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Simple Summary: Meningiomas are the most frequent primitive central nervous tumors in adults.
Mouse models of cancer are used to study disease mechanisms and to establish preclinical drug
testing. In this review, we describe all mouse models of meningiomas reported in the literature. This
includes graft models wherein human meningioma cells are injected in nude mice, and genetically
engineered mouse models. Taken together, these models have offered the possibility to study
tumorigenesis mechanisms of initiation and progression and have provided useful tools for preclinical
testing of a huge range of innovative drugs and therapeutic options. This review provides a systematic
and comprehensive overview on how these different models can be used depending on the scientific
questions to be answered.

Abstract: Meningiomas are the most frequent primitive central nervous system tumors found in
adults. Mouse models of cancer have been instrumental in understanding disease mechanisms and
establishing preclinical drug testing. Various mouse models of meningioma have been developed
over time, evolving in light of new discoveries in our comprehension of meningioma biology
and with improvements in genetic engineering techniques. We reviewed all mouse models of
meningioma described in the literature, including xenograft models (orthotopic or heterotopic) with
human cell lines or patient derived tumors, and genetically engineered mouse models (GEMMs).
Xenograft models provided useful tools for preclinical testing of a huge range of innovative drugs and
therapeutic options, which are summarized in this review. GEMMs offer the possibility of mimicking
human meningiomas at the histological, anatomical, and genetic level and have been invaluable in
enabling tumorigenesis mechanisms, including initiation and progression, to be dissected. Currently,
researchers have a range of different mouse models that can be used depending on the scientific
question to be answered.

Keywords: meningioma; mouse model; xenograft; GEMM

1. Introduction

Meningiomas are the most frequent primary central nervous system (CNS) tumors
found in adults [1], representing approximately 30% of all intracranial neoplasms. Menin-
giomas can be divided into three prognostic histological subgroups according to the WHO
classification: grade I (65–80%), grade II (20–35%, atypical), and grade III (<3%, anaplastic)
with the three subgroups having very heterogeneous prognoses [2,3]. Surgery represents
the standard treatment modality for benign meningiomas but is often insufficient to control
grade II or grade III tumors, these tumors displaying aggressive biological features with
high proliferation activity and/or infiltrative growth [3]. These cases often require adjuvant
radiotherapy/radiosurgery in order to decrease the risk of recurrence. A large range of
medical treatments have been proposed for refractory meningiomas, but they have shown
only limited efficacy thus far [4].
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The discovery of the mutational landscape of meningiomas raised new hopes for the
possibility of using targeted therapies for refractory meningiomas. Genetic alterations of
the NF2 gene are found in 60% of sporadic meningiomas regardless of grade, suggesting an
initial role in the meningeal tumorigenesis. About 40% of sporadic meningiomas are driven
by non-NF2 genetic mutations: these mutations essentially concern grade I meningiomas,
where recent large-cohort sequencing studies have identified somatic coding alterations in
TRAF7, KLF4, POLR2A, and members of the PI3K and Hedgehog signalling pathways [5].

As in the case in many other tumoral diseases, the establishment of preclinical menin-
gioma animal models have attempted to mimic the genetic and biological alterations found
in human in order to dissect the mechanisms of tumorigenesis (cell of origin, initiating
events, mechanisms of progression . . . ), and to assess the efficacy or toxicity of estab-
lished or newly developed treatments. In this regard, several mouse meningioma models
have been developed over decades, which have evolved in light of new discoveries in the
comprehension of meningioma biology and with improvements of molecular biology and
genetic technology to produce genetically modified mice. The multiplicity of the models
and technologies to generate them as well as the high variability of their results can make it
difficult to assess their real intrinsic value and their propensity to serve as a suitable model
for a given objective.

In this review, we summarize the different preclinical mouse models of meningiomas
with special emphases on the technical aspects of their construction in order to highlight
how they can facilitate the comprehension of meningioma tumorigenesis and how they
represent essential tools for the evaluation of medical treatments. Our main objective was
to critically analyze their specific characteristics in order to help researchers to choose the
right model depending on their research goals and their financial and time resources.

2. Materials and Methods

A systematic review of the literature identified from the PubMed database was per-
formed in accordance with the PRISMA guidelines. A comprehensive search using key-
words [“Meningioma” AND (“preclinical models” OR “mouse models”)] was conducted,
including all studies from database inception until March 2021. Publications describing
in vivo modelling of meningiomas in mice were included. Reviews, studies that did not
publish a full manuscript, publications that were not in English and studies describing only
in vitro results were excluded.

