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In the prefrontal cortex (PFC), higher-order cognitive functions and adaptive flexible

behaviors rely on continuous dynamical sequences of spiking activity that constitute

neural trajectories in the state space of activity. Neural trajectories subserve diverse

representations, from explicit mappings in physical spaces to generalized mappings in

the task space, and up to complex abstract transformations such as working memory,

decision-making and behavioral planning. Computational models have separately

assessed learning and replay of neural trajectories, often using unrealistic learning rules

or decoupling simulations for learning from replay. Hence, the question remains open

of how neural trajectories are learned, memorized and replayed online, with permanently

acting biological plasticity rules. The asynchronous irregular regime characterizing cortical

dynamics in awake conditions exerts a major source of disorder that may jeopardize

plasticity and replay of locally ordered activity. Here, we show that a recurrent model of

local PFC circuitry endowed with realistic synaptic spike timing-dependent plasticity and

scaling processes can learn, memorize and replay large-size neural trajectories online

under asynchronous irregular dynamics, at regular or fast (sped-up) timescale. Presented

trajectories are quickly learned (within seconds) as synaptic engrams in the network,

and the model is able to chunk overlapping trajectories presented separately. These

trajectory engrams last long-term (dozen hours) and trajectory replays can be triggered

over an hour. In turn, we show the conditions under which trajectory engrams and

replays preserve asynchronous irregular dynamics in the network. Functionally, spiking

activity during trajectory replays at regular timescale accounts for both dynamical coding

with temporal tuning in individual neurons, persistent activity at the population level,

and large levels of variability consistent with observed cognitive-related PFC dynamics.

Together, these results offer a consistent theoretical framework accounting for how

neural trajectories can be learned, memorized and replayed in PFC networks circuits

to subserve flexible dynamic representations and adaptive behaviors.

Keywords: prefrontal cortex, neural trajectory, attractor, persistent and dynamical coding, working memory,

learning, replay, asynchronous irregular state

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://www.frontiersin.org/journals/neural-circuits#editorial-board
https://doi.org/10.3389/fncir.2021.648538
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2021.648538&domain=pdf&date_stamp=2021-07-08
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles
https://creativecommons.org/licenses/by/4.0/
mailto:matthieu.sarazin@live.fr
mailto:bruno.delord@sorbonne-universite.fr
https://doi.org/10.3389/fncir.2021.648538
https://www.frontiersin.org/articles/10.3389/fncir.2021.648538/full


Sarazin et al. Neural Trajectories in Awake PFC

INTRODUCTION

As when a few introductory notes recall a melody, in the
immense space of known melodies, cerebral networks are able
to memorize and replay complex temporal patterns in a flexible
way. Such temporal patterns rely on continuous dynamical
sequences of spiking activity, i.e., neural trajectories, that occur
in recurrent neural networks of the prefrontal cortex (PFC)
(Bakhurin et al., 2017; Paton and Buonomano, 2018; Wang et al.,
2018). These neural trajectories emerge with learning, relying
on dynamical engrams, which distinguish them from classical
static engrams underlying Hebbian neuronal assemblies. In turn,
these engrams likely arise through activity-dependent synaptic
plasticity (Goto et al., 2010; Bittner et al., 2017). Hence, a robust
understanding of the interplay between prefrontal dynamics
and biological plastic processes is necessary to understand the
emergence of functional neural trajectories and engrams. In the
PFC of behaving animals, neural trajectories are embedded in
an asynchronous and irregular background state activity that is
markedly disordered (Destexhe et al., 2003; London et al., 2010).
However, how synaptic plasticity builds engrams that are not
erased by spontaneous activity and yet are not strong enough to
alter irregular PFC dynamics remains an open question.

Neural trajectories correspond to organized spatio-temporal
representations that peregrinate within the neural space (Shenoy
et al., 2013). They are prominent in prefrontal cortices (Mante
et al., 2013), where they subserve higher-order cognitive
functions at diverse levels of abstraction (Wutz et al., 2018).
In prefrontal areas, at the lowest levels of abstraction, neural
trajectories can map the actual animal’s position during effective
trajectories within explicit spaces during visual perception
(Mante et al., 2013) or navigation (Fujisawa et al., 2008; Zielinski
et al., 2019). Beyond spatial mapping, neural trajectories can also
depict generalized topological locations that are isomorphic to
the task space, by multiplexing position, representation of goal
locations and choice-related information (Fujisawa et al., 2008;
Mashhoori et al., 2018; Yu et al., 2018; Kaefer et al., 2020).
Neural trajectories have also been shown to subserve dynamical
coding and manipulation of information during delay activities
in working memory tasks involving the PFC (Lundqvist et al.,
2018). In this context, neural trajectories do not represent explicit
trajectories in external spaces, but implicit representations—of
ongoing information and cognitive operations—that may prove
useful for the task.

Rather than static maintenance of persistent activity in a
group of cells, many working-memory representations unfold
in the space of neural activity under the form of continuous
trajectories, as neurons successively activate in “relay races”
sequences of transient activity (Batuev, 1994; Brody et al.,
2003; Cromer et al., 2010; Yang et al., 2014; Schmitt et al.,
2017; Enel et al., 2020). In the PFC, neural trajectories can
form the substrate for dynamic (Sreenivasan et al., 2014) but
also, counterintuitively, for stable representations (Druckmann
and Chklovskii, 2012). Neural trajectory-mediated dynamical
representations can subserve the retrospective working memory
of spatial (Batuev, 1994; Yang et al., 2014) or quantitative (Brody
et al., 2003) cues, symbolic categories (Cromer et al., 2010), values

(Enel et al., 2020), or behavioral rules (Schmitt et al., 2017). They
can also serve prospective working memory in computational
processes transforming previously encoded information, such as,
for e.g., in visuo-motor transformations (Spaak et al., 2017), in
the representation of elapsed time (Tiganj et al., 2017) or in the
encoding of forthcoming behaviors (Fujisawa et al., 2008; Ito
et al., 2015; Nakajima et al., 2019; Passecker et al., 2019). Neural
trajectories in the neural space can also appear as sequences of
states that involve combinations of active neurons (Batuev, 1994;
Abeles et al., 1995; Seidemann et al., 1996; La Camera et al., 2019).
Thus, neural trajectories appear in diverse forms and in different
functional contexts where they can map actual trajectories in
external spaces, remember previously encountered trajectories,
or predict forthcoming trajectories during active computational
processes requiring dynamical representations.

Neural trajectories in the PFC are adaptive (Euston et al.,
2012; Mante et al., 2013): they are learned and memorized,
to be “replayed” later. The timescale of the replay depends
on the behavioral context. Regular timescale replays operate
at the behavioral timescale, lasting seconds (Batuev, 1994;
Fujisawa et al., 2008; Cromer et al., 2010; Mante et al., 2013;
Yang et al., 2014; Ito et al., 2015; Schmitt et al., 2017; Tiganj
et al., 2017; Nakajima et al., 2019; Passecker et al., 2019;
Enel et al., 2020). Thus, such replays unfold online as current
behavior is executed in interaction with the external world, to
subserve retrospective working memory of past information, on-
going dynamical computations, or prospective representation of
forthcoming behaviors. Typically, regular replays are triggered by
behaviorally–relevant external events (e.g., cues or go signals in
working memory tasks, or the current position in navigational
tasks). Some replays that may appear as spontaneous can be
presumably triggered by internal self-paced decision signals
within the PFC (e.g., choices). In all cases, such triggered regular
replays rely on internal mechanisms within PFC circuits allowing
for the autonomous propagation of proper sequences of activity,
once initial neurons of the neural trajectory have been triggered.
A major goal of the present study is to decipher how plastic
processes allow PFC circuits to learn and replay trajectories, i.e.,
autonomously generate neural trajectory completion, based on
an initial trigger.

Besides, fast timescale replays exist that last a few hundred
milliseconds during awake (Jadhav et al., 2016; Mashhoori
et al., 2018; Yu et al., 2018; Shin et al., 2019; Kaefer et al.,
2020) and sleeping (Euston et al., 2007; Peyrache et al., 2009)
states. Beyond their much shorter duration, PFC fast replays
are distinct from regular ones, in that they typically operate
offline and often co-occur with fast replays in the hippocampal
CA1 field (Jadhav et al., 2016). Replay activity in PFC and CA1
presents high degrees of task-dependent spatial and temporal
correlations (Jadhav et al., 2016; Yu et al., 2018; Shin et al.,
2019), subserving functional coordination combining metric
(hippocampus) and task-related (PFC) spatial representations
(Pfeiffer and Foster, 2013; Zielinski et al., 2019). These fast
replays occur during sharp-wave ripples (SWR) episodes (Jadhav
et al., 2016; Yu et al., 2018; Shin et al., 2019), which represent
critical events for behavioral learning (Jadhav et al., 2012) and
during which animals forge forthcoming decisions (choices,
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trajectories, for e.g., Jadhav et al., 2016; Mashhoori et al., 2018;
Kaefer et al., 2020), based on the recall of past experiences
(actions, trajectories, outcomes, for e.g., Jadhav et al., 2012;
Mashhoori et al., 2018). Such coordination across both structures
presumably emerges through their reciprocal, direct and indirect,
synaptic interactions (Witter and Amaral, 2004). Different
studies have pointed out information flow biases from CA1
to PFC (Jadhav et al., 2016) or from PFC to CA1 (Ito et al.,
2015) directions, depending on behavioral contexts. However,
SWR-related replays in the hippocampus correlate with fast
replays in reduced subsets of PFC neurons (Jadhav et al., 2016;
Yu et al., 2018) that carry generalized spatial representations
but not specific trajectories (Yu et al., 2018). Moreover, fast
timescale PFC replays are independent of hippocampal replays
during computational processes inherent to the PFC, such as
rule switching tasks (Kaefer et al., 2020). Therefore, as for
regular replays, we examined how plastic processes allow for the
emergence of fast timescale replays autonomously within local
recurrent PFC circuits.

Neuronal trajectories consist of robust forms of ordered local
activity occurring within a disordered global activity, i.e., the
chaotic, asynchronous irregular (AI) state characteristic of the
prefrontal cortex in the waking state (Destexhe et al., 2003;
London et al., 2010). This coexistence poses a problem at
the plasticity level, because the noisy AI regime constitutes
a potential source of perturbation for synaptic engrams
(Boustani et al., 2012; Litwin-Kumar and Doiron, 2014), whereas
strengthened connectivity pathways may exert a synchronizing
influence on the network, dramatically altering the chaotic
nature of background activity. However, there is currently no
biophysically-grounded theoretical framework accounting for
the way neural trajectories are learned, memorized and replayed
within recurrent cortical networks. In principle, synaptic
plasticity, a major substrate of learning, may sculpt oriented
connective pathways promoting the propagation of neuronal
trajectories, because modifications of synaptic connections are
activity-dependent. Specifically, the sequential activation of
differentially tuned neurons during successively crossed spatial
positions (during navigational trajectories) or representational
states (during dynamical cognitive processes) could strengthen
connections between neurons, creating oriented pathways
(referred to as trajectory engrams hereafter) within recurrent
cortical networks. If sufficiently strengthened, engrams could
allow the propagation of packets of neuronal activity along them.
From an initial stimulation of neurons located at the beginning
of the engram, due to the strong connections linking them in the
direction of the trajectory, neurons could reactivate sequentially,
i.e., perform trajectory replay.

