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Abstract. The purpose of this article is to discuss several modern aspects of remeshing, which is the task
of modifying an ill-shaped tetrahedral mesh with bad size elements so that it features an appropriate density

of high-quality elements. After a brief sketch of classical stakes about meshes and local mesh operations, we

notably expose (i) how the local size of the elements of a mesh can be adapted to a user-defined prescription
(guided, e.g., by an error estimate attached to a numerical simulation), (ii) how a mesh can be deformed

to efficiently track the motion of the underlying domain, (iii) how to construct a mesh of an implicitly-

defined domain, and (iv) how remeshing procedures can be conducted in a parallel fashion when large-scale
applications are targeted. These ideas are illustrated with several applications involving high-performance

computing. In particular, we show how mesh adaptation and parallel remeshing strategies make it possible

to achieve a high accuracy in large-scale simulations of complex flows, and how the aforementioned methods
for meshing implicitly defined surfaces allow to represent faithfully intricate geophysical interfaces, and to

account for the dramatic evolutions of shapes featured by shape optimization processes.
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1. Introduction

Since the early days of scientific computing, simplicial meshes (that is, meshes composed of triangles in 2d,
or tetrahedra in 3d) have been raising a constantly renewed interest as a prominent means to represent
and process complex domains. For instance, they have been used extensively to account for a shape in
the perspective of its visualization; more recently, STL mesh files have become one of the most widespread
formats under which shapes are supplied to 3d printing machines. Furthermore, and closer to the scope of the
present article, the most popular numerical simulation frameworks for physical phenomena (namely, the finite
element method, or the finite volume method) crucially rely on a meshed discretization of the computational
domain. We refer for instance to [21] for a general presentation of several stakes and applications of meshing.

In line with this omnipresence of meshes in the numerical treatment of shapes, the issues of mesh generation
and mesh processing have received a tremendous amount of attention in the literature, resulting in various
efficient algorithms and software packages, such as Meshlab [32] Gmsh [59], CGAL [97], Tetgen [93], to name
a few free and open-source instances.

Despite these numerous investigations and achievements, meshing is still a thriving field for academic and
industrial research: some old and major challenges remain – in particular, it is still unfortunately difficult to
create a valid surface triangulation of the boundary of a complex 3d domain, then to fill the volume with a
valid tetrahedral mesh – while modern applications suggest new and promising directions for investigations.

Many such applications fit in with the context of remeshing, where one aims to modify an existing, valid,
albeit ill-shaped and badly sampled mesh, so that it better comply with given requirements, such as a good
element quality, an adapted element density, etc. The purpose of this article is to discuss and illustrate
several such aspects of tetrahedral remeshing. These, as well as the proposed means to address them, are
suggested by the knowledge of the authors, without ambition of exhaustivity.

(1) The primary target of remeshing is to adapt the local size of a mesh (i.e. its element density) to
the geometric features of the represented domain, or to an error estimate associated to a numerical
simulation of interest.

(2) When a physical simulation implies an evolution of the underlying domain (as it is often the case for
instance in computational fluid dynamics, or in shape optimization), suitable combinations between
Lagrangian strategies and remeshing techniques make it possible to efficiently account for this motion.

(3) The recent development of Eulerian interface-capturing methods – such as the celebrated level set
method – has made it quite popular to represent a shape Ω implicitly, i.e. as the negative subdomain
of a scalar function φ : D → R, defined on (a fixed mesh of) a given computational domain D. In
this context, one may need an exact mesh of Ω, which calls for a methodology for constructing a
mesh of such an implicit domain.

(4) When the size of the computational mesh is so large that it can barely be stored in memory, it is
crucial that the remeshing process be carried out in a parallel fashion.

2



Understandably enough, these issues find particularly relevant applications in the recent context where
the sustained increase in computational power and the advent of high-performance computing herald high
resolution, very accurate numerical simulations of complex physical phenomena. The presentation of this
article is guided by this perspective of large-scale simulations. In particular, it mainly takes place in the
three-dimensional context, which is on every aspect more involved than its two-dimensional counterpart,
to which we shall occasionally refer for pedagogical purposes, or as a preliminary step towards a future
three-dimensional implementation. We discuss the use of the presented remeshing features in the context of
applications involving high performance computing; all these features are implemented in the open-source
software mmg [1], which is used consistently in this exposition. A thorough technical description of this
environment can be found in the article [37], see also [36, 43].

This article is organized as follows. In the next Section 2, we briefly review some basic material about
meshes and remeshing, before describing a little more precisely some modern applications in different contexts
of use. We then present several applications of these methods, and variants of them dedicated to the
context of high-performance computing: in Section 3, an error estimate based adaptive remeshing strategy
is implemented in the context of unsteady fluid mechanics simulations. The next Section 4 arises in the
context of shape and topology optimization, where an implicit domain meshing methodology is carried out
to track the motion of the optimized domain, while allowing for an explicit, meshed description of the latter
throughout the optimization iterations. The application of this idea of meshing implicitly-defined interfaces
is then applied in the field of geoscience in Section 5, to the construction of an explicit and accurate meshed
representation of geophysical interfaces. Finally, in Section 6, we exemplify how a parallel implementation
of mesh adaptation techniques makes it possible to track efficiently the motion of complex fluid interfaces,
such as a turbulent flame front or a liquid droplet, with a very high resolution.

2. A few aspects of tetrahedral remeshing

In this section, we present the remeshing features at stake in this article. After a short summary of basic
concepts about meshes in Section 2.1 and a general presentation of remeshing in Section 2.2, we describe
in Section 2.3 the issue of mesh adaptation. In the next Section 2.4, the problem of mesh displacement is
discussed; in Section 2.5 we broach the idea of isosurface discretization before finally dealing with parallel
remeshing in Section 2.6.

2.1. General facts about meshes and notation

Let us start by introducing briefly the needed background material about tetrahedral meshes in this article;
for these issues, we refer to e.g. [20, 27, 55, 68, 98] for further details.

Formally, let Ω ⊂ R3 be a bounded domain; a mesh of Ω is a collection T = {Ti}i=1,...,NT
of open

tetrahedra, accounting for a covering of Ω, in the sense that

Ω =

NT⋃
i=1

Ti.

In addition, it is assumed that

• T is valid : the open simplices Ti are mutually disjoint: Ti ∩ Tj = ∅, i 6= j,

• T is conforming : each intersection Ti ∩ Tj , i 6= j, is reduced to either a vertex, an edge, or a face of
the mesh.

A mesh T additionally bears information about a surface triangulation S, that is, a collection {Sj}j=1,...,NS

of triangles Sj ⊂ R3 accounting for one or several pieces of surface. In the most simple instances, S is made of
the external faces of the tetrahedra T ∈ T , as a (approximate) representation of the boundary of Ω. However,
in some applications, Ω comprises several subdomains, whose tetrahedra are identified with different labels.
In such cases, S also contains the triangles of the corresponding inner boundaries, see Fig. 5 (right) below
for an example.

Usually, the creation of a mesh T of Ω starts from the datum of a surface triangulation S of the boundary
∂Ω (which is often supplied by a CAD software). Thence, several strategies are available to fill the volume
of Ω with tetrahedra conforming to this triangulation, the perhaps most efficient ones being based on the
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constrained Delaunay algorithm. Let us mention that, in spite of having been extensively addressed for
decades, mesh generation is still a delicate issue when very intricate shapes are considered.

Beyond the aforementioned mild requirements, it is often desirable to evaluate more closely “how well”
a mesh T lends itself to accurate numerical simulations. This feature can be appraised in at least two
independent ways, which are illustrated on Fig. 1.

• Most numerical methods experience trouble when the mesh T contains very flat, nearly degenerate
elements. For instance, such configurations are well-known to increase dramatically the condition
number of finite element systems based on this mesh, thus slowing down iterative matrix solvers,
see e.g. the books [31, 49] about this classical issue. Several quantities are used in the literature
to discriminate “well-shaped elements” Ti (i.e. those that are close from being regular tetrahedra),
from “ill-shaped” ones (i.e. that are nearly degenerate); for instance, the following measure of the
quality of a tetrahedron T is quite popular in the literature:

Q(T ) = α
Vol(T )(
6∑
i=1

|ei|2
) 3

2

,

where ei, i = 1, . . . , 6 are the edges of T , Vol(T ) is its volume, and α is a normalization factor. This
quantity Q(T ) equals 1 when T is regular, and it is close to 0 when T is nearly degenerate.

