injury improved on treatment with TVB-
2640. Consistent with the relative increase of liver fat in the
placebo cohort, plasma ALT levels increased by 3.4 U/L
(7.4%) over 12 weeks (Figure 3A). In contrast, ALT levels
decreased at both doses of TVB-2640. Levels decreased by
3.6 U/L (3%; P ¼ NS) and 12.3 U/L (22.3%) (P < .005) from
baseline in the 25-mg and 50-mg cohorts, respectively, with
a mean difference of 13.6 U/L in the 50-mg cohort
compared to placebo (P < .005). The decrease in ALT was
both dose-dependent and time-dependent, evident at week
2, 4, and 8 at 50 mg with highest decrease at week 12
(Figure 3B). Approximately one-third of the patients in each
A B C                   
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Figure 2. Changes in liver fat content measured by MRI-PDFF
relative to baseline (mean/standard error of mean [SEM]). (B) Abs
SEM). (C) Percent of patients with a �30% relative decrease o
baseline for each patient per treatment group. Dashed lines rep
levels. **P < .005; ***P < .001 vs placebo from an analysis of c
(diabetes and treatment group), with baseline value as a covari

FLA 5.6.0 DTD � YGAST64480_proof
cohort had abnormal ALT levels at baseline. In this sub-
group, 33% of placebo patients normalized ALT post-
treatment compared to 60% of the patients treated with
50 mg of TVB-2640.25 Among patients with elevated ALT at
baseline, 33% of those in the placebo cohort achieved a �17
U/L reduction vs 50% of patients treated with 50 mg TVB-
2640. Liver fat reduction was generally associated with ALT
decreases in TVB-2640–treated patients but not placebo-
treated patients.

Similar to ALT, serum aspartate aminotransferase levels
increased in the placebo group over 12 weeks but decreased
in a dose-dependent manner in TVB-2640–treated patients
                     D
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(P < .05) (Figure 3A). Small and/or non–dose-dependent
changes were noted in g-glutamyl transpeptidase
(Figure 3A) and alkaline phosphatase (Figure 5).

Another important indicator of liver damage in NASH
patients is the elevation of serum proteolytic fragments of
CK18, the major intermediate filament protein of hepato-
cytes. CK18 (M30) increased by 54.7% in the placebo group
over 12 weeks of this study, consistent with continued liver
damage; in contrast, there was a lesser increase in the
25-mg cohort (9.3%; P ¼ .04) and an 11.7% decrease in
patients treated with 50 mg TVB-2640 (P ¼ .006)
(Figure 3C). Similar changes were observed in intact CK18
(M65). Reduction of these serum markers suggests
improved hepatocyte viability in TVB-2640–treated patients
with NASH.

Hyperlipidemia was common in these patients. Total
cholesterol (Tot-chol), high-density lipoprotein cholesterol
(HDL-chol), and low-density lipoprotein cholesterol (LDL-
chol) levels increased by 4.7%, 5.2% and 9%, respectively,
in the placebo cohort (Figure 3D). In contrast, patients
treated with 50 mg TVB-2640 exhibited decreases in all
A B
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Figure 3. Changes in plasma biomarkers. (A) Absolute change
peptidase (U/L) at week 12 compared to baseline, n of 27, 30,
change from baseline (U/L) at 2, 4, 8, and 12 weeks of treatme
stratification factor (diabetes and treatment group), with baseline
at week 12 compared to baseline, n of 25, 30, 21 for placebo,
fractions (mg/dL) and ApoB (mg/dL) at week 12 compared to ba
*P < .05; **P < .005 vs placebo with fixed effects for the stratifica
as a covariate. (E) Percent change in FGF-21 levels (pg/mL) at w
mg, 50 mg respectively. (F) Percent change in adiponectin levels
placebo, 25 mg, 50 mg respectively. **P < .005 by Mann Whitn
TIMP-1 (ng/mL), and PIIINP (ng/mL) between baseline and week
for placebo, 25 mg, 50 mg respectively. *P < .05 by Mann Wh

FLA 5.6.0 DTD � YGAST64480_proof
cholesterol fractions with decreases of 5.1% (P ¼ .05) for
Tot-chol, 11% (P ¼ .01) for LDL-chol, and 4.4% (P ¼ .004)
for HDL-chol. Baseline ratios of Tot-chol/HDL were elevated
at 4.4–4.6 and there were no changes to these ratios after
treatment (Figure 5), suggesting that the HDL-chol decrease
was a consequence of decreased Tot-chol levels. ApoB also
increased in the placebo group, consistent with elevation of
LDL and very low-density lipoprotein particles in the
serum. Consistent with reductions of LDL-chol in the TVB-
2640 cohorts, ApoB levels were lower in drug-treated pa-
tients relative to placebo, although the change was not
significant. TG levels varied widely among patients and with
repeated measures in the same patients with no significant
changes between placebo and drug-treated groups. No
laboratory AEs of drug-related hypertriglyceridemia were
found.

