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INVITED REVIEW

Review of Preclinical Outcomes of a Topical Cationic Emulsion of Cyclosporine A for 
the Treatment of Ocular Surface Diseases
Philippe Daull, PhDa, Christophe Baudouin, MD, PhDb,c, Hong Liang, MD, PhDb,c, Laurence Feraille, PhDd, 
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cSorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France; dIris Pharma, Les Nertières, La Gaude, France; eOcular Surface and Dry Eye 
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ABSTRACT
Background: Cyclosporine A (CsA) has been used as a topical treatment for various ocular surface 
diseases including dry eye disease (DED). Several CsA formulations are available as solutions or emulsions.
Purpose: This review describes the development and the preclinical testing of a cationic oil-in-water 
emulsion of CsA (CE-CsA) in terms of pharmacodynamics, pharmacokinetics, and ocular tolerance. Due to 
the cationic charge, CE electrostatically interacts with the negatively-charged ocular surface, improving its 
residence time. Compared to other CsA formulations, CE-CsA and CE itself were found to reduce the signs 
and symptoms of DED, by restoring tear film stability and properties, and inhibiting the expression and 
secretion of pro-inflammatory factors. No delay in wound healing nor ocular toxicity were observed using 
CE formulations.
Conclusion: these findings indicate that the type of vehicle can significantly affect the performance of eye 
drops and play an ancillary role in DED treatment. CE appears as a promising strategy to deliver drugs to 
the ocular surface while maintaining its homeostasis.
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The ocular surface encompasses a variety of structures, such as 
the cornea, conjunctiva, lacrimal and meibomian glands, tears, 
connective tissues, eyelids, eyelashes and nasolacrimal duct, all 
of which are connected with the trigeminal pathway and the 
immune system, and play a part in maintaining the home-
ostasis of the eye.1 Dry eye disease (DED), also called kerato-
conjunctivitis sicca, is one of the most common ocular surface 
disease with a prevalence ranging from 5% to 50% worldwide.2 

DED is a multi-factorial and often chronic disease, character-
ized by multiple underlying pathophysiological mechanisms 
including tear film instability and hyperosmolarity, neurosen-
sory abnormalities, ocular surface inflammation and damage, 
leading to loss of homeostasis.2,3 These combined mechanisms 
result in a “vicious circle” of immunopathogenesis, which can 
be particularly challenging to treat.4

Cyclosporin A (CsA) is an immunomodulatory agent dis-
covered in the 1970s. Since then, it has been marketed for 
various medical applications such as psoriasis, Crohn’s disease 
and organ transplants.5–8 In ophthalmology, CsA was initially 
investigated to prevent graft versus host disease after trans-
plantation of donor corneal tissues.9 Nowadays, this medica-
tion is used for the treatment of ocular surface diseases 
associated with inflammation such as DED,10 seasonal allergic 
conjunctivitis11 and vernal keratoconjunctivitis (VKC), 
a severe and chronic form of ocular pediatric allergies.12,13 

The efficacy of CsA comes from its ability to inhibit the activity 
of T cells and the production of pro-inflammatory cytokines, 
both responsible for hyper-inflammation,14 however, its large 

molecular weight and hydrophobicity result in low ocular 
bioavailability.15,16 Topical solutions and emulsions represent 
the most common commercial formulations of CsA currently 
available.17 Papilock mini® (marketed since 2005 in Japan by 
Santen Pharmaceutical Co. Ltd.), Modusik-A Ofteno® (mar-
keted since 2003 in South America by Laboratorios Sophia), 
and TJ Cyporin® (marketed since 2003 in South Korea by 
Taejoon Pharm Co., Ldt.) are the main CsA solutions available 
on the market. In 2018, Sun Pharma Global marketed Cequa®, 
a new generation of CsA solutions based on a nanomicelle 
technology,18 in the US and in Australia. Despite a general 
ease of preparation, CsA solutions require the use of surfac-
tants and co-solvents to stabilize the formulation and prevent 
CsA precipitation. Unfortunately, repeated instillations of high 
surfactants concentrations on the ocular surface can induce 
ocular irritation.17,19,20 This limitation has led to the develop-
ment of new drug delivery systems (DDS) to improve CsA 
retention on, and penetration through, the ocular surface.17

Oil-in-water emulsions are well suited to solubilize lipophi-
lic CsA as they limit the concentration of surfactants needed.17 