3. Results
3.1. Articles Selection

A total of 142 articles were retrieved from the literature search. After the removal
of duplicates and title/abstract screening for matching inclusion/exclusion criteria, 73 of
these papers were then assessed for eligibility. Seventeen of these papers were excluded
for the following reasons: review article, unclear methodology, in vitro study only, or
subsequent retraction. Ultimately, 56 studies were included in the data analysis. The
various approaches to the development of mouse meningioma models are summarized in
Figure 1: this includes xenograft models (orthotopic or heterotopic) with human cell lines
or patient derived tumors, and genetically engineered mouse models (GEMMs). Each of
these models has advantages and disadvantages that are discussed in this review.
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Figure 1. Illustration of different available mouse models of meningioma. 
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benign meningiomas is the rapid occurrence of cell senescence when cells are cultured in 
vitro. Primary meningioma cell culture is restricted to early passages (senescence), due to 
low or no telomerase activity [6]. In the case of benign meningioma, the most common 
immortalization method employed was viral transduction of cells to generate the expres-
sion of the telomerase catalytic subunit (hTERT). Endogenous expression of hTERT is 
found in 30–50% of all benign meningiomas and nearly 100% of high-grade meningiomas 
[7]. Expression of hTERT in recurrent meningioma has also been observed [8]. Therefore, 
hTERT expression is a logical choice for manipulating tumor cell biology to permit con-
tinued cell growth in vitro. However, despite the careful characterizations described by 
the authors of those studies [9], it is difficult to assess what other aspects of the tumor cell 
biology may also have been altered, thus confounding the use of these cells as benign 
meningioma models.  

The principal meningioma cell lines are summarized in Table 1. The best-character-
ized line, which was derived from a benign WHO grade 1 meningioma, is the BenMen1 
cell line [9]. This line exhibits typical cytological, immunocytochemical, ultrastructural 
and genetical features of meningiomas, including whorl formation, expression of epithe-
lial membrane antigen, desmosomes, and interdigitating cell processes, as well as loss of 
chromosome 22q. Two other cell lines—SF-4433 [10] and Me3TSC [11]—have been devel-
oped with, in addition to the hTERT, co-expression of human papilloma genes E6/E7 and 
SV40 large T antigen, respectively, in order to achieve cell immortalization. However, 
these viral genes have not been associated with meningioma in vivo and such transfor-
mation by viral oncogenes could alter the growth signaling and behavior of these cells.  

  

Figure 1. Illustration of different available mouse models of meningioma.

3.2. Meningioma Cell Lines

The vast majority of meningioma xenograft models employed immortalized cell lines
obtained on human meningioma samples. The major obstacle in generating cell lines from
benign meningiomas is the rapid occurrence of cell senescence when cells are cultured
in vitro. Primary meningioma cell culture is restricted to early passages (senescence),
due to low or no telomerase activity [6]. In the case of benign meningioma, the most
common immortalization method employed was viral transduction of cells to generate
the expression of the telomerase catalytic subunit (hTERT). Endogenous expression of
hTERT is found in 30–50% of all benign meningiomas and nearly 100% of high-grade
meningiomas [7]. Expression of hTERT in recurrent meningioma has also been observed [8].
Therefore, hTERT expression is a logical choice for manipulating tumor cell biology to
permit continued cell growth in vitro. However, despite the careful characterizations
described by the authors of those studies [9], it is difficult to assess what other aspects of
the tumor cell biology may also have been altered, thus confounding the use of these cells
as benign meningioma models.

The principal meningioma cell lines are summarized in Table 1. The best-characterized
line, which was derived from a benign WHO grade 1 meningioma, is the BenMen1 cell
line [9]. This line exhibits typical cytological, immunocytochemical, ultrastructural and
genetical features of meningiomas, including whorl formation, expression of epithelial
membrane antigen, desmosomes, and interdigitating cell processes, as well as loss of chro-
mosome 22q. Two other cell lines—SF-4433 [10] and Me3TSC [11]—have been developed
with, in addition to the hTERT, co-expression of human papilloma genes E6/E7 and SV40
large T antigen, respectively, in order to achieve cell immortalization. However, these viral
genes have not been associated with meningioma in vivo and such transformation by viral
oncogenes could alter the growth signaling and behavior of these cells.
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Table 1. Summary of principal meningioma cell lines.

Name Phenotype Immortalization Genetics Year Ref.