• Another crucial feature in the evaluation of the quality of T is related to an issue which we have
overlooked so far. Often, the domain Ω of interest is smooth, and has a curved boundary ∂Ω, while
the faces of the surface triangulation S, intended as a discrete approximation of the latter, are planar.
Hence, it should be required from S that it be a close approximation of the smooth surface ∂Ω up
to a certain tolerance, for instance in terms of the Hausdorff distance between S and ∂Ω.

Summarizing, we shall expect from a mesh T of Ω that each tetrahedron Ti have quality Q(Ti) close to
1, and that the surface triangulation S be a “close” approximation of the continuous surface ∂Ω.

2.2. Basic stakes about remeshing

As suggested by the name, remeshing assumes the datum of a tetrahedral mesh T of Ω which is valid and
conforming, but may still be unsuitable for computation: as discussed in Section 2.1, T may suffer from poor
element quality, or its element density may be inadequate, in the sense that curved regions of the boundary
∂Ω (or other, internal surfaces) are represented by too few elements. Remeshing aims to modify T into a

high-quality mesh T̃ of Ω, whose element density is well-tailored to its geometric features.
This objective is usually achieved thanks to a series of local operations, which are applied iteratively;

these are briefly described below, and illustrated on Fig. 2 in the (simpler) two-dimensional context.

• Edge split: When an edge pq is “too long”, a new vertex m is inserted in the mesh T ; pq is replaced
by the two edges pm and mq and the connections of T are updated accordingly.

• Edge collapse: When an edge pq is “too short”, its endpoints p and q are merged and the connections
of the mesh T are updated accordingly.

• Edge swap: An edge pq is removed from the mesh T and the “shell” of pq, consisting of all the
tetrahedra sharing this edge, is adequately reconnected.

• Vertex relocation: A vertex p is moved slightly, while all its connections remain unaltered.

Each of these operators exists under two different versions, depending on whether it is applied to a surface
configuration, involving tetrahedra bearing surface triangles Sj ∈ S, or to an internal one. For instance,
when an internal edge pq of T is split, the inserted point m is usually chosen as the midpoint of p and q;
on the contrary, when pq ∈ S is a boundary edge, m is rather placed on the continuous surface ∂Ω. In
practice, since this “ideal” surface is unknown, the position of m is inferred from those of p and q, and other
associated geometric quantities (such as the normal vectors at p and q).

In the above description, the criterion whereby an edge pq is deemed to be “too long” (or “too short”)
may depend on the situation. For instance, pq may be “too long” with respect to a user’s prescription for
the size of the elements of the mesh (see the next Section 2.3 about this practice) or, when pq ∈ S is a
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(a) (b)

(c) (d)

Figure 1. (a) Fine geometric approximation of a domain Ω1, with a mesh containing
bad quality elements; (b) good quality mesh of Ω1; (c) good quality mesh of a domain Ω2,
accounting for a poor geometric approximation of Ω2; (d) mesh of Ω2 with a good geometric
approximation property.

surface edge, it may be considered to be “too long” with respect to the curvature of ∂Ω, as its size entails a
too coarse geometric approximation of ∂Ω.

Last but not least, let us emphasize that the use of the above remeshing operators should be carefully
monitored: several checks are in order so as to prevent the emergence of invalid configurations.

2.3. Goal-oriented mesh adaptation

As we have seen, the primary objective of remeshing T is to produce a mesh T̃ with fine element quality, which
is a close approximation of the underlying domain Ω. In addition to these requirements, one usually demands

that T̃ comply with a user-defined local size prescription, which may be either isotropic or anisotropic:

• In the former case, the size prescription is encoded as a size map h : Ω→ R, which is often supplied
at the vertices of T and interpolated from these data when necessary: h(x) is the desired size for
the edges near the point x ∈ Ω.

• In the latter case, the local size is imposed under the form of a metric tensor M : Ω → R3×3: the
eigenvalues of the symmetric, positive definite matrix M(x) encode the desired size near x ∈ ∂Ω, in
the directions of the corresponding eigenvectors; see [99] about this Riemannian framework and [70]
for an interesting continuous paradigm based on this idea.

This extra ingredient is incorporated into the general remeshing framework of Section 2.2 via the calculation
of the length of an edge pq when deciding whether it is “too long” or “too short”. For instance, the length
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Figure 2. (a) Split of the “long” edge pq: a new point m is inserted in T and the triangles
sharing this edge are subdivided accordingly; (b) collapse of point q onto p: the two red
triangles disappear, and q is replaced by p in all the other triangles connected to q (in blue);
(c) swap of the edge pq (in red): the connection pq is traded for the alternative configuration,
featuring the edge rs (in blue); (d) relocation of the vertex p while maintaining all the
connections in the mesh.

`h(pq) of an edge pq with respect to an isotropic size map h : Ω→ R equals

`h(pq) :=

∫ 1

0

|γ′(t)|
h(γ(t))

dt,

where γ : [0, 1] → R3 is an arbitrary parametrization of the segment pq such that γ(0) = p and γ(1) = q.
Hence, `h(pq)� 1 (resp. `h(pq)� 1) when pq is “too long” (resp. “too short”) with respect to the desired
local size.

Whether it is isotropic or anisotropic, the size prescription may stem from various considerations. Here
are two examples:

• Geometric error estimate: The local size of the edges of T should guarantee that the geometric
approximation of the smooth boundary ∂Ω of Ω by the surface triangulation S is accurate enough –
for instance, that the Hausdorff distance between ∂Ω and S is small; see Fig. 3 for an example.

• A priori or a posteriori error estimate: In the perspective of reducing the computational effort of
physical simulations, the local size should be adapted to a surrogate quantity for the error ||u −
uh|| between the solution u to a partial differential equation posed on Ω and its finite element
approximation uh. This surrogate quantity may depend on u (a priori estimate) or uh (a posteriori
estimate); see for instance [49] for an introduction to this practice.

Eventually, let us observe that while isotropic remeshing is by now a very popular idea for tackling realistic
and industrial applications, the use of an anisotropic size prescription seems more limited, since even a slight
misalignment of the resulting, very stretched elements may jeopardize with the accuracy of the numerical
computation, see e.g. [84, 92] about this issue.

2.4. “Lagrangian” mesh deformation

Many time-dependent physical phenomena imply an evolution of the simulation domain Ω; for instance, Ω
may represent a volume filled by a fluid whose velocity is predicted by the resolution of the Stokes, or the
Navier-Stokes equations.

In this spirit, various applications demand to realize the motion of a domain Ωn, equipped with a mesh
T n, according to a velocity field V n : Ωn → R3, and to obtain a mesh T n+1 of the next domain Ωn+1 :=
(Id + V n)(Ωn). Here and throughout this section, the superscript n refers to discrete time. As we have

6



Figure 3. (Upper row) Adaptation of a mesh with respect to a geometric size prescription;
(left) initial mesh with size map, calculated on the basis of the geometric approximation;
(middle) adapted mesh with respect to this size prescription; (right) adapted mesh with re-
spect to a finer geometric approximation requirement.

mentioned, in practice, V n results from a physical simulation, conducted on the mesh T n; for the purpose
of this section, we suppose that it is given, as a (time independent) vector field defined at the vertices of T n.

Realizing this motion is a highly challenging task, which has been extensively considered in the literature,
see for instance [4, 11, 35, 44, 72]. The perhaps most intuitive strategy consists in intertwining steps where
each vertex p ∈ T n is pushed in the direction of the vector V n(p) as long as the resulting mesh is valid –
which quickly deteriorates the quality of T n –, with remeshing steps for improving the quality of the resulting
mesh, thereby allowing to reiterate the process. One possible procedure based on this principle outlines as
follows, see also Fig. 4:

(1) Find the largest number 0 < t∗ ≤ 1 such that moving each vertex p ∈ T n to p+ t∗V n(p) results in
a valid mesh;

(2) Apply all or just one subset of the remeshing operations of Section 2.2 in order to improve the quality
and the density of the resulting mesh;

(3) If t∗ < 1, go back to (1) by replacing the vector field V n(x) with (1− t∗)V n(x).

A number of additional heuristics may help this process, postponing the emergence of overlapping ele-
ments, i.e. allowing t∗ to be as close to 1 as possible during the first step. One popular practice relies on the
fact that only the values of the velocity field V n(p) at those vertices p in the surface part Sn of T n have an
influence on the geometry of Ωn+1, so that the motion of the internal vertices of T n can actually be chosen
arbitrarily. Among such possibilities, extending the values of V n on Sn to the inner nodes of T n by solving a
linearized elasticity system with Dirichlet data V n on Sn tends to produce a motion with little compression,
thus mitigating the trend of elements to degenerate.