Moreover, oily excipients also tend to prevent ocular surface 
desiccation by helping to restore the lipid layer of the tear 
film.21,22 Restasis® (AE-CsA, Allergan) and Ikervis® (CE-CsA, 
Santen) are both CsA emulsions approved by the FDA in the 
US and by the EMA in Europe, respectively. While AE-CsA is 
composed of anionic components, CE-CsA is composed of 
cationic ones. The advantage of cationic DDS (i.e. positively 
charged) is their ability to interact with the negatively-charged 
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mucin layer of the tear film, increasing the residence time of 
CsA on the ocular surface.15,23,24

In this review, we will give an overview of the development 
of cationic emulsions (CE) as well as its main preclinical out-
comes collected over the last decade. We will compare these 
features with the other marketed CsA formulations and hospi-
tal-compounded preparations, in term of pharmacodynamics, 
pharmacokinetics, ocular tolerance and toxicity, as is recom-
mended by health authorities for the approval of new medical 
products.25 Finally, we will discuss the translation of these 
preclinical outcomes to patients with DED.

Development of a cationic emulsion of cyclosporine A

The concept of CE was first introduced in 1996 for the oral 
administration of progesterone.26 A few years later, this tech-
nology was assessed in ophthalmology for the first time, to 
deliver indomethacin to the ocular surface.27 In this section, we 
will describe the three main components of the CE-CsA (CsA, 
an oil-in-water emulsion and a cationic agent) as well as their 
interaction with the ocular surface.

Cyclosporine A

The immunosuppressive activity of CsA was first reported in 
1976 by Borel et al.28 Since then, mechanistic studies have 
shown that CsA inhibits phosphatase calcineurin, preventing 
nuclear factor of activated T-cell (NFAT) activation and subse-
quent gene expression of interleukin-2 (IL-2) in activated 
T cells.29,30 In addition to the calcineurin/NAFT pathway, other 
mechanisms of action of CsA have been hypothesized over the 
last few decades.29,31 It has been shown that CsA also may inhibit 
T cell activation by blocking JNK and p38 signaling pathway.29 

More recently, Liddicoat et al. described that CsA may also 
impact innate immune dendritic cells (DC) using the similar 
calcineurin/NAFT pathway, which can influence adaptive 

immune responses via regulatory T cells induction, T helper 
(CD4+) cell polarization and humoral responses.31 CsA may 
also impact other types of innate immune cells, such as macro-
phages and neutrophils,31,32 however, more studies are needed to 
better understand the underlying mechanisms of action. In 
ophthalmology, CsA has been assessed to prevent corneal graft 
rejection9 and rapidly gained interest for ocular surface diseases. 
In addition, CsA was shown to significantly reduce the presence 
of CD4+ T cells on the ocular surface of patients with Sjögren’s 
syndrome,33 while in patients with VKC, CsA also decreased the 
number of antigen-presenting cells (APC) cells, CD4+ T cells and 
B cells.34 Another study showed that CsA increased the number 
conjunctival goblet cells and decreased the epithelial turnover, 
which can be beneficial for the maintenance of ocular surface 
homeostasis.35

Oil-in-water emulsion

Oil-in-water emulsions are biphasic formulations containing oily 
droplets dispersed in a continuous water phase. They have been 
used as delivery systems for hydrophobic drugs due to their 
ability to incorporate water insoluble molecules. To create these 
emulsions, various oils and emulsifiers (i.e., surfactants) have 
been used as ocular DDS.36 The choice of these components as 
well as their concentrations (i.e. oil/surfactant ratio) represent an 
important factor in the safety profile of emulsions on the ocular 
surface, as is described in the section 5. In CE-CsA, medium- 
chain triglycerides are used as the oily phase to solubilize CsA. To 
stabilize the oil nano-droplets (<200 nm) of CsA in the contin-
uous phase, two nonionic surfactants are used: tyloxapol (hydro-
phobic) and poloxamer 188 (hydrophilic) (Figure 1a). These 
surfactants are already used in eye drop formulations, tyloxapol 
can exhibit anti-inflammatory effects in some instances,37,38 and 
both are known to be well tolerated in the human eye.39 Glycerol 
can also be used in the continuous phase in order to protect the 
ocular surface from the hyperosmolarity induced by DED.40 The 

