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Dynamics of the COVID-19 epidemic in
Ireland under mitigation
Bernard Cazelles1,2,3* , Benjamin Nguyen-Van-Yen3, Clara Champagne4,5 and Catherine Comiskey6

Abstract

Background: In Ireland and across the European Union the COVID-19 epidemic waves, driven mainly by the
emergence of new variants of the SARS-CoV-2 have continued their course, despite various interventions from
governments. Public health interventions continue in their attempts to control the spread as they wait for the
planned significant effect of vaccination.

Methods: To tackle this challenge and the observed non-stationary aspect of the epidemic we used a modified
SEIR stochastic model with time-varying parameters, following Brownian process. This enabled us to reconstruct the
temporal evolution of the transmission rate of COVID-19 with the non-specific hypothesis that it follows a basic
stochastic process constrained by the available data. This model is coupled with Bayesian inference (particle Markov
Chain Monte Carlo method) for parameter estimation and utilized mainly well-documented Irish hospital data.

Results: In Ireland, mitigation measures provided a 78–86% reduction in transmission during the first wave
between March and May 2020. For the second wave in October 2020, our reduction estimation was around 20%
while it was 70% for the third wave in January 2021. This third wave was partly due to the UK variant appearing in
Ireland. In June 2020 we estimated that sero-prevalence was 2.0% (95% CI: 1.2–3.5%) in complete accordance with
a sero-prevalence survey. By the end of April 2021, the sero-prevalence was greater than 17% due in part to the
vaccination campaign. Finally we demonstrate that the available observed confirmed cases are not reliable for
analysis owing to the fact that their reporting rate has as expected greatly evolved.

Conclusion: We provide the first estimations of the dynamics of the COVID-19 epidemic in Ireland and its key
parameters. We also quantify the effects of mitigation measures on the virus transmission during and after
mitigation for the three waves. Our results demonstrate that Ireland has significantly reduced transmission by
employing mitigation measures, physical distancing and lockdown. This has to date avoided the saturation of
healthcare infrastructures, flattened the epidemic curve and likely reduced mortality. However, as we await for a full
roll out of a vaccination programme and as new variants potentially more transmissible and/or more infectious
could continue to emerge and mitigation measures change silent transmission, challenges remain.
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Background
In the last months of 2019, grouped pneumonia cases
were described in China. The etiological agent of this
new disease, a betacoronavirus, was identified in January
and named SARS-CoV-2. Meanwhile this novel corona-
virus disease (COVID-19) spread rapidly from China
across multiple countries worldwide. As of March 17,
2020, COVID-19 was officially declared a pandemic by
the World Health Organization. COVID-19 has now
spread throughout most countries causing causing mil-
lions of cases, killing hundreds of thousands of people
and causing socio-economic damage [1]. Until vaccin-
ation campaigns are widely implemented, the expansion
of COVID-19 with the appearance of newer, more trans-
missible and/or more infectious variants continue to
threaten to overwhelm the healthcare systems of many
countries.
The first case in Ireland was declared on the 29th of

February 2020 followed by a rapid increase in reported
infections leading to a peak in daily incidence in the
week of April 10th to 17th. This peak was followed by a
steady decline in daily cases reported until mid-August
when a slow but steady increase in cases emerged. This
increase was sustained and on Friday the 18th of Sep-
tember as a result of this increase the capital city,
Dublin, was placed on a level 3 alert with movement re-
strictions and various lockdown measures. On Septem-
ber 25th a rural region in close proximity to the border
of Northern Ireland was also placed on this level 3 alert
[2].
Our aim is to examine the dynamics of the COVID-19

epidemic in Ireland using public data and a simple sto-
chastic model. As occurs with the majority of epidemics,
the COVID-19 epidemic has and continues to modify
greatly during its course. Taking account of the time-
varying nature of the different mechanisms responsible
for disease propagation is always a major challenge. To
tackle this aspect, we have used a previously proposed
framework [3]. This framework uses diffusion models
driven by fractional Brownian motion to model time-
varying parameters embedded in a stochastic modified
SEIR model, coupled with Bayesian inference methods.
This mechanistic modeling framework enables us to re-
construct the temporal evolution of key parameters
based only on the available data, under the non-specific
assumption that it follows a basic stochastic process
constrained by the observations. The advantages of this
approach are the possibility of (i) considering all the spe-
cific mechanisms of the transmission of the pathogen
(e.g. asymptomatic transmission), (ii) using different
datasets simultaneously, (iii) accounting for all the un-
certainty associated with the data used and, most im-
portantly (iv) following the time-evolution of some of
the key model parameters. This framework allows us to

follow changes in disease transmission owing, for ex-
ample, to Public Health interventions, which are of par-
ticular interest to us in the case the COVID-19
epidemic.