“Reasonably large” displacements of Ω can be realized owing to such Lagrangian strategies. Yet, a
number of situations are difficult to handle, especially when the considered motion implies topological changes
(e.g. the merger of two holes). A more robust strategy, combining remeshing techniques with an implicit
representation of the evolving domain, is presented in the next Sections 2.5 and 4.

2.5. Implicit domain remeshing

In several applications, the domain Ω of interest is not readily defined by a meshed representation. Rather, a
large computational box D is introduced, which is equipped with a mesh T , and Ω is defined as the negative
subdomain of a scalar “level set” function φ : D → R (in practice, defined at the vertices of T ), that is:

(2.1) ∀x ∈ D,


φ(x) < 0 if x ∈ Ω,
φ(x) = 0 if x ∈ ∂Ω,
φ(x) > 0 if x ∈ D \ Ω.

This type of representation is ubiquitous in e.g. geometric modeling or shape reconstruction. It has
raised a tremendous enthusiasm within the numerical simulation community as the pivotal ingredient of the
celebrated level set method [82], devoted to the description of the motion of a domain Ω(t) ⊂ D according to
a velocity field V (t, x). Indeed, introducing a level set function φ(t, ·) for Ω(t) (i.e. (2.1) holds at any time
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Figure 4. Evolution of a domain Ω (an elastic cantilever beam) via a velocity field V n

(supplied by the resolution of a shape optimization problem); the vertices of the mesh T n are
displaced according to V n. (Left) initial shape and associated deformation field; (middle) at
iteration 150, the mesh becomes very stretched; the resolution of the linear elasticity equation
is very inaccurate, and the deformation cannot be applied lest that the mesh becomes invalid;
(right) after quality-oriented remeshing, the deformation process is able to go on.

t > 0), this motion translates into the following advection-like equation:

(2.2)
∂φ

∂t
(t, x) + V (t, x) · ∇φ(t, x) = 0, t > 0, x ∈ D.

Hence, a geometric evolution problem is reformulated as a partial differential equation posed on a fixed
domain D, equipped with the fixed mesh T ; see for instance [81, 91] for comprehensive introductions to the
level set method.

Depending on the application, it may be of utmost importance to recover a mesh of Ω from the data of
D and φ; this is the case when for instance Ω is intended as the domain of physical phenomenon, whose
accurate numerical simulation is desired.

It is actually possible to modify the mesh T of D into a new (valid, conforming) “body-fitted” mesh T̃
of D where both Ω and its complement D \ Ω are explicitly discretized. This may be achieved within two
steps, as illustrated on Fig. 5:

(1) Discretize the isosurface {x ∈ D, φ(x) = 0} into the mesh T . This stage is simple and relies the
marching tetrahedra algorithm [45], as a variant of the well-known marching cubes algorithm [69]: in
a nutshell, each tetrahedron T ∈ T crossed by this isosurface is subdivided according to a pattern.
This ends up with a valid, conforming mesh Ttemp of D, where Ω is explicitly discretized, but which
generally has very bad quality.

(2) Remesh Ttemp into a fine quality mesh T̃ of D, where Ω is explicitly discretized.

2.6. Parallel remeshing

As the range of applications of physical simulations grows wider, and more and more realistic applications
are targeted, it is natural that very large meshes need to be handled and processed. This raises the issue of
modifying such a large mesh T in a parallel fashion.

In this direction, two quite different paradigms can be thought of. On the one hand, according to shared
memory strategies, the whole mesh data are stored on one single node; they are shared by the different
processes or threads, and the remeshing operations are carried out in parallel. On the other hand, distributed
memory strategies advocate to divide T into several regions with shared interfaces, which are independently
remeshed on the different processors. Each of these two strategies faces new, specific issues with respect to
sequential remeshing algorithms, such as the prevention of “parallel data races” (i.e. multiple processes trying
to adapt the same mesh entities) in the implementation of shared memory algorithms, and the preservation
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Figure 5. (Left) One “level set” function φ is defined at the vertices of the mesh T of the
square-shaped computational domain D; its 0 level set (which is not explicitly discretized in
T ) is depicted in red; (middle) explicit discretization of the 0 level set of φ into the mesh T ;

the intermediate, low-quality mesh Ttemp is obtained; (right) high-quality mesh T̃ obtained
after remeshing Ttemp.

of mesh conformity at the interface between regions treated on different processes in distributed memory
strategies.

In practice, physical simulation solvers are often parallelized over distributed memory architectures.
Hence, their combination with a sequential or shared memory implementation of remeshing would imply
to gather the whole mesh on one process, call the remesher and last, redistribute the mesh onto each parallel
process before calling the solver. The intense exchanges of memory entailed in doing so are a well-known
performance bottleneck for remeshing-based numerical simulation strategies, see [84] for a discussion. More-
over, the considered mesh is sometimes so large that it cannot be stored in the memory of one single node,
thus ruling out the very possibility to use a sequential, or a shared memory implementation. These major
drawbacks plead in favor of distributed memory parallel strategies for remeshing.

Conducting the remeshing of T over a distributed memory architecture first requires to partition T into
disjoint submeshes Tk, k = 1, . . . ,K: no tetrahedra T ∈ T belongs to two different Tk. The surface triangles
at the interface between two of these submeshes constitute a surface mesh O, also referred to as parallel
interface. The Tk are sent and treated on different processes, or ranks; this raises the following issues:

• The imbalance between the amounts of work conducted on each rank can hardly be predicted. Most
often, the modifications involved in the remeshing process are non uniformly distributed over T (this
is the case when, for instance, goal-oriented mesh adaptation is performed, see Section 2.3) and it
is difficult to propose a priori an even repartition of the amount of operations across the Tk. For
instance, balancing the number of elements between ranks does not guarantee a balance of the work
loads.

• Enforcing the conformity of the reunion of the submeshes Tk requires specific parallel data structures
(e.g. a table maintaining the correspondence between the shared surface triangles S ∈ O and
the supporting tetrahedra pertaining to different ranks), whose management is intricate. Notably,
their update requires some parallel communication and synchronization between ranks when one
tetrahedron T bearing an interface entity S ∈ O is modified, and a careful reconstruction of the
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parallel interface O is in order when the partition of T is modified (as is the case in the remeshing-
repartitioning parallel strategies broached below).

These concerns open the way to two strategies for conducting remeshing in parallel over distributed
memory architectures, which essentially differ by their treatment of the entities S ∈ O at the interface
between two of the submeshes Tk.

• On the one hand, each remeshing operator could be applied in parallel to the entities in O, see
e.g. [23] [39] [80] [30]. Doing so requires a tight communication between the various processes
sharing the considered configuration, in order to check the validity of the realized operation and to
update consistently the mesh connectivity;

• On the other hand, an iterative remeshing-repartitioning (or moving-interface) strategy could be
used, which intertwines

– A parallel remeshing of each domain Tk on the associated process, while keeping the entities in
O unmodified;

– A new subdivision of the mesh T , creating new submeshes Tk and interface triangulation O;
see [52] [25] [42] [14] about this approach, and Fig. 6 for a 2d illustration.

It is expected that the repetition of this procedure allows each region of the mesh to be modified.
In this direction, the most crucial issues lie in the repartitioning operations. Indeed, the remeshing
of each region Tk simply makes use of a sequential algorithm such as those presented in Section 2.2,
but a fluid migration of the domain interfaces from one rank to the other is mandatory to ensure that
no element in the mesh stay at the interface between submeshes, lest that it would stay unmodified.
Moreover, this interface migration procedure must ensure a fair balance of the work load between
ranks in terms of CPU cost, while keeping the amount of migrating data low, insofar as possible.

3. h-adaptive RANS and hybrid RANS/LES simulations of a nozzle with the Discontinuous
Galerkin method using unstructured meshes and isotropic mesh adaptation

In this section, we present a mesh adaptation strategy devoted to the solution of the compressible steady
Reynolds-Averaged Navier-Stokes (RANS) and the unsteady Zonal Detached Eddy Simulation (ZDES) equa-
tions on hybrid prismatic/tetrahedral grids using Discontinuous Galerkin (DG) methods, in the context of
realistic, industrial applications. The developed mesh adaptation algorithm is applied to RANS and hybrid
RANS/LES simulations on the PPRIME nozzle configuration for a DG formulation featuring elements with
polynomial degree p = 1.