Figure 1. Principle of the use of cationic emulsion of CsA (CE-CsA) on the ocular surface. (a) Schematic structure of the CE-CsA and (b) interaction with the ocular 
surface.
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tear film of the eye comprises 3 layers: the outer oily layer secreted 
by Meibomian glands, the intermediate aqueous layer produced 
by the lachrymal glands, and the inner mucin layer (Figure 1b). 
Clinically, DED is characterized by a loss of volume in all tear film 
layers.3 Because of the similarities in composition between emul-
sions and the tear film (both oily and aqueous phases), emulsions 
can act as a tear film substitute, effectively reducing symptoms of 
DED.41

Cationic and polar agents

The mucin layer of the tear film plays a significant role in 
protecting the ocular surface. Mucins are high-molecular weight 
glycoproteins composed of carboxyl and sulfate groups that are 
negatively charged.42 Thus, the use of cationic agents in emul-
sions can induce electrostatic interaction with the anionic mucin 
layer and improve drug bioavailability. Moreover, cationic agents 
cause electrostatic repulsions between nano-droplets which help 
to stabilize the emulsions.43 CE have demonstrated additional 
benefits over nonionic or anionic emulsions in drug delivery for 
various biomedical applications.44 CE-CsA contains a cationic 
agent called cetalkonium chloride (CKC) a homolog of benzalk-
onium chloride (BAK). BAK is a quaternary ammonium com-
pound currently used as a preservative at concentrations up to 
0.02% in many eye drops formulations due to its bactericidal and 
microbicidal properties at high concentrations. Nevertheless, 
several side effects have been observed in patients using formula-
tions containing BAK, such as dry eye exacerbation45 and corneal 
cell damage.46,47 While BAK contains 12 or 14 carbons in its alkyl 
chains, CKC contains 16 carbons resulting in a much higher 
hydrophobicity and increased polarity of the molecule. As 
opposed to the shorter C12 and C14 alkyl chains, all the CKC is 
incorporated at the oil interface increasing the stability of oil 
nano-droplets and most importantly, reducing the amount of 
free molecules in the water phase that are responsible for ocular 
side effects.48 In addition, in vitro and in vivo studies revealed that 
CE increased tear film elasticity and thickness49 and can poten-
tially compensate for Meibum gland dysfunction, a common 
clinical sign of DED.

The originality of CE-CsA comes from the combination of 
CsA with emulsion and the non-conventional use CKC as catio-
nic agent and polar lipid. Concentrations of the nonpolar and 
polar components have been selected in order to mimic the 
composition of the tear fluid lipid layer (Table 1) in terms of 
both quantities and ratios. In particular, the limited concentra-
tion of CKC used in the CE allows to bring cationic charges as 
well as surfactant effects without inducing any toxic effect as it is 

described in section 5. Therefore, each of these components 
provides specific properties to the final emulsion and tear-film 
supplementation, which helps to break the vicious circle and 
restore homeostasis of a multifactorial disease such as DED. 
Moreover, the oils contained in CE can diffuse in the tear film 
lipid layer which can then act as a drug reservoir for the active 
molecules (eg., CsA) solubilized in the oils.53

Pharmacodynamics profile

In the last decade, many preclinical studies have been pub-
lished about the pharmacodynamics of CE-CsA and its vehicle 
using in vitro and in vivo models (Table 2). Several outcomes 
have been emphasized in these studies including anti- 
inflammatory potency, effect on DED symptoms, effect on 
wound healing, as well as the modulation of the gene expres-
sion profile.

Anti-inflammatory potency

Ocular immunological diseases, such as DED, are usually 
associated with self-perpetuating inflammation, resulting in 
a chronic disease state.4 In vitro studies assessed the anti- 
inflammatory effect of both CE-CsA and CE alone. One such 
study compared different formulations of CE containing two 
different concentrations of CKC (0.002% and 0.005%) or 
with tyloxapol surfactant alone.55 Both CKC concentrations 
decreased the in vitro secretion of several proinflammatory 
factors in several cell types with several types of induced 
stress (Figure 2a). The study also revealed that emulsions 
containing only tyloxapol reduced the secretion of IL-6 and 
IL-8 from human corneal epithelial cells (HCECs) stressed 
using lipopolysaccharide.55 Interestingly, a recent study has 
shown the anti-inflammatory activity of cationic lipids 
through the Protein Kinase C (PKC) pathway66 and simi-
larly, CKC has been shown to act as an inhibitor of the PKC 
pathway, which downregulates proinflammatory factors,55 

