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Abstract: In this study, we examine how Battery Storage (BES) and Thermal Storage (TES) combined
with solar Photovoltaic (PV) and Concentrated Solar Power (CSP) technologies with an increased
storage duration and rental cost together with diversification would influence the Moroccan mix
and to what extent the variability (i.e., adequacy risk) can be reduced; this is done using recent
(2013) cost data and under various penetration scenarios. To do this, we use MERRA-2 climate
reanalysis to simulate hourly demand and capacity factors (CFs) of wind, solar PV and CSP without
and with increasing storage capabilities—as defined by the CSP Solar Multiple (SM) and PV Inverter
Loading Ratio (ILR). We adjust these time series to observations for the four Moroccan electrical
zones over the year 2018. Our objective is to maximize the renewable (RE) penetration and minimize
the imbalances between RE production and consumption considering three optimization strategies.
We analyze mixes along Pareto fronts using the Mean-Variance Portfolio approach—implemented in
the E4CLIM model—in which we add a maximum-cost constraint to take into account the different
rental costs of wind, PV and CSP. We propose a method to calculate the rental cost of storage and
production technologies taking into account the constraints on storage associated with the increase
of SM and ILR in the added PV-BES and CSP-TES modules, keeping the mean solar CFs fixed. We
perform some load bands-reduction diagnostics to assess the reliability benefits provided by each RE
technology. We find that, at low penetrations, the maximum-cost budget is not reached because a
small capacity is needed. The higher the ILR for PV, the larger the share of PV in the mix compared
to wind and CSP without storage is removed completely. Between PV-BES and CSP-TES, the latter is
preferred as it has larger storage capacity and thus stronger impact in reducing the adequacy risk.
As additional BES are installed, more than TES, PV-BES is favored. At high penetrations, optimal
mixes are impacted by cost, the more so as CSP (resp., PV) with high SM (resp., ILR) are installed.
Wind is preferably installed due to its high mean CF compared to cost, followed by either PV-BES
or CSP/CSP-TES. Scenarios without or with medium storage capacity favor CSP/CSP-TES, while
high storage duration scenarios are dominated by low-cost PV-BES. However, scenarios ignoring
the storage cost and constraints provide more weight to PV-BES whatever the penetration level. We
also show that significant reduction of RE variability can only be achieved through geographical
diversification. Technological complementarity may only help to reduce the variance when PV and
CSP are both installed without or with a small amount of storage. However, the diversification effect
is slightly smaller when the SM and ILR are increased and the covariances are reduced as well since
mixes become less diversified.

Keywords: concentrated solar power; thermal energy storage; photovoltaic; battery energy storage;
rental cost; diversification; Morocco

1. Introduction

Optimal mixes under high penetration scenarios are expected to combine different
technological options with energy storage systems [1,2] because each technology has
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its own advantages and disadvantages and plays a different role. Particularly, solar
technologies such as Photovoltaic (PV) and Concentrated Solar Power (CSP) are foreseen in
future climate [3,4]. Currently, PV and CSP are reaching, respectively, 627 gigawatts (GW)
and 6.2 GW of installed power worldwide in 2019 mainly in Asia, the United States and
Europe driven by policy mechanisms [5,6].

On one hand, CSP can shift electricity over time using cheap Thermal Energy Storage
(TES) [7] and is able to provide energy at times of greatest need [8–11]. However, although
CSP-TES is less variable in output than PV [12], it has struggled to compete with PV because
of the low cost of the latter which has further steeply declined recently [13].

On the other hand, PV, and indeed other variable generation technologies such as
wind, relies on the availability of the resource and thus is unable to produce constant
and smooth power over time. Moreover, when the sun falls, electricity demand increases
but PV output decreases, resulting in the famous duck curve phenomenon [14,15]. This
fluctuating generation imposes significant reliability and economic challenges [16–18] for
the electrical generation and transmission system [19] and for the distribution system [20].
To mitigate the intermittency of PV production and the system’s ramping requirements, PV
must be combined with a Battery Energy System (BES) that can produce stable output as
CSP with TES does [21,22]. The batteries have until now been uneconomical to utilize as a
grid-scale storage [23]. Currently, a system that combines PV with BES is more commonly
used in smaller residential markets [24,25] (i.e., for households [26,27], or for university
campuses [28] or for electric vehicles [29]) to reduce the grid electricity use [30,31] because
it still requires subsidies to be economically viable [32,33]. PV-BES can also include hybrid
options with wind [34] or with diesel generators to reduce fuel consumption [35,36].
However, the declining costs of both PV and batteries due to the recent development has
raised interest in the optimization of BES capacity for a grid-connected PV system [37–39]
and has created high expectations that PV-BES can be dispatched in the market [40–43] or
lead to an autonomous micro-grids [44] to provide dispatchable and reliable capacity [45].
However, this issue of falling PV prices increasingly questions the competitivity of CSP
in the electricity mix, which for a long time has been considered to be the first-choice
technology for solar power expansion, particularly in the MENA region [46,47].

Since solar power connected to the electricity network is often contracted under a
power purchase agreement, which is paid by the kilowatt hour generated, more hours
of operation equals more money to amortize capital costs faster, so developers want to
maximize the hours of operation each year. In order to increase the operating hours of
both solar technologies, one may increase both TES (resp., BES) capacity and CSP solar
field—SF—(resp., PV solar panels—SP) compared to fixed electricity-generating turbine
(resp., inverter) capacity, as measured by the Solar Multiple—SM—(Inverter Loading
Ratio—ILR) [48]. Therefore, not only the relative variance is reduced, but the mean of
the CF is increased as well, even without storage, because the system in this case rarely
produces at nominal capacity; this allows to reach a more efficient operation of the electrical
generation, which reduces the operation and maintenance costs [13,49]. In addition, the
adoption of TES (resp., BES) in CSP (resp., PV) plants will generally lead to increased capital
costs because of the investment in storage systems, but also the cost of the additional CSP
SF (resp., PV SP) that are required to produce electricity also in times when the sun does not
shine. However, the greater electricity generation will generally result in a lower electricity
generation cost (LCOE) [48–50]. Overall, the trade-off between the incremental costs of
the increased storage systems size and of the additional CSP SF (resp., PV SP) must be
balanced against the decrease in the variability and the revenues that will accrue from the
ability to dispatch power generation at times of high demand and high electricity prices.

A key question moving forward is how to compare interaction between PV-BES and
CSP-TES in a particular prospective power generation mix based on renewable energies
(REs). While both technologies collect solar radiation and produce electricity, they do so
through different mean production, costs and variability [51], which creates challenges for
direct comparison.
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Recently, the cost and storage effect that solar technologies PV and CSP with their
associated storage (BES and TES) have on an energy mix have been addressed in literature.
Bogdanov et al. (2015) [52] analyze the role of these technologies towards 100% RE mix.
Feldman et al. (2016) [48] use a range of cost projections to compare the competitivity of PV-
BES and CSP-TES through 2030. Chattopadhyay et al. (2018) [53] built a capacity planning
model to evaluate the impact of the addition of PV-BES without or with spinning reserve
capability on the integration of CSP-TES. Lovegrove et al. (2018) [54] examine different
dispatchable generation technology combinations with regard to their development status,
performance characteristics, storage capability and costs. Kumar et al. (2019) [55] present a
comparative economic analysis of supplying solar PV-BES and CSP-TES power to a particu-
lar load in India. Zurita et al. (2019) [56] evaluate different dispatching strategies of a hybrid
CSP-PV-TES-BES in Chile considering different seasons and locations. Papadopoulou et al.
(2020) [57] assess the techno-economic performance of combination of these technologies
with offshore wind with storage. Overall, these publications [48,52–57] tend to analyze the
competitiveness of PV-BES with CSP-TES over a range of storage requirements and under
several projected cost declines for PV, batteries and CSP, focusing only on generation costs.
However, the inherent differences between these technologies cannot be examined using a
single metric as both provide different grid services and different economic values. For
instance, depending on the amount of storage associated, a PV-BES system may provide
additional services [53,58,59] such as responding very quickly to changing system needs
compared to CSP-TES which requires time to start up and ramp [48]. Alternatively, CSP-
TES may allow a greater capture of solar energy, reducing the curtailment in very high solar
penetration scenarios [60]. In addition, the value of dispatchable solar energy operating
during peak hours—when the fuel cost of conventional generators is high—is much more
important than that of solar base load plants operating only during low-load periods.

Thus, while these analyses evaluate only cost per unit of generation, additional studies
focus also on the variability by considering the incremental avoided capacity and fuel
costs associated with the addition of PV-BES and CSP-TES. For instance, Narimani et al.
(2017) [61] compare this operational value in the Australian electricity market. Existing
research tends to compare the capacity credit (i.e., the actual fraction of the generators
capacity that could reliably be used to replace conventional capacity during peak hours,
which is typically measured as percentage of nameplate capacity), or the effective load-
carrying capacity of a plant (i.e., the capacity credit multiplied by the nameplate capacity)
between PV and CSP-TES or conventional gas generators [21,62] and PV-BES [22]. Similar
contributions have been made to compare the net cost or the benefits–costs ratio [22] (resp.,
benefits/costs) [63] determined by subtracting (resp., dividing) the annualized capital and
fixed operation and maintenance costs of a generator from the system cost savings.

However, an analysis of the conditions under which each technology outperforms its
counterpart within an optimization framework under different scenarios of penetrations
and storage configurations considering both the cost and the storage impact on the mean
penetration, variance and covariance between different renewable technologies and climate
regions remains not explored. Particularly, the utilization of CSP and PV with storage is
widely suggested within the Moroccan strategy that aims to deploy 20% of its electrical
capacity from solar energy by 2030 [64]. However, the share between PV and CSP and the
amount of storage associated is still to be found. Currently, the actual storage configuration
and performance of these systems for dispatchable energy are in the early stages of being
defined. In fact, renewable expansion in Morocco, with high solar resource [64], is primarily
perceived in terms of opportunities, such as contribution to RE targets, reduction of carbon
emissions, reducing energy dependence [64], while the issues related to cost and storage
associated with solar technologies in the mix receive significantly less attention.

Choosing the technologies on the basis of cost alone (i.e., cost minimization problem)
or characterizing the variability of imbalances alone (i.e., reducing the balancing needs)
can be misleading [65]. These objectives are likely to be conflicting with each other. As
such, an energy system based on solar technologies (PV, CSP) without and with their
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associated storage (BES, TES) needs a multi-objectives optimization problem that considers
the whole range of feasible solutions by determining trade-offs between mean production,
cost and variability. Such a trade-off can be satisfied by the “Pareto Optimal Front” of
the bi-objective mean-variance optimization problem [66] used in this study. We take the
existing power generation portfolio as a starting point for the analysis of possible system
transformation trajectories with solar and wind energies. Our objective is to maximize the
RE production at a given cost and to lower the mismatch between the demand and the
RE production (i.e., the variance-based adequacy risk for the electrical grid). Increasing
the mean RE penetration towards 100% tends to reduce system costs and greenhouse gas
emissions by decreasing the total conventional production.

This study is a follow-up work to a previous study carried out by Bouramdane et al.
(2020) [51] exploring the response of the Moroccan mix to the integration of CSP/CSP-TES
with different storage capabilities with wind and PV without storage and examining the
role of thermal storage and diversification in reducing the variability. In this study, the
optimization problem is not only sensitive to the change of the variance associated with
the change of the CSP SM and to the different rental costs of wind, PV and CSP, but also to
(i) the variance associated with the change of the PV ILR and to (ii) the different rental cost
of PV and CSP storage configurations. As in this previous study, we optimize the electricity
mix using a recommissioning approach in which the total cost of a mix is constrained to be
lower than that of the current (2018) Moroccan mix with the following analysis. We try to
see what role the addition of battery to PV can play in reducing the variability and whether
or not it becomes part of the mix examining its integration with CSP/CSP-TES and wind
across a set of penetrations regimes and under the recent (2013) cost data. Concerning the
competitiveness between PV-BES and CSP-TES, this study does not aim to identify the best
technology or analyze the sensitivity of the mix to cost uncertainty, but rather to investigate
the circumstances under which PV-BES could have an advantage against comparable
technologies (i.e., CSP-TES) along with a range of other points of comparison in terms of
rental cost and variability (i.e., load bands reduction such as the average capacity credit).
Therefore, this study attempts to answer two further questions to the ones answered in [51]:

• Does the cost and storage capability of CSP-TES and PV-BES that increase with the
SM and ILR introduce a significant change in the scenario mixes?

• What are the benefits of CSP combined with TES to PV deployed with BES in terms of
adequacy risk (i.e., variance-based risk and load-bands-reduction diagnostics)?

In order to find answers to the questions stated above, we use the E4CLIM model [51,67]
that allows, using climate data provided by MERRA-2 reanalysis for the four Moroccan
electrical zones for the year 2018, to simulate hourly wind, PV with BES, CSP without
and with TES, and demand curves adjusted to observations. We address different com-
binations of variably sizable PV and CSP with wind. We choose similar sizing to make
the technologies as comparable as possible. We develop a method of rental cost modeling
in which the cost related to energy and power capacity of both storage technologies is
considered, keeping the cost of CSP SF (resp., PV SP) constant to remain coherent with
the fact that the mean solar CFs of different storage sizes are roughly equal due to bias
correction. Therefore, an increase in the CSP SM (resp., PV ILR) gives an increase in the
storage capacity and the maximum power of charging/discharging which increase the
rental cost. So far, most studies are based on an uniform distribution of RE capacities. In our
study, the distribution of the RE capacities is optimized technologically or geographically,
or both, in order to evaluate the impact of diversification in reducing the standard deviation
of the RE production.