HBL-52 Grade I, Meningothelial - TRAF7 mutant 2008 [12]

Me3TSC Grade I, Meningothelial hTERT + SV40 - 2007 [11]

BenMen1 Grade I, Meningothelial hTERT 22q loss
NF2 mutant 2005 [9]

SF4433 Grade I, Meningothelial hTERT + HPV
E6/E7 No 22q loss 2006 [10]

MENII-1 Grade II hTERT + HPV
E6/E7 22q loss 2008 [13]

IOMM-Lee Grade III - No 22q loss 1990 [14]

CH 157 MN Grade III - 22q loss
NF2 mutant 1995 [15]

KT 21 Grade III - 22q loss
C-myc 1989 [16]

On the other hand, some established cell lines derived from highly aggressive menin-
gioma variants are available and have been used in the majority of xenograft models. The
first cell line to be isolated was IOMM-Lee cells, derived from an anaplastic intraosseous
meningioma, which showed extremely aggressive tumorigenicity in athymic nude mice
which developed multiple pulmonary metastases [14]. While IOMM-Lee cells represent
the most popular cell line used in preclinical studies, it has a complex karyotype, likely
due to long-term culture, and suffers from a limited potential for generalized use in terms
of studying disease-specific biology and novel treatments [17]. Moreover, it lacks the NF2
mutation, which is the main driver event of malignant meningiomas. In a recent study,
a pair of cell clones characterized by either stable knockout of NF2 and loss of the NF2-
protein merlin, or retained merlin protein, was generated using Crispr/Cas gene editing of
the IOMM-Lee cell line [18]. The other popular cell lines used are described in Table 1 [12].

3.3. Mouse Xenograft Models
3.3.1. Heterotopic Models

Heterotopic models, using primary cell culture or meningioma cell lines, were histori-
cally the first models to be developed [19]. Mouse xenograft meningioma models in the
flank facilitate the follow-up of tumors growth and treatment efficacy and are low-cost.
The classical technique is to subcutaneously inject 1 × 106 cells, suspended in 0.5 mL of
medium, into the flank of nude mice, and to then institute therapies 5 to 10 days after the
injection [20]. This method has proven to be successful with tumor development found in
about 60% of cases, particularly when mixing meningioma cells with Matrigel, a gelatinous
basement membrane protein mixture secreted by Engelbreth-Holm-Swarm (EHS) mouse
sarcoma cells, at the time of the subcutaneous injection [21]. Ragel et al. reported that
meningioma cell lines or tumor-derived cultures that had multiple chromosomal abnormal-
ities consistently induced tumors in the flank (whereas cell lines with normal karyotype
did not). Flank tumors derived from cell lines exhibit histological, immunohistochemical
and ultrastructural features that are consistent with meningiomas [20].

This approach enabled histologically confirmed meningiomas to be obtained and
the monitoring of meningioma tumor cell growth both in primary cell cultures [22–24]
and with meningioma cell lines [20,25,26]. The following treatments have been evaluated
and showed an inhibition of tumor growth capacity in meningioma flank models: Ver-
apamil [27], CREB-binding protein inhibitor ICG 001 [28], Irinotecan [25], Imatinib [29],
fatty acid synthase inhibitors [30], farnesyl thiosalicylic acid [31], Siomycin 1 [32], Mifepris-
tone [33], Pegvisomant [23], and Celecoxib [34]. However, none of these treatments have
shown efficacy in treating meningiomas in humans. The ability of flank models to serve
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as real meningioma models (whose results can be transposed to humans with confidence)
is not demonstrated, particularly since they lack the specific microenvironment of menin-
giomas (CSF, arachnoid, brain, and bone). In view of the progress made in limiting the
morbidity of surgical procedures and progress in in vivo imaging, the orthotopic models
should be preferred.

3.3.2. Orthotopic Models
Injection Technique

Orthotopic models are generated by an intracranial injection of meningioma cells into
3–8-weeks-old immunocompromised mice. A wide variety of injection site, the type and
number of cells injected, and injection volumes have been described and are listed in Table 2.
105 to 106 cells in a volume of 3 to 10 microliters is generally injected, though recently,
xenografts with tumorosphere derived from malignant meningiomas were successfully
implanted into the convexity, with only a very low number of implanted cells (50 × 103)
being necessary for tumor induction [35]. For this method, mice are anesthetized and their
head is stabilized in small animal stereotaxic instrument. Subdural or convexity injections
are performed through a burr hole drilled 2.5 mm lateral from the bregma, 1 mm deep in
the skull. Skull base injections are generally performed through a burr hole drilled 1.5 mm
anterior and 1.5 mm to the right of the bregma, with a needle slowly inserted downward
about 5 mm [36]. An alternative option is the “post glenoid injection” technique: a 26-gauge
needle tip is positioned on the right post-glenoid fossa (the rostral area of the opening of
the external acoustic meatus). The implantation site, the lateral part of the foramen ovale,
is accessed via a specific injection track [37].