FGF-21 and adiponectin are important regulators of in-
sulin sensitivity. Elevated levels of FGF-21 in obese patients
may be indicative of a protective response to preserve in-
sulin sensitivity. FGF-21 levels increased by 82% and adi-
ponectin by 17.4% in the 50-mg arm (P < .005 and P < .05,
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Figure 4. Lipidomic profiling of patient serum. (A) Lipidomic profiling of 400 species performed by UHPLC-MS. Heatmap of
binary paired comparisons of week 12 to baseline for placebo (n ¼ 25), 25 mg TVB-2640 (n ¼ 27), and 50 mg TVB-2640 (n ¼
28) as log2 pairwise fold change. Lipids are grouped by class as indicated for a total of approximately 400 species. Red in-
dicates increase and blue indicates decrease. Statistical significance is indicated in gray scale for each species. (B) Heatmap
displaying the changes (week 12 compared to baseline) in TG species with respect to number of carbons and double bonds.
Color code represents the transformed ratios between means of the groups (log2 [fold-change]). Student t test P values (or
Welch’s t test where unequal variances were found): *P < .05; **P < .01; ***P < .001. AA, amino acids; AC, acyl carnitines;
ArAA, aromatic amino acids; BA, bile acid; BCAA, branched chain amino acids; Cer, ceramides; ChoE, cholesteryl ester; CMH,
monohexosylceramides (Cerebrosides); DAPE, diacylglycerophosphatidylethanolamines (DAPE); DAPC, diacylglycer-
ophosphatidylcholines; DG, diglycerides; FSB, free sphingoid base; LPC, lysophosphatidylcholines; LPE, lysophosphatidy-
lethanolamines; LPI, lysophosphatidylinositols; MAPC, monoacylclycerophosphocholines; MAPE,
monoacylglycerophosphoethanolamine; MAPI, monoacylglycerophosphoinositol; MEMAPC, 1-ether, 2-
acylglycerophosphocholines; MEMAPE, 1-ether, 2-acylglycerophosphoethanolamine; MEPC, mono-
etherglycerophosphocholines; MEPE, 1-monoetherglycerophosphoethanolamine; MUFA, monounsaturated fatty acid; NAE,
N-acyl ethanolamines; NEFA, nonesterified fatty acid; PC, phosphatidylcholines; PE, phosphatidylethanolamine; PG, phos-
phatidylglycerols; PI, phosphatidylinositols; PUFA, polyunsaturated fatty acids; SFA, saturated fatty acid; SM, sphingomyelin;
TG, triglycerides; UFA, unsaturated fatty acid.
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LIVER
respectively, vs placebo) (Figure 3E and F). There were no
significant changes in fasting glucose or insulin levels at
week 12.
FLA 5.6.0 DTD � YGAST64480_proof
Treatment of patients with TVB-2640 had a significant
impact on several serum markers of fibrosis in this 12-week
study. TIMP-1, PRO-C3, and PIIINP all decreased in a dose-
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Figure 5. Summary of effect of TVB-2640 on tripalmitin, liver
injury markers and cholesterol profiles. Difference in least
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dependent manner in patients treated with TVB-2640. The
PRO-C3 epitope is specific for cleaved procollagen 3 and its
presence in the blood is a marker of active fibrogenesis in
the liver. PRO-C3 levels increased in the placebo group by
8.5% and decreased in the TVB-2640 50-mg-treated cohort
by 8.1% (P ¼ .042); TIMP-1, another marker of stellate cell
activation, was reduced significantly by 18% (P < .05) from
baseline. An assay for PIIINP (detects both cleaved and
uncleaved procollagen 3) also exhibited a dose-dependent
decrease treatment, although the change was not signifi-
cant (Figure 3G).