After this introduction, the remainder of this paper is organized as follows. The
methodology section (Section 2) comprises different sub-sections. Section 2.1 gives an
overview of our objectives and the available optimization strategies in the E4CLIM model.
The remaining sub-sections present the stages of our research contribution to E4CLIM
(Section 2.2), including the theoretical framework of the storage model (Section 2.3) and
the cost model (Section 2.5) implemented as a special case for this study. We also present
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the optimization inputs (Section 2.4) and the renewable combinations considered in this
study (Section 2.6). Section 3 presents the resulting optimal scenario mixes by analyzing the
impact of thermal and battery storage on the technological and geographical distribution
of RE capacities (Section 3.1), the impact of diversification (Section 3.2) and the role of CSP-
TES compared to PV-BES in reducing the adequacy risk (Section 3.1). Section 4 summarizes
the methodology adapted and the results gained for all scenarios. Points of discussion
regarding the scenarios of solar integration in Morocco will be further considered before
concluding the limitations of the current study and the expected future work.

2. Methodology

In this section, we give a brief description of the mean-variance optimization frame-
work, as an alternative to the more traditional least-cost approach or minimum balancing
needs approach, before describing the methodology adapted in the storage and rental
cost models.

The flow chart given in Figure 1 summarizes the components of E4CLIM (dark blue),
including the modules added (light blue) and the data sources (gray) to illustrate briefly
the general framework of this study.

Figure 1. Flow chart of E4CLIM components (dark blue) including the modules added (light blue)
and the data sources (gray) illustrating the general framework of this study. TheE4CLIM’s flow
is divided in three steps: (1) Capacity factors and demand time series are first estimated from
climate grid points and fitted to observations; (2) The mix is then optimized using the Mean-Variance
Portfolio (MVP) approach; (3) The mix properties (technological and geographical distribution) are
analysed; (4) The load-bands reduction diagnostics based on the “Residual Load Duration Curve
(RLDC)” are finally computed to give a more detailed analysis of the services provided by different
RE systems.

2.1. Objective Functions and Optimization Strategies in E4CLIM Model

The bi-objective optimization problem aims at maximizing the mean penetration (1)
and minimizing the aggregate RE supply risk squared σ2

global|technology|strategy of the mix;
using three versions of the variance: global variance (2) of energy generation ηk(t) · ωk
considering covariances between time-dependent predicted CFs, ηk(t)—normalized by the
total predicted demand ∑i Di(t)—for a pair k = (i, j) of different production technologies j
in different zones i; technology strategy (3) where only covariances between technologies
of the same zone are considered; and base strategy (4) where all covariances are set to zero.
Comparing mixes from these strategies allows us to assess the benefits from technological
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and geographical diversification. For instance, having non-zero installed capacities, ωk,
in two negatively correlated region–technology pairs produces lower risk than in cases in
which they are positively correlated or even uncorrelated (right side of Equation (2)).

µ(w) := E
[
∑
k

ωk
ηk(t)

∑i Di(t)

]
= ∑

k
ωkE

[
ηk(t)

∑i Di(t)

]
. (1)

σ2
global(w) := V

[
∑
k

ωk
ηk(t)

∑i Di(t)

]
:= ∑

k
ω2

kV
[

ηk(t)
∑i Di(t)

]
+ ∑

k 6=l
ωkωlCov

[
ηk

∑i Di
,

ηl

∑i Di

]
. (2)

σ2
technology(w) := ∑

i
V
[
∑

j
wk

ηk(t)
∑i Di(t)

]
(3)

σ2
base(w) := ∑

k
V
[

wk
ηk(t)

∑i Di(t)

]
(4)

E, V and Cov represent respectively the mathematical expectation, variance and
covariance operators over time; and ∑ is the sum over the index in subscript.

For each strategy, an optimal mix is obtained by minimizing the variance for a given
desired mean penetration or vice versa ([67], Appendix B). Therefore, the mean-variance
approach does not provide a single optimal mix but several optimal choices, referred to as
the optimal frontier curve (µ(ŵ), σ(ŵ)) visualized in the mean-standard deviation graph,
where ŵ denotes the vector with components giving the optimal installed capacities, ωk,
for a zone–technology pair k. This allows for more space to arbiter between different mixes
with a large share of renewable energies and mixes requiring less flexibility.

This mean-variance bi-objective problem is implemented in the E4CLIM model that
allows to compute wind, solar PV production, energy demand adjusted to observations by
using geographical data for specific area and climate data, and to optimize the renewable
electricity mix; taking into account the time–space variability of both the generation and
the demand [67].

2.2. Model Set-Up and Additional Modules to E4CLIM Model
2.2.1. Domain and Calibration

We adapt the E4CLIM model to Morocco and its four electrical zones i={NORTH,
CENTER, EAST, SOUTH} for the year 2018 by calibrating it with Morocco’s data. The
geographical, climate, demand and CFs data are described in ([51], Section 2.6).

The accuracy of the mean-variance analysis (Section 2.1) depends on the inputs of
this optimization problem, namely, the vector of mean solar and wind capacity factors
(CFs) and demand time series entering the definition of the mean penetration (1) and of
the variance (2). To correct bias that stems from climate simulations, real hourly renewable
(RE) production time series per zone and technology are required. These data are difficult
to acquire at regional level and in appropriate intervals in Morocco, since the deployment
of RE capacity is relatively recent in Morocco (it started in 2009 but not until 2016 for solar
CSP) [68]. The RE production and capacity data used in this study were provided by recent
literature research on a yearly basis. However, while knowing a single averaged value over
the region is useful, this may not be sufficient to correct low-frequency climate variability
of electricity production. On the other hand, from a climate perspective, the analyses of
long-term climate data can have a substantial impact on the design of electricity mixes [69].
Accordingly, we estimate the CFs and demand over the whole period (1981–present day)
available from the MERRA-2 reanalysis climate data [70]. Since the inter-annual variability
of the mean CFs and mean demand (inputs of the optimization) from 1981 to 2019 were
found to be weak (not shown here) and since the length of the regional observed demand
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time series is limited to one year (2018) on an hourly basis and only means of observed CFs
over the same year are available, we consider that the climate over the period 1981–2019 is
represented by the year 2018 to correct bias in the production models and fit the demand
model. Running the MERRA-2 climate reanalysis on only one year can be very misleading.
The simulations are independent of the chronicles of past years. The shorter the time
horizon, the larger variation the is in the average, because there is an averaging effect when
considering a large time horizon. Due to lack of high-quality data, our analyses are carried
out over one year spanning the period from January 2018 to December 2018 to improve the
bias in the variance of the CFs since our objective is to analyse the sensitivity of the mix to
storage and cost associated with solar technologies and not to find the long-term planning
for system capacity (i.e., how much capacity is needed in order to meet greater demand).

2.2.2. CSP-TES and PV-BES Simulation Modules

To study the response of the optimal mix to the integration of CSP without/with
storage and to the addition of storage to PV, we develop solar modules to E4CLIM to
simulate the thermal (resp., Direct Current, DC) energy provided by either the CSP solar
field (resp., PV solar panel) or the thermal (resp., battery) storage system and the electricity
produced by the CSP power block (resp., PV inverter). See ([51], Section 2.3) for CSP and
Appendix A for PV.

In our study, parabolic trough (PT) was selected because it represents today’s most
widespread CSP technology [49], in particular in Morocco [71–73], with continuous north–
south tracking as it is relevant orientation for locations with a high summer peak and with
relatively large seasonal irradiation variance [74–76] (i.e., Morocco, see Section 3.1.4).

For PV, a multi-crystalline technology is used due to its large market share [77]. Unlike
CSP, the PV surface is not tracked-horizontal, it is fixed-tilted up toward the South horizon
by an angle equal to the local latitude. This orientation is often selected since it averages the
noontime irradiation peaks over the year [75,78] to maximize the annual energy produced,
particularly in Morocco [79].

Due to weather and clouds, we rarely obtain the nominal conditions ratings from a
solar CSP (resp., PV) plant. Therefore, an appropriate storage strategy is needed. A very
common storage strategy is to save energy stored for a time when the electricity prices and
demand are high to achieve maximum revenues and only the remaining energy that the
storage cannot admit goes to the turbine (resp., inverter) (e.g., for CSP [80,81]). However,
this operation strategy needs the ability to react very quickly to price fluctuations and only
operate during peak load hours, so that a low capacity factor (CF) is achieved. However, to
maximize the RE penetration (1), one has to maximize the power output throughout the
day and night (if possible). Unlike CSP-TES, there have been no large-scale deployments
of PV with BES systems designed to provide dispatchable energy. Therefore, the concepts
and nomenclature of solar-plus-storage plant configurations are better established for CSP-
TES than for PV-BES. For the sake of simplicity, we illustrate in Section 2.3.1 the general
approach used to increase the full-load operating hours of CSP and PV by referring to
related equivalent terms. In addition, Section 2.3.2 presents the storage model implemented
to the thermal and battery storage combined with CSP and PV, where for each storage
configuration, we follow the nominal thermal (resp., DC) capacity in order to maximize
the CSP (resp., PV) CFs.

We assume that, apart from onshore wind, solar PV and CSP, both without or with
storage, no other renewable (RE) technology takes part of the electricity generation; and
the difference between the demand and the RE production is taken into account in the
mean (1) and risk (2) of the mean variance, used as proxies for the system adequacy services
needed from the conventional plants or other flexibility options (imports, demand-response
mechanisms, etc.) Thus j = {PV, Wind, CSP}, and j′ = {BES, TES}. The multi-index is
thus either k = (i, j) if no storage or k = (i, j, j′) if storage is integrated.
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2.2.3. Cost Modules

To take into account the differences in rental cost between PV, wind, CSP technologies,
we use the maximum-cost constraint (5) added to the optimization problem in addition to
the constraint preventing RE capacities to be negative ωk ≥ 0∀k. Thus, we allow the model
to recommission PV, wind and CSP capacities at a cost limited by the total cost of capacities
ωobs

k for all k (5) installed in Morocco in 2018 corresponding to the most widely deployed
system in Morocco (PV-Wind-CSP-TES combination with 5.5 h of TES):

∑
k

ωkck ≤ Cobs
tot (5)

The quantity ck is the rental cost which corresponds to the total discounted costs of
installing and operating given system over its lifetime, in e/MW/yr [82].

After bias correction, we found that the means of solar CFs for different storage sizes
have similar values (Section 2.4) because all the operational CSP (resp., PV) plants have
similar CSP SF (resp., PV SP) size (as defined by CSP Solar Multiple—SM—or PV Inverter
Loading Ratio—ILR) even though they have different storage durations (Appendix C.2).
Therefore, in our previous study [51], the rental cost of CSP is also kept the same for
different SMs and we proposed a definition of rental cost, ck, that implicitly accounts for
the TES cost (6) considering the rental cost of the whole CSP-TES plant—corresponding to
the Andasol plant with 6–8 h of storage on average, for which cost data are available. In
this case, the TES constraints are ignored in the storage model and only operational CSP
plants with 7 h of TES are selected to correct bias in the mean CSP CFs and to compute the
maximum-cost constraint (5). The cost data in this case come from the scenario-based cost
trajectories to 2050 [83] of the European Commission Joint Research Center (JRC) for the
year 2015.

ck := cj,j′6−8h
= ∑

Li f etimej,j′6−8h
t=1

CAPEXj,j′6−8h
+OPEXj,j′6−8h

(1+DRj)t . (6)

The terms CAPEX and OPEX are, respectively, the capital and operational expendi-
tures over the lifetime of the plant; DR is the discount rate.

Doing so, the optimization problem is only sensitive to the change of the variance
associated with the change of the SM and to the different rental costs of wind, PV and
CSP. However, the costs per installed capacity of CSP and PV plants utilizing storage with
several hours will be much higher than those of plants without storage or with smaller
amounts of storage. Therefore, evaluating a specific technology j or j, j′ in the mix requires
calculating the technology rental cost cj but also the storage rental cost cj′ . For this reason,
a different rental cost formulation is implemented in this study (Section 2.5). Therefore,
to take into account the increased cost related to increased storage size, we have to apply
constraints on the storage capacity and the maximum power of charging/discharging in
the storage model (Section 2.3.2).

2.3. Storage Modeling

The left panel of Figure 2 represents a block diagram of a CSP-TES (resp., PV-BES)
plant components. The left-corner block is the CSP Solar Field—SF— (resp., PV Solar
Panel—SP) providing thermal (resp., Direct Current—DC) output; the corner block on
the right is the CSP Power Block–PB—(resp., PV Inverter—INV) providing the electrical
output. To the bottom is the Thermal (resp., Battery) Energy Storage system (i.e., TES
and BES). The black arrows represent thermal/electrical flows to illustrate the meaning
of each parameter calculated. To simplify, let us consider X = {SF, SP}; Y = {PB, INV};
Θ = {TES, BES}; x = {therm, DC}; and y = {elec}.
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Figure 2. (Left) Scheme of the three modules of CSP (resp., PV) plant: X = {SF, SP}; Y = {PB, INV};
Θ = {TES, BES}; x = {therm, DC}; and y = {elec}. The black arrows represent the energy flows:
Solar Field (resp., Solar Panel) energy (PSM/ILR

X,x ), Energy from Solar Field (resp., Solar Panel) to

Power Block (resp., Inverter) (PSM/ILR
X→Y,x ), Energy stored (PSM/ILR

X→Θ,x ), Energy discharged (PSM/ILR
Θ→Y,x ) and

total available energy injected to the Power Block (resp., Inverter) (PSM/ILR
X→Y,x + PSM/ILR

Θ→Y,x ) and the State

of charge (SOCSM/ILR
E,Θ ). (Right) Illustration of CSP (resp., PV) plant configuration with different

Solar Multiple SM (resp., Inverter Loading Ratio ILR). ILR1 or SM1: without storage; ILR > 1 or
SM > 1: with increasing levels of storage. See [51], Section 2.3.3, for further description of these
parameters. Source: Own elaboration based on [84].

2.3.1. CSP Solar Multiple and PV Inverter Loading Ratio

Several sizing approaches exist depending on the desired type of plant (i.e., base,
peak or intermediate plant, etc.) [78,84]. In our study, we hold the CSP PB (resp., PV INV)
fixed and size the CSP SF (resp., PV SP) and Thermal (resp., Battery) storage system in
relation to the PB (resp., INV). In other words, we install more thermal (resp., DC) power
capacity on a PB (resp., INV) system than their power rating (right panel of Figure 2). The
ratio between the thermal (resp., DC) power produced by the CSP SF (resp., PV SP) and the
thermal (resp., DC) power required by the PB (resp., INV) at nominal conditions is called
the Solar Multiple—SM (resp., Inverter Loading Ratio—ILR) [48,84].