Materials and methods
Data
Large uncertainties are associated with the reported
number of cases of COVID-19 [4, 5]. The lower number
of reported cases is due to low detection and reporting
rates, firstly because the testing capacity (RT-PCR la-
boratory capacity) was limited and has greatly varied
during the course of this epidemic. Secondly, it is due to
features of this new virus, such as transmission before
the onset of symptoms and important asymptomatic
transmission, which results in a low fraction of infected
people attending the health facilities for testing.
This suggests that hospitalized data is likely to be the

most accurate COVID-19 related data. Thus we mainly
focus on hospitalized data published by the Health Pro-
tection Surveillance Centre (HPSC) [6]. We also mainly
focus on incidence data to avoid all defects related to
the use of cumulative data (see [7]), ie: daily hospitalized
admission, daily ICU admission, daily deaths and daily
hospital discharged. We also used “current bed used”
both in hospital and in ICU as these are state variables
of our model. Taking account of the large variability of
the daily observations, since the 1st of June 2020 we
have only used a weekly average of the daily values
observed.
Since hospitalized data is only available from the 22th

of March after the first mitigation measures (school clos-
ure) and that our aim was to model the dynamics of the
epidemic before, during and after the NPI measures, we
used daily incident infectious data available before the
25th of March. Nevertheless this data was associated
with a low reporting rate and a large variance in the ob-
servational process used (see Inference part below).

Model
A simple model of extended stochastic Susceptible-
Exposed-Infectious-Recovered (SEIR) also accounting
for asymptomatic transmission and the hospital system
has been developed (see eqs. A1-A3 in the Supporting
information and Fig. 1). It is similar to others, which
have been proposed to model and forecast the COVID-
19 epidemic [8–11]. It includes the following variables:
the susceptibles S, the infected non-infectious E, the in-
fectious symptomatic I, the infectious asymptomatic A,
the removed people R, and the hospital variables: hospi-
talized people H, people in intensive care unit ICU, hos-
pital discharge G, and deaths at hospital D. We have
also introduced Erlang-distributed stage durations (with
a shape parameter equal to 2) for the E, I, A and H

Cazelles et al. BMC Infectious Diseases          (2021) 21:735 Page 2 of 10



compartments to mimic a gamma distribution for stage
duration in these compartments discounting inappropri-
ate exponential stage durations (eqs. A1). As more and
more people are being vaccinated in Ireland, the effect
of vaccination is introduced in our model simply by con-
sidering the effect of vaccination on the depletion of sus-
ceptibles. For this, we removed from the susceptible
compartment the “effectively protected vaccinated
people” that are proportional to the number of people
vaccinated with one and/or two doses (see eq. A2). The
parameters are defined in Table 1 and in the Supplemen-
tary information.
As the peaks of those hospitalized and those admitted

to ICU are concomitant we consider that a weak frac-
tion, qI.τI of infectious with severe symptoms goes dir-
ectly to ICU. Even if the majority of deaths occur in the
ICU, a small fraction, qD.τD, can occur in hospital but
not in intensive care.
An interesting sub-product of our framework is the

possibility of estimating the time evolution of the effect-
ive reproduction number, Reff [12]. Reff is defined as the
mean number of infections generated during the infec-
tious period of a single infectious case at time t. It can
be easily estimated using the steady-state form of a SEIR
model. Taking into account the particularity of our
model that considers different transmission capacity for

different infectious, its value is a function of both the
fraction of asymptomatic infectious Ai(t), τA, and of
symptomatic infectious Ii(t), 1-τA:

Reff tð Þ ¼ 1þ q1ð Þ
2

: 1−τAð Þ þ q2:τA

� �
:
β tð Þ
γ

:
S tð Þ
N

where β(t) is the transmission rate, 1/γ is the infection
duration, τA is the fraction of asymptomatic individuals
in the population, (1-τA) the proportion of symptomatic
infectious individuals, qi are the reduction in the trans-
missibility of some infected (I2) and asymptomatics (Ai)
and N is the population size.

