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are rare crustaceans found exclusively in temporary, small freshwater bodies, which
stay dry most of the year. Only 42 laevicaudatan species have been described so far,
90% of which belong to the genus Lynceus. The first multilocus phylogeny of the
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University of Valencia, Paterna, Spain. Europe, Africa, Asia, Australia and New Caledonia and using nine molecular mark-
Email: Ferran.Palero@uv.es ers (two mitochondrial and seven nuclear genes, including newly designed primers).
Genetic data suggest populations of Lynceus brachyurus from Europe and North
America to represent a complex of cryptic species and sister group to all other laevi-
caudatans. Species from Thailand, Japan, Mongolia and China formed a distinct East
Asian clade. A Southern Hemisphere (Gondwanaland) clade, composed of Chilean,
Australian and New Caledonian taxa, was found weakly clustering with an African
Lynceus species. Relaxed molecular clock analyses indicate a Pangean origin of
Laevicaudata, with further diversification due to vicariance and the continued split-
ting of continents. Rostrum characters, which are particularly relevant for laevicau-
datan systematics, were re-evaluated and provide morphological evidence supporting

molecular clades. Our worldwide overview of Laevicaudata evolution highlights that
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1 | INTRODUCTION

Smooth clam shrimps (Branchiopoda: Laevicaudata) are
among the most rare, bizarre-looking and understudied
Crustacea (Martin & Belk, 1988; Rogers & Olesen, 2016).
Several unique structures (=synapomorphies) distinguish
these globular and small (1.5-7 mm) freshwater crustaceans
from other clam shrimps (Spinicaudata and Cyclestherida),
such as their disproportionate head, mandibles with trans-
verse ridges, multilobed flaps (laminae abdominalis)
placed dorsolaterally for holding eggs, dorsal hinge be-
tween the carapace valves, and peculiar ‘UFO-shaped’ lar-
vae with the first antennae modified as large horns (Fryer
& Boxshall, 2009; Olesen, 2005; Richter, 2004; Rogers &
Olesen, 2016) (see Figure 1). Smooth clam shrimps are es-
sentially benthic animals, often making slow-swimming ex-
cursions into the water column using their antennae (Fryer
& Boxshall, 2009; Patton, 2014; Sigvardt & Olesen, 2014).
Laevicaudatans can be found in ephemeral freshwater hab-
itats like vernal pools, seasonal wetlands, woodland pools,
river flood pools, rock pools, clay pans, playa lakes, salt-
pans, permafrost wetlands, tundra pools and alpine pools
that remain dry most of the time and appear either sea-
sonally or episodically throughout the year (Brendonck
et al., 2008; Rogers, 2009, 2014). The instability of these
habitats makes laevicaudatans challenging to sample and
successful collecting is more a matter of timing than tech-
nique (Martin et al., 2016).

All Laevicaudata species (n = 42) currently recognized
(Rogers & Olesen, 2016; Sigvardt et al., 2019) are grouped
into a single family (Lynceidae Stebbing, 1902) and three gen-
era, namely Lynceus Miiller, 1776, Lynceiopsis Daday, 1912,
and Paralimnetis Gurney, 1931 (Rogers & Olesen, 2016).
Lynceus is the largest genus by far, comprising about 90%
(n = 37) of the total species diversity, and is present on every
continent except Antarctica. Lynceiopsis and Paralimnetis
include just two species from Africa and three from the
Americas, respectively (Martin & Belk, 1988). The first lae-
vicaudatan described (i.e. Lynceus brachyurus O.F. Miiller,
1776), was collected from a now destroyed pool north of
Copenhagen, Denmark (Rogers & Olesen, 2016). Species
from other continents have been gradually added since then,
with Daday's monograph (1927) being the first major contri-
bution to Laevicaudata taxonomy. Significant studies include
the taxonomic revisions from the Americas by Martin and

recent sampling from Africa and South America is scarce, and that further DNA ef-

forts should focus on Paralimnetis and Lynceiopsis species.

Gondwana, historical biogeography, Laevicaudata, molecular clock, Southern Hemisphere

Belk (1988) and Australia by Timms (2013). Minor revisions
and species descriptions from Argentina, Canada, Chile, New
Caledonia, Thailand, South and North China, and Mongolia
have recently been published (Olesen et al., 2016; Pessacq
et al., 2011; Rogers et al., 2015, 2016; Shu et al., 2019;
Sigvardt et al., 2019, 2020) and most of those are summa-
rized in the Laevicaudata catalogue by Rogers and Olesen
(2016). African Laevicaudata are in need of revision, with
descriptions mostly scattered in a number of older publica-
tions (Barnard, 1924; Barnard, 1929; Daday, 1927; Gauthier,
1936; Martin & Belk, 1988; Thiele, 1907; Thiery, 1986).
Laevicaudatans are poorly represented in the fossil record,
typically recognized by the presence of a roundish carapace
devoid of growth lines and possessing the impression of a
maxillary gland; the oldest putative laevicaudatan being from
the Permian with possible soft part preservation from the
Jurassic (Hegna & Astrop, 2020).