The significant reductions of liver fat, serum tripalmitin,
and cholesterol (summarized in Figure 5) warranted a more
detailed evaluation of global lipid changes in the serum
of these patients, particularly those related to lipotoxic
species associated with pathogenesis of liver and metabolic
disease. Blood samples collected at baseline, 4 weeks, and
12 weeks of treatment were evaluated for more than 450
different metabolites by UHPLC-MS, especially free fatty
acids and their derivatives, bile acids, and sterols/steroids.
As evidenced by the heatmap, with the exception of
increases in monoetherglycerophosphocholine and mono-
acylglycerophosphocholine species there were no other
classes that significantly changed in the placebo cohort at
week 12, indicating that time was not a significant factor
driving changes in metabolite profiles (Figure 4A). As
FLA 5.6.0 DTD � YGAST64480_proof
expected, free fatty acids in plasma, including palmitate,
showed no or minimal differences among the placebo and
TVB-2640 groups after 12 weeks of treatment. In addition, a
subset of acyl carnitines was measured (acyl chains of 8:0,
10:0, 12:0, 14:2n-x, or 16:0) and there were no significant
changes from baseline. In contrast, TGs enriched for
palmitate-containing species (shorter carbon chains and
higher degree of saturation), including but not limited to
tripalmitin, were significantly reduced in patients treated
with 25 mg or 50 mg TVB-2640 in a dose-dependent
manner (Figure 4B). In contrast some TGs consistent with
long chain polyunsaturated acyl chains increased in these
subjects. Consistent with palmitate as a major substrate for
ceramide and DAG synthesis, TVB-2640 reduced certain
DAGs and bile acids, and caused broad decreases across the
ceramides and sphingomyelins, especially those containing
saturated acyl chains with 16–18 carbons. Most of these
changes were observed by 4 weeks of treatment in patients
treated with 50 mg TVB-2640. These favorable decreases
are consistent with DNL pathway inhibition, further con-
firming the effects of TVB-2640 on the generation of lipids
responsible for lipotoxicity, the hallmark driver of NASH.
Discussion
In this randomized, placebo-controlled study, TVB-2640

was well tolerated and produced a significant dose-
dependent reduction of liver fat content after 12 weeks of
treatment. A 50-mg daily oral dose of TVB-2640 for 12
weeks reduced liver fat on average by 28.1%, and 61% of
subjects achieved an MRI-PDFF response of �30% relative
reduction of liver fat. This drug produced a multipronged
effect on lipids in NASH patients: inhibition of DNL, reduc-
tion of hepatic fat (MRI-PDFF), and levels of lipotoxic mol-
ecules, including DAGs and ceramides produced from excess
palmitate. In addition, the mechanism of action of TVB-2640
is expected to reduce liver fibrosis by virtue of the critical
role of FASN in activation of fibrogenesis in hepatic stellate
cells.16 TVB-2640 treatment of NASH patients resulted in a
significant reduction of serum biomarkers of fibrosis, PRO-
C3 and TIMP-1, despite the short duration of treatment.
The placebo population in this study showed increases in
liver fat, liver enzymes, CK18, and cholesterol levels over 12
weeks. In contrast, TVB-2640 elicited a rapid impact on
DNL, hepatic fat, blood levels of pro-inflammatory/pro-
fibrotic lipotoxic metabolites and markers of fibrogenesis,
which aligns with the mechanism of action of this drug
across multiple pathologic pathways, suggesting its poten-
tial as a treatment for patients with NASH (Figure 5).

In other studies, NASH patients who achieved an MRI-
PDFF response (relative reduction of �30% liver fat), af-
ter 12–24 weeks of treatment have been shown later to
have improved liver histology on repeat liver biopsy, and
this response has emerged as a strong and important indi-
cator of NASH histologic improvement.21,23,26 Patients with
an MRI-PDFF response have a 7-fold increase in the
improvement of NAFLD Activity Score by 2 or more points, a
5-fold increase in the rate of NASH resolution and improved
fibrosis compared to those who do not achieve a
� 12 August 2021 � 1:07 pm � ce
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response.21,27 These rates of histologic improvement are
likely even higher in subjects who achieve a �50% reduc-
tion of liver fat by MRI-PDFF.28 In this trial, 61% of NASH
patients treated with TVB-2640 for only 12 weeks achieved
a �30% reduction of liver fat by MRI-PDFF and 21% ach-
ieved a �50% reduction of liver fat. Future studies will
determine whether a longer duration of treatment will
result in an even greater response. Because there was a
small number of patients in the 50-mg cohort who did not
reduce liver fat, there may be a subset of NASH patients in
whom DNL is not a major driver of disease and they might
not respond to drugs that reduce DNL.

In addition to the reduction of liver fat, other hallmarks
of liver health improved after treatment with TVB-2640.
Both ALT and CK18 levels were reduced by TVB-2640
treatment vs placebo but, in contrast, these markers
increased in placebo patients. Importantly, half of the pa-
tients with baseline ALT at or above the upper level of
normal treated with 50 mg of TVB-2640 achieved a �17 U/
L reduction of ALT, a threshold that is associated with
improvement of liver fibrosis on histological examination.25

NASH is a complex disease and patients often have
cardiovascular complications resulting from the metabolic
syndrome, T2D, and dyslipidemia. TVB-2640 treatment was
associated with metabolic improvements. Inhibition of ACC
reduces DNL while increasing plasma levels of TGs18,29; in
contrast, FASN inhibition with TVB-2640 reduced DNL
without the negative consequence of TG elevation. A sig-
nificant decrease in TGs with shorter, more saturated acyl
chains may have been offset by a similar increase in TGs
with longer, polyunsaturated acyl chains resulting in no net
change. In addition, LDL-chol was reduced by up to 18.7%
(95% confidence interval, –33.1% to –4.4%; P ¼ .01)
compared to placebo, which suggests that long-term treat-
ment can improve the cardiovascular risk. FGF-21 and adi-
ponectin levels were significantly increased, indicative of a
protective response to restore insulin sensitivity especially
in obese subjects.30,31 FGF-21 and adiponectin rely on each
other for maximal activity and restoration of insulin sensi-
tivity. Although there were no significant changes in insulin
levels or fasting blood glucose in the current study, these
measures will be reassessed in future studies with a longer
treatment duration.