Recurrent neural network models have shown that activity-
dependent synaptic plasticity rules can enable the formation
of trajectory engrams due to long-term potentiation (LTP) and
depression (LTD) together with homeostatic scaling (Liu and
Buonomano, 2009; Clopath et al., 2010; Fiete et al., 2010;
Klampfl and Maass, 2013). Moreover, trajectory engrams can
propagate neuronal trajectories through sequential activation of
neurons in recurrent model networks (Liu and Buonomano,
2009; Fiete et al., 2010; Klampfl and Maass, 2013; Laje and

Buonomano, 2013; Chenkov et al., 2017). However, the above
models of neural trajectories do not elucidate the biological
basis of learning and replay in neurophysiological situations
encountered by PFC networks for several reasons. First, in
these models, trajectory learning is either ignored (hard-written
trajectory engram; Chenkov et al., 2017), unrelated to behavior
(random formation of arbitrary trajectory; Liu and Buonomano,
2009; Fiete et al., 2010), based on artificial learning rules (Laje
and Buonomano, 2013) or on biophysically unrealistic rules in
terms of neuronal activity and synaptic plasticity constraints (Liu
and Buonomano, 2009; Fiete et al., 2010; Klampfl and Maass,
2013). Moreover, trajectory replay is absent (Clopath et al., 2010)
or unable to operate from an initial trigger (Klampfl and Maass,
2013), or the ability to memorize and replay trajectory engrams
and replays long-term is not tested (Liu and Buonomano, 2009;
Clopath et al., 2010; Fiete et al., 2010; Klampfl and Maass, 2013;
Laje and Buonomano, 2013; Chenkov et al., 2017). Finally, none
of these models evaluate the capacity for trajectory learning and
replay in the realistic context where network activity undergoes
AI dynamics, whereas it is characteristic of the awake state in
the cortex (Destexhe et al., 2003; London et al., 2010). The
interactions between synaptic plasticity and AI dynamics has so
far only been assessed for static Hebbian engrams (Morrison
et al., 2007; Boustani et al., 2012; Litwin-Kumar and Doiron,
2014) but not for dynamic trajectories.

The disordered activity of AI cortical dynamics represents
a potentially important source of disturbance at many stages.
Indeed, AI regime activity may spontaneously engage plastic
processes (before any trajectory presentation), affecting the
synaptic network matrix, and leading to altered network
dynamics with divergence toward silence or saturation (Siri et al.,
2007). Noisy activity may also interfere with the learning of
the trajectory engram, by adding erratic entries of calcium to
trajectory presentation-induced calcium, leading to jeopardized
downstream decoding of calcium as well as erratic switches
between long-term potentiation (LTP) and long-term depression
(LTD) of synaptic weights. After learning, the continuous effects
of AI regime activity-induced plastic processes (LTD or scaling)
might erase the trajectory engram during memorization and
jeopardize trajectory replay through the destabilizing influence
of activity noise. On the other side of the interaction, trajectory
learning through Hebbian synaptic plasticity may potentially,
in turn, seriously disrupt AI regime activity (Morrison et al.,
2007; Siri et al., 2007). Therefore, it remains uncertain whether
realistic biological synaptic plasticity rules are well-suited for
proper learning and memorizing of trajectory engrams as well as
replay of learned trajectories in PFC physiological conditions.

Here, we assessed how learning, memorization and replay of
trajectories can arise from biologically realistic synaptic learning
rules in physiological PFC networks displaying disordered AI
regime activity. To do so, we built a local recurrent biophysical
network model designed to capture replay events like those
observed in the PFC. Although designed to fit PFC collective
spontaneous and triggered neural dynamics, its intrinsic,
synaptic and architectural properties are shared across other
cortices, allowing for generalization of the results to other non-
PFC cortical areas displaying replays. The model displayed AI
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dynamics and was endowed with realistic Hebbian (Hebb, 1949)
spike timing-dependent plasticity (STDP) of excitatory synapses
(Bi and Poo, 1998). Synaptic modifications operate through
calcium-signaling dynamics capturing NMDA-dependent non-
linear pre- to post-synaptic associativity (Graupner and Brunel,
2012) and calcium-dependent phosphorylation of synaptic
weights with realistic activity-dependent kinase/phosphatase
(aKP) dynamics, conferring a rapid, graded and bidirectional
induction together with slow maintenance, consistent with
learning and memory timescales observed in animal and human
(Delord et al., 2007). Moreover, the model incorporates synaptic
scaling, which ensures normalization of pre-synaptic weights, as
found in the cortex (Turrigiano et al., 1998;Wang and Gao, 2012;
Sweatt, 2016). We show, that, in this realistic model, presenting
a stimulus trajectory allowed for rapid learning of a trajectory
engram as well as long-term memorization of the trajectory
engram despite the disturbing influence of the AI regime. In turn,
the STDP learning rule and trajectory engram did not affect the
spontaneous AI regime despite their influence on all excitatory
neurons from the network. Moreover, we show that trajectory
replay accounted for essential aspects of information coding
in the PFC, including robustness of replays at the timescale
of seconds, fast and regular replays, chunking, large inter-trial
variability, and the ability to account for the dual dynamical and
persistent aspects of working memory representations.

MATERIALS AND METHODS

Model of Biophysical Local Recurrent
Neural Network
We built a biophysical model of a prefrontal local recurrent
neural network, endowed with detailed biological properties of
its neurons and connections. While the model is presented as
PFC, its synaptic and neural properties are generally preserved
across cortical areas, allowing for generalization of the results
to non-PFC cortical areas. The network model contained N
neurons that were either excitatory (E) or inhibitory (I) (neurons
projecting only glutamate or GABA, respectively; Dale, 1935),
with probabilities pE and pI = 1 − pE, respectively, and
pE
pI

= 4 (Beaulieu et al., 1992). Connectivity was sparse (i.e.,

only a fraction of all possible connections exists, see pE→E,
pE→I , pI→E, pI→I parameter values; Thomson, 2002) with no
autapses (self-connections) and EE connections (from E to E
neurons) drawn to insure the over-representation of bidirectional
connections in cortical networks (four timesmore than randomly
drawn according to a Bernoulli scheme; Song et al., 2005; Wang
et al., 2006). The synaptic weights w(i,j) of existing connections
were drawn identically and independently from a log-normal
distribution of parameters µw and σw (Song et al., 2005).

To cope with simulation times required for the massive
explorations ran in the parameter space, neurons were modeled
as leaky integrate-and-fire (LIF) neurons. The membrane
potential of neuron j followed

{

C
dV(j)
dt

= −(IL(j) + ISyn.Rec(j) + ISyn.FF(j))

V(j) > θ → V(j) = Vrest

where neurons spike when the membrane potential reaches the
threshold θ , and repolarization toVrest occurred after a refractory
period 1 tAP.

The leak current followed

IL(j) = gL
(

V(j) − VL

)

where gL is the maximal conductance and VL the equilibrium
potential of the leak current.

The recurrent synaptic current on post-synaptic neuron
j, from—either excitatory or inhibitory—pre-synaptic neurons
(indexed by i), was

ISyn.Rec(j) =
∑

i

(

IAMPA(i,j) + I
NMDA(i,j)

+IGABAA(i,j)

+IGABAB(i,j)

)

The delay for synaptic conduction and transmission, 1tsyn, was
considered uniform across the network (Brunel andWang, 2001).
Synaptic recurrent currents followed

Ix(i,j) = gx w(i,j) px(i)
(

V(j) − Vx

)

where w(i,j) is the synaptic weight, px(i) the opening probability
of channel-receptors and Vx the reversal potential of the current.
The NMDA current followed

INMDA(i,j) = gNMDA w(i,j)

pNMDA(i) xNMDA

(

V(j)

)

(

V(j) − VNMDA

)

incorporating the magnesium block voltage-dependence
modeled (Jahr and Stevens, 1990) as

xNMDA (V) =
(

1+
[

Mg2+
]

e−0.062 V/3.57
)−1

The channel rise times were approximated as instantaneous
(Brunel and Wang, 2001) and bounded, with first-order decay

dpx(i)

dt
= −

px(i)

τx
+ px

(

1− px(i)
)

δ
(

t − t(i)
)

where δ is the dirac function and t(i) the times of the pre-
synaptic action potentials (APs).

Recurrent excitatory and inhibitory currents were balanced
in each post-synaptic neuron (Shu et al., 2003; Haider et al.,
2006; Xue et al., 2014), according to driving forces and
excitation/inhibition weight ratio, through







gGABAA
= gGABAA

−(Vmean−VAMPA)

(Vmean−VGABAA)

∑

i∈Exc w(i,j)
∑

i∈Inh w(i,j)

gGABAB
= gGABAB

−(Vmean−VAMPA)

(Vmean−VGABAB)

∑

i∈Exc w(i,j)
∑

i∈Inh w(i,j)

with Vmean = (θ+Vrest)
2 being an approximation of the average

membrane potential.
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Furthermore, all recurrent maximal conductances were
multiplied by gRec, and by gE→E, gE→I , gI→E or gI→I according
to the excitatory or inhibitory nature of pre- and post-
synaptic populations.

The feed-forward synaptic current ISyn.FF(j) (putatively
arising from sub-cortical and cortical inputs) consisted of an
AMPA component.

ISyn.FF(j) = gAMPA pAMPA.FF

(

V(j) − VAMPA

)

with a constant opening probability pAMPA.FF .

Synaptic Spike Timing-Dependent
Plasticity (STDP)
We used a biophysical model of spike timing-dependent
plasticity of excitatory synapses of the network. This rule
operated constantly on the weights of the excitatory synapses
during simulations. Synaptic weights evolved according to a first-
order dynamic (Shouval et al., 2002; Delord et al., 2007) under
the control of intra-synaptic calcium (Graupner and Brunel,
2012) through

ẇ(i,j)(t) = Kmax
Ca (t)nH

KCa
nH + Ca (t)nH

−Pmax
Ca (t)nH

PCa
nH + Ca (t)nH

wij

where the plastic modifications of the synapses, i.e., the
phosphorylation and dephosphorylation processes of the
synaptic receptor channels, depended on a kinase (e.g.,
PKC type) and a phosphatase (e.g., calcineurin type) whose
allosteric activation was dependent on calcium. Here, Kmax

represents the maximum reaction rate of the kinase, Pmax that
of the phosphatase, KCa and PCa the calcium half-activation
concentration, Ca the synaptic calcium concentration and nH
is the Hill’s coefficient. The term t-LTP, kinase-related, was
independent of synaptic weight (“additive” t-LTP) while t-LTD,
phosphatase-related, was weight-proportional (“multiplicative”
t-LTD), consistent with the literature (Bi and Poo, 1998; van
Rossum et al., 2000). This model of STDP is extremely simple,
but a detailed implementation would be prohibitive in an RNN
of the order of a thousand neurons. There was no term related
to the auto-phosphorylation of CaMKII present in many models
to implement a form of molecular memory, because on one
hand it is not actually involved in the maintenance of memory
of synaptic modifications (Chen et al., 2001), and on the other
hand memory is ensured here by the dynamics of kinase and
phosphatase at low calcium concentration (Delord et al., 2007).

The time dependence of the APs (Bi and Poo, 1998; He
et al., 2015) came from calcium dynamics, according to the
model of Graupner and Brunel (2012). In this model, synaptic
calcium followed

Ca (t) = Ca0 + Capre(t)+ Capost (t)

where the total calcium concentration takes into account pre- and
post-synaptic calcium contributions.

Pre-synaptic spiking mediated calcium dynamics followed

Ċapre(t) = −
Capre(t)

τCa
+ 1Capre

∑

i

δ
(

t − t(i) − D
)

where the first term corresponds to calcium extrusion/buffering
with time constant τCa and the second term to voltage-dependent
calcium channels (VDCC)-mediated calcium entry due to pre-
synaptic spiking, with Capre the amplitude of calcium entering
at each AP of the presynaptic neuron, t(i) the times of the
pre-synaptic APs, and D a delay modeling the time required
for the activation of AMPA channels, the depolarizing rise of
the associated excitatory post-synaptic potential (EPSP) and the
subsequent opening of VDCC that induces this calcium entry.

Post-synaptic spiking-mediated calcium dynamics evolved
according to

Ċapost(t) = −
Capost(t)

τCa
+ 1Capost

∑

j

δ
(

t − t(j)
)

+ ξPrePost
∑

j

δ
(

t − t(j)
)

Capre(t)

and modeled extrusion/buffering (first-term) as well as calcium
entries due to post-synaptic, back-propagated spiking from the
post-synaptic soma along the dendritic tree to the synapse,
opening VDCC (central term) and NMDA channels (right term).
ξPrePost is an interaction coefficient and t(j) corresponds to the AP
time of the post-synaptic neuron. NMDA activation is non-linear
and depends on the product of a pre- and a post-synaptic term,
representing the dependence of NMDA channel openings on
the associative conjunction of pre-synaptic glutamate and post-
synaptic depolarization, which releases the magnesium blockade
of NMDA channels.