Laevicaudatan species can be distinguished based on
the form of the head/rostrum, male claspers, female lam-
ina abdominalis etc. (e.g., Martin & Belk, 1988; Rogers &
Olesen, 2016; Timms, 2013), but virtually no attempts have
been made to address evolutionary relationships within
Laevicaudata using morphological or molecular data.
Previous molecular studies included few species and/or genes
(e.g. deWard et al., 2006; Stenderup et al., 2006; Schwentner
et al., 2018). The most comprehensive molecular study so far
only presents a preliminary laevicaudatan phylogeny based
on a single gene (Sigvardt et al., 2019). This is not surprising
considering that fresh material is very difficult to obtain due
to the ephemeral nature and threatened status of their habitats
(Martin et al., 2016). Phylogenetic and biogeographic distri-
bution patterns of Spinicaudata and other branchiopods have
been under debate during the last decades (e.g. Olesen, 2009;
Richter et al., 2007; Schwentner et al., 2009, 2020; Xu
et al., 2011), but laevicaudatan relationships remain practi-
cally unexplored. Most smooth clam shrimp species and their
largest morphological diversity are found in the Southern
Hemisphere (n = 27) (e.g. Barnard, 1929; Daday, 1927,
Timms, 2013), so these continents are crucial to any study
on evolution and biodiversity of Laevicaudata. The origin
of Australian laevicaudatan clam shrimps or how they relate
to remote populations from New Caledonia are not known.
Similarly, the unusually large distribution of some taxa like
Lynceus brachyurus (with a Holarctic distribution) is unex-
pected and may suggest cryptic speciation.
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FIGURE 1

Laevicaudata (Crustacea: Branchiopoda) diversity and Northern European habitat. All illustrated species have been included in

the study.—a. Lynceus brachyurus, mating couple from locality in ‘b’.—b. Lynceus brachyurus locality in the Deer Garden north of Copenhagen

(Denmark) less than 10 km from the now destroyed type locality for L. brachyurus (type species for Lynceus) (see Rogers & Olesen, 2015).—c.

L. biformis from Yangminshan National Park, Taipei (Taiwan) (NHMD-615844).—d. L. magdaleanae from Yanneymooning Rock pit gnamma,
Mukinbuden, Western Australia (Australia) (NHMD-615928).—e. L. planifascius from Khon Kaen (Thailand) (NHMD-615849, topotype).—f.
L. huentelauquensis from pool in road bed, Huentelauquén Plains, Coquimbo Region (Chile) (NHMD-265550, paratype).—g. L. insularis from

doline (ultramafic sink hole), Le Mont-Dore, South Province (New Caledonia) (NHMD-82632, paratype).—h. L. grossipedia (paratype) from Tuv

Province, Uguu nuur (Mongolia) (NHMD-616086)

To address these questions, a multilocus molecular phy-
logenetic study is carried out here, based on two mitochon-
drial and seven nuclear markers and a worldwide collection
of Lynceus species. Significant efforts were made to include
specimens from Europe, Africa, Asia, Australia, and North
and South America. This allowed us both to analyse the mo-
lecular evolution of Laevicaudata and its connection with ob-
served biogeographic patterns and to assess the status of L.
brachyurus. Laevicaudata systematics is discussed consider-
ing the new phylogenetic results and selected morphological
data (rostrum morphology).

2 | MATERIAL AND METHODS
2.1 | Molecular marker selection and
primer design

A small set of four universal primers pairs was initially
tested with positive results, including primers for both mi-
tochondrial (COXI and 16S) and nuclear (18S and H3)

markers (Table S1). To design a set of primers amplifying
other nuclear genes, next-generation (NGS) sequencing was
carried out on several Lynceus species and Cyclestheria
hislopi (Baird, 1859) (Cyclestherida). Prior to library build-
ing, small aliquots of each extract were analysed with Qubit
and on Bioanalyzer for fragment size estimation and con-
centration. TruSeq Nano kit Illumina libraries were paired-
end sequenced (2 X 150 bp) using the Illumina HiSeq3000
chemistry. Genomic library preparation and Illumina HiSeq
sequencing were carried out at GenoToul (INRA, France)
and the Modern Lab, Natural History Museum of Denmark
(University of Copenhagen, Denmark). After a first round
of revision of this manuscript, sequences from a South
African species (Lynceus triangularis) were included. DNA
library preps for this sample were performed with a Nextera
XT kit (Illumina) and sequenced on an Illumina Miseq at
Plateforme iGenSeq, Institut du Cerveau—ICM (Hopital
Pitié Salpétriere, France).