3.1. Context and motivation

The work presented in this section is motivated by the search for a simple mesh adaptation algorithm
to improve the computational efficiency of DG simulations for complex flow configurations relevant in an
industrial context, where the necessity of keeping the simulation cost “reasonable” is of utmost importance.

Steady RANS simulations are well established, and extensively used for industrial purposes. Nevertheless,
they may fail to capture the turbulence and noise generation mechanisms which are often required in the
design process. On the other hand, scale-resolving simulations (relying for instance on the DNS, LES,
or hybrid RANS/LES methods [89]), are capable of capturing the unsteady features in transitional flows,
gas turbine combustors and nozzles. In this work, we assess both the steady RANS [95] and the ZDES
hybrid RANS/LES models [40], in order to reduce the computational cost of the DNS and wall-resolved LES
turbulence modeling approaches, which require a very large (often intractable in practice) number of degrees
of freedom in space and time for capturing the smaller structures developed in the boundary layer.

DG methods are particularly suited for turbulent flow simulations thanks to their good dispersion and
dissipation properties. In addition, these methods provide a high order of accuracy on arbitrary unstructured
meshes, are suitable for parallel computing thanks to their compact stencil and provide a natural framework
for hp-adaptation – not only the size h of the elements of the mesh can be adapted but also their polynomial
degree p [46, 66, 100].

The new generation compressible flow solver CODA is employed to compute the flow solution and the error
estimators on an unstructured mesh. The CODA solver, designed for an efficient use on current and future
parallel HPC systems, is developed in partnership by Airbus, ONERA and DLR [67] and targets academic

10



First iteration 2d iteration 3d iteration

remeshing remeshing

in
te

rf
a
ce

m
ig

ra
ti

o
n

remeshing remeshing

in
te

rf
a
ce

m
ig

ra
ti

o
n

remeshing

Figure 6. Illustration of an iterative remeshing-repartitioning parallel mesh adaptation
strategy performed over 3 processors: at each iteration, the mesh is divided into 3 submeshes
Tk, k = 1, 2, 3, which are distributed over as many processors; each Tk is then remeshed,
independently of the other two, while the entities at the rank interfaces (cyan edges) are
preserved.

and industrial aerodynamic problems. The object-oriented CODA framework permits the integration of
two spatial discretizations: a second-order Finite Volume (FV) and a DG discretization with variable order,
applied to the Euler, Navier-Stokes, RANS and hybrid RANS/LES equations.

3.2. Mesh adaptation algorithm

3.2.1. Presentation of the mesh adaptation strategy

The general strategy is to adapt the computational mesh with respect to a relatively affordable steady RANS
simulation, which already captures some important features of the targeted unsteady simulation. This mesh is
then used as the computational support of an accurate, albeit more expensive hybrid RANS/LES simulation.

The mesh adaptation process implemented in this work outlines as follows. A first steady RANS simulation
is carried out on a very coarse initial mesh. An a posteriori error estimator aimed at controlling the accuracy
of the solution in the elements of the mesh, is then computed; the latter is described in the next Section 3.2.2.
It is used to define a new mesh size prescription guiding the refinement of the elements where the error is
high, as we discuss in Section 3.2.4. Remeshing is then conducted on the basis of this datum. The previous
flow solution is projected onto the obtained mesh, and the process is iterated: a new steady RANS simulation
is performed, etc.

Five such RANS adaptation steps are carried out, and a hybrid RANS/LES simulation is eventually
realized on the finest mesh adapted to the RANS equation.
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Note that the present strategy, whereby the accurate and expensive hybrid RANS/LES analysis is per-
formed only on the finest mesh, which is adapted with respect to the relatively cheap RANS simulation,
is preferred over adapting the mesh from the beginning with respect to the hybrid RANS/LES simulation.
Indeed, an initial very coarse mesh would prevent the turbulent structures of the flow from developing and
yield numerical instabilities as well as a dramatic increase in computational time for the whole adaptation
process.

Note that this idea of employing adapted meshes obtained from steady simulations at a low computational
cost, as the starting point of an unsteady turbulent adaptation procedure is expected to be a robust and
reasonable cheap means to achieve a highly accurate hybrid RANS/LES simulation. The evaluation of this
methodology will be addressed in future research.

3.2.2. Description of the error estimator for the steady RANS simulation

Several indicators based on the discretization error have been developed in the DG simulation literature.
These types of error indicators are convenient thanks to their efficiency, locality, simplicity and low com-
putational cost [71, 85, 58, 87]. The error estimator employed in this work is made of two contributions,
similarly to what has been proposed in [34], [13] and [12]: the first one is based on the measure of the energy
associated with the highest-order polynomial modes, the Small Scale Energy Density (SSED) [78], while the
second one relies on the inter-element jumps (JUMP) [17] of the momentum. The resulting error indicator is
local, inexpensive and flexible, in the sense that an error indicator based on the highest order modes of the
solution is more reliable for a high polynomial degree p, while a jump-based error estimator is accurate for
every value of p. The two aforementioned contributions are normalized by their respective maximum and
minimum values over the tetrahedra T ∈ T , so that the considered error estimator finally reads:

εT =
εSSED,T −minT ′∈T (εSSED,T ′)

maxT ′∈T (εSSED,T ′)−minT ′∈T (εSSED,T ′)
+

εJUMP,T −minT ′∈T (εJUMP,T ′)

maxT ′∈T (εJUMP,T ′)−minT ′∈T (εJUMP,T ′)
(3.1)

The quantity εT is naturally defined at the level of the tetrahedra T ∈ T . In practice, most remeshing
strategies rely on error estimators attached to the vertices of the computational mesh. A consistent value εx
may be attached to a vertex x by using a volume-weighted average of the values εT at the elements sharing
x as vertex. This indicator is the key ingredient in the definition of the imposed size h∗x, as we describe next
in Section 3.2.4.

3.2.3. Description of the mesh adaptation loop

As we have mentioned, five mesh adaptation steps are performed. At the end of the RANS simulation of step
n, the element-based and vertex-based error estimators εnT and εnx are computed, and the next imposed size
hn+1
x is defined (see Section 3.2.4). The computational mesh T n available at step n is eventually remeshed,

resulting in the new mesh T n+1.
The meshes T n are made of 2 regions: while most of the computational domain is filled with tetrahedra,

another region, associated to the boundary layer of the physical phenomenon under scrutiny is composed
of structured or pseudo-structured (i.e. prismatic) elements. At each step n, only the tetrahedral part of
T n is remeshed. Moreover the user may decide not to remesh some of the tetrahedra in the computational
domain. Summarizing, the computational mesh T n is split into two parts:

(3.2) T n = T nfree ∪ T nfixed

where T nfree is the tetrahedral zone subject to remeshing at step n, and T nfixed contains the constituent prisms
of the boundary layer mesh, as well as the fixed tetrahedra.

3.2.4. Size prescription for the steady RANS simulation

The size prescription is based on the idea, already present in [17] and [88], that the error εT attached to
each element T ∈ T converges to zero with the rate p + 1, when no geometrical or physical discontinuities
are observed.

12



At each adaptation step n, the imposed size hn+1
x at the vertex x ∈ T is updated according to the rule:

(3.3) hn+1
x = hnx

(
εn+1,∗

εnx

) 1
p+1

,

where εn+1,∗ is a maximum value for the error, which is imposed globally to all the elements of the mesh,
with the aim to provide a fixed increase in the number of elements of the mesh at each adaptation step
[12, 17]. Adopting this strategy, the regions showing a larger value of the error estimator than the imposed
target εn+1,∗ are refined by a factor depending on the ratio εn+1,∗/εnx between this target and the actual
value of the error, while regions characterized by an error lower than εn+1,∗ are left unchanged.

3.3. Numerical example: simulation of the subsonic turbulent nozzle jet flow

We appraise the above adaptive remeshing strategy in the physical context described in [22], for which
experimental and numerical data are available in the literature, see also [57] and [79] for further investigations
aimed at predicting turbulence generation and jet noise.

The main goal of this study is to simulate the turbulent isothermal subsonic jet issued from a nozzle with
exit diameter dN = 0.05m. The nozzle has an axial symmetry with respect to the first coordinate axis e1 –
where (e1, e2, e3) stands for the canonical basis of R3 and we denote by (x1, x2, x3) the coordinates of a point
x ∈ R3 in this frame. The operating conditions are defined in terms of the total pressure ratio Pt/P∞ = 1.7
and total temperature ratio Tt/T∞ = 1.15, where the t and ∞ subscripts refer to the stagnation and free-
stream states, respectively. The jet is assumed to be isothermal (Tjet/T∞ = 1.0), the jet Mach number is
Mjet = Ujet/cjet = 0.9, and the Reynolds number equals RedN = ρjetUjetdN/µjet ' 1 · 106, where Ujet is the
mean jet exit streamwise velocity, dN = 0.05m is the exit diameter of the nozzle, cjet is the speed of sound,
ρjet is the density and µjet is the dynamic viscosity.