Because the extent of fibrosis is a leading prognostic
indicator of progression to cirrhosis and its complications, it
is imperative that therapies either regress fibrosis or blunt
the progression of fibrosis. TVB-2640 produced a sharp
decline of the serum fibrosis markers PRO-C3, TIMP-1, and
PIIINP in only 12 weeks, indicating that the drug might have
a direct impact on stellate cells and fibrogenesis in these
patients. The impact of TVB-2640 treatment on fibrosis may
be 2-fold. One path is indirect; mediated by reduction of
lipotoxic liver injury that drives fibrosis-inducing damage.
The other is a more direct effect on inflammatory stimuli
and stellate cells in the liver, as these cell types rely on DNL
for activation. Inhibition of FASN and DNL in human hepatic
stellate cells studied ex vivo reduces procollagen expression,
profibrotic gene expression and prevents activation of these
cells to myofibroblasts.16 These indirect and direct actions
FLA 5.6.0 DTD � YGAST64480_proof
have the potential to improve fibrosis while on therapy,
which will be further evaluated in future trials with histo-
logical end points.

A major emerging topic in the pathogenesis of NASH is
the role of lipotoxic species in causing and exacerbating
liver damage. Ceramides, for example, are elevated in pa-
tients with NASH and bariatric surgery is associated with a
decline in these lipotoxic metabolites. Palmitate itself has
inherent inflammatory properties either directly by stimu-
lating receptors, such as TLR4, or indirectly as a substrate
for production of other lipotoxins. DAGs and ceramides also
play a significant role in insulin resistance. Certain DAGs
activate protein kinase C isoforms in the muscle and liver,
and ceramides inactivate Akt/PI3K signaling in response to
insulin: both these mechanisms contribute to insulin resis-
tance.12,13 This early-phase study of a FASN inhibitor shows
beneficial effects on potential lipotoxic mediators of liver
injury in NASH as reflected by lower ceramide levels in
blood.

Prior studies have shown that relatively high doses of
TVB-2640 can reduce serum tripalmitin levels by 10%–15%
after 1–2 weeks of treatment.32 The current study demon-
strated that 12 weeks of dosing with TVB-2640 lowered
tripalmitin levels in a dose-dependent fashion as much 40%.
At a minimum tripalmitin may serve as a useful pharma-
codynamic marker of FASN inhibition. Further studies
correlating a direct measurement of DNL to changes in tri-
palmitin and liver fat in NASH patients may help define the
utility of this marker.

The good safety profile of TVB-2640 in these patients
was consistent with previous studies; there were no drug-
related organ, metabolic or skin toxicities reported. TVB-
2640 has been given to oncology patients at doses of 150
mg or higher per day for months without any notable im-
pacts on liver tissue or other major internal organs. At these
several-fold higher doses used in cancer patients, lipogen-
esis is inhibited in the skin and can lead to dry skin, dry eye,
and hair thinning, which can be treated with eye drops or
lotions, and are reversible.33 At these high doses, 3 times the
50-mg dose used in this study, and left untreated, these
conditions can lead to palmar-plantar erythrodysesthesia,
iritis/uveitis, or alopecia, respectively, in some patients.

The limitations of the current study include the rela-
tively small sample size and short duration of dosing can
confound the assessment of biomarkers of fibrosis in pa-
tients’ plasma; additional studies will be needed to directly
assess the impact of TVB-2640 on liver histology. T The
worsening of multiple parameters in the placebo group is
uncommon in these studies and there were limited assess-
ments of potential confounding effects of diet, exercise and/
or alcohol use. In addition the single-blind design cannot
eliminate the possibility that placebo and TVB-2640–treated
patients were differentially advised on behaviors by un-
blinded investigators.

TVB-2640 potently reduced liver fat in NASH patients
with a majority achieving an MRI-PDFF response within 12
weeks of treatment. This effect combined with biomarkers
showing reduction in liver injury, improvement in metabolic
function, reduction of pro-inflammatory lipotoxins, evidence
� 12 August 2021 � 1:07 pm � ce
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of reduced fibrogenesis, and a favorable effect on serum
lipids combine to provide a compelling foundation for larger
randomized clinical trials with histologic end points.
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