and parallels the observation by Chen and collaborators 
with PKC alpha knock-out mice. Therefore, CE has higher 
anti-inflammatory effects compared to AE, independently of 
the CsA action, suggesting that CE alone has anti- 
inflammatory potency. These results are confirmed by 
another study assessing the effect of CE-CsA and AE-CsA 
with the same CsA concentration on an in vitro desiccation 
stress model of HCECs.54 Results showed that levels of the 
proinflammatory factors (phospho Nuclear Factor kappa 
B (p-NF-κB p65) and phospho Inhibitor of kappa B alpha 
(p-IκBα)) and a proinflammatory cytokine (Tumor Necrosis 
Factor (TNF-α)) were found to be lower when HCECs were 
treated with CE-CsA compared to AE-CsA.54

Effect on the DED signs

Effects of CE-CsA and CE alone on signs of DED have also 
been tested using in vivo mice models.59–64 DED was induced 
in mice using a controlled environment room with low humid-
ity, as previously described in the literature.67 Clinically, two 

Table 1. Similarities between the composition of the tear film and a cationic 
emulsion.

Function

Healthy tear 
film 

composition

Cationic 
emulsion 

composition

Lipid phase To prevent desiccation 
of the ocular surface.

<1%* 2.005%#

Polar lipids in 
the lipid 
phase

To stabilize the lipid 
phase

Up to 8%50–52 0.25%

*40-90 nm of lipid layer thickness for an aqueous layer thickness of up to 4000 
nm51; #2% medium-chain triglycerides + 0.005% CKC.

OCULAR IMMUNOLOGY AND INFLAMMATION 3
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common signs of DED are a loss of tear fluid volume and 
keratitis.3 A phenol red thread (PRT) lacrimation test and 
corneal fluorescein staining (CFS) were performed to assess 
the tear fluid volume and corneal abrasion, respectively. 
Results showed that the CFS scores of mice with induced 
DED were reduced by 36% for the group treated with CE 
alone (CE-CsA vehicle) and by 59% for the group treated 
with CE-CsA when compared to the untreated group62 

(Figure 2b), however, only CE-CsA was found to significantly 
increase tear fluid volume of mice.64 CE-CsA also exhibited 
a greater reduction of CFS scores compared to other corticos-
teroids including 1% methylprednisolone62 and 0.5% lotepred-
nol etabonate (LE, Lotemax®, Baush+Lomb)60 as well as 5% 
lifitegrast solution (Xiidra®, Shire), a lymphocyte function- 
associated antigen-1 (LFA-1) antagonist.61 Interestingly, CE 
alone was found to be more efficient at reducing CFS scores 
compared to 5% lifitegrast solution.61

Compared to AE-CsA, treatment of DED with CE-CsA 
induced lower CFS scores, but a significant difference was 
not achieved in all studies.59,60,64 However, CE-CsA treat-
ment did reduce the occurrence of ocular lesions due to 

DED, compared to AE-CsA. These results highlight that 
CE itself can reduce keratitis induced by DED, which can 
be explained by its anti-inflammatory activity as well as its 
improved electrostatic interactions with the ocular surface 
and tear film lipid layer, previously described. A recent 
study tested different CsA formulations on mice with spon-
taneous development of Sjögren’s syndrome.58 The results 
revealed that one instillation a day (QD) of CE-CsA induced 
a higher tear fluid volume than two instillations a day (BID) 
of AE-CsA. More interestingly, when comparing CE-CsA 
(QD) and nanomicelle-CsA (BID),58 no significant difference 
in tear fluid volume (except at day 60) was found. Overall, 
these studies proved that the synergic effects of CE and CsA 
significantly reduced signs of DED in in vivo models using 
a single instillation a day.

Effect on wound healing

Some topical anti-inflammatory medications, such as predniso-
lone or dexamethasone, are known to delay corneal wound 
healing.68,69 In vitro and in vivo studies have been performed 

Figure 2. Main outcomes regarding pharmacodynamics of CsA cationic emulsions. (a) Effects of the cationic emulsions of cetalkonium chloride (CE-CKC) emulsions, 
IKK Inhibitor X (IKK Inh X), dexamethasone (DXM), and cyclosporine A (CsA) on IL-6 and IL-8 release by HCE-2 cells following lipopolysaccharide (LPS) stimulation. 
*p < .05; **p < .01; ***p < .001.55 (Adapted from reference 55). (b) Percentage of CFS score reduction after 10 days-treatment using 1% methylprednisolone (MePre), CE 
(CE-CsA veh) and CE-CsA on an in vivo mouse dry eye model. **p < .01; ***p < .001; ****p < .0001.62 (Adapted from reference 62). (c) Wound closure from day 1 to day 3 
after the different treatments. * p < .0001–0.02 compared to the other four groups at the corresponding times.56 (Adapted from reference 56). (d) Fold changes and t-test 
values (vs. DED untreated) for the 23 genes detected among the 34 genes followed in this study in the DED (± treatment) mice corneas. (LE, loteprednol etabonate).60 