As we have mentioned, five mesh adaptation steps based on steady RANS simulations are performed in
the present study, and a final unsteady hybrid RANS/LES simulation is performed on the finest RANS
adapted mesh.

The initial mesh is generated with the pre-processing software ANSA [3]: the geometry of the body and
the far field boundaries are created and meshed with surface triangles; then, the prismatic boundary layer
surrounding the surface of the body (the internal and external walls of the nozzle) is obtained thanks to
a normal extrapolation of these surface triangles. The remaining volume of the computational domain is
eventually filled with tetrahedra.

Not only the boundaries of the computational domain and the prismatic elements of the boundary layer
mesh, but also the tetrahedral elements which are internal to the nozzle, are fixed throughout the com-
putation, and are not subject to remeshing. Indeed, tetrahedra free to change size inside the nozzle but
constrained by the fixed size of the surface could severely deteriorate the quality of the mesh.

The initial mesh, containing around 1.5 million degrees of freedom is represented on Fig. 7, as well as
the final mesh, resulting from the five-step adaptation process, containing around 10 millions of degrees of
freedom. Remarkably, the mesh adaptation algorithm is capable of detecting the flow regions of interest,
leading to a concentration of the elements around the potential core, and in the shear layer of the jet.

Figure 7. Illustration of the PPRIME nozzle configuration studied in Section 3.3; (left)
zoom of the initial mesh; (right) computational mesh after 5 steady RANS adaptation steps
in the jet zone.
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Figure 8. Velocity profiles (left) on the centerline and (right) on the lipline for the
PPRIME nozzle example of Section 3.3.

The streamwise velocity profiles for four stations of the jet issued from the nozzle and the mean streamwise
velocity profiles along the centerline are compared to the experimental and LES results obtained in [22]. In
order to assess our DG h-adaptive results obtained with a RANS model, we use for reference simulation a
RANS second-order FV computation on a hexahedral structured mesh counting 48 millions of elements.

The meshes resulting from the third (4.5 millions of degrees of freedom), the fourth (6.9 millions of degrees
of freedom) and the fifth adaptation steps (10.1 millions of degrees of freedom) are very similar, indicating
that mesh convergence for the RANS case has been attained.

The results reported on Fig. 8 reveal that the RANS computations, conducted with either the adaptive
DG and structured FV methods, show a reasonable agreement with the LES results inside the potential
core of the jet and in its vicinity, but that they tend to underestimate the centerline velocity of the jet for
x1/dN > 6, leading to an earlier dissipation of the streamwise axial velocity. This underestimation is a typical
behavior of RANS models applied to jet flows, see [2]. Nevertheless, the results of our adaptive simulation
show a similar overall behavior as those of the FV reference computation, achieving closer results to the LES
and experimental computations, with around 20% the number of degrees of freedom of the structured FV
simulation (10.1 vs 48 millions). Moreover, the use of an adaptive process circumvents the difficulties posed
by a classical, manual structured meshing process, especially when complex geometries are considered.

In Fig. 9, we report radial velocity profile cuts at four locations in the mesh. At x1/dN = 1 the adaptive
simulations match almost perfectly the LES and experimental results, and show a large increase in accuracy
with respect to the fine FV structured simulation. At x1/dN = 5, our adaptive simulations are still very
close to the LES and experimental results, but show a slight over-prediction of the spreading rate of the
jet, while at x1/dN = 10 and x1/dN = 15 the radial velocity profiles of RANS simulations show significant
discrepancies with respect to the experimental and LES reference results, but still perform slightly better
than FV computations.

Eventually, we investigate the improvement of the jet flow prediction entailed by the use of a hybrid
RANS/LES approach on RANS-adapted hybrid prismatic/tetrahedral meshes. The formulation of ZDES
used in this work forces the whole interior part of the nozzle to act in RANS mode, while the DES equations
are solved in the rest of the domain, see [96].

The benefits that the unsteady simulation can bring to the finest mesh solution are shown with red
dotted lines in Figs. 8 and 9. The velocity field of the unsteady simulation is averaged over a period of 150
times the characteristic time of the flow (dN/Ujet). Despite being a relatively coarse mesh with respect to
the standards of unsteady turbulent computations, the velocity profiles match more closely the experimental
and LES references, thanks to the lower degree of modeling of turbulence that hybrid RANS/LES and classic
LES models introduce with respect to RANS. In Fig. 10 we represent the steady Mach RANS solution on
the initial mesh and on the finest mesh, and an instantaneous snapshot of the Mach field on the finest mesh
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Figure 9. (From left to right) Velocity profiles on the axis, at x1/dN = 1, x1/dN = 5 and
x1/dN = 10 in the PPRIME nozzle example of Section 3.3 .

Figure 10. (Top) Contour of the reconstructed Mach field in the PPRIME nozzle example
of Section 3.3 for the initial mesh, containing 1.5 million degrees of freedom; (middle)
corresponding contour obtained with the final adapted mesh, containing 10.1 million degrees
of freedom; (bottom) snapshot of the instantaneous Mach number of the 10.1 million degrees
of freedom mesh using unsteady equations.

performing an unsteady hybrid RANS/LES simulation. In the latter, a lower dissipation of the jet velocity
is observed.

To conclude, the present example demonstrates the improvement allowed by the proposed unstructured
metric-based RANS adaptation procedure on the flow field solution over simulations relying on classical FV
methods, as well as the suitability of RANS-adapted meshes for unsteady computations. In the meantime,
the resolution of the unsteady adaptive process once a good RANS solution has been obtained is considered
essential in order to capture the unsteady features of the flow. The extension of the present work to
unstructured hp-adaptation for unsteady turbulence models will be addressed in future research, taking
advantage of the good dissipative and dispersive properties of high-order schemes, which are better suited
for turbulent unsteady simulations.

4. An application of implicit domain meshing in shape optimization

This section illustrates how a coupling between the implicit domain remeshing feature introduced in Sec-
tion 2.5 and the level set framework allows to account for dramatic mesh evolution, in the context of shape
optimization.
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4.1. A few generalities about shape and topology optimization

Shape and topology optimization is about finding the “best” shape with respect to mechanical, geometrical
and manufacturing specifications. Over the last decades, this discipline has been raising an increasing
enthusiasm within the academic and industrial communities, as the dramatic increase in the cost of raw
materials calls for the optimization of the shape of mechanical parts since the early stages of design; we refer
to e.g. [6, 7, 8, 16] for further motivations and comprehensive introductions to this field.

A typical shape optimization problem is of the form:

(4.1) min
Ω⊂D

J(Ω) s.t. C(Ω) ≤ 0,

where

• Ω is the optimized shape, which is sought within the fixed computational domain D;
• J(Ω) is a given performance criterion;
• C(Ω) stands for a (collection of) constraint functional.

Usually, the functionals J(Ω) and C(Ω) depend on the shape Ω via its mechanical behavior, that is, mathe-
matically, via a state uΩ, solution to a “physical” partial differential equation posed on Ω (for instance, the
heat equation, the elasticity system, etc.).

The treatment of shape optimization problems of the form (4.1) by constrained optimization algorithms
requires a notion of derivative with respect to the domain. Here, we rely on Hadamard’s boundary variation
method [9, 62, 76, 94]; when combined with the so-called adjoint technique from optimal control theory, it
allows to calculate a “shape gradient”, that is, a descent direction, for a function F (Ω) of the domain. The
latter arises as a vector field θ : R3 → R3 such that, for small t > 0:

F ((Id + tθ)(Ω)) < F (Ω);

intuitively, a “small” displacement of the boundary ∂Ω in the direction pointed by the vector field θ results
in a new domain (Id + tθ)(Ω) with a slightly lower value of F (Ω).

4.2. Body-fitted shape and topology optimization

Usually, large modifications of the shape are expected in the course of the resolution of a shape and topology
optimization problem of the form (4.1), making the use of Lagrangian strategies such as those described in
Section 2.4 unrealistic in this context.

Multiple alternatives have been thought of in order to circumvent this problem, and notably the resort to
the level set method outlined in Section 2.5, see [8] for the seminal contribution in shape optimization.