Paired-end reads were subjected to quality inspec-
tion using FastQC software (Andrews, 2010), cleaned
using Trimmomatic 0.36 (Bolger et al., 2014) and used
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for de novo genome assembly with Velvet (Zerbino &
Birney, 2008). The OrthoDB comprehensive catalogue of
orthologs (i.e. descendants from a single gene) was used
to annotate conserved genes within genome assemblies.
The following five genes were selected to design a new
set of primers with PRIMER3 (http://bioinfo.ut.ee/prime
r3-0.4.0/) using default parameters: pre-mRNA-splicing
factor 18 (EOG090X03WO), Golgi phosphoprotein three
homolog sauron (EOG090X0A2Q), Queuosine salvage
protein (EOG090X0A16), NADH-cytochrome b5 reduc-
tase (EOG090X0BKI), and BTB/POZ domain-containing
adapter for CUL3-mediated RhoA degradation protein 3
(EOG090X090D) (Table S1). Loci were selected to repre-
sent a diverse range of functional categories, from replica-
tion, recombination and repair to coenzyme transport and
metabolism (Kriventseva et al., 2019).

2.2 | DNA extraction and PCR analyses
Although DNA extraction was carried out on many laevicau-
datan samples (see Table S2), difficulties with old museum
material were a limiting factor for molecular analyses and
attempts on several taxa were failed. A total of 24 samples,
representing 15 Lynceus species obtained from multiple col-
lections and sampling trips worldwide, were finally included
in the analyses (together with four outgroups) (Table 1).
The preferred DNA extraction method was DNeasy Kit
(QIAGEN) because it always gave positive results on fresh/
ethanol-fixed material, but alternative methods were also
tested for recalcitrant samples, involving digestion with: (A)
Proteinase K following Gilbert et al. (2007) (B) KOH, and
(C) AE buffer +Proteinase K following Palero et al. (2010).
The amount of tissue used for DNA extraction varied from
2-3 legs (rare specimens) to whole specimens (1-7 mm, car-
apace valves often removed). Prior to library building or PCR
amplification, small aliquots of each extract were analysed
for DNA content, either by running a 1% agarose gel or by
using Qubit and Bioanalyzer. Extracted samples showing no
or little DNA (and excluded from the analyses) are shown
in the Supplemental Material (Table S2). PCR amplification
was carried out using 2 ul DNA in a total reaction volume of
15 pl, consisting of 4.3 ul milliQ water, 7,5 ul of Tmix, and
0,6 ul of each primer (forward and reverse) using either uni-
versal or newly designed primers (Table S1). The PCR ther-
mal profile used was: 95°C for 15 min for initial denaturation,
followed by 35-40 cycles of denaturation at 95°C for 30s,
hybridization at 50°C or 54°C for 30s, elongation at 72°C for
30s, and a final extension at 72°C for 15 min. Amplified PCR
products were sent out to MACROGEN (Madrid, Spain) for
Sanger sequencing. Obtained gene sequences have been de-
posited in GenBank under accession numbers as indicated in
Table 1.

2.3 | Phylogenetic analyses

Each set of gene sequences was aligned separately using
MAFFT and alignments for all genes were then concatenated.
To improve reliability, conserved (ungapped) blocks of se-
quence were extracted from each alignment by using Gblocks
server with default settings (Castresana, 2000). The best-fit
substitution model was tested for each gene individually
using MrAIC 1.4.6 (Nylander, 2004) and selected according
to the Akaike information criterion with a correction for small
sample sizes (AICc). The maximum-likelihood (ML) phylo-
genetic tree construction method was applied as implemented
in Phyml v.3.0 (Guindon et al., 2010). Aligned and concate-
nated sequences were also used to estimate phylogenetic rela-
tionships with the Bayesian inference approach implemented
in BEAST v.2.4.7 (Bouckaert et al., 2014). We used each se-
lected model of DNA sequence evolution with an estimated
proportion of invariable sites and a Gamma distribution of
rates across five classes as suggested by MrAIC (see Results).
We estimated a rooted phylogeny with BEAST, using a ran-
dom starting tree and applying an uncorrelated lognormal re-
laxed clock and a Yule model as tree prior. Four independent
Markov chains were run in BEAST for 100 million genera-
tions, sampling every 10,000th generation. We summarized
the chains using Tracer v.1.6 (Rambaut & Drummond, 2013)
and visually inspected the trace plots (all showed good mixing
and convergence). The effective sample sizes (ESS) for the
runs were above 200 for most parameters reported in Tracer.
We converted the posterior tree distributions into a maximum
clade credibility (MCC) tree using TreeAnnotator v.1.4.8
(from the BEAST package). The tree was graphically edited
to include species morphological data and geographical dis-
tribution using CorelDRAW (Corel Corporation) (Figure 2).