Synaptic Scaling
Synaptic weights were subjected to a homeostatic form of
synaptic normalization, present in the cortex (Turrigiano et al.,
1998; Wang and Gao, 2012; Sweatt, 2016), which was modeled in
a simplified, multiplicative and instantaneous form (Zenke et al.,
2013), following at each time step

w(ij)(t + dt) = w(ij)(t)

∑

i wij(t = 0)
∑

i wij(t)

This procedure ensured that the sum of the incoming weights
on a post-synaptic neuron remained constant despite the plastic
modifications due to STDP.

Estimation of the Time Constant of STDP
With Synaptic Scaling
Without synaptic scaling, ẇij = ẇSTDP = K (Ca) − P (Ca)w.
However, synaptic scaling plays an important role in the slow
decay of weights, so to study the time constant of this decay we
needed to incorporate the effect of synaptic scaling. Considering
n weights of average value µw incoming upon a post-synaptic
neuron, where a proportion p of weights undergo STDP of value
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FIGURE 1 | Network structure and plastic properties. (A) Scheme of the recurrent network model of the local prefrontal cortex circuit with 484 excitatory (red) and 121

inhibitory (blue) integrate and fire (IAF) neurons. (B) Scheme of excitatory synaptic plastic processes. In the post-synaptic compartment, calcium dynamics originates

from two distinct sources (CaPre and CaPost ), as well as from extrusion/buffering (Graupner and Brunel, 2012). CaPre arises from pre-synaptic spiking mediated through

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) depolarization and the subsequent activation of voltage-dependent calcium (VDCC) channels. CaPost
models calcium entries due to post-synaptic spiking back-propagated from the post-synaptic soma to the synapse, opening VDCC and N-methyl-D-aspartate

(NMDA) channels. NMDA activation is non-linear and depends on the interaction of pre- and post-synaptic spiking to account for the associative dependence of

NMDA channel openings on the conjunction of pre-synaptic glutamate and post-synaptic depolarization that releases magnesium blockade. Plastic modifications

operate through calcium-dependent phosphorylation and dephosphorylation of channel AMPA receptors that determine the synaptic weight (aKP model; Delord et al.,

2007). Synaptic scaling continuously normalizes weights so as to insure the homeostatic regulation of the sum of incoming (pre-synaptic) weights for each individual

neuron (Turrigiano et al., 1998). (C) Both long-term spike timing-dependent potentiation (t-LTP) and long-term spike timing-dependent depression (t-LTD) increase

non-linearly with pre- and post-synaptic spiking frequency (νPre = νPost = ν), due to the allosteric calcium-activation of both enzymes. Kinase-mediated t-LTP is

additive, i.e., independent of synaptic weight, while phosphatase-mediated t-LTD is multiplicative, i.e., weight-proportional (Bi and Poo, 1998; van Rossum et al.,

2000). (D) Because of the associative dependance of NMDA-mediated calcium entry to pre- and post-spiking, synaptic calcium depends multiplicatively on pre- and

post-synaptic spiking frequencies. (E) In the spontaneous AI regime, plastic modifications are virtually null because STDP plasticity occurs similarly at all synapses,

with synaptic scaling compensating STDP (see Results). (F). In synapses connecting neurons in the engram of a learned trajectory, where plasticity has occurred in a

subset of synapses, Hebbian t-LTP dominates at large multiplicative pre-/post- frequencies and Hebbian t-LTD at lower frequencies (separated by the red curve for

which plasticity is null, see Results).

ẇSTDP at time step t followed by scaling, then for a given weightw
within the proportion p,

w (t + 1t) = (w (t) + ẇSTDP1t)

(

nµw

nµw + npẇSTDP1t

)

so that after algebra, one obtains

w (t + 1t) − w (t)

1t
=

(

1− p
w (t) + ẇSTDP1t

µw + pẇSTDP1t

)

ẇSTDP

Passing to the limit 1t → 0, one finds:

ẇ =
(

1− p
w

µw

)

ẇSTDP

i.e.

ẇ =
(

1− p
w

µw

)

(

K(Ca)− P(Ca)w
)

To find an estimate of the time constant of plasticity, linearization
aroundµw gives

ẇ ∼
(

P(Ca)
(

2p− 1
)

−
K(Ca)p

µw

)

w+ K(Ca)− pP(Ca)µw

so that

τ ∼
µw

∣

∣pK (Ca) −
(

2p− 1
)

P (Ca) µw

∣

∣
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Theoretical Dependences Under
Asynchronous Irregular Dynamics
The steady-state theoretical concentration of calcium in
individual synapses was obtained from fixed-points of CaPre and
CaPost , which yielded

Ca
∗
(νPre, νPost) ∼ Ca0 + τCa(1CaPreνPre

+1CaPostνPost + ξPrePost1CaPreνPreνPost)

which was used to determine STDP modification rates

ẇ = K(Ca
∗
)− P(Ca

∗
)w

and to determine the time constant for plasticity, in the case of the
network asynchronous irregular regime at low frequency, where
p = 1, i.e.

τ ∼
µw

∣

∣K
(

Ca
∗) − P

(

Ca
∗)

µw

∣

∣

Weights Within and Outside the Engram
Initial excitatory weights (before the 1 h simulation) were
convolved with a centered normalized Gaussian function (σ =
5 neurons). Convolved weights with values above 0.1 (times
pE→E = 0.35 to take into account inexistent weights) were
considered within the engram, the other weights were considered
outside the engram. Both weight populations were kept constant
and their evolution was studied across time (see Figures 6, 7).

Trajectory Replay Detection
In order to detect coherent propagating activity pulse packets
along the synaptic pathway, we convolved spiking activity across
time and neurons with centered normalized Gaussian functions
(σ = 30 ms and σ ∼ 10 neurons). Neurons were considered
“active” when at least 40% of the convolved frequencies which
include them (>5% of normalized Gaussian function maximum)
are above 12.5Hz. We considered the emergence of an activity
packet when it contained more than 20 neurons.

Spiking Irregularity
To capture spiking irregularity, we quantified the CV (coefficient
of variation), CV2 and Lv (time-local variation) of the inter-spike
interval (ISI) distribution of the spiking trains of neurons in the
network (Compte, 2003; Shinomoto et al., 2005) according to

CV =
σISI

< ISI >

CV2 =< 2

∣

∣ISIk+1 − ISIk
∣

∣

ISIk+1 + ISIk
>k

Lv =< 3

(

ISIk − ISIk+1

)2

(

ISIk + ISIk+1

)2
>

k

where CV = CV2 = Lv = 1 for a homogeneous Poisson spike
train and = 0 for a perfectly regular spike train where all ISI are

equal. CV stands around 1 to 2 in vivo (Compte, 2003; Shinomoto
et al., 2005), representing the global variability of an entire ISI
sequence, but is sensitive to firing rate fluctuations. CV2 and Lv
stand around 0.25 to 1.25 and 0 to 2, respectively in vivo (Compte,
2003; Shinomoto et al., 2005), evaluating the ISI variability locally
in order to be less sensitive to firing rate fluctuations. The CV
was calculated on every ISI across neurons, while the CV2 and Lv
were calculated for each excitatory neuron and averaged across
the whole population.

Spiking Synchrony
Three measures of synchrony were adopted, a synchrony
measure S (Golomb et al., 2001), pairwise correlation coefficient
averaged over all pairs of excitatory neurons < ρ >

(Tchumatchenko et al., 2010), and Fano factor F. The first two
were calculated on the estimated instantaneous neural frequency
f (Gaussian convolution of spikes, σ = 30ms), while the last was
calculated on the population sum of spike counts s, following

S =

√

Var
(

< f >n

)

< Var
(

f(n)
)

>n

< ρ >=
1

N(N − 1)/2

∑

i

∑

j>i

cov
(

f(i), f(j)
)

√

Var
(

f(i)
)

Var
(

f(j)
)

F =
Var

(
∑

n sn
)

<
∑

n sn >t

These measures equal S = 1√
nE

∼ 0.0455, < ρ >= 0 and F = 1

for perfectly asynchronous network activity, and S =< ρ >= 1
while F increases for perfectly synchronous network activity.

Procedures and Parameters
Models were simulated and explored using custom developed
code (MATLAB) and were numerically integrated using the
forward Euler method with time-step 1t = 0.5ms in network
models. Unless indicated in the text, standard parameter values
were as following. Concerning the network architecture, N =
605 neurons, nE = 484 neurons, nI = 121 neurons, pE→E = 0.35,
pE→I = 0.2056, pI→E = 0.22, pI→I = 0.25, µw = 0.03,
σw = 0.02. Concerning the Integrate-and-Fire neural properties,
C = 1 µF.cm−2, θ = −52 mV , Vrest = −67 mV , 1tAP = 3 ms.
Concerning currents, gL = 0.05 mS.cm−2, VL = −70 mV ,
1tsyn = 0.5ms, gAMPA = 0.23mS.cm−2, gNMDA = 0.9mS.cm−2,
gGABAA = 0.3 mS.cm−2, gGABAB = 0.017 mS.cm−2, VAMPA =
VNMDA = 0 mV , VGABAA = −70 mV , VGABAB = −90 mV ,
[

Mg2+
]

= 1.5 mM, τAMPA = 2.5 ms, τNMDA = 62 ms, τGABAA =
10 ms, τGABAB = 25 ms, pAMPA = pNMDA = pGABAA

= pGABAB
=

0.1, gRec = 0.65, gE→E = gE→I = gI→E = 1, gI→I = 0.7,
pAMPA.FF ∼ 0.0951. Concerning synaptic properties, Kmax =
3.10−3 ms−1, KCa = 3 µM, Pmax = 3.10−3 ms−1, PCa =
2 µM, nH = 4, Ca0 = 0.1 µM, τCa = 100 ms, 1Capre =
0.02 µM, D = 10ms, 1Capost = 0.02 µM, ξPrePost = 4ms−1.
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FIGURE 2 | Stability of spontaneous irregular asynchronous (AI) network dynamics under synaptic plasticity. (A1–A3) Membrane potential of network neurons during

3 s of spontaneous AI regime in the absence of plasticity (A1), after 1 h of plasticity (A2) and after full convergence of synaptic weights due to plasticity (A3). The same

initial random connectivity matrix is used for simulations in (A1–A3). Spikes indicated by black dots. Full convergence of the synaptic matrix was obtained by

simulating the networks with very fast kinetic constants. (B1–B3) Synaptic weights between excitatory neurons of the network at the end of each of simulations

presented in A1–A3. (C) Convergence of synaptic weights toward the mean weight of their post-synaptic neuron as a function of time, due to synaptic scaling

normalization (black curves, see Results). Time evolution of the mean (red curve) and standard deviation (blue curve) of synaptic weights. For sake of clarity, only a

random selection of synapses is shown. The mean is constant and the standard deviation decreases with time, due to scaling. (D). Average excitatory neural spiking

frequency (D1) and irregularity (D3) and excitatory population synchrony (D2) quantifiers, as a function of time, for five different simulations of the network with

different realizations of the initial random synaptic matrix. Dots on the right indicate values obtained from network simulations after full convergence of synaptic

weights. Shaded areas represent 95% confidence intervals of the mean.

RESULTS

Predicting Fundamental Plastic Properties
of PFC Recurrent Networks
To evaluate neural trajectory learning, memorization and replay,
we studied a local prefrontal cortex (PFC) recurrent network
model, with 484 excitatory and 121 inhibitory integrate and
fire (IAF) neurons with topographically tuned feed-forward
inputs. Synaptic connections were constrained by cortical
connectivity data, following Dale’s law, sparseness and log-
normal weight distributions, and α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate
(NMDA) excitatory and γ-aminobutyric acid (GABA-A and
GABA-B) inhibitory synaptic currents (Figure 1A; see Materials
andMethods). Most synaptic and neural properties, while present
in PFC, are generic across cortex, such that the following results
can be generalized to non-PFC cortical areas.