These parameters are proportional to the number of hours of production from the
thermal (resp., DC) energy stored. There is, however, an indirect relationship between
the SM (resp., ILR) and the storage size: The higher the SM (resp., ILR), the higher is the
aperture area of collectors in the SF (resp., SP) (7) which require larger storage capacity:

ASM/ILR
X :=

SM/ILR ∗ Pre f
X,x,nom

η
re f
X,nom ∗ S

= Are f
X ∗

SM/ILR
SMre f /ILRre f (7)

where S = {DirNIDP, GTISTC} is the direct normal irradiation at the design point; and
the global tilted irradiation at standard test conditions which are needed, respectively, by
CSP and PV. The term, Pre f

X,x,nom, is the thermal (resp., DC) nominal capacity. The quantities

Are f
X , η

re f
X,nom and SMre f /ILRre f are, respectively, the reference CSP SF (resp., PV SP) area,

efficiency and CSP SM (resp., PV ILR) [85].
Unlike PV, almost all CSP plants being developed in Morocco are with storage ([51],

Table A4). In our study, the reference configuration of TES is that of the 50 MW plant
Andasol 1 ([51], Table A1) with SMre f that we found equal to 1.87, meaning that the SF
delivers 87% more thermal energy than is required to generate the nominal power. The 87%
excess energy can be delivered to TES. We also consider SMs of 2, 3 and 4 by increasing
ASM

SF proportionally from its reference value using Equation (7). A case without storage is
also considered, in which the area, ASM

SF , is set for SM equal to 1.
For PV, the case without storage, ILRre f = 1, has been chosen as reference config-

uration. For the sake of comparison between PV-BES and CSP-TES, ILR of 2, 3, 4 are
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considered. With CSP SM4 (resp., PV ILR4), the plants are able to run at nearly constant
output (Section 3.1.4). Therefore, further increasing CSP SM (resp., PV ILR) does not
make sense, as during high irradiation periods they would lead to increasingly unused
surplus energy.

2.3.2. Storage Model Approach

In our study, the storage model is based on a set of dispatch conditions (Figure 3)
that takes into account the frequency of charging and discharging instead of relying on
heuristics or optimization problems [86], or applying a moving average filter [87] often
used to smooth the hourly daily fluctuations.

CSP production tends to produce more in grid cell with the most favourable solar
resource conditions, and often a minor portion of a grid points with high irradiation may
host enough installed capacity. Considering this, a higher percentile instead of the average
could better illustrate the storage capacity, store − capacitySM/ILR, and the maximum
power of storage, store− powerSM/ILR. These parameters are respectively calculated as the
95th percentile for the state of charge, SOCSM/ILR

E,Θ , and the energy charged, PSM/ILR
X→Θ,x , for

all climate grid points over 1 year (2018) by running the storage model without constraints.
In fact, the storage model without constraints compared to the one with constraints

(Figure 3) assumes that the storage system is never full, even after putting the CSP SF (resp.,
PV SP) excess, and is thus always available (i.e., empty or half-empty storage). That is to
say, that the storage system is always over-dimensioned to explore the solar resource and
maintain full output (Appendix B). The model with constraints assumes that the storage
system can be already full if the state of charge, SOCSM/ILR

E,Θ , exceeds the storage capacity

at some time spell t− 1, so that PSM/ILR
X→Θ,x = 0. Thus, the storage system is no longer always

available. In case the storage system is full after adding the excess of SF (resp., SP), we
store the maximum possible; otherwise, we store all the excess while satisfying the storage
constraints. The state of charge, SOCSM/ILR

E,Θ , is thus now limited by the storage capacity
and the maximum power of charging or discharging that depends on the surface of the SF
(resp., SP) ASM/ILR

X (7) and thus on the SM (resp., ILR). An overview of the charging and
discharging daily operation of the CSP-TES configuration with SMre f (5.5 h of storage) can
be found in ([51], Figure 1 in Section 2.3.3).

Figure 3. Storage algorithm illustrating the dispatch conditions of CSP thermal (resp., PV Direct
Current—DC) energy with constraints on the storage capacity and the maximum power of charging
or discharging. X = {SF, SP}; Y = {PB, INV}; Θ = {TES, BES}; x = {therm, DC}; and y = {elec}.
Source: Own elaboration based on [27,85].
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The storage duration per day on average (8) is calculated by subtracting the mean
CF of the plant with storage from the one without storage. The resulting TES and BES
parameters are given in Table 1.

hSM/ILR =
(ηi,j,j′ − ηi,j) ∗ 8760

365
(8)

Table 1. Storage parameters: Storage capacity (MWh) (first column), Maximum power of charging/discharging (MW)
(second column), Total energy discharged (TWh) (third column) and Storage duration (h/day) (fourth column) obtained for
TES and BES model without constraints (Appendix B).

SM/ILR
TES/BES Parameters

store − capacitySM/ILR store − powerSM/ILR ∑ ESM/ILR
discharged hSM/ILR

SMre f 649 149 36.5 5.48
SM2 754 169 42.7 6.13
SM3 1648 325 94.2 11.2
SM4 52,793 480 148.3 17.2

ILR2 794 × 10−6 183 × 10−6 47.4 × 10−3 4.73
ILR3 2038 × 10−6 399 × 10−6 122.7 × 10−3 9.13
ILR4 4909 × 10−6 616 × 10−6 201.8 × 10−3 13.4

2.4. Predicted Demand and Bias-Corrected Capacity Factors

The hourly wind, PV-BES and CSP/CSP-TES capacity factors (CFs) are obtained by di-
viding the computed production by its nominal value at each climate grid point. These time
series are then aggregated at regional level and statistically adjusted to observations ([51],
Section 2.6.4).

In this study, all operational CSP and PV plants are considered for bias correction
and to compute the maximum-cost constraint (5) (Appendix C.1), although PV and CSP
technologies, tracking options and storage configurations are different from the ones
considered in this study which prevents validating CFs estimates against observations.
Due to the lack of better-quality data, these annual production data are, at the moment, the
best source of information.

The yearly means of the predicted regional demand and bias-corrected CFs are re-
ported in Table 2. From this table, we can see that the mean CFs are larger for wind than
for CSP/CSP-TES, and larger for CSP whatever the SM than for PV/PV-BES whatever
the ILR because observed solar PV-BES and CSP/CSP-TES have the same ILR and SM
(Appendix C.2).

Table 2. Regional predicted yearly demand (MWh/yr) and bias-corrected solar and wind CFs (%) averaged over the year
2018 per zone and technology. SM1: CSP without storage; ILR > 1 or SM > 1: with increasing levels of storage.

Zones Demand Wind
PV CSP

ILR2 ILR3 ILR4 SM1 SM2 SM3 SM4

NORTH 450.55 37.8 19.5 19.5 19.3 30.4 31.0 31.0 30.8
CENTER 3726.52 40.0 19.5 19.5 19.5 38.8 38.8 38.8 39.0

EAST 224.28 47.3 21.0 21.0 21.0 31.4 31.4 31.4 31.4
SOUTH 90.0 46.0 21.6 21.6 21.7 37.0 37.0 37.0 37.0

2.5. Rental Cost Modeling and Data

In this study, we propose a method, based on the Net Present Value method [82]
(instead of the annuity factor method [85]) to calculate the rental cost of the generation and
storage technologies based on the available cost parameters. An essential point on which
we build is that the rental cost of CSP-TES (resp., PV-BES) has to be defined relative to the
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SM (resp., ILR) to take into account the cost of the additional CSP Solar Field—SF (resp.,
PV Solar Panel—SP) and the amount of storage associated.

In fact, it is commonly known that an increase in the Solar Multiple—SM (resp.,
Inverter Loading Ratio—ILR) does not give a proportionate increase in the hours of storage.
For instance, the CSP SF (resp., PV SP) can be oversized without investing in the TES (resp.,
BES) and vice versa, which does not give a proportionate increase in the CFs and thus a
proportionate reduction in generation costs [48–50].

In this study, the amount of storage and CSP SM (resp., PV ILR) are matched with one
another, i.e., an increase in the CSP SM (resp., PV ILR) results in an increase in the CSP
SF (resp., PV SF) which increase the storage capacity (Section 2.3.1, Table 1). Moreover,
the CFs are kept constant for all SMs (resp., ILRs) due to the bias correction (Section 2.4).
In fact, having mean CFs that change very little with increasing SM (resp., ILR) avoid
to increase the variance—associated with the increase of the CF means (quadratic term
against linear term)—due to the increase of the surplus of energy available for storage with
the increase of CSP SF (resp., PV SP) size (Figure A2a(i)), and this despite the reduction in
the variability associated with storage (Figure A2a(ii)). With fixed mean CFs, the mean of
the CF time series of CSP SM2, for instance, will be similar to CSP SM1 but the difference
in the amplitude is taken in the penetration (1) and they will be penalized differently. Thus,
the model would not penalize CSP SM2 against CSP SM1 just for having larger average
CF. In this case, the model is only sensitive to the reduction in the variance associated with
storage (Figure A2b(iii)) and to the cost associated with the change of SM and ILR.

Fixed-mean CF implies keeping the rental cost cj of CSP (SF + PB) or PV (SP + INV)
constant for all SMs and ILRs. However, as a matter of fact, ignoring the differential effect
that the storage (TES or BES) cost of each solar technology undermines the identification of
truly optimal technology to install for each penetration level. Accordingly, we assume that
the cost of the CSP-TES and PV-BES rise almost in proportion with the size of the plant (i.e.,
SM and ILR), i.e., storage parameters (Table 1), and the cost of additional CSP SF and PV
SP can be scaled without incurring much additional cost (in line with [88]).

This assumption reported here appear to support the assumption that CSP or PV
plants utilizing storage with several hours will be much larger, which contributes implicitly
to much higher cost per installed capacity, even though the mean CFs are fixed. However,
it is important to bear in mind that for CSP, the SF is by far the largest cost component of
parabolic trough plants and accounts for 38.5% of the total installed costs (looking at the 50
MW PT Andasol plant with 7.5 h, taken as reference plant in our study), while TES costs
land at the third place after the PB and grid connections costs (see a detailed breakdown
of the investment cost [49], Table 4.2). The same goes for PV, the cost of the PV module is
higher than that of the inverter [13].

The yearly rental cost, ck, is thus the sum of the yearly rental cost of the production
technology, cj, and the yearly rental cost of the storage technology, c′j, as presented in
Equation (9):

ck := cj + cj′ (9)

The yearly rental cost of the generation technology, cj (10), is computed from the
lifetime capital investments cost (CAPEXj), the lifetime fixed and variable operation
and maintenance cost (FOMj and VOMj, respectively)–which are both annualized–, the
discount rate (DR) and the lifetime (li f etimej).

cj =

Li f etimej

∑
t=1

CAPEXj + [FOMj + αjVOMj]

(1 + DR)t (10)

The yearly rental cost of the storage technology, c′j, is calculated using Equation (11).
In fact, the storage system CAPEX is divided into power-related cost (CAPEXP,j′ ), which
is the cost of power of charging/discharging, and energy-related cost (CAPEXE,j′ ), which
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is the cost of energy storage capacity or volume [89]. FOMj′ and VOMj′ are, respectively,
the fixed and variable OPEX, and li f etimej′ is the lifetime of the technology j′.

cj′ :=
Li f etimej′

∑
t′=1

[αj′CAPEXE,j′ + β j′CAPEXP,j′ ] + [β j′FOMj′ ]

(1 + DR)t′ + γj′

Li f etimej′

∑
t′=1

VOMj′

(1 + DR)t′ (11)

All the parameters are explained in Appendix D.
Except for the discount rate, the economic data needed to compute the yearly rental

cost (9) come from the ETRI 2014—Energy Technology Reference Indicator projections for
2010–2050 [83]—of the European Commission Joint Research Center (JRC) for the year
2013. We have considered the following power production technologies j: solar thermal
electricity power plants without thermal storage; commercial solar PV (more than 2MW)
without tracking; and onshore wind. For storage technologies j′, we have considered
thermal energy storage for concentrating solar power applications and Li-ion storage
battery for power grid applications.

The total cost is critically dependent upon the choice of the discount rate. Usually,
low DRs are used when evaluating RE technologies [90]. A real DR of 4 % in Morocco for
modelling purposes seems reasonable ([90], p. 27). CSP would require a somewhat higher
rate, a value of 5% [90], as also considered in [86], so a value of 4.5 % is used in this study
for all production and storage technologies.

This cost data are summarized in Table 3. The resulting yearly rental cost (9) calculated
using Equations (10) and (11) are summarized in Table 4. These results show that the rental
cost of wind is greater than that of PV but is relatively comparable, while it is more than
three times lower than that of CSP. In addition, the more the CSP SM (resp., PV ILR)
increases, the more the cost of CSP (resp., PV) increases. The rental cost range of CSP-TES
is by far the largest, while PV-BES presented the lowest range. For instance, for the same
design (SM2 vs. ILR2 or SM4 vs. IL4), rental cost estimates for CSP-TES extend to roughly
double the rental cost of PV-BES.

Table 3. Capital investment, fixed and variable operation and maintenance costs, lifetime of the
production technologies (Top) and storage technologies (Bottom). These data are from the ETRI
2014—Energy Technology Reference Indicator projections for 2010–2050 technical report for the
year 2013 ([91], Tables 4, 7 and 10) for PV, wind and CSP; and ([91], Tables 66 and 61) for TES and
Li-ion BES. The discount rate was obtained from the World Bank Report ([90], p. 27), αj is the yearly-
mean CF in (h) of the technology j (A9), and the yearly rental cost per technology, cj (e/kW/yr), is
calculated using Equation (10).