2.4 | Divergence time estimation

A relaxed-clock analysis was used to infer divergence times
using information from the fossil record to calibrate the mo-
lecular phylogeny. It has been shown that the ‘uncorrelated
relaxed-clock’ models, in which the mutation rates in each
branch can vary within particular constraints, perform bet-
ter than a strict molecular clock or the correlated models
(Drummond et al., 2006). We used the Bayesian relaxed-
clock uncorrelated lognormal approach as implemented in
BEAST v1.4.7 (Drummond & Rambaut, 2007) with the cor-
responding model of sequence evolution previously inferred
for each gene partition and a Yule process as tree prior. It is
well established that Branchiopoda is monophyletic based on
both morphological and molecular data (Lozano-Fernandez
et al.,, 2019; Olesen, 2007; Schwentner et al., 2018). We
used Cyclestherioides and Leaia fossils for calibrating the
Cladoceromorpha (Cladocera + Cyclestherida) and the
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FIGURE 2 Maximum Likelihood phylogeny of laevicaudatan species. Bootstrap support values above 70% (before slash) and Bayesian
Posterior Probabilities above 95% (after slash) are shown for each node. Geographical occurrence as well as information (SEM images) on male

and female rostrum morphology are shown (see L. baylyi for applied terminology). Coloured arrows point at clade supporting rostral morphology

(see Discussion)

Onychocaudata (=non-Laevicaudata diplostracans) clades, fol-
lowing Raymond (1946) and Wolfe et al. (2016), respectively.
Lognormal prior distributions (mean in real time + stand-
ard deviation) were used to time-calibrate the crown-group
Cladoceromorpha (250 + 50 Mya) and Onychocaudata
(390 + 50 Mya). Four independent Markov chains were run in
BEAST for 100 million generations, sampling every 10,000th
generation. The lower and upper bounds of the 95% highest
posterior density (HPD) interval were obtained for every node

using the software TreeAnnotator and FigTree (Figure 3).

2.5 | Morphological analyses

For most species included in the molecular analyses, key
characters of male and female rostrum were examined with

scanning electron microscopy (SEM). Specimens were
dissected to expose relevant structures (left antennae often
dissected off). Samples were dehydrated in a graded etha-
nol series, critical point dried, mounted on stubs, coated
with metal and examined in a JEOL JSM-6335-F (FE).
SEM images of Lynceus baylyi are presented at larger size
with applied terms of rostrum morphology (Figure 2).

3 | RESULTS

3.1 | DNA extraction and PCR analyses

A significant amount of museum material (e.g. from Africa,
India and America) was tested to cover underrepresented
regions as well as taxa for which fresh material could not
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FIGURE 3 Divergence time estimates based on relaxed molecular clock dating. The nodes corresponding to the origin of the Onychocaudata

(=non-Laevicaudata diplostracans) and the Cladoceromorpha (Cladocera + Cyclestherida) were time-calibrated following Raymond (1946) and

Wolfe et al. (2016)

be obtained (especially Paralimnetis and Lynceiopsis).
Several attempts were carried out to sequence ancient mate-
rial both using NGS and Sanger sequencing without success
and, to avoid future exploitation of unique museum speci-
mens, details on tested vouchers are included in Table S2.
Museum material showed very low DNA content after ex-
traction (as checked with agarose gel and/or Qubit), despite
the use of different protocols (see Materials and Methods).
Samples being more than 100 years old were processed in
the ancient DNA lab in Copenhagen but gave no positive
results (see Table S2). As could be expected, the highest
success rate was obtained with fresh material (collected
after 2001) stored in high concentration ethanol (>96%)
and cold (fridge or freezer). Proteinase K following Gilbert
et al. (2007) and the DNeasy kit (QIAGEN) had the high-
est success among the different extraction methods (see
Materials and Methods).