Inference
As we used Brownian process for modeling the time-
varying transmission rate our model is stochastic, the
likelihood is intractable and it is estimated with particle
filtering methods (Sequential Monte Carlo, SMC). Then
the particle filter is embedded in a Markov Chain Monte
Carlo framework, leading to the particle Markov Chain
Monte Carlo method (PMCMC) algorithm [13]. More
precisely, the likelihood estimated by SMC is used in a
Metropolis Hasting scheme (particle marginal Metrop-
olis Hastings) (see Supplementary information). The
priors of the inferred parameters are in Table 1.

Fig. 1 Flow diagram of the model, with λ’(t) = β(t).(I1 + q1.I2 + q2.(A1 + A2))/N then the force of infection is λ(t) = λ’(t).S(t). β(t) is the time-varying
transmission rate, σ the incubation rate, γ the recovery rate, 1/κ the average hospitalized period, 1/δ the average time spent in ICU, τA the fraction
of asymptomatics, τH the fraction of infectious hospitalized, τI the fraction of ICU admission, τD the death rate, q1 and q2 the reduction of
transmissibility of I2 and Ai, qI the reduction of the fraction of people admitted in ICU and qD the reduction of the death rate. The subscripts 1
and 2 are for the 2 stages of the Erlang distribution of the considered variable. The hospital discharge is the flow from H2 to R. Flows in blue are
from hospital (Hi) and flow in red from ICU
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For the inference the observations considered are daily
incident infectious at the beginning of the epidemic, new
hospitalized patients, new ICU admission, new deaths
and hospitalized discharges. Hospital observations are
only available after the lockdown (25th of March).
Because these are count processes, we model their
observations with Negative Binomial likelihoods (see
Supplementary information). Current hospital data, ob-
served, hospitalized patients (H1 + H2 + ICU) and ICU
beds used (ICU) have also been used in the inference
process and we make the assumption that these variables
follow a normal distribution (see Supplementary
information).

Results
Figures 2 and 3 present our main results, Fig. 2 displays
the fit of the model and Fig. 3 shows the dynamic of the
model. The posteriors of the fitted parameters are in
Table 1 and in Fig. A1.

Figure 2 illustrates the potential of the framework to
effectively describe the numerous observations of this
complex epidemic. The main characteristic this frame-
work offers is the ability to reconstruct the time vari-
ation of the transmission rate β(t) (Fig. 2A) that is
needed to fit the observations. We can then compute
the time-variation of Reff (Fig. 2A). The initial value of
Reff is around 3.2 in accordance with numerous pub-
lished papers (e.g. [14]). The peak of Reff around the time
of the first hospital observations is presumably a com-
pensation effect of the model to accommodate diverging
trends between reported case data and hospital data.
Then one can note a decrease of 78% of Reff between the
1st of March and the 1st of May and a decrease of 86%
between the 12th of March (school closure and lock
down of offices, restrictions on travel etc) and the 1st of
May (Fig. 2A). The reduction in the transmission follow-
ing the second lockdown was around 20% (Fig. 2A).
Nevertheless the reduction of Reff was again significant
(70%) for the large wave that was observed in January

Table 1 Defnition of the different parameters and their priors and posteriors based on current literature [8–11] (see also Fig. A1). For
priors, some upper bound and/or lower bound have been imposed by the observations. U is for uniform distribution and tN for
truncated normal distribution (tN [mean,std.,limit inf,limit sup])

Parameters Definitions Prior or
constant value

Posterior
Median, [95%CI]

I1(0) Initial condition U[5,100] 42, [18–81]

S(0) Initial condition N = 5,176,000

E1(0), E2(0), I2(0), A1(0), A2(0), Initial conditions Use of steady-state conditions a

Other Initial Conditions Initials conditions 0

β(0) Initial condition of the transmission rate 0.70

ν Volatility of the Brownian process U[0.05,015] 0.133, [0.107–0.149]

1/σ average duration of the incubation tN[4,0.1,3,5] 3.99, [3.80–4.19]

1/γ average duration of infectious period tN[6,0.2,4.5,7.5] 6.00, [5.61–6.40]

1/κ average hospitalized period U [8, 20] 13.60, [12.15–15.15]

1/δ average time in ICU U [8, 20] 17.36, [14.86–19.57]

τA fraction of asymptomatics U[0.30,0.70] 0.487, [0.310–0.685]

τH fraction of hospitalization U[0.02,0.10] 0.027, [0.020–0.046]