Technology j CSP PV Wind

CAPEXj (e/kW) 5600 980 1400
FOMj (% CAPEXj) 4 1.7 2.7
VOMj (e/MWh) 8 0 –

Discount Rate DR (%) 4.50 4.50 4.50
Li f etimej (years) 30 25 20

αj(h) 2240.91 1926.93 2147.73

Yearly Rental Cost cj 3314.68 617.74 977.22

Technology j′ TES BES

CAPEXE,j′ (e/kWh) 24 752
CAPEXP,j′ (e/kW) 1200 490
FOMj′ (%capexP,j′ ) 0.2 1.4
VOMj′ (e/MWh) – 2.6
Li f etimej′ (years) 20 10
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Injecting the cost (Table 4) and capacity data (Table A1 on the left) in (5) yields
a maximum total cost, Cobs

tot , of 3.50 Ge/yr, corresponding to the PV-Wind-CSP-TES SMre f

mix (with 5.5 h of TES).

Table 4. The yearly rental cost ck (9) (e/kW/yr) per production technology j or production tech-
nology with its storage technology j, j′ calculated using Equations (10) and (11); and using storage
parameters (Table 1). SM1: CSP without storage; ILR > 1 or SM > 1: with increasing levels of storage.

Techno. Wind
PV CSP

ILR2 ILR3 ILR4 SM1 SM2 SM3 SM4

ck 977 3380 7596.5 16,008.5 3315 6324 9165 28,399.5

2.6. Optimization Experiments

To investigate the response of the Moroccan mix to the addition of utility-scale PV com-
bined with battery to the designed CSP with TES both with different storage capabilities—as
defined by the PV ILR and CSP SM–, the optimization problem has been applied to differ-
ent technological combinations (Table 5). These combinations are chosen to represent the
general trend of the competitiveness of various PV and CSP storage configurations along
the efficient capacity pathways.

Table 5. Optimization experiments.

Combination Wind
CSP PV

TES SM BES ILR

PV-ILR2-wind-CSP-SM1 Yes No 1 Yes 2
PV-ILR3-wind-CSP-SM1 Yes No 1 Yes 3
PV-ILR4-wind-CSP-SM1 Yes No 1 Yes 4
PV-ILR2-wind-CSP-SM2 Yes Yes 2 Yes 2
PV-ILR3-wind-CSP-SM2 Yes Yes 2 Yes 3
PV-ILR4-wind-CSP-SM2 Yes Yes 2 Yes 4
PV-ILR4-wind-CSP-SM3 Yes Yes 3 Yes 4
PV-ILR2-wind-CSP-SM4 Yes Yes 4 Yes 2
PV-ILR3-wind-CSP-SM4 Yes Yes 4 Yes 3
PV-ILR4-wind-CSP-SM4 Yes Yes 4 Yes 4

All combinations are optimized using the same value, Cobs
tot , i.e., 3.5 Ge/yr.

3. Results

In this section, we analyze the effect that the battery added to PV has on the optimal
mixes studied in ([51], Section 3) considering the differences in the variance and rental cost
between not only PV, wind and CSP, but also between different SMs and ILRs.

3.1. Impact of Storage and Cost: Technological and Geographical Distribution

Approximations of the optimal fronts of the mean-variance bi-objective optimization
problem are represented in the left panels of Figures 4 and 5, with the standard deviation or
risk, σglobal/technology/base, in the abscissa and the mean penetration, µ, in the ordinate for
each combination (Table 5). The thick plain blue curve represents the Pareto optimal distri-
bution of solar and wind capacities for the global strategy with the total-cost constraint (5),
meaning that there is no other mix better in all objectives. When the maximum-cost con-
straint is not imposed, and for the global strategy as well, installed capacities of the optimal
mixes are proportional to the penetration and risk (upward plain black line).
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Figure 4. (Left) Approximations of the optimal fronts with the risk, σglobal/technology/base, in abscissa
and the mean penetration (1), µ, in ordinate. White (resp., gray) areas to the right (resp., left) are not
Pareto optimal (resp., not feasible). Particular mixes are depicted: the “2018 actual solar-wind mix” (gray
cross); the “penetration-as-actual mix” (blue triangle) with lower risk; the “risk-as-actual mix” (blue
diamond) with higher penetration; the “cost activation mix” (black dot) with the largest penetration
for which the maximum-cost constraint is not active; the “cost-activated mix” (blue plus) with moderate
penetration compared to the “maximum-penetration mix” (blue square), in which the cost constraint
is activated; (Right) Shares of wind (blue line), PV-BES (brown line) and CSP/CSP-TES (orange line)
capacities versus the mean penetration for the global strategy with maximum-cost constraint (5). The
crosses represent the shares for the actual mix. (a,b) PV-ILR2-Wind-CSP-SM1; (c,d) PV-ILR3-Wind-CSP-SM1;
(e,f) PV-ILR4-Wind-CSP-SM1; (g,h) PV-ILR2-Wind-CSP-TES SM2; (i,j) PV-ILR3-Wind-CSP-TES SM2.
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Figure 5. Similar to Figure 4. (a,b) PV-ILR4-Wind-CSP-TES SM2; (c,d) PV-ILR4-Wind-CSP-TES SM3;
(e,f) PV-ILR2-Wind-CSP-TES SM4; (g,h) PV-ILR3-Wind-CSP-TES SM4; (i,j) PV-ILR4-Wind-CSP-TES SM4.

The fraction of PV-BES (plain brown line), wind (blue plain line), CSP/CSP-TES (orange
plain line) capacities summed over all four regions along the global constrained frontier are
shown in the right panels of Figures 4 and 5. The dashed vertical black line corresponds
to the optimal mix with the highest penetration that can be achieved before the total-cost
constraint becomes active (black dot in the left panel). For each penetration regime, we use
the ratios described in ([51], Appendix D) to analyse the relevant contributing factors or the
conditions under which the high cost of CSP—considering its benefits of dispatchable energy
provided by its cheap TES—can provide an advantage against the low-cost PV combined
with costly BES so as to be part of the mix until a more advantageous condition prevents
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its integration. We represent in bold, for each technology, the maximum of the maximum-
penetration ratio (Table 6), the minimum of the second ratio (Table 7) and the maximum
of the minimum-variance ratio (Table 9), determining what region a given capacity will be
assigned to at maximum, high and low penetrations, respectively.

Table 6. Maximum-penetration ratios (yr/Te),
E
[

ηk
∑i Di

]
ck

. SM1: CSP without storage; ILR > 1 or SM > 1:
with increasing levels of storage from PV or CSP.

Zones Wind
PV CSP

ILR2 ILR3 ILR4 SM1 SM2 SM3 SM4

NORTH 85.3 12.75 5.684 2.67 20.2 10.78 7.45 2.39
CENTER 90.1 12.76 5.680 2.70 25.8 13.5 9.34 3.02
EAST 106 13.7 6.08 2.90 20.8 11.0 7.55 2.44

SOUTH 103 14.1 6.29 2.98 24.5 12.9 8.91 2.87

Table 7. Ratios (no units) given by ([51], Equation (14)). SM1: CSP without storage; ILR > 1 or SM > 1:
with increasing levels of storage from PV or CSP.

Zones Wind
PV CSP

ILR2 ILR3 ILR4 SM1 SM2 SM3 SM4

NORTH 1.74 1.072 1.121 1.147 1.00 1.072 1.093 1.147
CENTER 4.21 1.079 1.123 1.148 0.98 1.058 1.080 1.142

EAST ∅ 1.071 1.1201 1.1461 1.022 1.082 1.098 1.149
SOUTH 3.98 × 10−2 1.074 1.1204 1.1466 1.026 1.071 1.088 1.145

3.1.1. Economic Carrying Capacity

For all combinations, for low values of the variance reached by the optimal mixes,
the unconstrained and constrained global fronts are close to each other (left panels of
Figures 4 and 5). Thus, the total cost constraint is satisfied without the need to force it
and optimal mixes are not impacted by cost (i.e., the technologies fractions are a constant
function of the mean renewable (RE) penetration; see the left side of the right panels of
Figures 4 and 5). However, increased RE penetration requires a greater RE capacity to
install (and thus additional investment) to satisfy the demand due to the low CF of REs. As
expected, the constrained front diverges from the unconstrained one, due to the maximum-
cost constraint (5), and the technologies fractions are no longer a constant function of the
mean penetration (the right side of the right panels of Figures 4 and 5).

For all combinations, the level of penetration at which cost becomes a constraint (i.e.,
black dot or dashed vertical line) decreases with the increase of PV ILR and CSP SM,
which show the strong sensitivity of the mix towards storage (TES and BES) and CSP cost;
pushing the evolution of solar capacities even further back along the efficient frontiers at
high penetrations (the right panels of Figures 4 and 5).

Shifting away from the dashed vertical black line shows a relatively strong penaliza-
tion of CSP-TES and PV-BES, while wind share has a clear upward trend (the right side of
the right panels of Figures 4 and 5). At first sight, this might be surprising because one may
first observe that flexibility is required at high penetrations. However, this relatively greater
penetration of wind is partly a result of the lower mean CF of PV-BES and CSP/CSP-TES
compared to wind (Table 2), which basically means that more installed capacity is required
to provide a given amount of energy and, thus, more investment is needed to reach higher
penetrations. With the costs of CSP-TES and PV-BES still comparatively higher than wind
(Table 4), the model omits CSP and PV capacity additions in its optimization process, prefer-
ring an investment pathway in the least-cost solution, albeit intermittent and fluctuating, to
not reach the maximum budget limit sooner. This helps to understand why the constrained
front shows a greater risk than the unconstrained one (the left panels of Figures 4 and
5) at high penetrations. Thus, this transition point indicates the level of penetration at
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which the cost of variable but least-cost technologies (i.e., wind) outweighs the benefits
of dispatchable but expensive technologies (CSP-TES, PV-BES), namely, “the economic
carrying capacity” [92].

3.1.2. At Maximum Penetrations

As can be seen in the right panels of Figures 4 and 5 and strengthened by the large
maximum-penetration ratio (Table 6), wind represents the best technology to satisfy the
demand accounted for at the highest penetration point (i.e., blue square in the left panels),
for all combinations. Eastern regions feature a concentration of all installed capacities,
being the region with more electricity produced per MW installed on average (Table 2),
resulting in lower total cost (as rental cost of wind is low, Table 4).

At such maximum penetrations, PV-BES or CSP/CSP-TES capacities disappear almost
entirely from the optimal mix. In fact, keeping the CSP (resp., PV) mean CFs for different
SMs (resp., ILR) fixed (Table 2) while increasing the storage cost (Table 4) implies that the
CSP (resp., PV) maximum-penetration ratios decrease with the increase of SM (resp., ILR)
(Table 6).

3.1.3. At High Penetrations

Optimal mixes with lower penetrations than the maximum show optimal wind
installation (the right panels of Figures 4 and 5) resulting from the small second ratio of
wind in SOUTH (Table 7). This could be attributed to its large maximum-penetration ratio
(Table 6), large minimum-variance ratio (Table 9) or small variance–cost ratio (Table 8)
compared to wind in EAST already installed (see discussion on the second ratio in [51],
Appendix D.2).

After wind in SOUTH, either PV-BES in EAST (whatever the ILR) or CSP/CSP-TES
in CENTER (whatever the SM) is installed (right panels of Figures 4 and 5 and Table 7).
This is mainly due to the sensitivity of optimal mixes to storage options since CSP can
store the heat in thermal storage—less expensive than the battery coupled with PV [93].
The dependence on storage sizing is thus strong at such high penetrations and the solar
technology with storage configuration that can provide energy for lower rental cost and
with high CF would likely be preferred.

For the same design, for instance, PV-ILR2–wind-CSP–TES SM2 mix (Figure 4h) or
PV-ILR4–wind–CSP-TES SM4 mix (Figure 5j), PV-BES is preferably installed and built
with a large capacity compared to CSP/CSP-TES. In fact, the greater mean CF of CSP-TES
compared to PV-BES (Table 2) is not able to compensate for the considerably greater cost of
CSP-TES (Table 4) because the storage capacity of CSP is higher than that of PV (Table 1)
due to the large CSP nominal thermal capacity compared to the PV nominal DC capacity.

For different design, for instance between PV-BES and CSP SM1, the lower variance of
PV-BES for all ILRs compared to CSP SM1 is not able to compensate for the much higher
cost of PV-BES compared to CSP SM1 (the variance/cost of PV-BES is smaller than that of
CSP SM1, Table 8) which favours the installation of CSP SM1 for all ILRs (Figure 4b,d,f).
The same remark can be made for PV-ILR3–wind–CSP-SM2 mix (Figure 4j), PV-ILR4–wind–
CSP-SM2 mix (Figure 5b), PV-ILR4–wind–CSP-SM3 mix (Figure 5b). The investment of
CSP SM4 is higher than that of PV-BES whatever the ILR (Table 1), which will ultimately
increase the total cost of the mix. Thus, PV-BES is installed and the model compensates by
installing more PV-BES to achieve the high penetration in the mix (Figure 5f,h,j).

There is, therefore, an imperfect substitution of CSP-TES by PV-BES. In others words,
although PV-BES and CSP-TES are similarly sized, they are differently penalized as both
have different storage capacity and thus different CFs and costs, leading to almost exclusive
installation of the technology representing the best trade-off between increasing penetration
while satisfying the maximum-cost constraint. What stands out from the right panels of
Figures 4 and 5 and Table 1 is that for low or medium storage requirements (5 to 13.5 h or
SM < 4 and all ILRs), CSP electricity coupled with cheap TES provides a relative advantage
in this high penetration regime because compared to PV, higher level of storage and CFs
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can be achieved (i.e., high variance/cost ratio and large maximum-penetration ratio) which
involves less capacity to install and thus less cost. However, if longer storage duration
(>13.5 h or SM4) is the desired level, PV-BES is installed with a larger fraction to fulfil the
high-penetration requirements. This outcome is deemed tenable according to the existing
literature [48,52,57] under current scenario costs.