Excitatory synapses were plastic, i.e., endowed with realistic
calcium dynamics (Graupner and Brunel, 2012) accounting for
linear voltage-dependent calcium channels (VDCC)-dependent
and non-linear NMDA calcium entries, as well as for linear
extrusion and buffering (Figure 1B). These calcium dynamics
are responsible for the temporal asymmetry of pre- and post-
synaptic spike-timing dependent (STDP) plastic modifications
(Bi and Poo, 1998; He et al., 2015). Note, however, that with
these realistic calcium dynamics, plasticity essentially depends
on firing frequency rather than on the precise timing of spikes,
because of the frequency and variability of in vivo-like spiking
(Graupner et al., 2016).

Plastic modifications operated through calcium-dependent
kinase-phosphatase kinetics (Delord et al., 2007), which accounts
for their fast induction and slower maintenance dynamics
(Figure 1B). No Ca2+/calmodulin-dependent protein kinase
II (CaMKII) auto-phosphorylation was present because it
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FIGURE 3 | Learning a trajectory stimulus into a trajectory engram. (A). Synaptic matrix between excitatory neurons prior to stimulus presentation. (B). Membrane

potential of network neurons in response to the presentation of a trajectory stimulus (stimulus in red) that successively activates all excitatory neurons over a duration

of 1,350ms. Spikes indicated by black dots. (C). Synaptic matrix between excitatory neurons after stimulus presentation. (D1–D4). Weight modifications resulting,

after trajectory presentation, from t-LTP (D1), t-LTD (D2), scaling (D3), and their sum (D4). (E–H) Membrane potential (E), calcium (F), plastic rates (G) and synaptic

weight dynamics (H) during the passage of the trajectory stimulus in a pair of neurons with nearby topographical tuning #102 (E1) and #112 (E2) and their reciprocal

connections 102→112 (F1-H1) and 112→102 (F2-H2), and in a pair of neurons with more distant topographical tuning #102 (E3) and #202 (E4) and their reciprocal

connections 102→202 (F3-H3) and 202→102 (F4-H4).

is actually not involved in the maintenance of synaptic
modifications (Chen et al., 2001; Lengyel et al., 2004).
Rather, the long-term maintenance of plastic modifications
emerges from kinase and phosphatase dynamics at low calcium
concentrations (see below; Delord et al., 2007). Besides, synapses
underwent synaptic scaling (Figure 1B), which ensures total
weight normalization at the neuron level, as observed in the
cortex (Turrigiano et al., 1998; Wang and Gao, 2012; Sweatt,
2016) and, as a consequence, introduces competition between

synaptic weights within each neuron (intra-neuronal inter-
synaptic competition).

Most importantly, plasticity operated online—i.e.,
permanently, without offline learning periods—on excitatory
synaptic weights, as a function of neuronal activity in
the network, whether it corresponds to the spontaneous,
asynchronous and irregular (AI) activity of the network, the
activity evoked by the feed-forward currents during the input
presentation of an example trajectory, or the replay activity
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after learning (see below). Both kinase-mediated long-term
spike timing-dependent potentiation (t-LTP) and phosphatase-
mediated long-term spike timing-dependent depression (t-LTD)
increased non-linearly with pre- and post-synaptic spiking
frequency, due to the allosteric activation of enzymes by
calcium (Figure 1C). However, they differed in that kinase-
mediated t-LTP was independent of synaptic weight (additive
or hard-bounded) while phosphatase-mediated t-LTD was
weight-proportional (multiplicative or soft-bounded), consistent
with the literature (Bi and Poo, 1998; van Rossum et al.,
2000; Figure 1C). In the model, the steady-state theoretical
concentration of calcium in individual synapses depended
multiplicatively upon pre-synaptic and post-synaptic spiking
activity (Figure 1D), from which one could compute the rate of
STDP as a function of pre- and post-synaptic spiking frequency
(Figures 1E,F) see Materials and Methods). In conditions
with weak synaptic weights, such as prior to learning, t-LTP
dominated at all frequencies because t-LTD is multiplicative
and thus scaled by, here, very low synaptic weights. Thus, STDP
effects were always positive and depended multiplicatively on
pre- and post-synaptic frequencies (Figure 1E). By contrast,
when plasticity had previously occurred (w = 0.2), such as in the
engram of a learned trajectory (see below), t-LTD was stronger
due to the stronger weights, and the model predicted Hebbian
t-LTP at large multiplicative pre-/post-frequencies and t-LTD at
lower frequencies (Figure 1F). In the following, we explore the
extent to which these predictions are correct in simulations of
the whole network model under spontaneous AI dynamics with
synaptic scaling, and when assessing learning and memorization
upon trajectory presentation.

Stability of Network AI Dynamics Under
Synaptic Plasticity
A potential issue of synaptic plasticity in networkmodels remains
its sensitivity to spontaneous activity. Hence, before testing the
possible role of STDP in trajectory learning and replay, we first
studied the effect of STDP on the spontaneous regime, with
the aim of verifying that network activity remained stable over
the long term and that neurons always discharged in the AI
regime. Indeed, Hebbian or post-Hebbian rules of the STDP
type, by modifying the matrix of synaptic weights, may lead to
saturation of neuronal activity and a collapse of the complexity
of the dynamics, from initially AI chaotic activity characteristic
of the waking state (Destexhe et al., 2003; London et al., 2010), to
activity of the limit-cycle or fixed point type (Siri et al., 2007).
We considered here as long term the 1 h time scale, which is
the scale classically used experimentally to test the memory of
synaptic plasticity modifications (Bi and Poo, 1998). Moreover,
a duration of 1 h extends way beyond the classical time scales
used in models (Morrison et al., 2007; Boustani et al., 2012;
Litwin-Kumar and Doiron, 2014). For this purpose, we have
observed the activity (Figure 2A) and connectivity (Figure 2B)
of the network at different time scales, in order to reveal possible
modifications in the network behavior.

Simulations showed that the spontaneous activity of the
network was identical without plasticity (Figure 2A1), after

1 h in the presence of plasticity (Figure 2A2) and after full
convergence (Figure 2A3) of weight matrix dynamics. This
observation is consistent with the absence of changes in the
connectivity matrix in the presence of STDP, even after 1 h
of simulation (Figures 2B2,B3), compared to the condition
without STDP (Figure 2B1). Mechanistically, the low spiking
frequency of neurons resulted in moderate average elevations of
calcium above its basal concentration in synapses, so that kinase
and phosphatase were only very weakly activated. Therefore,
weights underwent extremely slow plastic modifications where
additive t-LTP (which dominated the multiplicative t-LTD at
weak weights) was compensated by synaptic scaling. Due to
these effects, weights converged toward the mean initial weight
of their post-synaptic neuron (Figure 2C) with an apparent
time constant of 2 h, close to the theoretical estimation of the
time constant of plasticity (see Materials and Methods and
Discussion), which predicts a time constant of 1.95 h during
learning at low spiking frequencies and calcium concentrations
(Ca ∼ Ca0) in the AI regime. These steady-state values were
normally distributed, with a constant mean value (due to the
synaptic scaling) and a decreasing standard deviation, due to
the homogenization of weights within each post-synaptic neuron
(Figure 2C). Even with this more homogeneous synaptic matrix
(Figure 2B3), AI dynamics were preserved (Figure 2A3). Indeed,
excitatory frequency was stable (Figure 2D1), as well as markers
of synchrony (Figure 2D2) and irregularity (Figure 2D3). Thus,
overall, the activity regime of the network was not altered
by the presence of plastic processes. Note that in PFC
circuits experiencing dynamically changing feed-forward inputs,
convergence of the synaptic matrix may be attenuated or
even non-existent.

Learning Trajectory Engrams Under AI
Dynamics
Trajectory learning during network activity has already been
investigated in the theoretical literature, but either without
chaotic dynamics or using biologically unrealistic learning
rules (see Introduction). To test for the possibility of learning
trajectories within physiologically irregular activity, we presented
to the network a moving stimulus (Figure 1A, feedforward
connections) that successively activated all the excitatory neurons
over 1,350ms (Figure 3B). Such a stimulation corresponds to a
displacement speed of ∼0.3 neurons/ms, where each excitatory
neuron was stimulated for ∼100ms and discharged at ∼100Hz.
This single stimulus presentation triggered neural activity much
stronger than the spontaneous activity, sufficient to modify
the matrix of synaptic weights. Indeed, whereas the synaptic
matrix was initially formed of low random weights (Figure 3A),
after presentation, the weights of synapses connecting neurons
activated by the stimulus at close successive times were increased
(Figure 3C). This diagonal band of increased weights formed
an oriented connectivity path along stimulus-activated neurons
and is referred to as the trajectory engram hereafter. Weight
modifications inside and outside this trajectory engram resulted
from increases due to t-LTP (Figure 3D1, 1wLTP) and decreases
due to t-LTD (Figure 3D2, 1wLTD). Moreover, the homeostatic
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process of synaptic scaling, which ensures the constancy of the
sum of the incoming weights of the cortical neurons, decreased
the total incoming synaptic weights on post-synaptic neurons,
in order to compensate for weight modifications due to STDP
(Figure 3D3, 1wScaling). In fine, STDP and scaling led together
to an increase in engram weights and a slight decrease in off-
engram weights (Figure 3D4, 1wTotal; also observe the darker
area in Figure 3C, compared to Figure 3A).

The observation, on a local scale, of the details of the
processes at work for the synapses linking the neurons of the
engram allowed for a better understanding of these network
effects. For illustration, neurons #102 and #112, with close
spatial topographical tuning, discharged one following the
other with partial overlap during the stimulus (Figure 3E).
At the level of the synapse between neurons #102 and #112
(102→112), whose orientation was that of the trajectory, the
arrival of pre-synaptic action potentials (APs) was followed by
that of postsynaptic APs (pre #102 then post #112 neuron,
Figures 3E1,E2), which triggered a massive input of calcium
via the VDCC channels and the NMDA receptor channels
(Figure 3F1). Conversely, in the synapse 112→102, for which
the sequence of arrival of the APs was reversed (pre #112
then post #102 neuron), NMDA channels did not open (see
above), such that the calcium input resulted only from the
VDCC channels and was thus moderate (Figure 3F2). These
calcium elevations activated the kinases and phosphatases, which,
respectively, phosphorylated and dephosphorylated AMPA
channels, increasing (t-LTP) and decreasing (t-LTD) synaptic
weights (only phosphorylated AMPA channels are functional and
ensure synaptic transmission). These kinase and phosphatase
activations were important for synapse 102→112 (Figure 3G1),
but less so for the synapse 112→102 (Figure 3G2). For both
synapses (Figures 3G1,G2), the phosphatase was more strongly
activated (lower half-activation; Delord et al., 2007), but the
resulting t-LTD modification rate was low, because it is
multiplicative, i.e., it scales with synaptic weight, which was low.
Conversely, the rate of modification due to t-LTP was higher
because it is additive and depends only on kinase activation
(van Rossum et al., 2000). These STDP effects, cumulated with
those of scaling, resulted in a positive speed (increase in weight),
which was strong for synapse 102→112 (Figure 3G1) and
very weak for synapse 112→102 (Figure 3G2). Together, these
plastic processes increased the weight of the synapse oriented
in the same direction as the stimulus (Figure 3H1) leaving the
weight of the synapse of opposite orientation almost unchanged
(Figure 3H2).

For neurons whose receptive fields weremore spatially distant,
activation by the stimulus occurred at more temporally distant
times (for example, neurons #102 and #202, Figures 3E3,E4). In
this case, regardless of the sequence of arrival of the APs in both
neurons, their succession was too distant in time to open NMDA
channels, so that incoming calcium came only from the VDCC
channels and was therefore low (Figures 3F3,F4). Consequently,
kinase and phosphatase were weakly activated, resulting in
virtually null STDP velocity (Figures 3G3,G4). Synaptic scaling
(Figures 3G3,G4), induced by the increase of weights in the
engram (Figures 3H1,H2), ultimately decreased synaptic weights

(Figures 3H3,H4). As such, there was no learning of any
trajectory between distant neurons, contrary to what happened
between closer neurons.