τI fraction of ICU admission U[0.05,0.15] 0.030, [0.023–0.045]

τ□ death rate U[0.10,0.70] 0.411, [0.365–0.458]

q1 reduction of transmissibility 1.5. q2 but≤1

q2 reduction of transmissibility 0.55 [8]

qI reduction of ICU admission fraction 0.10

qD reduction of the death rate 0.20

ρI reporting rate for symptomatic infectious U[0.02, 0.15] 0.092, [0.062–0.142]

ρH reporting rate for hospitalized people U[0.95,1] 0.971, [0.951–0.997]

ρICU reporting rate for the ICU admission 0.96

ρG reporting rate for hospital discharge 0.96

ρD reporting rate for death 0.98

a steady-state conditions are defined by: dE1dt ¼ dE2
dt ¼ dI2

dt ¼ dA1
dt ¼ dA2

dt ¼ 0
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2021, largely due to the UK variant [15, 16] (Fig. 2A).
Given the temporality of the decline compared to the
timing of the NPIs, these sharp decreases seem to be
the result of the implementation of the mitigation
measures.
Another important characteristic of this epidemic is

the fact that the peak of daily hospital admission and
daily ICU admission are concomitant (Figs. 2G-H), this
concomitance has influenced the structure of the model
we developed.
A final important point concerns the observed daily

incident infectious. It is a source of data that the model

has not taken into account in the inference process (Fig.
2B). We fit the model to the daily incident infectious up
to March 25th only (black points on Fig. 2B), and plot
our daily incident infectious estimates with the corre-
sponding estimate of the reporting rate, with a median
of 0.09 (95% CI: 0.06–0.14). These data highlight that
the first peak in observed incident infectious comes 2–3
weeks late, and is higher than expected. This shows that
it is important to take into account a delay in reporting,
for instance using models for nowcasting [17, 18]. This
also clearly illustrates that the reporting rate has greatly
evolved during the course of the epidemic, with part of

Fig. 2 Reconstruction of the observed dynamics of COVID-19 in Ireland. A The time evolution of both β(t) and Reff (t). B Simulated observed daily
incident infectious. C-D New daily admissions to hospital and to ICU. (E) Daily new deaths. F Hospital discharges. G-H Cases in Hospital and in
ICU each day. The black points are observations used by the inference process, the white points are the observations not used. The blue lines are
the median of the posterior of the simulated trajectories, the mauve areas are the 50% Credible Intervals (CI) and the light blue areas the 95% CI.
In (A) the orange area is the 50% CI of Reff, the vertical dashed lines show the date of the main NPI measures and the horizontal dashed-line
Reff = 1. For all the graphs, the reporting rates are applied to the model trajectories (Fig. 3) as during the inference process for comparison to
the observations
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the increase maybe explained by a greater proportion of
asymptomatics tested as time went on, whereas in the
model the people tested are considered symptomatic. It
is worth noting that as the epidemic progressed, after

November 2020, the observed positive cases became
more consistent with the hospital data (Fig. 2B-D).
Figure 3 displays the dynamic of the model. Fig-

ures 3C-D show that the asymptomatic infectious are as

Fig. 3 Dynamics of COVID-19 in Ireland. A Time evolution of both susceptibles S(t) and Reff (t). (B) Infected non infectious, E(t) = E1(t) + E2(t). C
Symptomatic infectious I(t) = I1(t) + I2(t). D Asymptomatic infectious A(t) = A1(t) + A2(t). (E) Hospitalized people H(t) = H1(t) + H2(t) + ICU(t). F People in
ICU, ICU(t). G Cumulative death D(t). (H) Removed R(t). The blue lines are the median of the posterior of the simulated trajectories, the mauve
areas are the 50% Credible Intervals (CI) and the light blue areas the 95% CI. In (A) the orange area is the 50% CI of Reff and the horizontal
dashed-line indicates Reff = 1. In (H) the red line shows the median of R(t) when the “effectively protected vaccinated people” (see eq. A2) have
been subtracted. The black points are observations used by the inference process, the white points are the observations not used
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important as symptomatics but with a larger uncertainty
due to lack of information available in the data. Indeed,
the data used contain very little information on asymp-
tomatics and we observe identical prior and posterior dis-
tributions for the rate of asymptomatic, τA (see Fig. A1).
Our model also allows us to estimate the sero-

prevalence (Fig. 4). Our estimation for the 1st July is
2.1% (95% CI: 1.2–3.6%) and is in complete accordance
with a survey study that shows a sero-prevalence of 1.7%
(95% CI: 1.1–2.4%) between 22nd June and 16th July
2020 [19]. Figure 4 displays our estimation of the time
evolution of the sero-prevalence that shows a large in-
crease from the beginning of January 2020 due to the
high propagation of the UK variant [15, 16] but, also, it
would seem, due to the rolling out of the vaccination.