The predominance of CSP-TES in CENTER and wind in SOUTH at such high penetra-
tions levels is in line with the actual distribution (Figure A1). However, the addition of BES
to PV (and the non-use of tracking) induces the installation of PV in EAST (Table 7) instead
of SOUTH.

Table 8. Variance/Cost(yr/Ee MW),
V
[

ηk
∑i Di

]
ck

. SM1: CSP without storage; ILR > 1 or SM > 1: with
increasing levels of storage from PV or CSP.

Zones Wind
PV CSP

ILR2 ILR3 ILR4 SM1 SM2 SM3 SM4

NORTH 25,755.13 667.91 158.60 29.80 3420.00 897.98 291.92 36.35
CENTER 7610.73 570.36 123.64 15.00 4482.60 1006.42 256.24 10.28

EAST 12,637.32 670.64 147.06 19.04 3051.55 697.90 185.92 10.25
SOUTH 2900.39 729.39 162.60 23.37 3979.93 891.36 218.85 4.92

3.1.4. At Low Penetrations

As can be seen by comparing the right panels of Figures 4 and 5, the technology
fractions are qualitatively and quantitatively different between combinations at low pene-
trations where only the variance and the CFs play a role. To illustrate this behavior, we
represent the daily (ordinate) and seasonal (abscissa) variability of the solar resources
(Figure 6) and the of national demand, solar and wind CFs obtained using MERRA-2
climate data over the year 2018 in Figures 7 and 8.

PV-BES vs. Wind: As shown in the right panels of Figures 4 and 5, wind gains a
greater share than PV-ILR2 and is installed in SOUTH (Table 9). In fact, both the mean
and the variance of wind production tend to be larger than those of PV-ILR2 production
(Table 2, Figure 7b,e), but the variability of wind is more spread out during the course
of the day and the year since it is less tightly coupled to the diurnal cycle, and although
wind production peak yield is in winter (i.e., a low-demand period, as shown in Figure 7f)
because low temperatures lead to higher air density, it is uniformly distributed over the
whole year. Conversely, fixed-latitude-tilted PV with a small amount of storage (ILR2) is
affected by day/night alternations and by fast-moving clouds; and it is characterized by a
stronger sub-seasonal variability due to the sensitivity of multi-crystalline PV efficiency to
high temperature occurring in the summer peak load which causes the solar production to
be unevenly distributed throughout the year. Due to the seasonal cycles of PV-ILR2 and
wind energy production which are phase-shifted and thus negatively correlated (Table A2,
which reduces the covariances as shown in Table A3), both technologies are kept in the mix
to reduce the variability.

However, the addition of BES to PV with high ILR, ILR3 or 4 makes PV less variable
than wind, i.e., larger minimum-variance ratio (Table 9) and favours its installation in
CENTER (the right panels of Figures 4 and 5).
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Table 9. Minimum-variance ratios (103 MW),
E
[

ηk
∑i Di

]
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∑i Di

] . SM1: CSP without storage; ILR > 1 or SM > 1:

with increasing levels of storage from PV or CSP.

Zones Wind
PV CSP

ILR2 ILR3 ILR4 SM1 SM2 SM3 SM4

NORTH 3.31 19.0 35.8 89.6 5.92 12.0 25.5 65.8
CENTER 11.8 22.3 46.0 179 5.76 13.4 36.5 294

EAST 8.44 20.4 41.3 152 6.85 15.7 40.6 238
SOUTH 35.7 19.4 38.7 127 6.18 14.5 40.7 584
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Figure 6. Heatmap of the national daily (ordinate) and seasonal (abscissa) variability of the solar
radiation in (W/m2): Global Horizontal Irradiation (GHI) (a), Global Tilted Irradiation (GTI) (b) (to
be compared with Figure 7a–d, Direct Normal Irradiation (DNI) (c) (to be compared with Figure 8).
The variation over time is shown in colour by intensity in the colour bar.

PV-BES vs. CSP SM1: Due to the use of solar tracking by CSP, the means of the CFs
of CSP tend to be larger compared to PV without storage (Table 2). Therefore, the variance
of the high production series of CSP is significantly larger than that of the PV production
series (Figures 7a and 8a). In addition, because of the optics of concentration, CSP can only
harness the direct solar radiation, making it more sensitive to the presence of clouds and
aerosols in the atmosphere compared to PV that exploit all components of solar radiation.
As a consequence, the minimum-variance ratio of PV tends to be greater than that of
CSP ([51], Table 4). Without BES, the PV-wind-CSP SM1 mix is, however, diversified ([51],
Figure 4). The reason to install CSP SM1 with PV ILR1 despite rather limited full-load hours
and high variability of CSP SM1 is the difference between CSP SM1 and PV ILR1 seasonal
profiles. CSP SM1 full-load hours are maximal during the summer months (i.e., peak load)
(Figure 8a) while multi-crystalline PV efficiency is reduced in summer (Figure 7a). It thus
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appears that tracked CSP tend to reduce the angular losses especially in summer when
the cos-losses are greater due to the wider sun path. To illustrate this point, the global
horizontal radiation (GHI) (Figure 6a) and the direct normal radiation (DNI) (Figure 6c)
tend to increase in the summer period while global tilted radiation (GTI) decreases in
summer (Figure 6b). However, CSP SM1 is only kept in the mix at small fractions ([51],
Figure 4) since CSP generation is highly correlated with PV generation (Table A2) which is
assumed to have high covariances (Table A3) as both have large variance. Thus, adding a
new intermittent source will only increase the risk (2).

Obviously, adding storage to PV will not affect the large minimum-variance of PV-BES
compared to CSP SM1 (Table 9). However, the mixes are not diversified and CSP capacities
can no longer take part in the optimal mix. Indeed, CSP SM1 operate mainly at midday and
can achieve full-load operation only during summer when irradiation reaches design point
level (Figure 8a), while PV-BES with high ILR can be used to provide continuous output at
any time (Figure 7b–d). Therefore, the optimal mixes with BES favour the installation of
PV-BES over CSP SM1 at low penetrations where the cost constraint is weak.

The low-variance optimal mixes locate PV-BES capacities in the CENTER (Table 9)
with a relatively low value of average CF compared to the eastern and southern Sahara
regions (Table 2). This suggest that the higher-generation regions and clear-sky radiation
(desert), EAST and SOUTH, are being penalised for their greater variability caused by the
larger daily cycle amplitude of the radiation resource and thus with higher temperatures.
This allocation may not be surprising since regions with significant climatological cloud
cover are preferred due to the diminishing effect of the cloud cover on the variance which
can be more efficient for PV than in southern regions. However, the region with cloud
coverage is only favoured at such low penetrations, but it loses its predominant position
at very high penetration levels when installing all the capacities in this region could not
satisfy the penetration required, and the model would favour southern regions (Table 6)
despite having larger average daily radiation oscillations to install less capacity (and thus
reduce the cost) while reaching higher penetrations. Note that these is clear indications
of dysfunction in the proxy for risk proposed in the mean-variance optimization problem.
The installation of PV-BES in CENTER can also been explained by the relatively small
correlations between the PV-BES and wind in the CENTER and between PV-BES and wind
in a highly wind-productive region (EAST) (Table A2).

PV-BES vs. CSP-TES: As can be observed in Figures 7b–d and 8b–d, the more CSP SM
(resp., PV ILR) is increased, the more the variance of CSP (resp., PV) is reduced since larger
CSP SF (resp., PV SP) allow the collected energy to be spread over a longer period of the
day and the year for continuous production. The SM and ILR are thus decisive in achieving
high full-load hours of plant operation. With SM2 or IL2, only few operating hours in the
evening are achieved. With higher SM and ILR (3,4), the TES and BES are used to run even
at times when solar radiation no longer correlates with peak electricity demand.

The results obtained from mixes with PV-BES and CSP-TES (the right panels of
Figures 4 and 5) suggest that there is always a dominant solar technology, either PV-BES or
CSP-TES, depending on the SM and the ILR. When one technology is installed, the other
one is phased out from the mix and vice versa. Thus, the optimal mixes are less diversified,
since both technologies can shift output over time without the need of another source to
cover the demand, yielding a mix with less total output variability.

For the same design (i.e., SM2 vs. ILR2 or SM3 vs. ILR3), although PV-BES tends to
have a larger minimum-variance ratio than CSP-TES (Table 9), the model installs CSP-TES
instead of PV-BES (Figures 4h and 5j). This rather contradictory result between technology
fraction curves and the minimum-variance ratio could be attributed to the assumption
applied in ([51], Appendix D.3) where we assume that the covariance matrix is diagonal
in the calculation of the minimum-variance ratios. The latter, thus, rules out the influence
of covariances which are important, especially when the mix contains technologies with
distinct proportions of solar radiation (high variance) versus cloud cover (low variance),
particularly between PV and CSP, as explained above (PV-BES vs. CSP SM1). CSP-TES
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CFs have a low standard deviation compared to their mean than PV-BES because, as stated
previously, CSP-TES has greater storage capacity (Table 1). This can also be shown by
comparing Figure 8c,d with Figure 7c,d where the operation at full load of CSP SM3 or
SM4 is substantially higher than PV ILR3 or ILR4. In addition, the covariance between
CSP-TES and wind are smaller than covariances between PV-BES and wind (Table A3).
Thus, installing CSP-TES over PV-BES yields lower risk.
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Figure 7. Heatmap of the national daily (ordinate) and seasonal (abscissa) variability of the predicted
capacity factors and demand (MW): PV without storage (ILR1) (a), PV-BES ILR2 (b), PV-BES ILR3 (c),
PV-BES ILR4 (d), Wind (e), Demand (f). ILR > 1: with increasing levels of storage. The variation over
time is shown in colour by intensity in the colour bar.
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Figure 8. Heatmap of the national daily (ordinate) and seasonal (abscissa) variability of the predicted
capacity factors of CSP without storage (SM1) (a), CSP-TES SM2 (b), CSP-TES SM3 (c), CSP-TES SM4
(d). SM > 1: with increasing levels of storage. The variation over time is shown in colour by intensity
in the colour bar.

However, for different amount of storage (i.e., SM2 vs. ILR3,4 or SM3 vs. ILR4 or SM4
vs. ILR2,3), the technology with the greater storage duration (hSM and hILR in Table 1) is
installed. For instance, PV-BES with ILR3 or ILR4 dominates over CSP-TES SM2 (Figures 4j
and 5b); PV ILR4 also dominates over CSP SM3 (Figure 5d) and CSP SM4 dominates over
PV ILR2 or ILR3 (Figure 5f,h).

Intuitively, it seems that the proportion of solar energy in the power generation mix
increases the more CSP SM or PV ILR is increased (right panels of Figures 4 and 5). This is
mainly due to the ability of CSP-TES and PV-BES to reduce the diurnal and seasonal solar
fluctuations, such as curtailment or lack of energy, by adjusting their output, thus allowing
a greater share of solar generation.

As can be seen in Table 9, the distribution of CSP-TES capacities along the constrained
front is mainly in two regions located on the eastern or southern regions depending on the
SM. CSP-TES capacities with medium storage duration (SM2) are installed in EAST; and
those with high storage duration (SM3,4) are installed in SOUTH. Therefore, the more the
SM is increased, the more regions with higher generation (Table 2) are preferred to lower-
amplitude oscillating solar resources because the variance is reduced by the introduction
of thermal storage. We note that the mean CF in CENTER is greater than that of the South
(Table 2). However, the CSP generation deficit attributable to cloudiness, as has been
commented on previously, which makes this region variable. This region may be favoured
with greater storage capacity (SM > 4).

Wind vs. CSP SM1: The share of wind is larger than CSP. This can be explained by an
absence of sunlight during the night (involving no CSP generation) and thus a lower annual
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energy coming from CSP when the integration is made over one year (Figures 7e and 8a).
In case CSP dominates over wind, this will lead to increasing the variability during this
period of time even if its normally an off-peak period.

CSP-TES vs. Wind: From the right panels of Figures 4 and 5, we can see that once
CSP with TES technology with medium storage duration (SM2) is brought into the mix,
it can contribute to reaching the necessary risk with wind in the convenient regions but
wind dominates over CSP-TES SM2. The wind predominance is explained by the largest
minimum-variance ratio of wind in SOUTH (Table 9). However, the larger the SM—i.e., the
larger the surplus of energy available for storage—, the greater the share of CSP compared
to wind, particularly for combinations with a large amount of storage such as SM3, and
CSP-TES tends to completely replace wind for SM4. This is also confirmed by the CSP
minimum-variance ratios that increase with SM and become greater than that of wind
(Table 9).

3.2. Impact of Diversification

In this section, we evaluate the effect of diversification on the variance-based risk.
To do so, we compare—in the left panels of Figures 4 and 5—the global (plain black
line), technology (dashed black line) and base (point-dashed black line) fronts without the
maximum-cost constraint at low penetrations where these unconstrained fronts converge
with the global constrained front (blue line). The numerical results suggest that these
frontiers are upward lines with a positive slope that we refer to as the mean–standard
deviation ratio (12). In this unconstrained case, increasing the mean penetration of the
optimal mix necessarily comes at the detriment of an increased risk; and the solutions are
of the form:

αglobal|technology|base :=
µ(ŵ)

σglobal|technology|base(ŵ)
(12)

The values of this mean–standard deviation ratio for the three strategies are given in
Table 10.

Table 10. Mean–standard deviation ratios (12) of the global, technology and base fronts without the maximum-cost
constraint for different combinations (Table 5). SM1: CSP without storage; ILR > 1 or SM > 1: with increasing levels of
storage from PV or CSP.