(Adapted from reference 60).
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with CE-CsA to assess its effect on wound healing. HCECs were 
used to assess the cytotoxicity of different CsA formulations, as 
well as their effects on cell migration and proliferation.56,57 

Results showed that all CsA formulations, including CE-CsA, 
maintained an in vitro wound healing rate similar to phosphate 
buffered saline (PBS) (Figure 2c).56,57 Effect on wound healing 
has also been evaluated in vivo using a rat scrapping assay.65 Rat 
corneas treated with CE-CsA or CE were found to heal in 5 days, 
a similar timeframe to corneas treated with the control (NaCl). 
Moreover, the number of inflammatory cells after 5-days healing 
was found to be lower for corneas treated with CE-CsA, com-
pared to control group.65 It is worth noting that, contrary to 
BAK, CKC contained in CE-CsA showed no sign of cytotoxicity 
nor delay of cell proliferation.

Modulation of the gene expression profile

Several studies revealed that the use of CE-CsA or CE itself can 
modulate the expression profile of inflammatory genes. It has 
been shown that the presence of CE on stress-induced cells 
in vitro decreased the expression of several inflammatory 
genes, such as interferon (IFN)-γ, IL-17A, C-X-C motif ligand 
(CXCL)-9 and TNF-α, Thrombospondin (THBS)-1 and 
C-C motif ligand (CCL)-2.55 This modulation of gene expres-
sion profile has also been observed in vivo in mice models.60 

While both CE-CsA and AE-CsA reduced expression of IL-1α 
and toll-like receptor (TLR)-4, CE-CsA was the only one able 
to reduce the expression of numerous other inflammatory 
genes including 2-Eb1, IL-1β, IL-1RN, IL-6, transforming 
growth factor (TGF)-β2, TGF-β3, TLR-2 and TLR-3 
(Figure 2d).60

Several compelling pharmacodynamics outcomes have been 
highlighted in the different in vitro and in vivo studies per-
formed during the preclinical development of CE-CsA. The 
anti-inflammatory properties, provided by both CsA and the 
vehicle, CE, indicate that CE-CsA is very effective at treating 
the symptoms of DED, especially as CE-CsA demonstrates 
significant reductions in ocular lesions while also facilitating 
the restoration of tear fluid volume. Moreover, in comparison 
to other topical treatments, no delay in wound healing was 
observed using CE-CsA, while the differences achieved in 
corneal gene expression show how the formulation can 

modulate ocular inflammation. Although these in vitro and 
in vivo findings present strong data for the efficacy of CE- 
CsA alone, they have additionally been confirmed clinically, 
as patients with severe DED have reported reductions in the 
signs and symptoms of their DED after using CE-CsA.70,71

Pharmacokinetics outcomes

Several studies assessing the pharmacokinetics profile of CE- 
CsA have been published over the last decade (Table 3).

It has been shown that after a single dose of either 0.05% 
or 0.1% CE-CsA, the CE formulation was found to deliver 
a higher CsA concentration (Cmax) to the rabbit corneas as 
well a better exposition (area under the curve (AUC)) com-
pared to a single dose of 0.05% AE-CsA (Figure 3a).74 CsA 
concentration was measured in ocular and non-ocular tissue 
after 10 days of treatment using 0.05% CE-CsA (QD), 0.1% 
CE-CsA (QD) or 0.05% AE-CsA (BID). Results showed no 
significant difference in CsA concentration between the three 
groups.74 Therefore, we hypothesize that CE-CsA acts as 
a drug reservoir for the sustained release of CsA, resulting 
in a lower dose regimen requirement (QD vs. BID for AE- 
CsA). CE-CsA has also been compared to CsA compounded 
formulations prepared in hospital pharmacies. It was found 
that AUC(0.5–24h) was 5.4 and 3.9 times higher for CE-CsA 
compared to CsA hospital-compounded preparations (CsA- 
HP), in the cornea and the conjunctiva, respectively 
(Figure 3b).