Recently, this framework has been successfully combined with remeshing techniques, resulting in a body-
fitted shape optimization method, which features an exact mesh of the shape Ω (and of the complement
D \Ω), see [5, 37, 50, 51]. In a nutshell, two complementary representations of a shape Ω ⊂ D are available
at each stage of the process:

• Meshed representation: On the one hand, Ω (and thus D \ Ω) is explicitly discretized in the mesh
T of D: T is a valid, conforming mesh of the total computational domain D, which can be divided
into two submeshes TΩ and TD\Ω of Ω and D \ Ω, respectively.

• Level set representation: On the other hand, Ω is described as the negative subdomain of a level set
function φ : D → R defined at the vertices of T , see (2.1).

Dedicated numerical algorithms are then used to switch from one representation to the other. When a
meshed representation of Ω is available, a corresponding level set function φ : D → R is calculated as the
signed distance function to Ω at the vertices of the mesh T , for instance by using the fast marching method,

see [90]. Conversely, when Ω is described by a level set function φ : D → R on a mesh T of D, a new mesh T̃
of D where Ω is explicitly discretized can be obtained thanks to the methodology described in Section 2.5.

In the course of the numerical resolution of a shape optimization problem of the form (4.1), each repre-
sentation of the shape Ω is used depending on the performed operation, see Fig. 11:

• The finite element analyses needed to calculate the state uΩ, and thereby a descent direction θ for
the problem (4.1) can be conducted from the meshed representation of Ω.

• The motion of Ω to the next iterate (Id + tθ)(Ω) can be realized with the level set representation φ
of Ω, by solving the evolution equation (2.2) on the mesh T .
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Figure 11. Level set advection and body-fitted remeshing for interface tracking. (Left)
initial level set defined at the vertices of a large conformal mesh and associated velocity
field; (middle) level set update using the Hamilton-Jacobi advection equation; (right) domain
remeshed to fit the zero isovalue of the advected level set function.

This approach has the following benefits:

• Accurate mechanical calculations can be realized on the exact mesh TΩ of the shape Ω, via the finite
element method for instance. This mesh can be readily exported, and finite element analyses can
be carried out by using an external software application in a black-box fashion; hence, this strategy
totally decouples the update of Ω from the mechanical analyses needed to evaluate its performance
and the sensitivities of the optimization functionals.

• Since the structural interface ∂Ω is explicitly discretized at each step of the iterative procedure, this
body-fitted approach simplifies the evaluation of geometric and mechanical quantities of interest near
∂Ω (such as the perimeter, or the curvature of ∂Ω, or the normal stresses applied on ∂Ω).

• Since the level set method is used to realize the motion of the shape, dramatic evolutions of shapes
can be accounted for, including topological changes.

4.3. Numerical example: optimization of an elastic mechanical system

We illustrate the proposed approach with the optimization of the design of an elastic two-component me-
chanical system. This numerical example was treated by using PISCO, a Research and Development software
platform devoted to topology optimization that is under active development at IRT SystemX and Safran

Tech. The industrial-grade solver Code Aster1 is used to perform the finite element analyses needed to
evaluate the physical criteria and the corresponding sensitivities.

The considered setting is depicted on Fig. 12. The computational domain D is composed of two regions:
an L-shaped support corresponding to a non optimizable region, which supports the boundary conditions
of the physical analysis, and a structural block, which is the optimized domain, properly speaking. These
are filled with two different linearly elastic materials – the support being characterized by a higher Young’s
modulus than the block – and they are linked by rigid mechanical connections, represented on Fig. 12, (b).
Both regions are discretized using linear tetrahedral elements while the rigid connections are accounted for
by four discrete 1-order elements. Dirichlet and linear sliding contact boundary conditions are prescribed on
two regions of the boundary ∂D located respectively on the support and the block boundaries. Eventually,
two load cases are considered, which are applied on another region of ∂D see Fig. 12 (c,d).

The goal of the present experiment is to minimize the volume of the structural block (so as to design a
lighter structure) under four constraints: one on the compliance of the total structure Ω and one on the Von

1https://www.code-aster.org
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(a) (b)

(c) (d)

Figure 12. (a) The two-component mechanical system test case considered in Section 4.3;
the non optimizable L-shaped support region is represented in orange and the optimized block
is in blue; (b) rigid connections linking both regions; (c) clamped region of the device; (d) the
surface supporting contact boundary conditions is represented in green, and that submitted
to loads is in light orange.

Mises stress field for each of the two considered load cases. The Von Mises constraints are formulated using
a p-norm aggregation technique which is quite classical in stress-constrained topology optimization, see e.g.
[48].

We rely on the body-fitted shape and topology optimization strategy introduced in Section 4.2 to solve
this problem, starting with the full structural block of Fig. 12 (a) as initial shape. The optimized design is
depicted in Fig. 13, and the associated displacement and Von Mises stress fields for both considered load
cases are reported in Fig. 14. At convergence, all the constraints are fulfilled and the weight of the assembly
has been reduced by 52%.

Note that a full remeshing of the structural system is carried out at each step of the optimization process.
As we have already emphasized, the employed body-fitted approach simplifies greatly the definition and
the evaluation of the physical criteria and sensitivities, since any finite element solver can be used in a non
intrusive fashion. On the other hand, the remeshing stages involved in this strategy have admittedly a huge
impact over the total computational cost of the process. Thus, topology optimization would greatly benefit
from the development of dedicated parallel remeshing routines to target large-scale structural optimization
challenges.

5. Conforming remeshing using level set discretization for geophysical inverse problem

5.1. Context and motivation

This section illustrates the contributions of local remeshing algorithms in geophysical modeling, and more
particularly in the management and the reduction of uncertainty over the identification of geological inter-
faces.
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Figure 13. (Left) optimized shape of the structural block in the example of Section 4.3;
(right) cut in the mesh of the computational domain D, divided into material and void
parts, in red and blue, respectively.

(a) (b)

(c) (d)

Figure 14. (a) Displacement field for the first load case; (b) Von Mises stress for the first
load case; (c) displacement field for the second load case; (d) Von Mises stress for the second
load case.

The underground properties of the earth govern many natural or anthropic phenomena occurring over
multiple time scales, such as mineral element migration and concentration processes, earthquake initiation
and propagation, landslides, groundwater flow, hydrocarbon recovery, CO2 sequestration and geothermal
heat recovery, etc. In particular, the representation of geological interfaces is a crucial aspect of the numerical
simulation of these processes, as these surfaces delimit regions containing different geological materials (rock
units) characterized by specific ranges of mineralogical and physical properties. For example, in sedimentary
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Figure 15. Example of a challenging geometrical configuration in a 3D geological model, as
discussed in Section 5. (a) Global view of a faulted stratigraphic model; dark lines account for
depth contours and colored lines in the upper horizon represent stratigraphic unconformities;
(b) cut-off view; (c) the low angle contacts lines at the stratigraphic unconformities caused by
erosion are displayed in red; (d) view of how horizons (in transparency) are offset by faults,
forming small geometric features and low-angle intersections on cut-off lines on either sides
of each fault.

basins, these rock units arise as layers separated by horizons and can be described at multiple nested scales,
as exemplified on Fig. 15. The geometry of these layers may contain challenging geometric features such
as sharp creases or low-angle contacts between surfaces, for instance when geological layers vanish laterally
because some previously deposited material has been eroded (see Fig. 15 (c)). Under the effect of tectonic
forces, cracks naturally present in the rock may grow as fractures, and eventually become faults under the
accumulation of tangential displacement, which results in possibly complex juxtapositions of materials on
either side of the fault, see e.g. Fig. 15 (d).

From the numerical point of view, the simulation of subsurface phenomena such as those mentioned above
relies on a model describing the features of the underground medium (and notably the geophysical interfaces)
at the scale of interest, which is then meshed and populated with physical rock properties before the physical
equations of interest are solved.

The aforementioned complex underground properties of the earth are therefore pivotal in these compu-
tations. Unfortunately, they are generally inaccessible to direct observation. Rather, they must be inferred
from indirect data, such as surface measurements, borehole sample analyses or in situ geophysical measure-
ments and geophysical images. This is a highly challenging task, since such data are sparse, ambiguous
and insufficient to precisely characterize the domain. Hence, geological knowledge is a key ingredient of
the interpretation process and significant uncertainty exists about the existence, location, connectivity and
geometry of interfaces between different rock units [101].