Combination ILR2-Wind ILR3-Wind ILR4-Wind ILR2-Wind-
SM1

ILR3-Wind-
SM1

ILR4-Wind-
SM1

Global 2.06 2.36 3.41 2.09 2.39 3.41
Technology 1.71 2.02 3.22 1.74 2.05 3.22

Base 1.66 1.99 3.20 1.49 1.81 3.02

Combination ILR2-Wind-
SM2

ILR3-Wind-
SM2

ILR4-Wind-
SM2

ILR2-Wind-
SM3

ILR3-Wind-
SM3

ILR4-Wind-
SM3

Global 2.13 2.36 3.39 2.61 2.58 3.39
Technology 1.80 2.03 3.19 2.37 2.32 3.18

Base 1.56 1.77 2.96 2.11 2.17 3.01

Combination ILR2-Wind-SM4 ILR3-Wind-SM4 ILR4-Wind-SM4

Global 5.48 6.11 5.82
Technology 5.10 5.58 5.43

Base 4.97 5.39 5.26

3.2.1. Regional Diversification

For all three combinations, the technology frontier (dashed black line) lies to the right
of the global frontier (plain black line) and the difference between these frontiers is large
(left panels of Figures 4 and 5). This is also confirmed by Table 10 where this ratio increases
from the technology to the global front. Thus, for a given level of mean penetration, because
the CFs vary little within Morocco on average (Table 2), taking correlations between regions
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into account allows for the reduction of the variance. However, the more the SM and ILR
increase, the more the difference between the global and the technology fronts is reduced
because mixes become less diversified as CSP-TES in SOUTH (for SM3 and SM4) and
PV-BES (for all ILRs) in CENTER become dominant (Table 9, Figures 4 and 5).

3.2.2. Technological Diversification

Correlations between CFs of different technologies for the same region also appear to
play a role, as can be seen in the left panels of Figures 4 and 5 by comparing the optimal
frontier for the base strategy (point-dashed black line) and the technology strategy (dashed
black line), which corresponds to the lower values of the mean–standard deviation ratio for
the base strategy reported in Table 10. However, this effect of correlations on the optimiza-
tion varies between combinations. It was found that the technological complementarity is
weak between PV-ILR1 and wind, relevant in case PV and CSP are both installed without
storage ([51], Section 3) or with a small amount of storage (Table A2).

However, as the surplus of energy available for TES and BES is increased, the dif-
ference between the base and technology fronts is small (Table 10 and the left panels of
Figures 4 and 5). Therefore, it is taken into account that correlations between CSP-TES or
PV-BES CFs and CFs of other technologies do not seem to impact the variance because
the storage induces a change in the CSP and PV CFs that reduce their correlation with
the other technologies (Table A2), which also reduces the covariances (Table A3). Note
that although the correlations between PV-BES and CSP-TES increase with the increase
of storage (Table A2), the covariances are small (Table A3) since the variance of CSP-TES
and PV-BES is decreased as well. This is the reason why the differences in the technology
and the base front at such high SMs and ILRs is weak. Therefore, ignoring the high (resp.,
low) covariance between technologies leads to installing much (resp., less) capacity, which
results in an increased risk (as discussed in Section 3.1).

3.3. Role of CSP-TES vs. PV-BES in Reducing the Adequacy Risk

In order to compare the effect of the introduction of PV-BES and CSP-TES on the
ability of the system to cover the load, we compute, for different combinations (Table 5),
the mean–standard deviation ratio (12), i.e., an aggregate measure of the variability of the
RE production with respect to the demand (Section 3.3.1); and the load bands reduction
diagnostics to assess whether the imbalances between RE production and demand occur
during peak or mid or base load (Section 3.3.2).

3.3.1. System Variance-Based Risk

We observe from Table 10 that the mean–standard deviation ratio for the global
strategy is significantly larger for combinations with high ILRs and SMs than for the others.
This shows that, for a given level of penetration and without the total-cost constraint,
lower risk may be reached when TES and BES are introduced in the mix, which reflects the
decreasing balancing needs. This is expected from the lower variance of the CSP-TES and
PV-BES capacity factors, explained by the ability of TES and BES to smooth the CSP and PV
generation CFs by shaving midday peaks and shifting energy over time (Figures 7 and 8).
CSP generation without storage clearly meets the seasonal demand (Figures 7f and 8a)
but the variability is high since it mainly operates during midday load, but its production
drops after sunset. By increasing the SM (resp., ILR) and depending on its value, the
seasonal and daily variability gradually disappear (Figures 7b–d and 8), which effectively
reduces the variance. Similarly, PV-wind runs the risk of depending on the availability of
the resource, thus increasing the probability of not adequately satisfying the load. This
result demonstrates the interest of increasing the original size of the CSP solar field (resp.,
PV solar panel) by increasing the SM (resp., ILR) in order to achieve an efficient way to
meet any increase of the load.

We note, however, that the mean–standard deviation ratio in the case of introducing
BES to PV–wind mix are lower than the ones encountered in the case of the introduction of
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CSP-TES generation (i.e., since CSP-TES has larger storage capacity than PV-BES, as shown
in Table 1). Thus, we deduce that for the same installed capacity, the annual produced
energy by CSP-TES is less variable than the one produced by the PV-BES, demonstrating
that PV-BES generation cannot alone replace CSP-TES generation. This is, however, only
valid at low penetrations (as discussed in Section 3.1.1).

3.3.2. System Adequacy Diagnostics

The peak-load reduction (i.e., capacity credit), mid- and base-load reduction are
presented, respectively, in Figures 9–11 as a function of the mean penetration (1) from 5 %
to 35 % for the global strategy with total cost constraint, for PV-BES-wind mix (left) and
PV-BES-wind-CSP-TES SM2 (right); with ILR2 (top), ILR3 (middle) and ILR4 (bottom). We
analyse how these load reduction are affected by the RE shares, and the contribution of
each technology to each load band. For instance, the effect of CSP-TES on the reliability of
the grid compared to PV-BES and to fluctuating wind.
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Figure 9. Capacity credit by each technology—Wind (blue), PV-BES (brown) and CSP-TES (orange)—
versus the mean penetration (1), µ, for the global strategy (2) with maximum-cost constraint (5).
(Left) PV-BES-wind mix; (Right) PV-BES-wind-CSP-TES SM2 mix. (Top) ILR2; (Middle) ILR3;
(Bottom) ILR4.
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Figure 10. Mid load reduction by each technology—Wind (blue), PV-BES (brown) and CSP-TES
(orange)—versus the mean penetration (1), µ, for the global strategy (2) with maximum-cost con-
straint (5). (Left) PV-BES-wind mix; (Right) PV-BES-wind-CSP-TES SM2 mix. (Top) ILR2; (Middle)
ILR3; (Bottom) ILR4.

Figure 9 shows, for both mixes (PV-BES–wind mix or PV-BES–wind–CSP-TES SM2
mix), that with the increase of the installed capacity, the fraction of RE that displaces
conventional capacity in peak-load hours tends to decline. However, this does not mean
that less conventional capacity can be replaced by RE in absolute terms, but rather that a
new renewable plant added to a system with high RE penetration levels will substitute
less than the first RE plants in the system. Therefore, large shares of CSP-TES or PV-BES
in the mix (at low penetrations ) increase the capacity credit while small shares of these
technologies (due to the maximum-cost constraint) reduce the capacity credit (the right
panels of Figures 4 and 5). Thus, in addition to reducing the variance-based risk, the
introduction of CSP or PV with storage helps satisfy peak loads because CSP-TES or PV-
BES could change the temporal distribution of the net load by charging and discharging
frequently, which influences the correlation with the demand. To illustrate the effect of
storage to mitigate the decline in the CC, we show the LDC (black line) and compare the
RLDC of three combinations (PV-wind in blue; PV-wind-CSP SM1 in yellow, PV-wind-CSP-
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TES SM2 in green), in the right panel of Figure 12, assuming combined wind and solar
energy share of the risk-as-actual mix (20%) with a relatively high share of CSP-TES (blue
diamond) ([51], Figure 5). We found the same behaviour of storage for all combinations
with CSP-TES (with SM > 1) or PV-BES (with ILR > 1), not shown here. We can see that
PV–wind and PV–wind–CSP-SM1 shift down the LDC but both move in the same direction
(similar net load shape), however, the combination with storage (PV–wind–CSP-TES SM2
mix) reduces the peak load (upper left of RLDC) and increases the time of off-peak load
(bottom right of the RLDC). This can be explained by the fact that when the demand is low,
the excess of the thermal energy provided by the SF is stored which then can be recovered
and used to provide generation at times of high consumption. This effect of CSP-TES on
the Moroccan load (Figure 12, in the right) is similar to the effect of pumped hydro storage
and interconnection on the Moroccan LDC analyzed by Azeroual et al. (2018) [94].
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Figure 11. Base load reduction by each technology—Wind (blue), PV-BES (brown) and CSP-TES
(orange)—versus the mean penetration (1), µ, for the global strategy (2) with maximum-cost con-
straint (5). (Left) PV-BES-wind mix; (Right) PV-BES-wind-CSP-TES SM2 mix. (Top) ILR2; (Middle)
ILR3; (Bottom) ILR4.
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Figure 12. (a) RLDC for different penetrations illustrating the variation of the RLDC parameters
(peak, mid and base load) with increasing penetrations and the renewable share threshold at which
curtailment occurs for PV–wind–CSP-TES SM2 combination. (b) LDC and RLDC for different
combinations, computed at 20% penetration (risk-as-actual mix) for the global strategy (2) with
maximum-cost constraint (5), illustrating the system flexibility provided by CSP-TES.

As can be seen in the left panels of Figure 9, the increase of the ILR in PV-BES–wind
mix do not seem to impact the CC. For instance, at 5% RE share (with high shares of PV-
BES), the value of the capacity credit remains constant and equal to 45% in PV-ILR2-wind
mix (Figure 9a), PV-ILR3–wind mix (Figure 9c), and PV-ILR4–wind mix (Figure 9e). This
can be explained by the fact that we analyse the average capacity credit on an annual
basis ([51], Equation (10)), which keeps the differences between mean capacity credit of
PV-ILR2 and PV-ILR3 or PV-ILR4 the same due to the moderate effect of the nights and
the days where clouds are not present. The marginal capacity credit of additional BES
capacities (not shown here) may increase at a greater rate.

Comparing the evolution of the mid and base LR with an increasing contribution from
renewables in the PV-BES–wind mix (left panels of Figures 10 and 11), one can see that the
mid (resp., base) LR decreases (resp., increases) with the increase of mean penetration since
high shares of PV-BES are introduced only at low penetrations and are compensated by
wind capacities at high penetrations (the right panels of Figures 4 and 5). This is attributed
to the fact that PV-BES capacities contributes mainly to midday load and due to their small
storage capacity (Table 1), they cannot generate electricity for longer operation (for instance
at night) and thus are not able to provide base-load generation compared to wind that
is evenly distributed over the day and the year (Figure 7b–e). This occurs because the
more the ILR increases, the more the PV-BES fraction decreases rapidly when the share of
renewable increases (due to sensitivity of optimal mixes to BES cost), the total mid (resp.,
base) LR tends to decline when moving from ILR2 to ILR3 or ILR4. For instance, at 5% RE
shares, the total mid (resp., base) LR drops from 49% (resp., 43%) in PV-ILR2–wind mix
(Figures 10a and 11a) to 45% (resp., 38%) in PV-ILR3–wind mix (Figures 10c and 11c).

Comparing the left and right panels of Figures 9–11, we observe that the addition of
CSP-TES SM2 tends to reduce the peak, mid and base load more than the addition of BES
only in PV–wind mix. Since the optimal mixes are sensitive to these solar technologies at
low and high penetrations (Section 3.1), the LR trend is thus quite revealing at low and
high penetrations.

At high penetrations, only PV-BES is installed in the PV-ILR2–wind–CSP-TES SM2
mix (Figure 4h), the LR tend to decrease with increasing penetrations, except for the base
LR which increases where PV-BES capacities are replaced by wind, at 30–35% RE shares
(Figures 9b, 10b and 11b). However, only CSP-TES is installed in the PV-ILR3–wind–CSP-
TES SM2 mix (Figure 4j) and PV-ILR4–wind–CSP-TES SM2 mix (Figure 5b) and thus the RE
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capacity contribution to the guaranteed generation capacity at mid and base load increases
with the increase of energy penetration (Figures 10d,f, and 11d,f).

At low penetrations, for instance, at 5% share (low penetrations with significant share
of either CSP-TES or PV-BES), in PV-ILR2-wind-CSP-TES SM2 mix (Figure 4h) the fraction
of CSP-TES is high and that of PV-BES is zero, we can see that the capacity credit is 55%
(Figure 9b), the mid LR is 60% (Figure 10b) and the base LR is 50% (Figure 11b). In the
PV-ILR3–wind–CSP-TES SM2 mix (Figure 4j) where at low penetrations, the fraction of PV-
BES is high and that of CSP-TES is zero, we can see that the capacity credit is decreased to
45% (Figure 9d), the mid LR is decreased to 45% (Figure 10d) and the base LR is decreased
to 38% (Figure 11d). In the PV-ILR4–wind–CSP-TES SM2 mix (Figure 5b), where at low
penetrations, both are installed but the fraction of CSP-TES is greater than that of PV-BES;
we can see that the capacity credit is increased again to 48% (Figure 9f), the mid LR is
increased to 49% (Figure 10f) and the base LR is increased to 43% (Figure 11f).

This ability of CSP-TES to displace more high-cost conventional generators than PV-
BES can be attributed to the inherent advantage of CSP-TES being that it can store a larger
fraction of the solar energy than PV-BES because of the greater power capacity of the
storage system (Table 1), consistent with [48,61], in addition to the use of tracking and the
non-sensitivity to high temperatures occurring during summer periods. On the other hand,
PV-BES generation with small storage system (Table 1) only shares the peak load but would
not be able to satisfy the whole peak load over the time, which illustrates the increasing
imbalances variability in meeting the load and thus fluctuating following the weather. As
a result, CSP-TES remains the ideal choice to supply capacity reserve.