These results suggest the superiority of CE-CsA in term of 
ocular bioavailability compared to other formulations (AE- 
CsA or CsA-HP). This higher performance can be explained 
by the unique electrostatic interaction of CE with the tear film, 
as reported in section 2.2. More recently, two ex vivo studies 
have been published about the pharmacokinetics profile of new 
CsA DDS in academic research development. Results obtained 
to date demonstrate a slight increase of CsA in ex vivo corneas 
using these DDS compared to CE-CsA, but otherwise are 
largely comparable.72,73 However, significant investigations 
regarding the in vivo pharmacokinetics and pharmacody-
namics of these new formulations still need to be performed, 
to evaluate the real benefit of these technologies for the treat-
ment of ocular surface diseases.

Table 3. Overview of the pharmacokinetics studies realized on the CE-CsA.

Study 
types

Cell/Tissue/ 
Animal 
Model Assessments Main results Ref.

Ex vivo  
studies

Porcine 
eyeballs

CsA quantification in the corneas 1 h after eye 
drops instillation (HPLC analysis in 
homogenized tissues).

Increased CsA concentration in the corneas treated with CE-CsA 
compared to AE- CsA. Decreased CsA concentration in the corneas 
treated with semifluorinated alkane-based eye drops compared to 
CE-CsA.

72

Porcine 
eyeballs

CsA quantification in the corneas after eye 
drops instillation and washing (HPLC analysis 
in homogenized tissues).

No significant difference in the CsA concentrations for the corneas 
treated with CE-CsA compared to Poloxamer 407/TPGS mixed 
micelles.

73

In vivo 
studies

Pigmented 
rabbits

Quantification of CsA in conjunctiva and cornea 
at different time points.

AUC(0.5–24h) 5.4 and 3.9 times higher for CE-CsA compared to CsA 
hospital-compounded preparations, in the cornea and the 
conjunctiva, respectively.

Data on file

Pigmented 
rabbits

Quantification of CsA concentrations in ocular 
tissues at different time points.

Higher Cmax and AUC to the cornea and conjunctiva for CE-CsA 0.1% 
and 0.05% compared to AE-CsA.

74

Abbreviations: AE = Anionic Emulsion; AUC = Area Under the Curve; CE = Cationic Emulsion; Cmax = Maximal Concentration; HPCL = High Performance Liquid 
Chromatography.
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Ocular toxicity and tolerance

Exploratory and regulatory (according to the Good Laboratory 
Practices) studies of ocular toxicity and tolerance have been 
performed to assess the safety of CE-CsA (Table 4).

The first study focused on the assessment of the safety of 
CE without an active molecule. For that, repeated instillations 
(15 times at 5-min interval) of 0.002% CKC versus 0.02% 
BAK in solution (CKC-sol, BAK-sol) or as a CE were tested 
on rabbits.75 Results showed that BAK-sol induced the 

Figure 3. Main outcomes regarding pharmacokinetics of CE-CsA. (a) Changes in CsA concentration with time after a single unilateral topical administration in the 
cornea of pigmented rabbits.74 (Adapted from reference 74). (b) Pharmacokinetics profile of CsA delivery after a single unilateral topical administration of CE-CsA or CsA 
hospital-compounded preparations (CsA-HP) in the cornea and conjunctiva of pigmented rabbits.

Table 4. Overview of the ocular toxicity and tolerance studies realized on the CE-CsA.

Study 
types

Cell/Tissue/ 
Animal 
Model Assessments Main results Ref.

In vivo  
studies

Mice Non-radioactive local nymph node assay (LLNA) using 
5-BrdU incorporation.

CE-CsA did not induce delayed contact hypersensitivity. Data 
on  
file

Mice Phototoxicity and photosensitizing (photoallergic) skin 
tests.

No phototoxic or photosensitizing (photoallergic) potential observed 
for CE-CsA or CE.

Data 
on 
file

New 
Zealand 
albino 
rabbits

28-day tolerance study. Eye irritation test (Draize test). 
Histological analysis

CE-CsA was found safe and well tolerated following 4 and 6 daily 
instillations over 28 days.