3.2 | Phylogenetic analyses

Final length for each gene alignment after running Gblocks
was: 360 bp (89% of 401 bp) for 16S, 1726 bp (75% of 2287 bp)
for 18S, 656 bp (87% of 750 bp) for EOG090X03WO,
625 bp (64% of 973 bp) for EOG090X090D, 532 bp (23% of
2217 bp) for EOG090X0A16, 561 bp (53% of 1046 bp) for
EOG090X0A2Q, 669 bp (70% of 945 bp) for EOG090X0BKI,
1532 bp (97% of 1565 bp) for COXI, 263 bp (100% of

263 bp) for H3. Therefore, the concatenated alignment in-
cluding all 9 molecular markers comprised a total of 6,924 bp
(66% of 10,447 bp). The strong reduction in alignment length
observed for EOGO90X0A16 was due to the presence of
a unique and long (~1 kB) intron sequence in the Triops
cancriformis assembly from Genbank. Model selection re-
sults using AICc were TVM + I + G (InL = —2680.33),
TrN + I (InL = —3902.57), GTR + I + G (InL = —4937.32),
GTR + G (InL = -5746.41), GTR + G (InL = —4932.63),
TVM + I + G (InL = -3681.01), TIM + I + G
(InL = —4963.90), TIM + I + G (InL = —10680.76) and
HKY + G (InL = —1463.80), respectively.

Every Lynceus species for which more than one popula-
tion was included in the analyses (i.e. Lynceus brachyurus,
L. brevifrons and L. macleayanus) formed a well-supported
monophyletic clade in both maximum likelihood and
Bayesian analyses (Figure 2). A clade including three L.
brachyurus populations from Europe and North America
(USA) was strongly supported and sister to all the remain-
ing Laevicaudata samples. Within this L. brachyurus clade,
the population from Ohio (Eastern USA) seemed to be
closer to the European (Denmark) than to the Californian
(Western USA) population, but bootstrap support was only
marginally significant (71%) and the clade was not recovered
using Bayesian inference. Genetic divergence levels among
different L. brachyurus populations suggest that they might
in fact represent a complex of cryptic species. Sequences
of L. brachyurus from all three localities revealed high
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divergences when using the conservative 16S rDNA gene
(K2P values ranging between 0.059 and 0.077); and the
COXI divergence observed between samples from Denmark
and California (K2P = 0.181 + 0.019) is well above the
inter-species genetic threshold observed in clam shrimps and
other crustaceans. The remaining Lynceus were divided in a
Southern Hemisphere clade (including representatives from
Africa, Chile, Australia, and New Caledonia) and a Northern
Hemisphere clade that comprised a North American subclade
(L. brevifrons and L. gracilicornis) with low bootstrap sup-
port and a well-supported Asian clade that included species
from Japan (L. biformis), Thailand (L. planifascius), and a
recently described species from Mongolia/North China (L.
grossipedia) (Figure 2). Within the Asian clade, the Japanese
lineage (L. biformis) seems to have diverged first, whereas
the material from Thailand (L. planifascius) grouped to-
gether with the Mongolian/Chinese species. In the Southern
Hemisphere clade, L. triangularis (Africa) diverged first but
with low bootstrap support, L. huentelauquensis from South
America (Chile) grouped with a clade including L. insularis
(New Caledonia) and all the Australian species. Further well-
supported groups were found within the Australian clade,
with L. tatei splitting early from all other Australian taxa
(bootstrap 82%). Lynceus macleayanus appeared as sister to
a putative new Lynceus species from North Queensland (see
Discussion), while the well-supported L. magdaleanae/L.
baylyi clade (bootstrap 100%) grouped with L. susanneae,
but with low bootstrap support (Figure 2).

3.2.1 | Divergence time estimation

The results obtained from the relaxed molecular clock analy-
sis (Figure 3) support an early divergence within Lynceus of
the lineage leading to Northern Hemisphere L. brachyurus,
which separated from the rest as early as ~237 Mya (95%
HPD = 164-321 Mya) (node 1). The split between the sec-
ond Northern clade (North American and East Asian spe-
cies) (node 4) and the Southern Hemisphere clade (node 8)
would have occurred around 184 Mya (95% HPD = 126-
254 Mya) (node 3). Within this Northern Hemisphere clade,
with a most-recent common ancestor (MRCA) placed about
140 Mya (95% HPD =89-200 Mya) (node 4), the L. biformis
lineage would have split from other Asian taxa about 112 Mya
(95% HPD = 71-169 Mya) (node 5), while the Thailand and
the Mongolia/China species would have diverged about
65 Mya (95% HPD = 31-107 Mya) (node 6). The earliest
divergence within the Southern Hemisphere clade, giving
rise to the South African L. triangularis is dated to 166 Mya
(95% HPD = 108-226 Mya) (node 8), while the split of
the South American L. huentelauquensis is dated 135 Mya
(95% HPD = 88-191 Mya) (node 9). The Australia and New
Caledonia species split 81 Mya (95% HPD = 51-121 Mya)

(node 10), and the MRCA of all the Australian species in-
cluded in the analyses would be placed around 62 Mya (95%
HPD = 38-91 Mya) (node 11).