Trajectory Replays From Learned
Trajectory Engrams
In behaving animals, learnt trajectories are replayed later
in appropriate behavioral conditions. In the model, we
assessed whether trajectories could be replayed, the dynamics
of trajectory replays and the way they affect the network
connectivity compared to before they occur (Figure 4A).
Trajectory replay was defined as the reactivation of neurons
of the entire trajectory engram, after temporarily stimulating
only initial neurons at the beginning of the engram. To
assess trajectory replay in the network, we applied a stimulus
of 100ms to the first 50 neurons of the engram, 500ms
after trajectory learning was completed (Figure 4B). We
found that the network was able to replay the trajectory
entirely after learning (Figure 4B1). Fundamentally, the
replay emerged because neurons were linked by strong
synapses so that preceding neurons activated subsequent
neurons in the engram, forming an oriented propagating wave
(Figure 4B2).

Because it activated neurons at several tens of Hz, the
replay could have brought into play plastic processes at
the synapses forming the engram, and, in doing so, either
reinforce or diminish their weights, possibly disturbing or
even destroying the engram. To evaluate these possibilities,
we observed the variation of synaptic weights before and
after the replay. We found that after replay, the engram
was still present (Figure 4C) and its structure identical to
that before replay (Figure 4A). However, when dissecting
the effects at work, we found that the engram had slightly
thickened during the trajectory replay, due to the combined
effect of t-LTP (Figure 4D1 1wLTP), t-LTD (Figure 4D2

1wLTD) and scaling (Figure 4D3 1wScaling). Weights
above and below the engram increased, whereas weights
slightly decreased within the engram (Figure 4D4, 1wTotal,
red fringes).

Up to this point, the neural trajectory was presented as a
whole. However, whole trajectories are generally not accessible
directly to the PFC. Rather, PFC circuits generally encounter
elementary trajectory fragments at separate points in time to
produce prospective planning of future behaviors (Ito et al.,
2015; Mashhoori et al., 2018; Kaefer et al., 2020), as well as
learn transitions between them and chunk fragments together
as whole trajectories independently of their presentation order
(ordinal knowledge) (Ostlund et al., 2009; Dehaene et al., 2015).
We trained the network with four fragments of the whole
trajectory, noted A-D, that overlapped at their extremities and
which were presented sequentially every 2 s, so as to learn
separately different parts of the trajectory (Figure 4E). We found
that, once fragments were presented in forward order (ABCD),
stimulating neurons at the beginning of the A fragment induced
propagation of activity that recapitulated the whole trajectory,
by subsequently recalling ABCD fragments in the forward order
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(Figure 4E1). Therefore, the network was able to learn trajectory
fragments themselves and the transitions between fragments
so as to chunk them into a whole trajectory. Moreover, we
found that chunking was possible even when fragments had
been learned in reverse order (DCBA; Figure 4E2). Hence, the
network was able to replay a chunked trajectory based on the
presentation of overlapping stimuli, independently of their order
of presentation.

Functional Diversity of Trajectory Replays
Neural activity during the replay was less focused than the
stimulus trajectory (Figure 4B), i.e., it involved more (∼90 vs.
35) neurons, spiking at a lower (∼65 vs. 100Hz) discharge
frequency. The replay also unfolded at a faster speed, lasting
∼750 ms—for a stimulus of 1,350 ms—so that it exhibited a
temporal compression factor (tCF) of ∼1.8, which is situated
between fast and regular timescale replays observed in animals.
Regular timescale replays operate at the timescale of behaviors
they were learnt from, i.e., a few seconds (in navigation or
working memory tasks, e.g.), hence typically displaying tCF∼1.
By contrast, fast timescale replays last several hundred ms in
the awake PFC (200–1,500ms; Jadhav et al., 2016; Mashhoori
et al., 2018; Kaefer et al., 2020), yielding several-fold compression
factors (tCF∼2–15). We assessed whether varying biophysical
parameters of the network could account for durations and
tCF ranges characterizing regular and fast replays. As regular
and fast timescale replays frequently alternate within trials in
behavioral tasks, we discarded trivial replay speed control that
can be readily obtained by scaling structural parameters that
vary at extremely slow timescales (e.g., number of neurons
in the trajectory, synaptic delay, etc., not shown). Rather, we
focused on synaptic and intrinsic neuronal properties likely to
be rapidly regulated by ongoing neuromodulation in the PFC,
as attentional demands or reward outcomes vary at the trial
timescale. Among passive and synaptic neuronal parameters
tested, the NMDA conductance decay time constant (τNMDA)
emerged as a critical factor controlling the duration and tCF of
replays. Hence, the same network, taught with the same trajectory
and stimulated with the same initiation stimulus, could generate a
large range of replay timescales spanning from regular (duration
1,680ms, tCF = 0.8; Figure 5A1) to fast (duration 375ms,
CF∼3.6; Figure 5A2) replays, when the decay time constant
of NMDA, τNMDA, was varied. Consistently, dopaminergic
neuromodulation, the major determinant of reward signaling,
rapidly slows the decaying dynamics of NMDA currents in
PFC circuits (Chen et al., 2004; Onn and Wang, 2005; Onn
et al., 2006). Such neuromodulatory effects, as well as others
forms of neuromodulation of NMDA dynamics (Lutzu and
Castillo, 2021) may control the duration and compression
factor of trajectory replays, as well as the relative rate of
occurrence of regular vs. fast timescale replays. Inspecting
neuronal activity during replays in terms of firing frequency,
we found that in single replays individual neurons displayed
a sequence of overlapping transient bumps of activity of a
few hundred milliseconds (Figure 5B1) resembling “relay race”
of PFC individual activities during regular replays in working
memory tasks (Batuev, 1994; Brody et al., 2003; Cromer et al.,

2010; Yang et al., 2014; Schmitt et al., 2017). By contrast, the
averaged frequency over the population of excitatory neurons
displayed a persistent decaying activity pattern that lasted at
the second time scale (Figure 5B2) and mimicked population-
level working memory maintenance in the PFC (Murray et al.,
2017; Cavanagh et al., 2018; Enel et al., 2020). This dichotomy
recalls that found in the PFC, whereby individual neurons
encode information at short timescale while the population
holds stabilized persistent representations on longer timescales
(Meyers et al., 2008; Murray et al., 2017; Cavanagh et al., 2018).
Moreover, we found that inter-trial variability for each neuron
was important, due to disordered network AI dynamics, and
that it increased as activity traveled later in the trajectory in
individual neurons (Figure 5B3) and at the population level
(Figure 5B4), as found experimentally (Compte, 2003; Shafi et al.,
2007; Tiganj et al., 2017).

Globally, the model thus not only indicated that it was
possible to learn trajectories online by creating synaptic engrams,
thanks to the STDP-type plasticity rule. It also showed that
learned trajectories were functional as a memory process, in
the sense that their replay was possible and globally preserved
the synaptic structure of the learned engram. Finally, the model
accounted for the large functional diversity of replays observed
in behaving animals, both with regard to the timescale (fast vs.
regular) they exhibit, as well as to the type of coding (dynamical
vs. stable) they may subserve in navigational or working
memory tasks.

Stability of Network AI Dynamics in the
Presence of Trajectory Engrams
After evaluating the stability of the learned trajectory in the
presence of AI network activity, we asked the symmetrical
question, i.e., whether the engram of a previously learned
trajectory could alter the irregular features of spontaneous
network dynamics. Indeed, the altered synaptic structure
(which implies large weights in all neurons of the recurrent
network) may induce correlated activations of neurons
(e.g., partial replays) resulting in runaway activity-plasticity
interactions and drifts in network activity and synaptic
structure. We monitored network connectivity (Figure 6A)
and activity dynamics (Figures 6B1–B3) for 1 h to assess
the stability of the spontaneous AI regime in the presence
of the engram. We observed that following learning of the
engram, synaptic weights outside the engram (i.e., responsible
for the AI dynamics) increased exponentially toward their
new steady-state in a very slow manner (Figure 6A) with an
apparent time constant of 1.91 h, consistent with the theoretical
estimation of 1.95 h (see above). This increase resulted from
the decrease of within-engram large synaptic weights via
synaptic scaling (Figure 6E1, see above). Despite this slow
and moderate structural reorganization, AI dynamics were
preserved with stable frequency (Figure 6B1), synchrony
(Figure 6B2), and irregularity (Figure 6B3). Thus, overall,
both the synaptic structure outside the engram as well as the
spontaneous AI regime remained stable in the presence of
the engram.
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FIGURE 4 | Replay of learned trajectories. (A). Synaptic matrix between excitatory neurons after stimulus presentation but prior to trajectory replay. (B). Membrane

potential of network neurons (B1, spikes indicated by black dots) in response to the trajectory stimulus, followed by a transient trajectory replay triggered by

stimulating the start of the trajectory (neurons #1–50, stimulus in red). Membrane potential of a selected subset of neurons along the trajectory (B2, arbitrary colors).

(C). Synaptic matrix between excitatory neurons after stimulus and replay. (D). Weight modifications resulting, after compared to before trajectory replay, from t-LTP

(D1), t-LTD (D2), scaling (D3), and their sum (D4). (E) Recapitulation of the whole trajectory after separately learning four individual trajectory fragments (ABCD) in the

forward order (E1; chunking) or backward order (E2; ordinal knowledge). Each fragment corresponds to 180 neurons. Fragments overlap over 65 neurons.

Memory of Trajectory Engrams in the
Presence of Network AI Dynamics
We then studied whether the spontaneous AI activity could
disrupt the engram of the learned trajectory and the possibility

for trajectory replay. Indeed, the trajectory engram may be
gradually erased, due to AI activity at low frequency favoring
t-LTD, or even amplified, due to the activity in the trajectory
engram caused by plasticity (resulting in further plasticity
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FIGURE 5 | Functional diversity of trajectory replays. (A) Trajectory replay duration (upper left white bar) and compression factor (tCF; lower right) depend on the

NMDA conductance decay time constant (τNMDA, range 30–150ms). NMDA maximal conductance was scaled (range 0.475–1.8) so as to insure similar levels of firing

frequency drive during trajectory replays. Regular (A1) and fast (A2) timescale replay are due to slower and faster NMDA dynamics. (B). Single-trial (B1, B2) and

inter-trial variability (B3,B4) of firing frequency of individual neurons (B1,B3) and of the population (B2,B4) for 10 different simulations similar to the replay shown

Figure 4B. Lines represent mean values, shaded regions represent 95% confidence intervals of the mean.

runaway). To do so, we assessed the timescale of potential drifts
in engram connectivity and activity following learning, and of the
network ability to replay the engram. Intuitively, engram erasure,
runaway or stability probably depended on network dynamics
after learning: spontaneous AI regime, spontaneous replays, or
other forms of activity.

To address these questions, we simulated the network for
1 h after trajectory learning and recorded “snapshots” of the
continuous evolution of the synaptic matrix every minute.
Using these successive recorded matrices as initial conditions
for independent simulations of replays, we were able to quantify
network ability for trajectory replay, at different times of the
evolution of the network. We found that while trajectory replay
occurred in full after 1 s, activating all neurons of the trajectory
(Figure 6C1), it was slightly attenuated after 1min (last neurons

spiking at lower frequency; Figure 6C2) and failed after 1 h
(Figure 6C3). Observing the synaptic matrix at these three
moments allowed us to understand the origin of this degradation
in replay ability. Indeed, whereas after 1min (Figure 6D2), the
synaptic weights of the engram changed only a little compared
to 1 s (Figure 6D1), the engram was narrowed and weights
attenuated after 1 h (Figure 6D3). Such degradation of the
engram was probably the cause of the failure to replay the
trajectory 1 h after learning.