Numerical approaches based on the level set method (see Section 2.5) have raised a significant interest
within the geoscience modeling community, as a convenient tool to cope with these uncertainties. One
category of methods, referred to as “implicit structural modeling”, consists in creating level set functions
from typical interpretation points. In tetrahedral formulations [54, 24], this paves the way to the generation
of meshes where the discontinuities under scrutiny are explicitly discretized, as described in Section 2.5,
which allows to conveniently manage faults and other geological interfaces.

Other investigations have used perturbations of level set functions for generating alternative geological
models representing uncertainties [33, 103]. In the perspective of reducing the related uncertainties, several
deterministic or stochastic inverse methods have been formulated to take into account indirect geophysical
data [83, 63, 56], but most of them feature one single level set function during the inversion process. Going
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further calls for inverting several and possibly finite open interfaces while preserving their geological consis-
tency [101, 60]. Moreover, even though some Monte Carlo methods are available to address the uncertainty
in the geometric configuration [18, 28], their dissemination has been hampered by the difficulty to robustly
automate mesh generation for arbitrary configurations.

Using the level set method in combination with body-fitted tetrahedral meshes in the spirit of Section 2.5
is a very attractive strategy to handle these requirements: it indeed combines geometric adaptivity, accuracy
and versatility to several PDE discretization schemes such as the finite element method or the control volume
finite element method.

5.2. Numerical example: sensitivity of a two-phase Darcy flow with respect to the existence
and the geometry of fractures

In this section, we consider the porous fractured network configuration depicted on Fig. 16: we assume 6
fracture intersections along two distinct observation lines have been located. As often in geoscience practice,
the performed observations do not contain the same amount of information, neither are they equally reliable:
some of these data provide the fracture position and orientation while others provide at best an approximate
insight into its position. From these incomplete observations, spatially exhaustive scenarii are generated,
representing possible fracture configurations compatible with the observations. In the present 2D case, this
task is easily achieved by hand, but many sampling methods exist to generate this type of model, based on
statistical and/or physical reasoning, see for instance [19, 38, 61, 29, 102].

In each situation, the initial porous region is assumed to be filled with oil. We then simulate the injection
of water in the underground, from the lower left corner of the computational domain D; both fluids are
recovered in the upper right corner of D. Assuming the fluids to be incompressible and immiscible, the
result of this experiment is predicted by the resolution of the equation for the pressure P :

div

((∑
α

k · krα
µα

)
∇P

)
=
∑
α

qα,

which is complemented with the saturation equation for each phase α

ϕ
∂(Sα)

∂t
− div

(
fα
k · krα
µα

∇P
)

= qα.

Here, ϕ stands for the rock porosity; k is the rock permeability, Sα, µα, krα and fα are respectively the
saturation, viscosity, relative permeability and fractional velocity of the phase α, and qα is the volumetric
source term. The numerical simulation solver is based on a control-volume finite element approach, where
fractures are represented as lower-dimensional mesh elements, see [65, 73]. In this experiment, we assume
for simplicity that the relative water permeability is given by the square of the water saturation. The intact
rock has a porosity of 0.2. Fractures are assumed to be open (porosity of 1). The matrix and fracture
permeabilities are taken equal to 10−15 m2 and 10−9 m2, respectively. The viscosity for oil and water are
0.45 and 1 mPa.s, respectively.

Each fracture is parametrized by its center, size and azimuth. Starting from an initial mesh of the
computational domain D, the various fractures at stake are inserted one after another by relying on the
implicit surface meshing technology described in Section 2.5: briefly, the signed distance field φ to the
fracture is computed by a least-square optimization method [54]. A subregion of the mesh of D is then
defined from the fracture center and size to bound the editing. Finally, the methodology of Section 2.5 is
used to insert the zero level set of φ into the portion of the mesh corresponding to this region.

This strategy presents numerous assets, when it comes to exploring multiple possible fracture geometries
and to appraising their impact on the flow. In particular, this iterative approach allows to locally perturb an
existing scenario (via a perturbation on the corresponding level set function) in order to explore uncertainties
over its geometry (such as the fracture shape or position), while ensuring that the mesh features adequate
element size and quality.

On the contrary, the opposite strategy consisting in meshing the fracture network at once is highly
challenging, since its very thin features inevitably lead to meshes containing a large number of elements,
or ill-shaped mesh elements, which either slows down simulations or affect their stability. Admittedly,
several simplification approaches have been proposed in this context, with the aim to approximate the target
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Figure 16. Several fracture network scenarii in the numerical example of Section 5.2,
together with the associated multiphase porous medium behaviors. The spatial fracture ob-
servations and the associated uncertainties are displayed as grey rectangles and ellipses along
thin dotted lines. The fractures are bold dark lines, which are explicitly discretized in the
computational mesh. The color scale shows the water saturation. Each graph shows the
water fraction and produced volume at the upper right corner, after injection of one pore
volume (PVI) in the lower left corner. The dashed ellipses highlight the changes between (a)
and each alternative scenario.

fracture geometry while preserving the mesh quality, while retaining an affordable amount of elements, see
[77, 53, 10, 64].

This simplification problem is significantly easier in our framework where each fracture is sequentially
inserted as the 0 isosurface of an adequate level set function. In order to prevent the creation of “ill-shaped”
elements in the remeshed model when the new fracture nodes are located on another interface, function
values that are “too close to 0” on these nodes are set to 0.

In order to illustrate the proposed workflow, we consider the example depicted on Fig. 16: the initial
scenario depicted on Fig. 16 (a) includes 6 and 4 fractures belonging to two fracture sets of azimuth ca. 45◦

and 105◦, respectively. In the configuration of Fig. 16 (b), only one fracture has been extended with respect
to that in (a), leaving the rest of the model unchanged. This minor perturbation has a limited effect on
the production curves, and induces only a moderate change in the saturation field. The scenario of Fig. 16
(c) involves a more drastic change with respect to (a): one fracture is replaced by two fractures. This type
of operation could occur for instance in a reversible jump Monte Carlo Markov Chain transition [18]. As
this change affects the fracture connectivity, the impact on the production curves and on the saturation
field is significant: the water breakthrough at the production well occurs later, meaning that this fracture
configuration yields a better sweeping efficiency of the injected water. The scenario of Fig. 16 (d) represents
what could occur after multiple transitions from the initial model (a): although the orientations and sizes
are comparable, most fractures have been moved, removed or replaced. Interestingly, the production curves
in the scenario (d) are similar to those of (a) and (b). This illustrates the ill-posedness of this particular type
of problems. This motivates the use of stochastic inverse methods rather than deterministic optimization to
address subsurface uncertainty.
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6. Dynamic and parallel mesh adaptation for premixed flame fronts and liquid/gas
interfaces

6.1. Dynamic mesh adaptation for material interfaces

6.1.1. Motivation

The numerical simulation of dynamic material surfaces in flows such as turbulent flame fronts and liquid/gas
interfaces has long been a thorny issue. One reason is that the reaction or interface forces occur in very
thin and moving layers around the surface, so that an accurate capture of the latter requires a very fine
mesh resolution in its vicinity. On the other hand, such interfaces typically undergo dramatic displacements,
spanning the whole computational domain, which makes it impossible to adapt the mesh once for the whole
simulation. Dynamic mesh adaptation is a more realistic alternative to this unfeasible, brute-force approach.
It consists in modifying the mesh regularly so that it features a fine mesh size in the vicinity of the interface
and a coarser one away from it. Such a strategy is usually hindered by two factors:

(1) The huge increase in CPU cost entailed by the mesh adaptation process, which cancels out the
potential gain allowed by applying the numerical solver with a reduced number of elements.

(2) Even though the cost of mesh adaptation is affordable, another challenge comes from the compromise
between the thickness of the refined layer around the interface (and thereby, the size of the mesh)
and the frequency at which remeshing is conducted.

This section presents solutions to reduce the overhead of dynamic mesh adaptation by relying on a parallel
implementation, and to find a compromise between the thickness of the refined layer and the remeshing
frequency. From the algorithmic viewpoint, we use the YALES2 flow solver [74] for the numerical simulation of
the physical problems at stake. This solver also implements a version of the iterative remeshing-repartitioning
algorithm relying on mmg to perform parallel mesh adaptation.

6.1.2. A two-level parallel mesh adaptation method

Merging

MMG3D

Adaptation with
fixed interfaces

Interpolation
& Splitting

Constrained load
balancing

Initial mesh

Quality check

3 to 5 cycles

Figure 17. Schematic of the two-level moving interface parallel adaptation strategy devel-
oped in Section 6. The thin black lines represent the interfaces between cell groups and the
different colors correspond to as many ranks.