Table 2. Summary of meningioma orthotopic xenograft models.

Mouse Strain/Age
of Injection

(Weeks)

Injected Cell
Types (WHO

Grade)/Numbers/
Volume (uL)

Site of
Injection

Tumor
Take (%) Treatment Clinical

Results
Year,

Reference

Athymic/6
IOMM-Lee (III);

human
tumor/106/10

WM/floor of
TF 85–100 - - 2000, [38]

Athymic/6–8 IOMM-Lee
(III)/106/3 Floor of TF 100 Verotoxin Inhibition of TG 2002, [26]

Athymic/6 BenMenI (I) Convexity 100 - - 2005 [9]

Athymic/6–8 IOMM-Lee
(III)/5.105 Brain 100 siRNA Inhibition of TG 2006 [39]

Athymic/4 Me3TSC (I)-Me10T
(I)/106/5

Convexity
(SDS) 100 - - 2007, [11]

Athymic/3
CH-157-MN (III);

IOMM-Lee
(III)/104–106/3

Floor of
TF/SDS

convexity
90 Lb100 + RT

Increased
survival

compared to RT
alone

2008, [17]
2018, [40]

Athymic/5–6 IOMM-Lee
(III)/5.104/0.5 Skull base 100 Temozolomide

Inhibition of TG
Increased
survival

2008, [36]

Athymic/5 KT21-DEP1
loss (III) Convexity 100 - - 2010, [41]

Athymic/5 PD grade I/106/10
Convexity
(prefrontal

cortex)
90–100 Celecoxib No effect 2012, [42,43]
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Table 2. Cont.

Mouse Strain/Age
of Injection

(Weeks)

Injected Cell
Types (WHO

Grade)/Numbers/
Volume (uL)

Site of
Injection

Tumor
Take (%) Treatment Clinical

Results
Year,

Reference

Athymic/8–10 IOMM-Lee
(III)/2.5 × 105/5 uL Convexity 100

Cliengitide +
Radiotherapy

Sorafenib
Temsirolimus

Inhibition of TG 2013, [44–46]

Athymic/6–8 BenMen1(I)/106/3 Skull base 100
Histone

deacetylase
inhibitor AR 42

Affect cell cycle
progression

Inhibition of TG
2013, [47]

NOD/SCID/gamma
null mouse/8

IOMM-Lee
(III)/5.104/3

Skull Base
(Pgi) 100

Peripheral
blood

mononuclear
cells

Inhibition of TG 2013, [37]

Athymic/6–8
BenMenI (I)-
KT21-MG1
(III)/106/5

Skull base 100 Group 1 Pak
inhibitor Inhibition of TG 2014, [48]

Athymic/NA PD grade I/106/10 Convexity 100 - - 2015, [49]

Athymic/5–6

Primary malignant
meningioma
NF2-mutant

MN3/tumorosphere
50000/3–5

Convexity 100 Oncolytic HSV
OS2966

Increased
survival

Increased
Survival

2016, [35]
2019, [50]

Athymic/NA CH-157MN (III) Convexity 100 Hydroxyurea +
verapamil No effect 2016, [51]

Athymic/5–6 CH-157 MN
(III)/5.104/5 uL

Convexity/Skull
base 55–80 - - 2019, [52]

Athymic/6–8 IOMM-Lee
(III)/104 Skull base 100 - - 2019, [53]

Athymic/6 KT21-MG1/50000/ Convexity 100
Mebendazole

+ /−
Radiotherapy

Inhibition of TG
Increased
survival

2019, [54]

SCID mice/4–6 IOMM-Lee
(III)/106/3–10 Skull base 100 Ganoderic Acid

DM
Inhibition of TG

Increased
survival

2019, [55]

SCID mice/4–6 IOMM-Lee (III)-
BenMen1 (I) Skull base 100 Palbiciblib + RT

Inhibition of TG
Increased
survival

2020, [56]

Abbreviations: PD: patient-derived; WM: white matter; TF: temporal fossa; SDS: subdural space; RT: radiotherapy; TG: tumor growth; Pgi:
post-glenoid injection; SCID: severe combined immunodeficient; NOD: non-obese diabetic.