3.3 | Rostral morphology of included species
The rostrum morphology of most species/populations in-
cluded in the molecular analyses was studied (not all depicted
in this work) and briefly described below (Figure 2). Most
studied specimens had their left second antenna dissected off
for detailed studies.

AUSTRALIA. Lynceus baylyi (Figure 2). Male: rostrum
apex truncate; rostral carina bifurcating distally towards dis-
tolateral corners, apically forming a broad, subtriangular
field covered with dense setation. Female: rostrum broadly
rounded with distolateral notches; margin between notches
crenulate; fine setation concentrated along margin. Male and
female: frontal setal fields characteristically ovate, broad-
est medially tapering laterally extending into lateral sutures
which are directed obliquely towards rostral apex. Lynceus
tatei (Figure 2). Rostrum generally similar to Lynceus bay-
lyi but elongate and strongly constricted at point of second
antennal insertion; carina very prominent; lateral sutures ori-
ented vertically. Female: rostrum rounded but more quadratic
of shape; margin between distolateral notches subcrenulate.
Morphology of other Australian species can be summarized
as follows: Rostrum in Lynceus magdaleanae in general very
similar to Lynceus baylyi but carina often broader (variable);
Rostrum in Lynceus macleayanus generally similar to Lynceus
baylyi except female distal part more narrowly rounded and
margin between distolateral notches subcrenulate; Rostrum
in Lynceus susanneae generally similar to Lynceus baylyi but
rostral carina only weakly developed (females) or even absent
(males), in female distal margin subcrenulate with distolateral
notches lacking; Rostrum in Lynceus sp. (North Queensland)
very similar to L. magdaleanae but differs in female rostrum
being less broadly rounded, with margin strongly crenulate.

NEW CALEDONIA. Lynceus insularis (Figure 2).
Rostrum generally similar to Lynceus baylyi but in both male
and female markedly constricted in the region of second an-
tennal insertion, making apex appear very broad; setal fields
smaller and less ovate.

AFRICA. Lynceus triangularis (Figure 2). Male: rostral
apex strongly truncate and abbreviated; carina short extend-
ing from frontal pore and bifurcating approx. halfway to-
wards distal margin, forming deep invaginated subtriangular
setose field apically; distolateral corners prominent. Female:
carina bifurcating forming a broad field similar to the male
but distal margin broadly rounded; distolateral notches and
crenulation/denticulation absent. Male and female: frontal
setal fields subcircular to slightly ovate laterally; lateral su-
tures obliquely oriented.
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CHILE. Lynceus huentelauquensis (Figure 2). Rostrum
similar to Lynceus baylyi but male with more ‘triangular’ ros-
tral shape and rostral fornices extending obliquely in straight
line to distolateral corners (in anterior view); carina partly
weakly developed and distal margin subcrenulate. Female
distal surface without setation. Male and female frontal setal
fields markedly small with straight upper margins; lateral su-
tures placed below setal fields (not in contact), horizontally
oriented.

ASIA. Lynceus biformis (Japan) (Figure 2). Male: rostral
apex truncate; rostral carina bifurcating towards distolateral
corners forming relatively narrow subtriangular field distally;
bifurcating extensions of carina and upper 2/3 of subtrian-
gular field densely setose. Female: rostral apex rounded and
greatly denticulate, distolateral notches absent. Male and fe-
male: frontal setal fields subcircular to slightly ovate; lateral
sutures extending vertically from lateral part of setal fields
(in contact). Lynceus planifascius (Thailand) (Figure 2).
Male: rostrum generally like L. biformis but subtriangu-
lar field narrower, setation restricted to rim on bifurcating
extensions of carina. Female: rostrum narrowly rounded,
distally with folding margins making it appear subtriangu-
lar (SEM artefact?), narrow distal part subdenticulate. Male
and female: frontal setal fields subcircular; lateral sutures
extending obliquely below setal fields (not in contact); ros-
trum in lateral view with characteristically flattened anterior
margin (Rogers et al., 2016). Lynceus grossipedia (Mongolia/
China) (Figure 2). Description based on Mongolian material.
Male: rostrum terminating abruptly distally (no subtriangular
field), with setal rim along margin. Female: rostrum broadly
rounded, distal margin denticulate. Male and female: rostrum
markedly broad (anterior view), with indistinct marginal
constriction where second antenna insert; double carina bi-
furcating between frontal setal fields, running in parallel 2/3
of rostrum length, diverging in distal 1/3 of rostrum; frontal
setal fields subcircular; lateral sutures extending almost hori-
zontally below setal fields (not in contact).