An interesting point is that when the installed capacity becomes greater and the wind
share continues to increase at the expense of the solar technologies, the relative base LR
tails off towards value and the marginal increasing effect is decreased (Figure 11). This
saturation effect shows that additional wind capacities (without storage in the mix) are not
efficient at meeting the base load at higher penetrations. We verify that this is indeed due
to the wind curtailment that occurs as more RE capacities are added to the system (due
to its high mean CF, Table 2). In fact, the left panel of Figure 12 shows the RLDC of for
different penetrations, illustrating the variation of the RLDC parameters (peak, mid and
base load) with increasing penetrations, and the threshold at which curtailment occurs
for PV–wind–CSP SM2 combination. We found the same result for all combinations (not
shown here). As can be seen, the RLDC never intersect the x-axis at low and medium
penetration, means that the RE production never exceeds the demand, so that the demand
is never entirely satisfied by RE and no production is lost. However, beyond the identified
30% RE share threshold, we have negative residual off-peak load that occurs during a
period of low demand (bottom right side of the left panel of Figure 12) due to the feed-in
of wind power that occurs more at times of low demand in winter, as shown in Figure 7f
when the wind mean CFs are strong (Figure 7e). This suggests that once the demand of
winter days is covered, further wind deployment mostly leads to overproduction at such
high penetrations, where the storage is not integrated in the mix (i.e., the CSP-TES or
PV-BES fractions are reduced due to the cost constraint).

In addition, the increase of the capacity credit (Figure 9) is lower than the mid LR
(Figure 10), which is lower than the base-load reduction (Figure 11). This is confirmed by
the left panel of Figure 12 where the upper-left of the RLDC converges with the LDC while
the mid- and base-load bands shift away from the LDC. Therefore, there is only a small
fraction of RE output that can be relied upon in peak-load hours, because renewables with
a small fraction of PV-BES and CSP-TES are not able to provide energy during times of high
load. However, they can reliably contribute some fraction of their capacity during these
hours to meet the residual load. This suggest that increased RE deployment introduces
more supply intermittency and fluctuations, requiring more flexibility during peak-load
periods; but less mid- and base-load capacity will be needed at such high penetrations
due to the high share of wind. However, it is clear from the left panel of Figure 12 that
for all penetrations, RLDC cross the abscissa at same point of the LDC, meaning that the
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number of hours of operation for capacity usually designed as base load is not decreased
too much. In other words, there is a significant fraction of the base load which is not
varying and could therefore be balanced by plants that provide constant output throughout
the year. The ability of CSP with TES to shift the timing of RE generation to better match
the peak load could have played role in limiting the amount of energy curtailed or needed
by flattening the daily production. For instance, the CSP storage provides a power sink at
times of negative residual demand (bottom right side of left panel of Figure 12) and enables
the recovery of some of the excess during the period of high consumption (top left side of
left panel of Figure 12).

4. Summary and Discussion

In this study, we examine how two solar technologies, Photovoltaic (PV) and Concen-
trated Solar Power (CSP), with different storage duration and rental costs, interact with
wind in an optimal capacity mix, using recent (2013) cost data, under several scenario
mixes. We analyse the role of temporal and spatial meteorological patterns, as well as
the impact of Thermal Energy Storage (TES) and Battery Energy Storage (BES) associated
with these solar technologies in reducing the variance-based risk. We compare the value
that CSP-TES and PV-BES bring to the grid, as defined by the capacity credit, mid- and
base-load reduction.

To do so, we used hourly climate data provided by MERRA-2 climate reanalysis
to compute time series of demand, capacity factors (CFs) of wind, solar CSP (resp., PV)
without and with increasing size of CSP solar field (resp., PV solar panel) relative to a
fixed capacity of CSP power block (resp., PV inverter) capacity, as measured by the Solar
Multiple SM (resp., Inverter Loading Ratio ILR). These predictions are then adjusted to
energy observations for the four Moroccan electrical zones over the year 2018. For the
optimal mix analysis, a Mean-Variance Portfolio approach is adopted with the objective
of maximizing the renewable (RE) production and minimizing its variability while not
exceeding the total cost of the actual PV-Wind-CSP-TES mix (with 5.5 h of TES). We define
the rental cost of storage and generation technologies taking their dependence on the
storage size into account. By diagnosing the contribution of different RE technologies to
the reduction of different load bands, such as the capacity credit for the peak load, we give
an analysis of the services provided by each technology.

To summarize, we find that at low penetrations, the optimal mixes satisfy the maximum-
cost budget without being constrained by it. More the battery storage combined with PV is
large, more PV-BES in CENTER is able to meet the daily and seasonal peak demand and
is winning over the low-variance wind of southern regions, while CSP capacities without
storage are null. When co-locating PV-BES and CSP-TES with the same design, the latter
leads to lower variability due to its larger storage capacity. If substantial BES capacity is
deployed, more than that of TES, PV-BES is more likely to produce energy at minimum
variance which replaces CSP-TES capacities installed in eastern or southern regions.

At high penetrations, mixes are sensitive to cost, more so as CSP and PV with high
amounts of energy available for storage are introduced. Therefore, capacities are no longer
linearly dependent on the mean penetration. Wind in EAST (resp., SOUTH) constitutes
the predominant technology at maximum penetration mix (resp., at penetrations smaller
than the maximum) presenting strong mean CF and noticeably lower rental cost while
PV-BES has low mean CF and CSP/CSP-TES has high capital cost, leading to a downward
trend of their fraction with increasing penetrations letting the variability increase (i.e., wind
curtailment). Since costs matter at such high penetrations, the sizing of BES and TES is
critical. That is, for scenarios with low–medium storage duration, ranging from 5 to 13.5 h,
CSP-TES is preferred, while scenarios with longer plant operation favour PV-BES, which
allows more PV-BES to be added instead to satisfy the high penetration level.

The amount of storage and the associated rental cost are thus a determinant for the
technology that should be installed at low and high penetrations. It also impacts the
extent to which leveraging weaker correlations between electricity zones and technologies
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allows for the reduction of the variability of the aggregate RE production with respect to
the demand. If regional diversification and covariances between solar technologies are
essential to take into account in the absence of or with small amounts of storage, the role
they play in the optimization is reduced with an increase in the storage sizing, since mixes
become less diversified.

While the integration of CSP/CSP-TES makes the optimal mixes sensitive to storage
at low penetrations only due to the reduced variance of TES [51], the addition of BES
to PV reveals an increased sensitivity of the mix to solar technologies at low and high
penetrations due to the differences in the storage capacity and cost. Along the optimal
fronts, we identified a highly non-linear relationship between CSP/CSP-TES and PV/PV-
BES. It is noticed that when one technology is introduced in the mix, the other one is phased
out and vice versa. However, in the case of unlimited PV and CSP storage capacity and
ignoring storage cost, PV-BES is preferred at low and high penetrations (Figure A3) due to
its low sensitivity to clouds and low rental cost compared to CSP.

These results allow us to discuss the scenarios of solar integration in Morocco. For
instance, for scenarios in which Morocco aims only to reduce the risk of not covering the
load, a diversified mix combining wind and PV without or with a small amount of storage
or relying only on CSP-TES in its renewable goals would be efficient to reduce the foreign
energy dependence. CSP without storage is sub-optimal from an economic standpoint but
also cannot compete with PV because cloudy weather limits its penetration. Eventually,
it should rather be viewed as an option to replace fixed-tilted PV to satisfy the demand
in future warming climate where the increasing air conditioning use causes the demand
to peak in summer as CSP has linear response to ambient temperature with a positive
gradient [95].

Under scenarios aiming to increase the RE penetration with small RE investment—
setting aside the risk related to system adequacy (i.e., curtailment or shortage situations)
or in cases when Morocco relies on its current flexibility options (i.e., imports from Spain,
pumped hydro storage or demand response) [96] to alleviate these issues, Morocco has to
invest more in wind due to its strong and regular Cf—along the Atlas mountain ridge in
eastern regions and southern regions where the coastal climate effect of the Atlantic ocean
can be more intense and reliable—which could reduce the costs that an investor would
face every year compared to currently expensive CSP-TES plants (consonant with [86]).
Dispatchable CSP plants with high storage capacity will very likely reduce the intermittency
of PV and the variability of wind feed-in at such high RE share scenarios if Morocco
increased the RE budget [51]. The low PV/PV-BES mean CF resulting from the moderate PV
efficiency conditions of Morocco—mainly due to its sensitivity to high temperatures [97]—
is the reason why despite their rather low rental cost, only a small number of PV capacities
are installed at such high penetrations. Thus, investment must be increased to use battery
with large storage and/or a tracking system to achieve high-capacity credit [11].

It is important to bear in mind that in this study, PV multi-crystalline and CSP parabolic
trough (PT) have been used as reference solar technologies in the PV/PV-BES and CSP/CSP-
TES models. Moreover, the output is only for CSP North–South tracking and fixed latitude-
tilted PV. However, care should be taken to test different technologies and tracking types
since each option has its own characteristics in terms of sensitivity to temperature, cost
and learning rates. For instance, the multi-crystalline PV efficiency decreases as the PV
cells get hotter [98]. However, amorphous silicon solar cells are less sensitive to high
temperature (0.19% vs. 0.50% degradation per degree over 25 ◦C) [99]. In addition, it is
possible that technology innovations in the CSP sector will lead to future market preference
for other CSP technologies instead of the PT, such as Solar Tower (ST). The latter has
lower cost of storage and power block [49] due to the higher operating temperature, which
creates a greater temperature differential and higher performance. Therefore, ST has the
potential to reduce costs for providing mid and peak load in hot and arid climate, further
improving their competitiveness at high penetration scenarios in Morocco. Therefore, the
elicited conclusions should be treated as a revealing qualitative trend since the costs of PV,
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wind, CSP and batteries are expected to come down due to large-scale deployment and
technology improvements [5]. Additional analyses are needed to evaluate the sensitivity of
the results to alternative PV and CSP technologies, tracking types, storage configuration
and cost scenarios data.

While evaluating the impact of cost and storage of PV and CSP on their integration
is a first step, ultimately estimating the avoided operational costs from conventional and
the revenues that may be achieved during periods of high-peak demand or high electricity
prices will be important for system planners. Further refinements are thus needed to take
into consideration in the optimization framework.

This modelling framework can be implemented in future warming climate to assess
the impact of climate change on optimal mixes and the role of storage in reducing the
Moroccan climate sensitivity.
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Appendix A. Solar Panels and Inverter Simulation Modules

This section describes the modeling of the Direct Current (DC) energy provided by the
Solar Panels (SP) and/or by the Battery Energy Storage (BES); and the Alternate Current
(AC) energy provided by the inverter (INV).

Appendix A.1. Solar Panels Modeling

The PV model used in this study is based on a parametric approach to model the PV
efficiency where the effect of the temperature leads to a relation in the form (A1) [100]:

ηcell = η
re f
cell

[
1 + β

re f
cell(Tcell − Tre f

cell,STC) + γ
re f
cell log(

GTI
GTISTC

)

]
(A1)

where η
re f
cell =

Pre f
SP,DC,nom

Are f
SP ∗GTISTC

is the module’s electrical efficiency at the reference temperature,

Tre f
cell,STC = 25 ◦C, and at the reference Global Tilted Irradiation, GTISTC = 1000 W/m2,

obtained under Standard Test Conditions (STC). Are f
SP = 1.675 m2 is the reference SP area

and Pre f
SP,DC,nom = 250 W is the reference DC nominal power. The temperature coefficient,

β
re f
cell , and the solar radiation coefficient, γ

re f
cell , are mainly material properties having values
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of about—0.004 K−1 and 0.12, respectively, for crystalline silicon modules [101]. The latter,
however, is usually taken as zero [102] and Equation (A1) reduces to (A2), which represents
the traditional linear expression for the PV electrical efficiency [100].

ηcell = η
re f
cell

[
1 + β

re f
cell(Tcell − Tre f

cell)
]

(A2)

The cell temperature (A3) is calculated as follows [100]:

Tcell = Tamb +
GTI

GTINOCT
∗ L(V) ∗ (Tre f

cell,NOCT − Tamb,NOCT) (A3)

where L(V) = 9.5
5.7+3.8V is the loss ratio, V is the wind speed, Tamb is the ambient tempera-

ture and GTI is the Global Tilted Irradiation (GTI) obtained after the partitioning of the
Global Horizontal Irradiation (GHI) given by climate data ([51], Section 2.6.2) into direct,
diffuse and reflected components at every climate grid point (following [103,104]). The
Nominal Operating Cell Temperature (NOCT), Tre f

cell,NOCT = 319.15 K, is defined as the tem-
perature reached by the module under the following conditions: GTINOCT = 800 W/m2,
Tamb,NOCT = 20 ◦C, and V = 1 m/s.

Based on the EVANS model [102], the DC power generated by a PV module (A4),
for given ILR, is calculated by the product of the total area of the module AILR

SP (7), the
number of modules Nmod, the global tilted irradiation GTI and the efficiency of the module
ηcell (A2).

PILR
SP,DC = Nmod ∗ AILR

SP ∗ ηcell ∗ GTI (A4)

Appendix A.2. Inverter Modeling

The AC electrical production (A5) is simulated by multiplying the DC power, PILR
SP,DC

(A4), by the inverter efficiency η
re f
INV,nom:

PILR
SP,elec = PILR

SP,DC ∗ η
re f
INV,nom (A5)

The inverter efficiency can be simulated using Equation (A6) where y0, c1, c2 can be
determined using a non-linear regression algorithm [105]. However, we found that ηinv,sim

do not vary a lot with PILR
SP,DC. Therefore, a constant value is used η

re f
INV,nom = 97.2% [106].