Tumor Take and Meningioma Phenotype Results

The main results on tumor take are summarized in Table 2. The first orthotopic
xenograft model of meningioma was established by Mc Cutcheon et al., using first passage
primary cell cultures and the IOMM-Lee meningioma cell line [38]. Although the tumors
maintained their relative phenotype of malignancy, they displayed several patterns of
growth that would be unusual in human tumors, such as ventricular invasion and lepto-
meningeal dissemination. Grafts using atypical and malignant meningiomas cell lines
produced tumors in almost all immunocompromised mice that were injected regardless
of the injection site (Table 2). Results using the implantation of immortalized benign
meningioma cell lines are more heterogeneous, with tumor takes between 55 and 100%.
Studies on patient-derived xenografts have shown more nuanced results with tumor
rates ranging from 20% to 100%, even with anaplastic meningiomas, explaining why this
technique is not considered to be completely reliable as a model for meningiomas [57].
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Tumor Growth Monitoring and Mouse Imaging

Unlike heterotopic models, it is not possible to closely monitor tumor take and
growth in orthotopic models in a simple manner. Two main techniques are currently
used: bioluminescence-based methods and imaging using small-animal MRI. Baia et al.
established intracranial xenografts using luciferase-expressing IOMM-Lee cells and used
bioluminescence imaging (BLI) to quantify tumor growth. D-luciferin was injected intra-
venously in the mice prior to imaging to obtain bioluminescence, which was then detected
through an ultra-sensitive camera. Using this method, the authors established the growth
kinetics of meningiomas xenografts in vivo and demonstrated that the tumor volume was
well-correlated with the mean tumor radiance [36]. BLI is a classical and relatively inex-
pensive way to monitor tumor growth and has been widely used in meningiomas models
(through grafting of luciferase expressing cell lines [36,47,48,58], or crossing with luciferase
reporter enabling bioluminescence imaging of Cre-loxP-dependant tumorigenesis, see
below [59]).

Other studies have demonstrated the feasibility of magnetic resonance imaging for
monitoring meningioma formation, with tumors as small as 1–2 mm3 that were detectable
and could be followed by sequenced imaging [60]. Moreover, dynamic contrast enhance-
ment sequences showed their ability to reflect tumor perfusion and capillary permeabil-
ity [59]. Major drawbacks of magnetic resonance imaging are its high costs and that it lacks
ready availability.

Finally, a recent study demonstrated the ability of radiolabeled somatostatin analogues
(68Ga-DOTATATE) to detect meningiomas in subcutaneous xenografts of the CH-157MN
meningioma cell line [61,62]. Its use in orthotopic models of meningiomas has not thus far
been described.

Intraoperative Fluorescent Tumor Visualization

Recently, the possibility of the selective identification of meningioma cells in vitro and
in vivo with fluorescent technique was described. FAM-TOC (5,6-Carboxyfluoresceine-
Tyr3-Octreotide), a somatostatin receptor-labeled fluorescence dye, was able to be detected
after incubation in vitro in various meningioma cell lines of all grades [63]. Moreover,
meningioma cells grafted intracranially in vivo were able to be detected with fluorescence
microscope or endoscope and enabled a fluorescent-guided resection [64]. This model
represents a valuable experimental model for fluorescence meningioma surgery and in vivo
imaging.

Limits of Xenografts Models

Xenograft models using established meningioma cell lines are reproducible with
respect to tumor take and growth rate, but they require the use of an immunocompromised
host, thus making it impossible to study interactions between tumor cells and the host
immune system, an increasingly relevant field of study in meningiomas. In addition, a
strong selective pressure is often observed during cell culture, raising the concern that cells
used for experiments may no longer be representative of the original tumor. From this
perspective, orthotopic models with cell lines represent strong models in order to screen
for new therapeutic tools.

On the other hand, models based on primary tumor grafts may more closely reflect the
human pathology and serve as a personalized model at the scale of a unique patient, but
often lack reproducibility and present wide variations in tumor take and growth rate. Taken
together, these elements explain why xenograft models are not considered to be optimal for
dissecting the biological events and mechanisms involved in meningioma tumorigenesis.
The main objective of xenograft models is rather to provide tools for preclinical testing of
innovative drugs, and a huge range of therapeutic options have been tested in those models
(Table 2). Though the vast majority of these show efficacy in vitro and in vivo, results have
not been confirmed in human studies [4]. This concern raises the question of the accuracy
of xenograft models for prediction of the antitumoral effect of drugs, particularly in those
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models using immortalized malignant cell lines. Indeed, it is not completely clear how
closely related the immortal meningioma cell lines are to the human tumors. However, due
to their ease and speed of generation, they could represent a first step in the validation of
new therapeutic options for meningioma treatment.