To more precisely monitor degradation of the trajectory
engram and replay, we measured averaged engram weights as
well as replay frequency and duration across time. We found
that the engram weights declined exponentially with a fitted time
constant of 1.91 h (Figure 6E1), very close to that predicted by
the theory (1.95 h). The measures of trajectory replay decreased
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FIGURE 6 | Stability of the spontaneous AI regime in the presence of the engram. (A). Average synaptic weights outside the engram after learning for 1 h. Shaded

areas represent 95% confidence intervals of the mean for 5 network simulations. (B). Networks dynamics after learning for 1 h: frequency (B1), synchrony (B2), and

irregularity (B3) of excitatory neurons. Shaded areas as in (A). (C). Membrane potential of neurons in the neural network for 3 s following a replay stimulation of the 50

first neurons at 1 s (C1), 1min (C2) or 1 h (C3) after trajectory learning. (D) Synaptic matrices between excitatory neurons of the network, at the end of the simulations

presented in (C). (E) Network engram synaptic weight average (E1) as well as frequency (E2) and duration (E3) of trajectory replays during 1 h after trajectory learning.

Shaded areas as in (A).

faster than the engram weights, with time constants of ∼54min
for mean frequency during the replay (Figure 6E2) and∼13min
for replay duration (Figure 6E3). Specifically, replay of the full
trajectory lasted 4min. The degradation of trajectory replay was
mainly due to progressive replay failure in the neurons located
later in the trajectory engram. The faster decrease in trajectory
activity, compared to the average engram weights, was probably
a consequence of a cooperative mechanism of propagation in
the engram: the non-linearity in NMDA current activation,
requiring synergistic activation of pre- and post-synaptic neurons
in the engram, rendered the propagation of activity non-linearly
sensitive to decreases in engram weights.

Repeated Trajectory Replays Can
Destabilize Trajectory Engrams and
Replays
We have observed that a single replay of the trajectory only
marginally modified the engram (Figure 4C vs. Figure 4A).
However, we assessed whether replay repetitions could
strengthen the engram significantly further. Such strengthening
through repetition could compensate for the engram erasure
due to spontaneous activity after the learning (Figure 6E1) and
its functional consequence, the relatively rapid loss of replay
capacity (Figures 6E2,E3). Intuitively, the partial increase in
weight at the border of the trajectory engram after one replay
(Figure 4D4 1wTotal, red fringes) could, after repeated replays,
be strong enough to counteract the decrease observed outside

replays during memorization (Figure 6D3, light blue fringe).
To test this possibility, we repeated the replay stimulus every 3 s
for 30 s after the presentation of the initial trajectory stimulus
(Figure 7A). We observed, from the very first seconds, and even
before we could test the effect of the protocol at larger timescales,
that these successive stimuli, initially triggering correct trajectory
replays, rapidly led to hyperactivity involving most of the
neurons in the network (Figure 7A1). Such paroxysmal activity
typically appeared via avalanche dynamics activating neurons at
the end of the trajectory (a fraction of the network, therefore),
which propagated to the whole network at increasingly higher
discharge frequencies (up to tens of Hz). Moreover, this activity
had an oscillatory component, visible on the time course of the
frequency of the excitatory and inhibitory neurons (Figure 7A2).
This paroxysmal activity partially erased the engram of the
learned trajectory via synaptic scaling (Figure 7B), making it
impossible to replay the trajectory following this seizure (see last
stimulus, Figure 7A1), consistent with similar effects found in
empirical observation during epileptic seizures (Hu et al., 2005;
Meador, 2007; Truccolo et al., 2011).

Slow Learning Stabilizes Trajectory
Engram and Replays
As the repetition of replay learning led to over-activation of the
trajectory with plasticity speed parameters sufficiently fast for
a single stimulus presentation to be learned and replayed, we
investigated how slower STDP kinetic coefficients could prevent
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FIGURE 7 | Unstable engram and network dynamics after repeated trajectory

replays. (A). Membrane potential of neurons in the neural network (A1) for 30 s

during which a replay stimulus is performed on the first 50 neurons every 3 s.

Mean activity of excitatory (red) and inhibitory (blue) neurons (A2). (B). Matrix

of synaptic weights between excitatory neurons before (left) and after (right)

paroxysmal network activity.

paroxysmal activity during stimulus presentations and replays.
For this, we used smaller values of Kmax and Pmax, i.e., here,
divided by a factor of 6. With these values, 4 presentations of
the trajectory stimulus were necessary for increasing the engram
weights enough to sustain trajectory replays (Figure 8A). After
such a learning protocol, the replay of the full trajectory was
possible even beyond 1 h after learning (Figure 8B), whereas
replay ability lasted only a few minutes with previous parameters
(Figures 6E2,E3). This increase in replay memory timescale is
consistent with that of the engram time constant, which was
11.5 h (Figure 8C), of the order of its theoretical estimation
∼11.7 h, i.e., it was increased by a factor 6 compared to that
obtained with previous parameters (1.91 and 1.95 h, respectively
Figure 6E1). Remarkably, the memory of trajectory replay was
increased by a factor >20 (trajectory completely replayed at
>1.4 h vs. 4min with previous parameters), so that, relatively
to the timescale of the trajectory engram, the timescale for
trajectory replay was further increased by a factor 3.5. Indeed,
the presentation of several stimuli recruited a thicker-tailed
weight distribution, with higher probability of large weights
(blue curve above the red one in ∼0.05–0.125; Figure 8D) but

lowered probabilities of highly-weighted synapses (blue curve
with negligible probabilities above 0.15; Figure 8D), because
successive trajectory stimuli simultaneously evoked progressively
stronger trajectory replays, recruiting more neurons at lower
frequencies (Figure 8A), therefore imprinting larger engrams.
Thus, slower plasticity kinetics required a larger number of
successive presentations to learn the trajectory, but ensured a
more robust engram involving more synapses, resulting in a
better resilience to forgetting, i.e., a better quality of learning.

Finally, we assessed whether slow plasticity with multiple
stimulus presentations also preserved network dynamics. AI
dynamics were preserved with stable frequency (Figure 8E1),
synchrony (Figure 8E2), and irregularity (Figure 8E3). We
then repeated the replay stimulus every 3 s for 30 s after the
presentation of the initial trajectory stimulus, a protocol which
led to paroxysmal activity when considering fast plasticity.
With slower kinetics, multiple replay stimuli triggered correct
trajectory replays for the whole duration of the simulation
(Figure 8F). We then asked whether a threshold of plasticity
speed exists above which paroxysmal activity is triggered, or,
conversely, the risk of paroxysmal activity linearly scales with
the ability to learn fast. To do so, we parametrically explored
simulations with plasticity rate divided by a slowdown factor in
the range 1–10. The minimal number of stimulus presentations
required to form a strong enough engram (i.e., allowing a replay)
increased slowly with slower plasticity kinetics (Figure 8G, red).
In parallel, the increase in the maximal number of replays
before turning network dynamics into paroxysmal activity
was much larger (Figure 8G, black), so that slowing plasticity
kinetics increased the physiological range allowing learning
while preserving network dynamics from paroxysmal activity.
Hence, plasticity slow enough to preserve healthy dynamics
may constitute a key constraint on the ability to learn rapidly.
Furthermore, if the product of plasticity speed with the number
of stimulus presentation was constant, it would indicate a linear
summation of plastic effects arising from each presentation. By
contrast, the number of stimulus presentations necessary for
replay was lower than the factor of plasticity slowdown (5 stimuli
for 10x plasticity slowdown instead of 10 stimuli, Figure 8G).
This is due to successive stimulations overlapping with replays
(i.e., stimulus presentations after the first one induce replays,
Figure 8A), suggesting progressive facilitation of learning at slow
plasticity speeds.

DISCUSSION

Here, we show that it is possible to learn neural trajectories
(dynamical representations) using a spike timing-dependent
plasticity (STDP) learning rule in local PFC circuits displaying
spontaneous activity in the asynchronous irregular (AI) regime.
We used a physiological model of plasticity (Delord et al.,
2007; Graupner and Brunel, 2012; He et al., 2015) continuously
occurring online, i.e., without decoupling simulations of learning
and activity. Presentation of a dynamic stimulus, the trajectory,
resulted in the writing of a synaptic engram of the trajectory on
a rapid timescale (seconds), as well as its long-term storage at
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FIGURE 8 | Slower learning stabilization of the engram and network dynamics. (A). Membrane potential of the neural network in response to the presentation of 4

trajectory stimuli in the presence of slower STDP learning kinetics. (B). Membrane voltage of the neural network for 3 s following a replay stimulation on the first 50

neurons at 1 s, 1 h after trajectory learning. (C). Average weight of all engram synapses after learning for 1 h. (D). Probability distribution of the synaptic weights of the

excitatory synapses after 4 presentations of the trajectory stimulus during slow learning (blue), and after one presentation of the trajectory stimulus during learning with

faster (standard) parameters (red). (E) Networks dynamics after learning with slow plasticity: frequency (E1), synchrony (E2), and irregularity (E3) of excitatory neurons.

Shaded areas represent 95% confidence intervals of the mean for five network simulations. (F) Membrane potential of the neural network for 38 s during which a

replay stimulus is performed on 50 neurons every 3 s for 10 total repetitions (as in Figure 7A) after 4 trajectory stimuli in the presence of slower STDP learning kinetics

(as in Figure 8A). (G) Minimal number of stimulus presentations required to learn a replay (red) and maximal number of replays before paroxysmal activity (black), as a

function of the plasticity slowdown factor expressed in units of plasticity standard time constant (i.e., by which slowdown factor plasticity rates are divided). The

number of replays until explosion is evaluated with the same weight matrix (learned at standard plasticity speed or x1 slowdown) across different plasticity speeds, for

better comparison of the effect of plasticity speeds on replay. Shaded areas represent 95% confidence intervals of the mean for 10 network simulations.

the timescale of the order of several hours. The network replayed
the trajectory upon stimulation of a subset of the engram at the
timescale of the order of dozens of minutes. These results indicate
that disordered AI activity does not necessarily jeopardize the
encoding and replay of neural trajectories. Conversely, the
weak but continuous plastic processes that noisy AI produces
did not erase the synaptic engram of neural trajectories, at
least before several hours. In turn, the learning of a trajectory

engram within network synapses was not found to alter the AI
characteristics of PFC activity. From a functional perspective,
we show that trajectory activity accounted for both types of
dynamics subserving working-memory in the PFC, i.e., persistent
activity (Constantinidis et al., 2018) and dynamical coding
(Lundqvist et al., 2018), and help understanding how they can
be reconciled (Murray et al., 2017; Cavanagh et al., 2018; Enel
et al., 2020). Together, these results offer a consistent theoretical
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framework accounting for how dynamical representations can
be learned, memorized and replayed in PFC circuits in
physiological conditions.

This model was built to reproduce functional phenomenology
of the PFC (learning, replays at different timescales, dynamic or
persistent coding, see below), based on biophysical constraints
from the experimental literature at the molecular, cellular and
network levels, rather than by artificial training. If overall
architectural properties of the model are observed in the
PFC, such properties are also compatible with other non-
prefrontal cortices with trajectory replays, lending strength to
the genericity of the current study’s results. For example, the
excitatory/inhibitory network balance, observed in the PFC
(Shu et al., 2003; Haider et al., 2006), is also observed and
essential to computations across non-PFC structures (Isaacson
and Scanziani, 2011). Similarly, the over-representation of
bidirectional connections in the PFC (Wang et al., 2006) is
a general property in cortical networks (Song et al., 2005).
While the PFC has been less subject to the investigation of
synaptic scaling compared to other structures, its presence across
many non-PFC cortical structures (for e.g., sensory cortices,
hippocampus, motor cortex) and crucial role for synaptic
learning stabilization (Keck et al., 2017) makes it a plausible
mechanism in PFC. Certain lines of evidence suggest its presence
in PFC (Wang and Gao, 2012; Sweatt, 2016), although further
confirmation is needed.