As was presented in Section 2.6, the efficiency of parallel remeshing strategies carried out on distributed
architectures (in terms of the quality of the resulting mesh, notably) crucially depends on the ability of the
procedure to modify the whole mesh T . More precisely, in each submesh Tk (processed on rank k), not
only the regions lying “far” from the interface O between ranks, but also those lying close to O have to be
remeshed. While the modifications of the former regions can be done in parallel by independent calls to the
mesh adaptation library, the treatment of the interface between ranks is much more delicate. As we have
outlined in Section 2.6, several strategies are available to tackle this issue, and that retained in the present
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work is the so-called moving interface method. In a first step, the mesh is refined inside each rank, with
respect to a metric whose definition is detailed in Section 6.1.3, while leaving the regions near O untouched.
During this step, the target metric is interpolated from the old to the new mesh. This adaptation step is
therefore local and does not require any communication between the ranks. In a second step, low-quality
elements are sent from one rank to another. The scheduling of this movement is driven by a constrained load
balancing algorithm. This operation has to ensure that the grid remains properly balanced from one rank
to another, i.e. that all ranks have approximately the same number of tetrahedra, and it has to enforce the
movement of the interface. To achieve this, one solution is to impose strong weights at the connections (or
arcs) between the elements at the interface. Thus, when minimizing the edge cut of the connectivity graph
of the mesh T , the load balancing algorithm will be strongly enticed to place the new interface away from
the previous interface so as to avoid cutting heavy-weight connections. Once the elements have been moved
from one rank to another, the process can be repeated until convergence. This convergence is achieved when
the difference between the target and resulting metrics is below a threshold value and when the element
skewness does not exceed a limit value. The performances of this method depend on the efficiency of each
of the aforementioned operations, namely:

(1) The sequential mesh adaptation library;
(2) The interpolation of the data stored on the grid.
(3) The load balancing algorithm;
(4) The cell and data transfer from one rank to another;
(5) The parallel connectivity reconstruction.

All these steps may limit the performance of the overall process when a large number of cores is involved. In
order to alleviate all the above potential limitations (except those concerning the sequential mesh adaptation
algorithm, which we assume to be sufficiently efficient in the following), we rely on a two-level domain
decomposition method. The latter is based on a slight refinement of the general parallel remeshing principles
exposed in Section 2.6, which is illustrated in Fig. 17: in a nutshell, most of the above tasks are actually
conducted at a coarser scale than that of the tetrahedra T ∈ T , that of groups (hereafter referred to as cell
groups) composed of several thousands of tetrahedra. For instance, the load balancing algorithm is applied
to the connectivity graph of the cell groups instead of that of the cells, which allows for a significant gain in
CPU time as the latter graph is much lighter and easier to partition. Likewise, the cell migration operation
is performed cell group by cell group and it is combined to automatic packing/unpacking with non-blocking
send/receive calls to speed-up the transfer. Finally, the interpolation of numerical quantities from the initial
mesh to the modified one is done at each sub-step, benefiting from the 2-level domain decomposition to
locate the nearest source tetrahedron from a given destination element. The only drawback of this two-scale
strategy is that it requires additional merging and splitting algorithms in order to provide a large block to
the sequential remeshing software instead of small cell groups. However, this drawback does not alter the
performances of the complete workflow, and the overall gain far compensates this overhead.

6.1.3. Choice of the metric

The dynamic mesh adaptation of a moving material interface such as a flame or a liquid/gas interface
requires frequent remeshing steps. When using low-dissipation and low-dispersion numerical schemes such
as those used in Large-Eddy Simulation and Direct Numerical Simulation of turbulent flows, the remeshing
steps have to introduce as small numerical perturbations as possible. The numerical perturbations entailed

by the adaptation of a mesh T into a new mesh T̃ better suited to the further evolution of the interface

mainly come from the interpolation errors of numerical quantities defined on T onto T̃ , whose values near
the interface are of critical importance. These perturbations can be made negligible if the remeshing occurs
away from the interface, i.e. if the mesh metric is kept constant near the interface under scrutiny and if the
tetrahedra nearby are frozen during this operation. Keeping the size prescription constant near the interface
and controlling its variation away from it leads to define the metric as in Fig. 18: it is set to ∆xmin in a
narrow band with thickness 2Np∆xmin around the interface, and its gradient is bounded outside this region,
so that the metric attains that of the initial coarse mesh “far” from the interface. With this definition and
as illustrated on the left-hand side of Fig. 18, when the interface moves of a distance less than Np∆xmin,
the size prescription changes where either the old or the new metric shows linear variations, while keeping a
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Figure 18. Illustration of the construction of the size map involved in the remeshing strat-
egy of Section 6.1 (left) and its displacement (right).

constant value at the interface location; this ensures an exact interpolation of the data within this protected
zone. The remeshing effort is therefore concentrated in the region where the metric changes most, i.e. in the
linear metric gradient zone.

6.2. Numerical example: application to the lean-premixed PRECCINSTA burner

Figure 19. Dynamic mesh adaptation in the PRECCINSTA burner test case of Section 6.2:
the instantaneous CO mass fraction and the heat release fields are displayed, together with
a slide of the 3D tetrahedral mesh.

The computational benefits of the proposed dynamic mesh adaptation strategy are first illustrated with the
example of a semi-industrial lean-premixed burner, operating with a methane-air premixing under atmo-
spheric conditions. This burner, called PRECCINSTA, has been widely used for model development and
validations [15, 75]. In this burner, the turbulent flame is anchored to the injector thanks to a swirl motion,
which creates large inner and outer recirculation zones. A Large-Eddy Simulation with the same models
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Figure 20. Comparison of the numerical simulations using static and dynamic meshes at
several resolutions in the PRECCINSTA burner example of Section 6.2.
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Figure 21. Comparison of flame front curvature distribution for static and dynamic meshes
in the PRECCINSTA burner.

and numerics as in [15] is performed with the help of the dynamic mesh adaptation strategy presented in
Section 6.1. The results are depicted in Fig. 19; in there, a mesh resolution of 300 microns in the flame front
and of 600 microns in the primary combustion zone are used. These coarse resolutions are chosen to better
highlight the metric definition. As the flame is highly unsteady due to flame/turbulence interactions, the
flame front displacement is tremendous and it eventually features topological changes, as isolated burning
pockets are created. The remeshing frequency is therefore piloted by a Courant-Friedrichs-Lewy condition
based on the displacement velocity, which ensures that the flame front remains in the refined zone. The flame
topology is rendered as a progress variable iso-surface colored by the temperature in Fig. 20. In there, the
left- and right-hand side subfigures correspond to two treatments of this simulation using static meshes (i.e.
the computational mesh is adapted at the beginning of the process, and is then left untouched) containing
110 millions and 878 millions tetrahedra, respectively. In the center, the same situation is treated with our
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dynamic mesh strategy; the computational mesh is obtained with the background mesh of the 110 million
cell mesh while the resolution at the flame front is the same as that of the 878 million cell mesh. The flame
topology of the front obtained thanks to the dynamic strategy features small-scale wrinkles similar to the
refined static case (878M) while the total CPU cost is around 4 times smaller. This observation is confirmed
by the plot of the flame curvature distribution in Fig. 21. The distributions of the dynamic and of the refined
static cases are the same while the simulation based on the coarser static mesh exhibits smaller values of the
curvature.

6.3. Numerical example: application to the droplet impact on a cone

Figure 22. Impact of a water droplet on a superhydrophobic cone as considered in Section 6.3.

Figure 23. Dynamic mesh adaptation in the example of the impact of a water droplet on
a superhydrophobic cone in Section 6.3.

In this section, the benefits of dynamic mesh adaptation are illustrated with the simulation of the impact
of a water drop on a superhydrophobic cone characterized by its semi-angle 50° – a situation which has
been studied experimentally in [47, 26]. It is an interesting case as the drop undergoes various topological
changes after its impact on the cone: it subsequently takes the shape of an attached ring before bouncing
and breaking into a number of smaller droplets. The modeling of the liquid/gas interface and that of the
contact angle of 163° are detailed in [86]. The liquid/gas interface is captured with a conservative level set
algorithm described in [41] and the contact angle is imposed through a curvature modification at the contact
line. The metric definition follows the strategy exposed in Section 6.1.3, with a thickness of the refined zone
tailored so that 30 cells are in the initial drop radius. The results and the mesh are presented in Figs. 22
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and 23. The experimental results are very well reproduced in terms of topology and of break-up dynamics.
Such simulation would be intractable without dynamic mesh adaptation.
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