3.4. Genetically Engineered Mouse Models (GEMM)

The molecular analysis of human meningiomas has been instrumental in the develop-
ment of mouse models that closely resemble to their human counterpart. Ideally, a tumor
model should be the closest transposition of its human counterpart regarding the histology,
the anatomy, and the genetic driver events. Moreover, it should offer the possibility to
control the tumor initiation from a temporal, spatial, and genetic perspective. GEMMs
provide many of these features and allow to extensively manipulate genes [65]. In this sec-
tion, the main genetic engineering technologies with their respective meningioma models
(summarized in Table 3) are reviewed, as well as their main drawbacks.

Table 3. Summary of meningioma GEMM models.

Construction Genetics
Temporal

Window of
Activation

Phenotype
(Grade)

Meningioma
Prevalence

Year,
Reference

AdCre; Nf2flox/flox Nf2 loss PN2-PN3 M/F (I) 29% (TO)
19% (SD) 2002, [66]

AdCre; Nf2flox/flox; Ink4a*/*
Nf2 loss +

homozygous
P16Ink4a mutation

PN2-PN3 M/F/T (I) 38% (TO)
36 % (SD) 2008, [67]

AdCre; Nf2flox/flox; Ink4ab−/− Nf2 + CDKN2AB
loss PN2-PN3

66% (I)
31% (II)
3% (III)

72% 2013, [59]

PGDSCre; Nf2flox:flox Nf2 loss in
PGDS + cells E12.5-PN2 M (I)

F (I)
38%
38% 2011, [68]

PGDSCre; Nf2flox/flox; p16ink4a/−
Nf2 loss + P16ink4a

mutation in
PGDS + cells

E12.5-PN2 M (I)
F (I)

50%
50% 2011, [68]

PGDSCre; Nf2flox/flox; p53flox/flox
Nf2 loss + p53

nullizygosity in
PGDS + cells

E12.5-PN2 F (I) 43% 2011, [68]

PGDStv-a; PDGF-B
PDGF

overexpression in
PGDS + cells

E12.5-PN2 (I) 27% 2015, [69]

PGDStv-a; PDGF-B; AdCre;
Nf2flox/flox

PDGF
overexpression +

Nf2 loss in
PGDS + cells

E12.5-PN7 Grade I (60%)
Grade II (40%) 52% 2015, [69]

PGDStv-a; PDGF-B; AdCre;
Nf2flox/flox; Cdkn2ab−/−

PDGF
Overexpression +
nf2 loss + Cdkn2ab

loss

E12.5-PN7
Grade I (33%)
Grade II (47%)
Grade III (20%)

79% 2015, [69]

PDGSCre; SmoM2
Activating

mutation of Smo in
PGDS + cells

E12.5-PN2 M (I) 21% 2017, [70]

Abbreviations: PN: post-natal day; M = meningothelial; F: fibroblastic; T: transitional; TO: transorbital; SD: subdural.

3.4.1. Cre-loxP System

The Cre-loxP system is a site-specific recombinase technology that allows site-specific
DNA modifications such as deletion, insertions, and translocations. This system was
first used to better understand the role of allelic loss and/or mutation in the NF2 gene at
chromosome 22q (the main driver event in sporadic meningiomas). The Nf2 homozygous
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germline null mouse model is lethal, and the hemizygous Nf2 knock-out mouse (Nf2+/−)
does not develop meningiomas [71], because the loss of the wild-type allele does not
occur spontaneously in the murine meningeal cells, unlike in humans. Since no meningeal
promotor was available at this time, the first models were based on direct meningeal cells
targeting by intrathecal injection of an adenoviral vector (recombinant Cre Adenovirus)
into the cerebrospinal fluid of Nf2loxP/loxP pups [66]. This technique had the advantage
of targeting all meningeal cells, and thirty percent of mice developed a range of benign
meningiomas subtypes that were histologically similar to the human tumors: transitional,
meningothelial and fibroblastic (see Table 3 for details). In this first GEMM meningioma
model, the initiating lesion associated with murine leptomeningeal tumorigenesis was
defined as “meningothelial proliferation”, referring to microscopic lesions composed of
meningothelial cells that represent early tumor formation. This model confirmed that
biallelic Nf2 inactivation was sufficient to induce meningioma and was a fundamental
driver event in this context.