In the model, external feedforward inputs are constant, as in
previous models of characteristic PFC activity (for e.g., Brunel,
2000). Therefore, the variability of neuronal discharge observed
in the network entirely arises from internal dynamics among
recurrent connections, as the network is in the asynchronous
irregular regime (Destexhe et al., 2003; London et al., 2010).
It would be interesting to study versions of the model with
feedforward inputs variability, as occurring in real PFC circuits.
However, this option was out of scope as we focused on
the internal interactions between the spontaneous AI regime,
learning processes affecting the synaptic matrix and trajectory
replays. As another potential extension to our study, one could
explore the influence of rhythmic inputs from the hippocampus
(theta rhythms, Siapas et al., 2005; Benchenane et al., 2011) or
from the olfactory pathways (delta rhythms,Moberly et al., 2018),
which are known to be important for behaviorally-relevant neural
activity and memory replays.

Molecular Plasticity and Memory in the
PFC
In the PFC, e-STDP necessitates more than the pre-post
synaptic pairings used in spike-timing protocols, as long-term
potentiation (t-LTP) emerges in the presence of dopaminergic or
cholinergic tonic neuromodulation, or when inhibitory synaptic
transmission is decreased (Couey et al., 2007; Xu and Yao,
2010; Ruan et al., 2014). Moreover, Hebbian STDP (i.e., t-
LTP for pre-then-post and t-LTD for post-then-pre spiking) is
observed when followed by phasic noradrenergic, dopaminergic
or serotoninergic neuromodulation (He et al., 2015). Hence,
we assumed that t-LTP and t-LTD co-exist, and STDP is thus
Hebbian, in the PFC of behaving animals, where both phasic
and tonic neuromodulation are encountered during behaviorally

relevant learning (Dembrow and Johnston, 2014). The present
study did not incorporate noradrenergic, serotoninergic and
dopaminergic transformation of eligibility traces into effective
plastic modifications found at PFC excitatory synapses (He
et al., 2015), a possible substrate of context- and reward-
modulated learning in PFC circuits (Ellwood et al., 2017).
The present work also did not consider alternative biophysical
processes that may participate to sculpt dynamical and flexible
neural representations in the PFC (Buonomano and Maass,
2009; Stokes, 2015). For instance, short-term synaptic plasticity
(Mongillo et al., 2008)may affect network dynamics through slow
hidden (e.g., biochemical) variables. Such a silent-based coding
of past activity could possibly account for the near-complete
disappearance of activity observed sometimes during working
memory (Stokes, 2015) and its interaction with activity-based
working-memory in the PFC (Barbosa et al., 2020) remains
to be elucidated. Similarly, inward current-mediated bistability
such as with persistent sodium, or calcium-activated non-
specific currents (Delord et al., 1997; Rodriguez et al., 2018),
can produce cellular forms of memory that may take part in
dynamic representations in the PFC, either through retrospective
memory of past information or in prospective computations of
forthcoming decisions and actions. Finally, the present study
did not consider anti-homeostatic forms of intrinsic plasticity
(i.e., the plasticity of intrinsic properties) which may represent
an essential mean to learn and regulate dynamic representations
(Zhang and Linden, 2003).

Stable Spontaneous AI Dynamics in the
PFC in the Presence of Plasticity and
Learning
Hebbian forms of plasticity (Abbott and Nelson, 2000), such as
the STDP of excitatory synapses (Markram et al., 2012) modeled
here, increase weights between neurons that are frequently
co-activated. Stronger synapses potentiated by STDP, in turn,
statistically increase the frequency of future co-activations. These
rules thus constitute positive feedback loops (anti-homeostatic)
between activity and connectivity. As a consequence, synaptic
runaway (Keck et al., 2017; Zenke et al., 2017) produces
network instability toward saturated or quiescent activity and
connectivity. In recurrent network models, synaptic plasticity
typically decreases the dynamics complexity toward regular
activity such as limit-cycle or quasi-periodic attractors (Morrison
et al., 2007; Siri et al., 2007; Litwin-Kumar and Doiron, 2014)
that resembles neural dynamics encountered during sleep or
paroxysmal crises. However, activity in the PFC and other
cortices during wakefulness is characterized by asynchronous
irregular spiking at low frequency (Ecker et al., 2010; Renart
et al., 2010), due to the balance between strong excitatory
and inhibitory synaptic currents (Destexhe et al., 2003). AI
spiking is compatible with critical or even chaotic dynamics
(Beggs and Plenz, 2003; Hahn et al., 2010; London et al.,
2010), which may benefit temporally complex computations
(Bertschinger andNatschläger, 2004) believed to be performed by
the PFC (Compte, 2003).

Many studies show that e-STDP rules are deleterious to AI
dynamics such that compensating homeostatic mechanisms are
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required to control neuronal activity, for e.g., a metaplastic
e-STDP rule with sliding-threshold (Boustani et al., 2012),
synaptic scaling (which keeps the sum of pre-synaptic excitatory
weights constant, Zenke et al., 2013), STDP of inhibitory
synapses (i-STDP; ensuring excitation-inhibition balance, Vogels
et al., 2011) or intrinsic plasticity of ionic conductances
(regulating action potential threshold, Naudé et al., 2013).
In the present detailed biophysical model, we found that a
combination of e-STDP where all pre-/post- pairings were
taken into account (all-to-all STDP), together with synaptic
scaling, preserves AI dynamics. All-to-all e-STDP without
scaling can also preserve AI dynamics, but at the price of
unstable fluctuating synaptic weights (Morrison et al., 2007),
while weight distributions were stable here. Moreover, the
present study shows that network stability held not only with
random recurrent connections, but also in the presence of an
engram involving a significant fraction of strong, potentiated
synapses in all excitatory neurons. In the absence of synaptic
scaling, learning static patterns into synaptic engrams with e-
STDP disrupts AI dynamics toward pathological high-frequency
oscillations (Morrison et al., 2007; Litwin-Kumar and Doiron,
2014), or with i-STDP leads to AI activity with unrealistic
high firing frequency states and sharp state transitions (Litwin-
Kumar and Doiron, 2014), at odds with PFC dynamics in
awake animals (Compte, 2003). A metaplastic form of e-STDP
conserves AI dynamics on a short-timescale (one second) but
AI stability remains unchecked at longer timescales (Boustani
et al., 2012). This is only the case with static stimulus, as
learning receptive fields using dynamical stimulus leads to
a catastrophic decrease in the complexity of the AI regime
(Boustani et al., 2012). Altogether, our study thus suggests that
synaptic scaling represents a more efficient form of homeostatic
compensation (rather than metaplastic e-STDP, or i-STDP) for
learning trajectory engrams without the deleterious effects of
STDP disrupting AI dynamics. We used here an instantaneous
synaptic scaling, because our model, like most models, requires
synaptic scaling at faster or equal timescales than synaptic
plasticity for stable learning, far from the experimentally
observed homeostatic or metaplastic timescales of hours to
weeks (Zenke et al., 2017). This constraint suggests the existence
of as yet unidentified rapid compensatory processes, potential
candidates being heterosynaptic plasticity (Fiete et al., 2010),
intrinsic plasticity (Zhang and Linden, 2003; Naudé et al., 2013),
input normalization by feed-forward inhibition (Pouille et al.,
2009; Keck et al., 2012), and the implication of astrocytes
(Papouin et al., 2017). Additionally, at slower timescales,
sleep-dependent consolidation mechanisms may provide global
compensatory synaptic down-scaling offline (Tononi and Cirelli,
2003).

Learning Dynamical Representations in the
PFC Under AI Dynamics
Phenomenological e-STDP models fail to learn engrams in
noisy AI states because of their sensitivity to spontaneous
activity. The absence of STDP weight-dependence forbids
learning and induces the direct loss of engrams (Boustani

et al., 2012), while without synaptic scaling, learning fails
with catastrophic consequences in terms of network dynamics
(see above; Morrison et al., 2007). A weight-dependent e-
STDP rule endowed with homeostatic metaplasticity (instead
of synaptic scaling, as here) allowed learning the engram of a
presented stimulus while preserving AI dynamics, although it
unrealistically left neurons of the engram in a state of permanent
activity (Boustani et al., 2012). Likewise, i-STDP enables learning
of engrams, but with unrealistic AI activity (see above; Litwin-
Kumar and Doiron, 2014). Here, we find that the combination of
a weight-dependent Hebbian e-STDP rule and synaptic scaling
allows for the learning of engrams in local PFC recurrent
networks under conditions of AI dynamics, as found in
behaving mammals.

Phenomenological STDP models based on neighboring spike-
doublet or spike-triplet schemes often produce side effects (either
sensitivity to noisy activity, or runaway plasticity) due to the
temporal bounds of the pre- and post-couplings they consider
(Boustani et al., 2012). The present STDP model describes
continuous post-synaptic biophysical dynamics that account for
all pre-/post-pairings (all-to-all STDP) and is thus more realistic
than phenomenological STDP models. Here, the temporal
asymmetry of the spike-timing dependence of the e-STDP rule
arises from a detailed description of calcium dynamics. Calcium
arises from two different sources of calcium that originate from
the influence of AMPA, NMDA and VDCC channel activations
(see Materials and Methods; Graupner and Brunel, 2012),
which accounts for the relative influence of pre-synaptic evoked
excitatory post-synaptic potentials and of backpropagating post-
synaptic activity. However, this rule remains simple compared to
models describingmore complete signaling scenarios (Manninen
et al., 2010), allowing simulation at the network scale.

In feed-forward networks endowed with this STDP rule,
and for conditions of spiking frequency and irregularity similar
to AI activity, plastic modifications essentially depend on
firing frequency rather than on the precise timing of spikes,
because equivalent probabilities of encountering pre-then-post
and post-then-pre spike pairs in conditions of stationary
spiking essentially blurs net spike-timing effects (Graupner
et al., 2016). Moreover, t-LTP dominates t-LTD, because t-
LTD is multiplicative (Bi and Poo, 1998; van Rossum et al.,
2000), i.e., scaled by weak weight values (Graupner et al.,
2016). Consistent with these observations, in the present PFC
recurrent network model, plasticity was essentially frequency-
dependent under conditions of stationary spiking, and t-
LTP dominated t-LTD under spontaneous AI dynamics, being
principally compensated by synaptic scaling. However, during
trajectory presentation or trajectory replay, i.e., when pre-
post spiking was enforced to be temporally asymmetric, t-LTD
nevertheless contributed to compensate t-LTP and determined
overall resulting modifications on the same order than scaling.

The previous studies that have addressed the possibility
of engram learning in recurrent networks with AI dynamics
focused on static stimuli (Morrison et al., 2007; Boustani et al.,
2012; Litwin-Kumar and Doiron, 2014). By contrast, our study
demonstrates engram learning and activity replay of dynamical
stimuli, such as the sequences or trajectories of activity that
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occur during cortical AI dynamics in behaving animals (Kaefer
et al., 2020). Standard static Hebbian assemblies, which learn
static stimuli through strong bidirectional connections between
neurons of the assembly and replay the static activity through
pattern completion, induce avalanche-like convergent dynamics
toward a static attractor, which are too low-dimensional to
account for physiological data. Remarkably, the present study
demonstrates the possibility for engrams of dynamic stimuli in
the disordered AI state, despite the fact that they relied on mono-
directional strengthening of synaptic connections, which favors
propagation of activity, but does not allow for the convergent
effect of static patterns and the positive feedback inherent to it.

Long-Term Memory of Dynamical
Representations in the PFC Under AI
Dynamics
The present study underlines the importance of slow plasticity
kinetics together with repeated presentations for learning
dynamic representations in PFC networks. Faster kinetics
allowed one-shot learning of trajectory engrams, but extensive
training could then induce paroxysmal activity during the
trajectory replays that partly erased the engram, which was
ultimately detrimental to the learning and replay process. This
synchronous increase in neuronal activity in the model is
reminiscent of epileptic seizures (Truccolo et al., 2011), which
have been found to cancel out the plasticity effects of synaptic
weights (Hu et al., 2005), and affect memory (Meador, 2007),
as we found here. By contrast, slower kinetics resulted in more
stable engrams, while highlighting the importance of repeated
presentations of the dynamic stimulus, similarly to observations
with static patterns (Boustani et al., 2012). Parametric exploration
of plasticity kinetics showed a tradeoff between the number
of stimulus repetitions required to form an engram and the
risk of paroxysmal activity. However, slowing down plasticity
decreased the risk of over-activation while preserving the ability
to learn fast (even though not through one-shot learning).
Consistent with our results, learning occurs gradually in the
PFC, and at a slower pace than in the hippocampus and basal
ganglia (Pasupathy and Miller, 2005; Buschman and Miller,
2014). The tradeoff between fast learning and paroxysmal risk
may constitute a constraint for the PFC, with the preservation of
asynchronous irregular dynamics preventing one-shot learning
based on synaptic plasticity alone. One-shot learning, which
occurs in well-trained animals, may thus require additional
mechanisms for structural learning (Gallistel and Matzel, 2013).