Discussion
The need globally to accurately model COVID-19 miti-
gation strategies and asymptomatic transmission in
order to plan for the burden on hospital admissions was
identified early in the pandemic [20]. Davies et al. [21]
within their models in the United Kingdom have pre-
dicted that extreme measures are probably required to
prevent an excess of demand on hospital beds, especially
those in ICUs during 2021. Similarly in France, Di
Domenico et al. [9] have used modeling techniques cali-
brated with hospital admission data to model the impact
of mitigation strategies to predict the scale of the epi-
demic within the Ile-de-France region. In the same way,

we provide estimations of the dynamics of the COVID-
19 epidemic in Ireland and its key parameters. The main
characteristics of our approach is accounting for non-
stationarity by embedding time-varying parameters in a
stochastic model coupled with Bayesian inference. This
mechanistic modeling framework enables us to recon-
struct the temporal evolution of the transmission rate of
the COVID-19 based only on the available data, under
the non-specific assumption that it follows a basic sto-
chastic process constrained by the observations. We can
also describe the time evolving COVID-19 epidemic,
quantifying the effects of mitigation measures on the
virus transmission during and after the three waves suf-
fered, and also estimate the sero-prevalence.
With our approach that mainly uses well-documented

hospital data, we found a reduction of transmissibility of
the SARS-CoV-2 of 78–86% after the implementation of
the mitigation measures for the first wave. Our reduc-
tion estimations were around 20% for the second wave
in October–November 2020 but more than 70% for the
third wave in January–February 2021. These reductions
in transmission may reflect the nature of the mitigation
measures introduced in the country. For the second
wave, these measures were less restrictive than during
the first and third wave, nevertheless the second wave
was also less severe. These results are in accordance with
the results published on the effects of mitigation mea-
sures in Europe during the first wave [14, 22]. For ex-
ample, Garchitorena et al. [22] by comparing 24 non-
pharmaceutical interventions found that the median de-
crease in viral transmission was 74%, which is enough to
suppress the epidemic and that a partial implementation
of different measures resulted in lower than average re-
sponse efficiency.
Our results also highlighted that the observed con-

firmed cases are only a small fraction of the total num-
ber of cases, only the tip of the iceberg (see [4]). This
underlines that human behavior in the face of testing as
well the delays in reporting, must be accounted for, for
instance using models for now-casting [17, 18]. For ex-
ample, in France it has been estimated that the detection
rate increased from 7% in mid-May to 40% by the end of
June, compared to well below 5% at the beginning of the
epidemic [23]. Then data from hospital system published
by health authorities are crucial for understanding the
course of this epidemic. These data are well measured,
but are observed with a delay in relation to contamin-
ation. Nevertheless, these delays can be easily account
for by mathematical models.
Our study is not without limitations. Our model like

all complex SEIR models developed for COVID-19 is
non-identifiable which means that it is likely that several
solutions exist and we only present one of the most
likely. This point is always overlooked but see Li et al.

Fig. 4 Estimation of the sero-prevalence and comparison with the
value from a serological survey study [19]. The blue lines are the
median of the posterior of the simulated trajectories, the mauve
areas are the 50% CI and the light blue areas the 95% CI. The black
line, around June–July, is for the median value of the serological
survey, the orange area is for its 95%CI. The red line shows the
median of sero-prevalence without the effect of vaccination simply
by subtracting from the removed (R(t)) the “effectively protected
vaccinated people” (see eq. A2) and the dashed red lines its 95%CI
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[8]. The major limitation is the use of the classical
homogeneous mixing assumption in which all individ-
uals are assumed to interact uniformly and ignores het-
erogeneity between groups by sex, age, geographical
region. In all cases taking an age structure and mixing
matrix appears insufficient and heterogeneity of contact
is important (see [24]). However this kind of data is not
easily available. Another weakness is perhaps the neglect
of age-structure in the model to simulate age-based pre-
dictions as we enter the time of children returning to
school. These weaknesses are however a future research
development given the performance of the current
model. Nevertheless in our opinion, these limitations are
compensated for taking non-stationarity of this epidemic
into account and by the fact that our results are mainly
driven by hospital data, which is more accurate than the
number of infected cases. Precise data from serological
studies at different time periods would significantly re-
duce the uncertainties of the model predictions [25, 26].
The key strength of the current Irish study is the fit of