Efforts were then made to generate models that could illustrate progression to higher
grades, in an attempt to mirror the genetic events in human meningiomas. Alterations on
chromosome 9p21 during meningioma progression have been found to induce losses of the
tumor suppressor genes CDKN2A (p16INK4a), p14ARF, and CDKN2B (p15INK4b) [72,73].
Moreover, deletions of CDKN2A/CDKN2B are of poor prognostic factors in anaplastic
grade III meningiomas [74]. The first attempt to induce the loss of Cdkn2a, via adding
nullizygosity for p16Ink4a in adCre; Nf2flox2/flox2 mice, resulted in an increased rate of
meningiomas development and meningothelial proliferation, but it did not modify the
tumor grade (Table 3) [67]. Additional hemizygosity for p53 did not modify the frequency
of meningioma nor malignancy, suggesting that, as in humans, Nf2 and p53 mutations
did not synergize in promoting murine meningeal tumorigenesis [67]. Mechanisms of
meningioma progression were confirmed using later models, wherein Nf2 inactivation in
synergy with homozygous or heterozygous Cdkn2ab deletions led to increased meningioma
frequency and induced grade II and III meningiomas, thus representing a reliable atypical
or anaplastic model that mimics the human pathology [59]. These models also offer
the possibility of producing meningioma cell lines from mouse tumors and syngeneic
orthotopic allografts to immunocompetent wildtype mice, which represent the closest
models of sporadic malignant meningiomas [75].

Three cell lines (MGS1, MGS2, and MGS3) have been generated from grade I mouse
meningiomas obtained in 4-month-old AdCre; Nf2flox2/flox2; Inkab−/− mice. Meningiomas
were subsequently obtained in 100% of mice after subdural injection of these cells into
immunocompetent FVB mice [59].

The discovery of the specific meningeal promotor PGDS has led to a second generation
of GEMMs of meningiomas. The prostaglandin-D2-synthase (PGDS) gene was identified as a
marker of meningeal cells in rats, mice, and humans [76–78]. PGDS is an enzyme responsi-
ble for the biosynthesis of prostaglandin D2 in the CNS. Several studies have reported that
both human and mouse meningiomas exhibit intense PGDS immunoreactivity, suggesting
that PGDS is a marker of normal and neoplastic meningeal cells [67,68,78]. PGDS appears in
the WHO classification as a marker for the cell of origin in meningiomas. PGDS promotor-
directed bi-allelic inactivation of Nf2 led to the development of both meningothelial and
fibroblastic meningiomas, whereas additional nullizygosity for p16Ink4a or p53 did not
increase the number or malignancy grade of meningiomas (Figure 2, Table 3) [59,68]. PGDS
was also used to induce oncogenic somatic mutations that have been newly described in
meningiomas, in meningeal cells. The PGDSCre-SmoM2 model has been generated, and the
activating mutation of Smoothened from the early embryonic period resulted in formation
of meningothelial meningioma at the skull base, as is seen in their human counterpart
(Table 3) [70].
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3.4.2. RCAS-TVA System

The RCAS-TVA system is a popular gene delivery system to model human cancer [79].
It was used to demonstrate that overexpression of PDGF (platelet-derived growth factor), in
meningiomas in arachnoïdal cells could induce meningiomas independently of Nf2 muta-
tion [69,80,81]. In this model, malignant progression could be induced by combining PDGF
overexpression, Nf2 mutation and additional loss of Cdkn2ab (Table 3) [69]. Unfortunately,
PDGF-B overexpression in PGDStv-a expressing cells also induced gliomas of various
histological grades, likely due to PGDS expression in oligodendrocytes. The establishment
of these models led to the proposition of a specific classification for meningiomas in mice
to be proposed, which differs slightly different from the WHO classification of their human
counterparts (Table 4) [59].

Table 4. GEMM classification for meningiomas [59].

Phenotype Description

Meningothelial proliferation
(early tumor formation) Microscopic lesions composed of meningothelial cells

Grade I meningiomas No mitotic figures, mild cytologic atypia, no brain invasion

Grade II meningiomas One or two mitoses/HPF, true brain invasion

Grade III meningiomas
Marked cellular atypia (giant nuclei, pleomorphic nuclei,

nuclei with marked chromatin clearing), brisk mitotic activity
(three or more mitoses/HPF)
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3.4.3. Limits of GEMMs