ηinv,sim = y0 + c1

[
1− exp(−C2 ∗ PILR

SP,DC)
]

(A6)

Appendix B. Storage Model without Constraints

The storage model without constraints assumes that the energy charged, PSM/ILR
X→Θ,x ,

the energy discharged, PSM/ILR
Θ→Y,x , and the state of charge, SOCSM/ILR

E,Θ , are only determined
by the energy supplied to and extracted from the storage system (i.e., limited only by the
surface of the SF or SP (7) and not by the storage constraints). As shown in Figure 3, (1)
the daytime thermal energy from the SF (resp., SP), PSM/ILR

X,x , can go directly to the PB
(resp., INV) at nominal capacity (during periods of high solar irradiation) or operate in
partial load whenever the irradiation is high enough to run the PB (resp., INV). Thus,
the production (PSM/ILR

X→Y,x ) will be the minimal between the SF output (PSM/ILR
X,x ) and the

thermal (resp., DC) nominal capacity (Pre f
Y,x,nom). Then, (2) if the SF (resp., SP) energy is

above the maximum thermal (resp., DC) capacity (Pre f
Y,x,nom) during peak solar hours, all

the “extra” thermal energy from the SF (resp., SP) (i.e., the difference between the SF (SP)
output and the threshold) is stored (PSM/ILR

X→Θ,x ) to be dispatched later (as no constraints on

storage are assumed to be in place), and the plant is producing electricity (PSM/ILR
X→Y,x ) at

nominal thermal (resp., DC) capacity, Pre f
Y,x,nom, at the same time. (3) In times of little or no

solar irradiance, the thermal (resp., DC) power provided by the SF (resp., SP) is less than
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than the power required to operate in full load (Pre f
Y,x,nom), the PB (resp., INV) is fuelled by

energy from the SF (resp., SP) and the TES (resp., BES) system (PSM/ILR
X→Y,x + PSM/ILR

Θ→Y,x ). This
might happen when the sky is cloudy, with solar irradiation fluctuating during the day, or
in the absence of sunlight after sunset. Without any solar irradiation available, the missing
power needed to run the PB (resp., INV) at nominal capacity has to come only from the
storage system (PSM/ILR

Θ→Y,x ) until it is completely depleted. This is the case at night or before

sunrise. Finally, we compute the state of charge (SOCSM/ILR
E,Θ ) indicating the level of charge

at each time-step t (hour) of the day.
Depending on the value of CSP Solar Multiple—SM (resp., PV Inverter Loading

Ratio—ILR), a different amount of thermal (resp., DC) energy is stored in the storage
system in order to be used whenever it is needed. All energy which goes at any point into
the TES (resp., BES) is reduced by the storage efficiency which accounts for energy losses
occurring. The TES (resp., Li-ion BES) can have an efficiency of about 95% [107] (resp.,
90% [91], Table 61). In this study, the efficiency of both is assumed to be 90%.

Appendix C. Capacity Factors, Covariances and Storage

Appendix C.1. Observed Capacity and Production

In this study, the reference capacities and production used to correct bias in the CFs,
for each technology and zone, are given in Table A1. Capacities in Table A1 (Left) are
graphically represented, in Figure A1, by the size of the bar plot to illustrate the actual
geographical distribution.

Table A1. Reference capacities, ωobs
k , (Left) and yearly-mean generation, Prodobs

y,k , (Right) per zone
and technology installed in Morocco in 2018 ([51], Table A4). Zone–technology pairs for which no
capacity is installed are marked by an empty set ∅.

Zone
ωobs

k (MW)
Zone

Prodobs
y,k (GWh)

Wind PV CSP Wind PV CSP

NORTH 396.1 ∅ 0 NORTH 1312 ∅ ∅
CENTER 60.0 70.0 510 CENTER 210 120 1734

EAST ∅ ∅ 20 EAST ∅ ∅ 55
SOUTH 759.6 100 ∅ SOUTH 3056 190 ∅

NORTH CENTER EAST SOUTH
Electricity Zones

0

250

500

750

In
st
al
le
d 
Ca

pa
cit

y 
(M

W
)

Wind
CSP
PV

Figure A1. Observed PV, onshore wind and CSP/CSP-TES capacity distribution per electrical zone in
Morocco in 2018 corresponding to Table A1 (Left). All CSP/CSP-TES (resp., PV) plants have similar
solar multiple of 1.3–1.4 means 30–40% of thermal surplus (resp., inverter loading ratio of 1 means
without storage), as shown in Appendix C.2. Contrary to our study, all operational PV plants are
using tracking [68].
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Appendix C.2. Observed CSP Solar Multiple and PV Inverter Loading Ratio

Closer inspection of ([51], Table A4) shows that, for instance, for a given region
i = CENTER, different CSP plants, such as p1 = NOOR1 and p2 = NOOR2, have similar
mean CFs even though the storage duration of p1 (3 h) is smaller than p2 (7 h). It is possible,
therefore, that the CSP Solar Multiple (SM) is different. For this purpose, we compare the
observed CSP SM, SMobs

p (A7) , of each operational CSP plant p by calculating it as the
ratio of the observed Solar Field (SF) capacity, ωobs

SF,k,p, divided by the observed turbine

capacity, ωobs
k,p:

SMobs
p =

ωobs
SF,k,p

ωobs
k,p

=
Aobs

SF,p ∗ DNIDP∗ < ηSF >

ωobs
k,p

(A7)

where Aobs
SF,p is the observed CSP SF area and < ηSF >= 20.13% is the mean of the SF

efficiency ([51], Appendix A2).
p1 = NOOR1; Aobs

SF,p1 = 1,308,000 m2; ωobs
k,p1 = 160 MW →SMobs

p1 = 1.31

p2 = NOOR2; Aobs
SF,p2 = 1,779,900 m2; ωobs

k,p2 = 200 MW →SMobs
p2 = 1.43

p3 = NOOR3; Aobs
SF,p3 = 1,321,197 m2; ωobs

k,p3 = 150 MW →SMobs
p3 = 1.41

p4 = AinBeniMathar; Aobs
SF,p4 = 183,120 m2; ωobs

k,p4 = 20 MW →SMobs
p4 = 1.47

(A8)

From (A8) ([108,109]), we can confirm that it is indeed due to the SM which is the same
for all CSP plants in Morocco. This verification has been done only for CSP plants since all
operational PV plants considered for bias correction are without storage (i.e., ILR1).

Appendix C.3. Relationship between Mean CFs, Variance and Storage

Figure A2 provides a discussion of the relationship between mean CFs, variance
and storage.

(a) Before Bias Correction
Figure A2. Cont.
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(b) After Bias Correction

Figure A2. Relationships between CSP (resp., PV) mean capacity factors, variance, CSP Solar Multiple
SM (resp., PV Inverter Loading Ratio ILR) and the amount of TES (resp., BES). Different cases are
represented to illustrate the effect of the bias correction. (a) Assuming the case (i) where the SF (resp.,
SP) increases without increasing the amount of storage, the mean CFs will increase and the variance
will increase even more (the CF variances tend to scale quadratically with CF means) which tend to
reduce the ratio CF/variance with the increasing of SM (resp., ILR). Assuming the case (ii) where the
SF (resp., SP) increases with increasing the amount of storage, the mean CFs will increase and the
variance will increase but will be reduced by ψ which tend to increase slightly the ratio CF/variance
with the increase of SM (resp., ILR) compared to case (i). Since the bias correction (b) is bringing
the mean of the CFs roughly equal to the CFs of the observed SM (resp., ILR) (iii). In this case, the
variance will decrease (i.e., the ratio CF/variance will increase) with the increase of SM (resp., ILR)
due to the reduction in the variability associated with storage.

Appendix C.4. Estimates of Correlations and Covariances

Estimates of the correlations between the predicted CFs and the inverse of the demand
for the same region over the year 2018 are reported in Table A2. We computed also the
covariances in Table A3.

Table A2. Estimates of the correlations between the predicted capacity factors and the inverse of the demand in the same
region over the year 2018. ILR1 or SM1: without storage; ILR > 1 or SM > 1: with increasing levels of storage.

Zones ILR1/
Wind

ILR1/
SM1

ILR1/
SM2

ILR1/
SM3

ILR1/
SM4

Wind/
SM1

Wind/
SM2

Wind/
SM3

Wind/
SM4

NORTH 0.11 0.95 0.72 0.50 0.30 0.04 0.03 -0.07 -0.22
CENTER 0.33 0.97 0.71 0.47 0.24 0.30 0.38 0.23 -0.02

EAST 0.33 0.97 0.72 0.49 0.25 0.28 0.26 0.12 -0.07
SOUTH 0.17 0.95 0.69 0.45 0.18 0.21 0.23 0.24 0.27

Zones ILR2
/Wind

ILR3
/Wind

ILR4
/Wind

ILR2
/SM1

ILR3
/SM1

ILR4
/SM1

NORTH 0.14 0.08 −0.01 0.78 0.54 0.35
CENTER 0.42 0.34 0.21 0.81 0.55 0.339

EAST 0.35 0.24 0.13 0.80 0.547 0.337
SOUTH 0.16 0.14 0.06 0.79 0.543 0.329

Zones ILR2
/SM2

ILR3
/SM2

ILR4
/SM2

ILR2
/SM3

ILR3
/SM3

ILR4
/SM3

ILR2
/SM4

ILR3
/SM4

ILR4
/SM4

NORTH 0.891 0.775 0.505 0.630 0.780 0.732 0.380 0.488 0.671
CENTER 0.902 0.820 0.506 0.612 0.783 0.741 0.302 0.374 0.523

EAST 0.909 0.810 0.498 0.627 0.791 0.739 0.325 0.406 0.576
SOUTH 0.883 0.787 0.483 0.580 0.805 0.640 0.238 0.296 0.371
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Table A3. Estimates of the covariances (10−10) between the predicted capacity factors and the inverse of the demand in the
same region over the year 2018. ILR1 or SM1: without storage; ILR > 1 or SM > 1: with increasing levels of storage.

Zones ILR1/
Wind

ILR1/
SM1

ILR1/
SM2

ILR1/
SM3

ILR1/
SM4

Wind/
SM1

Wind/
SM2

Wind/
SM3

Wind/
SM4

NORTH 11.38 63.24 33.71 15.94 5.96 6.89 3.76 -5.85 -11.81
CENTER 17.29 71.04 34.33 13.88 2.46 32.88 26.52 9.84 -0.35

EAST 24.42 63.55 31.40 13.16 2.84 32.01 19.7 6.05 -1.36
SOUTH 6.22 73.72 35.24 13.55 1.49 13.37 9.41 5.90 1.75

Zones ILR2
/Wind

ILR3
/Wind

ILR4
/Wind

ILR2
/SM1

ILR3
/SM1

ILR4
/SM1

NORTH 10.52 4.73 -0.64 39.92 20.08 8.24
CENTER 16.19 9.13 2.84 43.39 20.63 6.41

EAST 18.54 9.17 2.69 38.45 18.39 5.91
SOUTH 4.34 2.77 0.65 45.34 21.90 7.32

Zones ILR2
/SM2

ILR3
/SM2

ILR4
/SM2

ILR2
/SM3

ILR3
/SM3

ILR4
/SM3

ILR2
/SM4

ILR3
/SM4 ILR4 /SM4

NORTH 31.92 20.27 8.32 15.49 14.00 8.27 5.80 5.44 4.70
CENTER 31.62 20.05 6.25 13.02 11.63 5.57 2.26 1.96 1.38

EAST 28.74 17.99 5.78 12.32 10.91 5.32 2.64 2.31 1.71
SOUTH 32.94 20.77 7.01 12.90 11.81 5.55 1.39 1.23 0.85

Appendix D. Rental Cost Modeling

This section summarizes the parameters needed in Section 2.5.
The coefficient αj in Equation (10) is the yearly mean CF in (h) of the technology j. It

illustrates the yearly mean production duration or the amount of time (h) on average that
the technology j can produce energy at nominal power of the plant over one year to install
ωk with k = (i, j) (A9).

αj =
η(i,j)ω(i,j)

Pre f
elec,nom,j

= η(i,j) (A9)



αj′ =
store−capacitySM/ILR

j′

Pre f
elec,nom,j

β j′ =
store−powerSM/ILR

j′

Pre f
elec,nom,j

γj′ = (nα)j′ =
∑ E_dischargedSM/ILR

j′

Pre f
elec,nom,j

where: Pre f
elec,nom,j =

Pre f
PB,elec,nom,j=CSP

Pre f
INV,AC,nom,j=PV = Pre f

INV,DC,nom,j ∗ η
re f
INV,nom = Pre f

SP,DC,nom,j ∗ η
re f
INV,nom

Similarly to αj, the coefficients α′j, β′j and γ′j in Equation (11) illustrate the yearly
mean storage duration. They are obtained by determining, respectively, how much energy
storage capacity, storage power of charging/discharging and total energy discharged are
needed on average to charge or discharge energy at nominal power of the plant over one
year to install ωk with k = (i, j, j′).

γj′ corresponds to the autonomy or the discharge duration. Indeed, all storage systems
degrade with use because they are subject to fatigue (during each charge–discharge cycle)
and thus must be replaced during the lifetime of the storage system. The cost for that
replacement must be taken into account in the variable operating cost of the storage system
(VOM′j). However, real cycling processes are often complex and not well defined. A
common simplification consists in assuming a fixed number of full equivalent cycles equal
to one per day (thus 365 per year) over the lifetime of j′ (one cycle corresponds to one charge
and one discharge). This is a convenient hypothesis, since it makes it easy to calculate the
yearly rental cost of j′. However, the number of full equivalent cycles is usually less than
one per day, and is highly dependent on the storage capacity. For instance, a small storage
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system tends to have almost one full cycle every day, while a large storage system has much
more limited average charge/discharge cycles. The number of equivalent full cycles per
year (A10) and the ADDj′−SM/ILR is the Average Discharging Depth ADDj′−SM/ILR (A11),
calculated as follows [27]:

nj′ = 365 ∗ ADDSM/ILR
j′ (A10)

ADDj′−SM/ILR =
∑ E_dischargedSM/ILR

j′

365 ∗ store− capacitySM/ILR
j′

(A11)

Appendix E. Scenarios with Unlimited Storage Capacity and Cost
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Figure A3. Similar to Figure 4. (a,b) PV-ILR2–Wind–CSP-SM1 (c,d) PV-ILR4–Wind–CSP-SM1 (e,f)
PV-ILR3–Wind–CSP-SM2 (g,h) PV-ILR4–Wind–CSP-SM2 (i,j) PV-ILR4–Wind–CSP-SM3. Scenarios
with unlimited storage capacity and cost.
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