the model to the current observed data on hospitaliza-
tions, deaths and ICU cases that were likely to be the
most accurate COVID-19 related data [27]. This allows
us to present the first Irish modeling estimates of sero-
prevalence. The model presented predicted that in
Ireland as of the 1st July 2020 between 1.2 and 3.5% of
the population had been infected either as a symp-
tomatic or asymptomatic case. This is in complete ac-
cordance with preliminary national serological results,
which found that among 12 to 69 year olds living in
Ireland the sero-prevalence rate was estimated be-
tween 26th June and 20th July 2020 at 1.7% (95% CI:
1.1–2.4%) [19]. Due to the high number of infected
people during the second wave and especially during
the third wave, by mid-May 2021, the sero-prevalence
was estimated to be greater than 20%. This high value
also reflects the result of the rolling out of the na-
tional vaccination programme (Fig. 4).
For the first wave, our sero-prevalence predictions

contrast with those of more densely populated areas. For
the first wave, estimated serological prevalence in the
United Kingdom based on a random sample of home
based testing has found that 6.0% (95% CI: 5.8–6.1%) of
individuals tested positive, of these one third (32.2%,
(95% CI, 31.0–33.4%)) reported no symptoms and were
asymptomatic [21, 28]. Overall the authors estimated
that 3.36 million (3.21 million to 3.51 million) people
had been infected with SARS-CoV-2 in England by
the end of June 2020. This estimate was substantially
higher than the recorded numbers in the UK of
315,000 cases. This is in accordance with observations
from Spain where between April and May 2020, sero-
prevalence was 5% and only few cases of these people
had a PCR test [29].

Undocumented infections particularly asymptomatic
infections are known to be the silent drivers of infec-
tion. Many studies [29–35] that have investigated the
impact of asymptomatic carriers on COVID-19 trans-
mission state that, in a public health context, the si-
lent threat posed by the presence of asymptomatic
carriers in the population results in the COVID-19
pandemic being much more difficult to control. These
studies show that the population of individuals with
asymptomatic COVID-19 infections is contributing to
driving the growth of the pandemic. Li et al. [8] esti-
mate that in the early stages of the epidemic in China
86% of all infections were undocumented (95% CI:
82–90%). However perhaps what is more important
according to Li et al. [8] was that the transmission
rate of undocumented infections per person was 55%
the transmission rate of documented infections (95%
CI: 46–62%), yet, because of their greater numbers,
undocumented infections were the source of 79% of
the documented cases. In Ireland, we can see from
Fig. 3 that our model estimates that the number of
asymptomatic infectious is of the same order of mag-
nitude as the number of symptomatic infectious but
with a larger uncertainty. This highlights that there is
not enough information in the data to go beyond the
published values that have been considered in the
prior of τA. It also emphasizes the importance of
asymptomatic transmission, which is very difficult to
observe. However, considering this large uncertainty,
the computation of the part of asymptomatic trans-
mission is not relevant.
We also found other interesting results such as a sig-

nificant similarity between the trend of mobility and our
estimation of the transmission between the epidemic
waves (see Fig. A2 and [36]), highlighting the importance
of following the evolution of mobility when relaxing
mitigation measures to anticipate the future evolution of
the spread of the SARS-CoV-2 [37].

Conclusions
In this work we have used a stochastic framework
that accounts for the time-varying nature of the
COVID-19 epidemic by using time-varying parameters
and hospital data to provide a description of this
evolving epidemic. Our results demonstrate that
Ireland has significantly reduced transmission by
employing mitigation measures, physical distancing
and and long lockdowns for wave 3. This has avoided
the saturation of healthcare infrastructures, flattened
the epidemic curve during each wave and likely
greatly reduced mortality. Our framework that ac-
counts for the non-stationarity of the transmission
also offers the possibility of computing the time vary-
ing Reff(t) and then to offer an interesting tool to
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follow the evolution of the COVID-19 epidemic. This
tool could prove particularly useful in analyzing this
new phase of this special epidemic, as new variants
potentially more transmissible and/or more infectious
could continue to emerge and mitigation measures
change silent transmission.
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