In addition to mirroring human meningioma biology, GEMMs of meningioma have
contributed to a better understanding of the molecular mechanisms and spatio-temporal
susceptibility to meningioma tumorigenesis. However, several drawbacks prevent GEMMs
of meningiomas from being widely used. Time and financial costs for the generation and
use of models can be prohibitive. They may require several crosses and the time to tumor
growth can be very long (especially for grade I meningiomas). Unlike xenograft models,
which are very reliable in term of tumor take rates, the tumor prevalence in GEMMs
generally ranges from 30 to 80%, and the tumor growth rates and kinetics are unknown.
Therefore, the presence of meningeal tumor presence must be generally confirmed through
imaging, and these models are thus not systematically appropriate for preclinical testing.
Additionally, these models sometimes result in non-meningeal tumors and consequently
early death related to these (high grade gliomas, sarcomas, etc.).

It should be noted that the strategy of direct Adenovirus Cre or RCAS injection has
the advantage of inducing a mutation in a small population of cells that are surrounded by,
and must out-compete, their normal counterparts in vivo, accurately mimicking human
cancers with the presence of wild-type competitor cells modulating the ability of mutant
cells to induce disease.

3.5. Future Directions
3.5.1. Next-Generation Mouse Modeling of Cancer with CRISPR/Cas9 Technology

Recently, the discovery of the clustered regularly interspaced short palindromic repeats
(CRISPR) and CRISPR-associated proteins (Cas) has opened up the possibility of generating
transgenic mice models at a lower cost [82–84]. Crispr technology enables the direct
modification of genes in mice, or specific targeted modification of genes in cell lines that
can be used in classical xenografts models. Prager et Al induced the knock-out of DUSP1
via this technique and could evaluate the biological impact of this event in vitro and
in vivo after heterotopic grafting, as well as being able to study the therapeutic effects of a
DUSP1/6 inhibitor [85].

3.5.2. Extending GEMMs Models to Study Other Mutational Events and New
Meningeal Promotors

New GEMMs are needed in order to explore targetable somatic mutations found
in human meningiomas, such as TRAF7, AKT1 or PIK3CA, where they will be essential
for understanding the specific biological mechanisms involved and to provide accurate
tools for preclinical drug evaluation. Moreover, new specific meningeal markers, that are
potentially useful as meningeal promotors, must be discovered in order to better target
specific subpopulations of meningeal cells. From this point of view, a better comprehension
of meningeal embryology will undoubtedly provide new candidates and new opportunities
in meningioma mouse modeling, as illustrated by the discovery of specific markers of
primitive meningeal cell subpopulations through single-cell sequencing of the primitive
meninges [86].

3.5.3. Limitations

This review presents several limitations. First, we chose to focus on in vivo stud-
ies, and did not explore the field of “pure” in vitro studies. If a large number of drugs
were tested in vitro, we believe that in vivo confirmation is mandatory before thinking
about translation into human studies and that in vivo studies offer more robust biological
conclusions.

Second, GEMMs models are mainly described and published by a single team. The
validity and usefulness of these models should be demonstrated by their use in a larger
number of teams with similar results.
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4. Conclusions

The field of meningioma research has taken advantage of the development of several
preclinical mouse models of meningioma (xenograft and transgenic models) to better
understand the underlying biological mechanisms of meningioma tumorigenesis. Such
models have also provided a means to test innovative potential therapies. Researchers
now have a variety of available models that can be employed, depending on the specific
research goal and on available financial resources.

Our review demonstrates that the two main categories of meningioma mouse models
have specific uses. On the one hand, orthotopic xenograft models offer a strong reliability
in terms of tumor takes, at lower costs, and are therefore used for preclinical testing of new
drugs or innovative treatments. However, the accuracy of these models for the prediction of
the antitumoral effect of drugs, particularly in those models using immortalized malignant
cell lines, is very questionable. This point is highlighted by the effectiveness of a large
number of drugs on in vivo meningioma models that was not confirmed afterwards in
human studies.

On the other hand, GEMMs models strictly mirror the human biology and offer pre-
cious tools in order to dissect the meningioma tumorigenesis mechanisms, from both a
spatial and a temporal manner. However, they are time-consuming and expensive, and
present heterogeneous tumor take rates, making them inappropriate for large-scale preclin-
ical drug testing studies. It should be noted that they also offer the possibility of generating
mouse meningioma cell lines (both benign and malignant) and syngeneic orthotopic allo-
grafts to immunocompetent wildtype mice. This model gathers the advantages of both
type of models, offers high tumor take rates, and represents the closest models of sporadic
meningiomas. Future progress in both genetic and cell culture techniques will undoubtedly
provide new opportunities for the development of innovative models.
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