EUROPE. Lynceus brachyurus (Denmark) (Figure 2).
Male: rostrum truncate with carina non-bifurcating along
entire midline; distal margin with setal row. Female: apex
with three prominent protrusions, two sharp distolateral
notches and one long medial spine. Male and female: ros-
trum strongly constricted in region of second antennae, with
pronounced carina extending from proximal (cervical suture)
to distal (apex); frontal setal fields distinctly oval (four-five
times longer than broad), oriented vertically; rim of fine setae
laterally on each side of rostrum.

USA. Lynceus brevifrons (Figure 2). Male: rostral apex
with very narrow subtriangular field, setal row on branches
of bifurcation of carina. Female: trilobed rostral apex, me-
dial spine less elongate than in L. brachyurus. Male and fe-
male: frontal setal fields subcircular, lateral sutures extending
obliquely from near setal fields. Lynceus gracilicornis (not
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depicted). Male: rostrum truncate with carina non-bifurcating
along entire midline, no setation present. Female: apex nar-
rowly rounded with folding margins, apparently subtriangu-
lar. Male and female: frontal setal fields broadly oval; lateral
sutures extending vertically from lateral part of setal fields
(in contact).

4 | DISCUSSION
4.1 | Pangea, extreme climate and the origin
of Laevicaudata

The first comprehensive molecular phylogeny for laevicauda-
tan clam shrimps, based on nine loci and including 15 Lynceus
species sampled worldwide, is presented here, and assessed
in the light of new rostrum morphology data. The absence
of a well-resolved phylogeny has prevented scientists from
addressing key evolutionary and biogeographic questions
for laevicaudatans until now. Our results show that the main
Laevicaudata clades are strongly correlated with geography
(i.e. continents) and suggest vicariance due to continental drift
as the dominant explanatory factor for the macroevolution of
smooth clam shrimps. Relaxed molecular clock estimates
indicate that current Laevicaudata lineages appeared about
237 Mya (95% HPD = 164-321 Mya), which is congruent
with the existence time of Pangea, a mostly dry superconti-
nent with seasonal rainfalls (Parrish, 1993) probably favour-
able for branchiopods with diapausing eggs as part of their
lifecycle (Gueriau et al., 2016). Furthermore, the MRCA of
present-day Laevicaudata is estimated to have occurred after
the Permian—Triassic mass extinction (about 250 Mya). This
dating is congruent with the known fossil record of laevicau-
datans, which, according to Hegna and Astrop (2020) pos-
sibly reaches from the Middle Permian to the Jurassic and
Cretaceous. Interestingly, the timing of laevicaudatan origin
appears to be correlated with a fast increase in aridity and
global temperature (Sahney & Benton, 2008; Smith & Botha-
Brink, 2014), which may have led to an increase in niche
availability and a reduction in number of predators and com-
petitors allowing laevicaudatan populations to expand.

4.2 | Main Laevicaudata clades:
Vicariance and allopatry

The northernmost clade (L. brachyurus) diverged early from
the remaining Lynceus, which further split into three main
lineages: one clade with species from North America and
Asia, another including the South African L. triangularis,
and the last one formed by all the remaining species. The
splitting of those three lineages is estimated to have occurred
184 Mya (95% HPD = 126-254 Mya), which aligns with
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the onset of Pangea breakup. The first lineage comprises an
Asian clade (including species from Japan, Thailand, China
and Mongolia) and a weakly supported North American
clade (including L. brevifrons and L. gracilicornis). High
support for a Southern Hemisphere clade, including species
from South America and Oceania, and our molecular clock
estimates suggest a Gondwanaland origin of the clade. This
biogeographic pattern agrees with those previously observed
in freshwater crayfish or plants and could be explained by
an Antarctic land bridge connecting Australia and South
America (Sanmartin & Ronquist, 2004; Toon et al., 2010).