Data 
on 
file

Rabbits Clinical observation (IVCM), eye irritation test (Draize test) Lowest toxicity similar to PBS for CE-CsA group. 56,57

New 
Zealand 
albino 
rabbits

Conjunctiva changes using slit-lamp examination, flow 
cytometry and impression cytology. Corneal changes 
using IVCM. Histological analysis

After 15 instillations at 5 min intervals, highest toxicity induced by 
BAK-solution. Moderate toxicity for BAK-CE and CKC-solution. Low 
toxicity similar to PBS for CKC-CE. Lower CD45+ cell infiltration and 
apoptotic cells for BAK-CE and CKC-CE compared to BAK- or CKC- 
solutions.

75

Abbreviations: AE = Anionic Emulsion; BrdU = Bromodeoxycytidine; CE = Cationic Emulsion; IVCM = In Vivo Confocal Microscopy.
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highest corneal epithelial damage, inflammatory infiltration 
as well as clinical signs of eye inflammation (hyperemia, 
chemosis and purulent secretions) (Figure 4a). In contrast, 
CKC-CE exhibited the lowest toxicity, similar to the control 
group (PBS). Both BAK-CE and CKC-sol were found to 
induce moderate toxicity.75 Contrary to the 0.02% BAK 
usually used in many marketed eye drops as preservative, 
a concentration of CKC of 0.002% in CKC-CE is well- 
tolerated on the eye without inducing any side effects. 
The second study assessed the toxicity of three formulations 
of CsA including CE-CsA, AE-CsA and CsA-oil using 

a Draize test (eye irritation test).56 CE-CsA showed a lower 
Draize test score, indicating less ocular irritation, 4 hours 
after instillation compared to both CE-CsA and CsA-oil 
(Figure 4b). Following these two successful exploratory stu-
dies, 28-day (GLP) local tolerance studies (Table 4) with 
0.002% and 0.005% CKC in CKC-CEs were performed before 
pivotal phase III studies were initiated, as recommended for 
new drug approval. Results of these GLP regulatory studies 
showed that CE-CsA containing 0.005% CKC was safe and 
well-tolerated following 4 to 6 daily installations over 28 days. 
Additionally, no delayed contact hypersensitivity was found 

Figure 4. Main outcomes regarding ocular toxicity and tolerance of CE-CsA. (a) Microphotographs of typical clinical features of rabbit eyes after 15 instillations at 
5-min interval of 0.002% CKC or 0.02% BAK containing in a solution (sol) or a CE.75 (b) Draize test score calculated at different time points (75 min, 4h and 1 day) after 15 
instillations of CE-CsA, AE-CsA, Oil-CsA or 0.02% BAK. * p < .02 compared to PBS and p < .004 compared to 0.02% BAK. # p < .01 compared to AE-CsA, Oil-CsA, and 0.02% 
BAK. ♦ p < .0001 compared to PBS. $ p = .0003 compared to PBS, CE-CsA, AE-CsA, and Oil-CsA groups.56 (Adapted from reference 56).

Table 5. Similarities between preclinical outcomes and results of clinical studies.

Preclinical outcomes Results of clinical studies

Ocular 
inflammation

Reduced expression and secretion of pro- 
inflammatory factors55,60

Lower expression of a cell surface inflammatory marker (HLA-DR) for the group treated with 
CE-CsA and CE.70,71,76

Tear film 
volume

Increased tear fluid volume 
(PRT: Phenol Red Thread Test)59

72.4% and 58.2% improvement in Schirmer tear test observed with CE-CsA and CE 
treatment, respectively.76

Tear fluid 
stability

Increased tear fluid elasticity and thickness49 40.5% and 22.2% improvement in TBUT observed with CE-CsA and CE, respectively.76

Corneal damage Decreased CFS Change over time (vs baseline) and CFS score reduction with both CE-CsA and CE. Ref 74 
Greater improvement with CE-CsA over vehicle in CFS change after 6-months 
treatment.71,76,77

CE = Cationic Emulsion; CFS = Corneal Fluorescein Score; HLA-DR = Human leukocyte antigen DR; TBUT = tear breakup time.
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using a local lymph node assay on mice (data on file). Finally, 
CE-CsA or CE did not show any phototoxic or photosensitiz-
ing (photoallergic) potential (data on file).

These studies indicate that the excipients (i.e., its concen-
tration) of the vehicle and its formulation (solution vs emul-
sion) used to deliver CsA to the ocular surface can significantly 
impact the ocular tolerance of the formulation. The use of 
emulsion containing 0.002% or 0.005% CKC induced the low-
est toxicity compared to the other CsA formulations tested, 
showing that CE using low CKC concentrations is well- 
tolerated by the eye. These findings can also be explained by 
the high anti-inflammatory potency of CE described in sec-
tion 3.1.