Fast learning together with stable memory is considered
in many synaptic plasticity models to rely on auto-
phosphorylation of the calmodulin-dependent protein kinase
II (CaMKII). CaMKII auto-phosphorylation is appealing
because it constitutes a positive-feedback loop (inducing
fast plasticity) underlying bistable dynamics (providing
infinite memory of a single potentiated synaptic state).
However, we did not consider CaMKII in the present model,
because CamKII is not necessary to the maintenance of
synaptic modifications (Chen et al., 2001; Lengyel et al.,
2004). Moreover, activity-dependent synaptic modifications

are not systematically bistable (i.e., they can be graded;
Montgomery and Madison, 2002; Tanaka et al., 2008; Enoki
et al., 2009) and they can fade with time scales from seconds
to minutes (Hempel et al., 2000).

Here, the stability of molecular memory originated from
extremely slow synaptic weight dynamics, resulting in slow
exponential forgetting of the engram. Slow weight dynamics
arose from activity-dependent kinase and phosphatase (aKP,
Delord et al., 2007), which are weakly activated at near-basal
calcium concentrations associated with low spiking frequency
during AI dynamics. Such aKP signaling processes are ubiquitous
(e.g., PKA, PKC, calcineurin) and confer an activity-dependent
control over the rate of plasticity and memory (Delord et al.,
2007), which is essential for flexible learning in the PFC (Fusi
et al., 2005). Alternatively, when implemented with low copy
molecule numbers at individual synapses, bistable models faced
with noise also exhibit exponential forgetting of memory when
averaged over synapses and trials (Fusi et al., 2005). Here, the
memory of the trajectory engram admitted an effective time
constant of the order of 2 h in network simulations, consistent
with its theoretical prediction (see Materials and Methods), but
longer memories could be expected for lower values of Pmax

and Kmax, the maximum phosphatase and kinase activations.
However, the time constant for plasticity would also increase,
slowing learning too, while its current value is compatible with
induction times of synaptic plasticity (Malenka et al., 1992).
Alternatively, a higher calcium phosphatase half-activation (PCa),
which is physiologically possible (Delord et al., 2007), would
allow for a longer memory timescale while preserving rapid
learning (at large calcium, the time constant of plasticity is
independent of PCa). Hence, specifying biophysical models
with precise kinetic parameters is essential because they have
huge consequences on the stability of network dynamics,
learning and the time scale of memory (Zenke et al., 2013).
Specifically, homeostatic scaling appeared important here as
for learning, since its absence was reported to forbid the
memory of static patterns in recurrent network models because
of catastrophic forgetting due to fluctuating synaptic weights
(Morrison et al., 2007).

The timescale of trajectory replay scaled with that of the
engram. This is because replay requires a sufficiently preserved
engram to emerge from synaptic interactions between neurons.
However, the lifetime of trajectory replay was an order of
magnitude smaller than that of the trajectory engram, because
replay requires neuronal interactions that are non-linear and
therefore sensitive to decreases in synaptic weights. Interestingly,
the long-term degradation of trajectory replay was due to
incomplete replay at the end of the trajectories learned, in a
manner consistent with the primacy effect of medium-term
learned sequences (Greene et al., 2000). Besides, the memory
of trajectory replay did not only rely on biophysical parameters
but also on the learning protocol. Indeed, slower learning
with repetitions increased the quality of engram by better
anchoring the learned trajectory, through a larger number of
synapses. Slow plasticity of a large number of synapses from
a recurrent network, through repetition, may thus underlie
the robustness of PFC-dependent memories (Buschman and
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Miller, 2014). In addition to extensive training, the maintenance
of trajectory engrams over longer timescales may be reached
by regular replays, as observed in PFC-dependent active
executive processes such as trajectory reactivations (Stokes,
2015), spontaneous replays (Kaefer et al., 2020), rehearsal and
refreshing (Raye et al., 2007), or consolidations (Dudai, 2012).
At the molecular scale, the possibility of synaptic tagging
could be incorporated in the model (Clopath et al., 2008)
in order to stabilize the engram and account for longer
memory timescales.

Humans or animals generally learn complex navigational
paths such as sensory, motor or behavioral sequences in a
progressive manner. Thus, PFC circuits are often challenged
with the necessity to process several parts of whole neural
trajectories that are discovered as sequences of elementary parts
encountered at separate points in time. Moreover, prospective
processes in the PFC require recombining elementary neural
trajectories into new trajectory representations serving the
planning of future actions, choices or navigational paths, for e.g.,
during rule switching and behavioral adaptation (Ito et al., 2015;
Mashhoori et al., 2018; Kaefer et al., 2020). Besides, sequences of
non-spatial items have been shown to be processed in a spatial
frame in primates (Jensen et al., 2013), likely involving neural
trajectories. We found that STDP-based trajectory learning and
replay in the network was able to learn trajectory fragments,
transitions between fragments, and to chunk them into a whole
trajectory, as found in the PFC (Ostlund et al., 2009; Dehaene
et al., 2015). Moreover, the network displayed the ability to
reconstitute a whole trajectory (i.e., a macroscopic sequence)
based on trajectory fragments (i.e., overlapping microscopic
sequences), independently of their order of presentation, i.e.,
to acquire ordinal knowledge about sequences of trajectory
fragments (Jensen et al., 2013; Dehaene et al., 2015). However,
STDP-based trajectory learning in our PFC network model
was unable to learn higher-order representations of algebraic
patterns or more complex nested structures (Dehaene et al.,
2015), or to categorize sequences into specific classes (Shima
et al., 2007). Assessing such possibilities using more elaborated,
reward-dependent, forms of STDP learning rules might
deserve future explorations.

Multiple Functional Relevance of
STDP-Based Neural Trajectories in the PFC
We found in our model that the same network, taught with
the same stimulus, could generate a large range of replay
duration and compression factors, including those characterizing
regular (Batuev, 1994; Fujisawa et al., 2008; Cromer et al.,
2010; Mante et al., 2013; Yang et al., 2014; Ito et al., 2015;
Markowitz et al., 2015; Schmitt et al., 2017; Tiganj et al., 2017;
Nakajima et al., 2019; Passecker et al., 2019; Enel et al., 2020)
and fast (Jadhav et al., 2016; Tiganj et al., 2017; Mashhoori
et al., 2018; Yu et al., 2018; Shin et al., 2019; Kaefer et al.,
2020) timescale replays in behaving animal. We found that
the time constant of NMDA decay dynamics was essential in
controlling the duration and compression factor of trajectory
replays. In PFC circuits, dopamine slows decaying dynamics

of NMDA-mediated EPSPs through D1-receptors (Chen et al.,
2004; Onn et al., 2006) in an almost instantaneous manner (Onn
and Wang, 2005). In addition to dopaminergic regulation, other
forms of neuromodulation affect NMDA dynamics (Lutzu and
Castillo, 2021). Our results suggest that rapid and bidirectional
regulation of biophysical parameters in PFC networks by ongoing
neuromodulation—as attentional demands and reward outcomes
vary at the trial timescale—may control replay duration,
compression factors, and the relative rate of regular vs. fast
timescale replays.

Besides, individual neuronal activity displayed lower firing
frequency during replay compared to the activity induced by
the stimulus, consistent with sparse coding of representations
after learning. Firing rates of individual neurons during stimuli
or delays in working memory tasks, as well as in navigation
tasks, vary considerably across species and behavioral contexts,
spanning two orders of magnitude from ∼1 to ∼100Hz (Fuster
and Alexander, 1971; Batuev, 1994; Romo et al., 1999; Baeg
et al., 2003; Yang et al., 2014; Markowitz et al., 2015; Tiganj
et al., 2017). Frequencies of dozens Hz are common in individual
PFC neurons (Funahashi et al., 1989; Romo et al., 1999; Brody
et al., 2003; Fujii and Graybiel, 2003; Shinomoto et al., 2003; Jun
et al., 2010; Tiganj et al., 2017; Enel et al., 2020). In the present
model, frequencies of individual neurons were actually ∼100Hz
during stimuli and presentations, and 20–60Hz during replays
(Figures 5B1,B3). Thus, although larger than those observed
during stimuli, individual frequencies were globally of the order
of magnitude of those empirically observed. Mean frequencies
in our network ranged below 10Hz (Figures 5B1,B3), (7A2),
in accord with experimental literature (Funahashi et al., 1989;
Romo et al., 1999; Brody et al., 2003; Fujii and Graybiel, 2003;
Shinomoto et al., 2003; Jun et al., 2010; Tiganj et al., 2017; Enel
et al., 2020).

In the PFC, representations for executive functions and
cognition can present less explicit dynamic coding schemes
than regular timescale neural trajectories presented here. For
instance, working memory can display intricate patterns of
complex (heterogeneous but non-random) dynamic activities
that can hardly be disentangled into simpler well-separate
transient patterns of activity (Jun et al., 2010). However, during
working memory tasks, PFC persistent delay activity is selective
and maintains online content-specific representations. Working
memory does often, but not systematically, require underlying
persistent activities, often in a stable activity state (Goldman-
Rakic, 1995; Compte et al., 2000; Durstewitz et al., 2000; Wang,
2001; Constantinidis et al., 2018). It can also rely on dynamical
sequences of activities disappearing and reappearing, depending
on instantaneous computational task-relevant requirements
(Sreenivasan et al., 2014; Stokes, 2015; Lundqvist et al., 2018).
The coexistence of stable population coding together with
heterogeneous neural dynamics has been observed in the PFC
during working memory tasks (Murray et al., 2017).

Here, trajectory replays offer a possible unified framework
that can participate to reconcile opposite views regarding the
nature of information persistent vs. dynamic coding in the PFC
(Constantinidis et al., 2018; Lundqvist et al., 2018). Indeed, we
find that while individual neurons displayed transient (hundreds
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of milliseconds) overlapping bumps of activity, implementing
a “relay race” form of explicit dynamic coding (Batuev, 1994;
Brody et al., 2003; Cromer et al., 2010; Yang et al., 2014; Schmitt
et al., 2017), their population activity persisted at the second
timescale, ensuring the maintenance of the representation across
time (Murray et al., 2017; Cavanagh et al., 2018; Enel et al., 2020).
Depending on the functional context, neural trajectories learned
here could be interpreted as the actual explicit representation
of a trajectory unfolding online, granted that the decoding
downstream neural structure can resolve individual activities
of the network. Alternatively, if the downstream decoding
neural structure only globally decodes the population average
of network dynamics, activity would then be interpreted as an
integrated and stable persistent representation of the trajectory as
a whole (i.e., as a symbolic entity). This dichotomy is congruent
with that found in the PFC, whereby individual neurons encode
information at short timescales while the population as a whole
persistently maintains information at longer time scales (Meyers
et al., 2008). In this scheme, working memory representations
would rely on individual neurons collectively stabilizing a
dynamic population-level process (Murray et al., 2017; Cavanagh
et al., 2018; Enel et al., 2020).

Interestingly, we found that the population activity of
trajectory replays accounted for the decreasing pattern of activity

that can be observed in the PFC (Cavanagh et al., 2018; Enel
et al., 2020). Trajectory replays also displayed strong variability,
as observed in the PFC during delay activities (Compte, 2003;
Shafi et al., 2007). While within-trial variability across neurons
essentially came from the fact that neurons spiked at distinct
periods along the trajectory, inter-trial variability for each neuron
originated from the noisy AI dynamics. Inter-trial variability
accumulated over time for neurons situated later in the trajectory,
henceforth the temporal tuning of neurons widened with their
position in the sequence (Tiganj et al., 2017).
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