The Australian species clusters with the New Caledonian
species (L. insularis) and the splitting into two separate
lineages is estimated to have occurred about 81 Mya (95%
HPD = 51-121 Mya). Interestingly, the dating of this
split coincides with the timing for a separation between
Australia and the ancient microcontinent Zealandia (e.g.
New Caledonia and New Zealand) (Heads, 2018). However,
the geological history of Zealandia is controversial. There is
evidence for marine flooding of New Caledonia in the Late
Cretaceous (65 Mya) to late Eocene (~45 Mya) (Heads, 2018;
Pelletier, 2007), which would favour later dispersal (e.g. by
resting eggs) as the explanation for the occurrence of Lynceus
at these remote islands. On the contrary, flora composition
suggest that some parts of New Caledonia have remained
exposed (He et al., 2016), thereby serving as a terrestrial re-
fugium. Discordances on the complete Eocene drowning of
New Caledonia are not negligible (Giribet & Baker, 2019),
and vicariance could explain the disjunct distribution of the
Australian/New Caledonian Lynceus clade.

4.3 | Concordance between rostral
morphology and molecular phylogeny

Rostral morphology characters are congruent with some of
the clades outlined above. The early divergence of L. brach-
yurus from the remaining laevicaudatans agrees with its
unique carina, which extends all the way from the cervical
suture to the rostral apex (most pronounced in females), like
that of Cyclestheria hislopi, and is possibly plesiomorphic.
The Southern Hemisphere species, which are strongly
supported by molecular data (except L. triangularis), are also
supported by rostrum morphology. In practically all males,
the rostral apex is adapted for a tight fit to the female car-
apace during mating (Sigvardt & Olesen, 2014), and in the
Southern Hemisphere species, this distal rostral area is mod-
ified further into a large subtriangular field, probably pro-
viding even firmer support (orange arrows in Figure 2). The
male of the African L. triangularis also has a modified ros-
tral apex, but different from the other Southern Hemisphere
species, which is in accordance with only weak molecular
support for the clustering of these species. Also, the Southern

Hemisphere species (again except L. triangularis) are sup-
ported by the female rostrum being long and broadly rounded
(blue arrows in Figure 2).

The Oceania clade (Australia and New Caledonia) received
strong molecular support which is congruent with rostrum
morphology. The rostral similarities for this clade include a
strong constriction at the point where the second antennae
insert (yellow arrows in Figure 2), and markedly obliquely
orientated frontal setal fields (green arrows in Figure 2), in
contrast to the circular or oval shape of these in all other ex-
amined species. Despite partly holding a phylogenetic pattern,
rostral morphology shows much evolutionary plasticity, and
clearly needs to be evaluated in a larger morphological context
including for example male claspers and other characters.

4.4 | Paleogene diversification and
alternatives to continental drift

Laevicaudata speciation events occurring after the onset lof
the Paleogene (65 Mya) cannot be simply attributed to vi-
cariance, mainly because Pangea had already completed its
breakup into the present-day continents by the end of the
Mesozoic. Recent studies point out that dispersal through
bird- or wind-facilitated transport of resting/diapause eggs
could determine branchiopod distribution (Fryer, 1996;
Rogers, 2014), particularly at shorter geographic distances
as indicated for spinicaudatan clam shrimps (Schwentner
et al., 2012). Dispersal of resting eggs by birds could have
played an important role for laevicaudatan distribution and
speciation patterns and, interestingly, radiation of mod-
ern birds also occurred after the onset of the Paleogene
(James, 2005). Phylogeography of Eurasian species is prob-
ably related to more complicated processes occurring on the
Northern Hemisphere, such as temporary connections be-
tween landmasses (Brikiatis, 2016) possibly transported by
large land mammals (Rogers et al., 2021). Genetic divergence
levels between North American and European L. brachyurus
are like those observed among well-established Lynceus spe-
cies from Australia, which suggests the presence of cryptic
species and agrees with the remarkable wide distribution
and large intraspecific variation observed in L. brachyurus
(Daday, 1927). However, a detailed morphological revision
of further L. brachyurus samples, supplemented by popula-
tion genetic analyses, should be conducted to determine the
origin and validity of these putative cryptic taxa.

5 | CONCLUSIONS AND
OUTLOOK

Our phylogenetic results have a direct impact on Laevicaudata
evolutionary biology and systematics, but further DNA
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efforts should focus on the American Paralimnetis and
the African Lynceiopsis. This will allow for testing the re-
ciprocal monophyly of the laevicaudatan genera and the
relation of these rare genera to the more diverse and wide-
spread Lynceus. Likewise, more samples from a wider geo-
graphic region will be needed to test the robustness of the
North American and Asian clade, particularly samples from
India, Taiwan and South China. Finally, future research on
laevicaudatan systematics will clearly benefit from using
non-rostral characters (e.g. male claspers, female laminae
abdominalis), which are likely to hold important phyloge-
netic information.
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