Translation of preclinical outcomes to patients with 
DED

The previous sections described the main outcomes observed 
through the preclinical development of a CE-CsA. The promis-
ing results obtained during this phase allowed testing of CE- 
CsA on human patients via clinical trials (SANSIKA and 
SICCANOVE for DED and VEKTIS for VKC). Very interest-
ingly, the clinical studies showed clinical outcomes that can be 
explained with the preclinical findings in term of therapeutic 
performance on patients with DED signs and symptoms 
(Table 5).

First, a significant decrease of HLA-DR, a cell surface 
inflammatory marker, was observed on patients with DED 
after treatment with CE-CsA or CE alone,70,71,76 further con-
firming the anti-inflammatory potency observed during the 
preclinical testing.55,60 Interestingly, HLA-DR was shown to 
be well correlated with some inflammatory markers that are 
observed in both dry eye patients and dry eye mice model using 
transcriptomics and gene profiling.60,78

Tear breakup time (TBUT) was found to be higher for 
patients after treatment with both CE-CsA or CE.76 This result 
corroborates the increased tear fluid elasticity and thickness 
observed after the same treatment in animal models.49 In 
addition, the tear fluid volume was found to increase using CE- 
CsA and CE alone, in both preclinical and clinical studies76 

with phenol red thread (PRT) and Schirmer tests respectively. 
Finally, a decrease in corneal epithelial damage, similar to that 
observed during preclinical development, has also been well 
observed in clinical studies via a significant improvement in 
CFS after treatment with CE-CsA and CE.71,76

Conclusion

The multiple benefits of using CsA to treat ocular surface 
diseases, such as DED, are widely accepted, and position CsA 
formulations among the armamentarium of anti-inflammatory 
drugs used for DED management. Many alternative CsA for-
mulations are currently used in clinical settings, the most 
common being solutions, AE, CE and hospital-compounded 
preparations. In this review, we discussed the mechanisms of 
action and preclinical outcomes of a sophisticated CE-CsA. 
The use of CE as vehicle provides unique properties to the 
CsA formulation: (1) reduced secretion of pro-inflammatory 
factors promoted by the components composing the oil-in- 

water emulsion, (2) stabilization and restoration of tear fluid 
surface and (3) high precorneal residence time of CsA, due to 
the innovative and non-conventional use of CKC. These com-
bined modes of action result in a improved reduction of the 
signs and symptoms of DED compared to the other CsA 
formulations. Very interestingly, CE alone was found to mod-
ulate the expression of many pro-inflammatory genes, and 
more studies should be performed in gene expression profile 
to better understand the underlying mechanisms of action of 
CE on the ocular surface. Additionally, although the use of 
quaternary ammonium in eye drops is contested due to well- 
known BAK ocular toxicity, no signs of cytotoxicity, ocular 
toxicity nor delay of wound healing was observed using CE- 
CsA containing CKC. The safety of CKC can likely be 
explained by its chemical properties (high hydrophobicity 
and polarity), allowing for a better incorporation of CKC at 
the surface of the oil nanodroplets and thus resulting in a very 
low concentration of free CKC molecules in the aqueous phase 
from where they can contribute to ocular toxicity.

The good ocular tolerance and efficiency observed during 
the preclinical and clinical testing of CE-CsA lead to the suc-
cessful approval of this technology by Santen for the treatment 
of DED in Europe, Asia and Australia, and for the treatment of 
VKC in Europe and Canada. The higher performance of CE- 
CsA over AE-CsA, led to a decreased posology requirement 
(QD vs BID), while still significantly reducing the signs and 
symptoms of DED in patients. While two instillations of AE- 
CsA are required per day, only one instillation of CE-CsA is 
needed. This lower dose regimen may result in better patient 
compliance and treatment experience. With regards to hospital 
preparations, in addition to the higher in vivo efficacy, CE-CsA 
presents other major advantages including well-defined pro-
duct information, a standardized manufacturing process and 
quality controls which include adherence to strict regulations 
and pharmacovigilance.

CE appears to be an optimal vehicle by which hydrophobic 
drugs, such as CsA, can be delivered. This delivery system is 
additionally able to protect the ocular surface, which is often 
altered or damaged during both acute and chronic diseases. 
Therefore, we believe that CE could represent a promising drug 
delivery solution for many other types of ocular surface 
diseases.
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