
HAL Id: hal-03345484
https://hal.sorbonne-universite.fr/hal-03345484v1

Submitted on 15 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Immune Signature Linked to COVID-19 Severity: A
SARS-Score for Personalized Medicine

Jules Russick, Pierre-Emmanuel Foy, Nathalie Josseaume, Maxime Meylan,
Nadine Ben Hamouda, Amos Kirilovsky, Carine El Sissy, Eric Tartour, David

M Smadja, Alexandre Karras, et al.

To cite this version:
Jules Russick, Pierre-Emmanuel Foy, Nathalie Josseaume, Maxime Meylan, Nadine Ben Hamouda,
et al.. Immune Signature Linked to COVID-19 Severity: A SARS-Score for Personalized Medicine.
Frontiers in Immunology, 2021, 12, pp.701273. �10.3389/fimmu.2021.701273�. �hal-03345484�

https://hal.sorbonne-universite.fr/hal-03345484v1
https://hal.archives-ouvertes.fr


Frontiers in Immunology | www.frontiersin.

Edited by:
Kensuke Miyake,

The University of Tokyo, Japan

Reviewed by:
Martyn Andrew French,

University of Western Australia,
Australia

Venkata Bollimpelli,
Emory University, United States

*Correspondence:
Isabelle Cremer

isabelle.cremer@sorbonne-
universite.fr

orcid.org/0000-0002-0963-1031

Specialty section:
This article was submitted to

Viral Immunology,
a section of the journal

Frontiers in Immunology

Received: 27 April 2021
Accepted: 28 June 2021
Published: 12 July 2021

Citation:
Russick J, Foy P-E, Josseaume N,

Meylan M, Hamouda NB, Kirilovsky A,
Sissy CE, Tartour E, Smadja DM,
Karras A, Hulot J-S, Livrozet M,

Fayol A, Arlet J-B, Diehl J-L, Dragon-
Durey M-A, Pagès F and Cremer I
(2021) Immune Signature Linked to

COVID-19 Severity: A SARS-Score for
Personalized Medicine.

Front. Immunol. 12:701273.
doi: 10.3389/fimmu.2021.701273

ORIGINAL RESEARCH
published: 12 July 2021

doi: 10.3389/fimmu.2021.701273
Immune Signature Linked to COVID-
19 Severity: A SARS-Score for
Personalized Medicine
Jules Russick1, Pierre-Emmanuel Foy1, Nathalie Josseaume1, Maxime Meylan1,
Nadine Ben Hamouda2,3,4, Amos Kirilovsky2,3,4, Carine El Sissy2,3,4, Eric Tartour5,
David M. Smadja6,7, Alexandre Karras8,9, Jean-Sébastien Hulot10,11, Marine Livrozet10,11,
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France, 6 Université de Paris, Innovative Therapies in Hemostasis, INSERM, HematologyDepartment andBiosurgical Research Lab,
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SARS-CoV-2 infection leads to a highly variable clinical evolution, ranging from
asymptomatic to severe disease with acute respiratory distress syndrome, requiring
intensive care units (ICU) admission. The optimal management of hospitalized patients has
become a worldwide concern and identification of immune biomarkers predictive of the
clinical outcome for hospitalized patients remains a major challenge. Immunophenotyping
and transcriptomic analysis of hospitalized COVID-19 patients at admission allow
identifying the two categories of patients. Inflammation, high neutrophil activation,
dysfunctional monocytic response and a strongly impaired adaptive immune response
was observed in patients who will experience the more severe form of the disease. This
observation was validated in an independent cohort of patients. Using in silico analysis on
drug signature database, we identify differential therapeutics that specifically correspond
to each group of patients. From this signature, we propose a score—the SARS-Score—
composed of easily quantifiable biomarkers, to classify hospitalized patients upon arrival
to adapt treatment according to their immune profile.

Keywords: COVID-19, immunologic profile, personalized medicine/personalized health care, score,
therapeutic strategy
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INTRODUCTION

Coronavirus disease 2019 (COVID-19), due to severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has
affected over 118 million people and is responsible for 2.6 million
deaths since the beginning of the pandemic (WHO, March, 11
2021). The clinical evolution of patients with SARS-CoV-2 infection
is highly variable between individuals, ranging from asymptomatic
state for the majority of patients to severe symptoms.
Approximately 10 to 20% patients require hospitalization and
intensive care units (ICU) admission mainly for acute respiratory
distress syndrome (ARDS) or multi-organ failure (1, 2). Some
factors increase the risk of COVID-19 severity comprising old
age, male gender and cardiovascular comorbidities—diabetes,
obesity and hypertension (3).

In severe COVID-19 patients, profound dysregulated immune
responses have been described, characterized by strong systemic
inflammation leading to acute injury of several organs including the
lungs, the kidney and the heart (4–9). Severe or fatal COVID-19 is
indeed associated with elevated innate pro-inflammatory immune
cytokines in peripheral blood including interleukin (IL)-1, IL-6, IL-
8, or C–X–C motif chemokine ligand 10 (CXCL-10) (7, 10) and
alterations of both innate and adaptive immunity (11–13). Patients
with COVID-19 have profoundly impaired induction of types I and
III IFNs, that lead to untuned antiviral response and viral
persistence (14). Dysfunctional type I IFN immunity have been
attributed to either inherited intrinsic genetic defects in double-
stranded RNA sensor TLR3 and interferon regulatory factor 7
(IRF7) (15), or to the production of neutralizing auto-Abs against
type I IFNs (16) in respectively, 3.5 and 10.2% of life-threatening
COVID-19 patients. Severe dysfunctions in neutrophils and
monocyte populations (17–20), lymphopenia and uncoordinated
responses of the three arms of SARS-CoV-2 specific adaptive
immunity (CD4+, CD8+ T cell responses and B cell antibody
production) were reported in patients with acute COVID-19,
particularly in patients >65 years old (21, 22).

While COVID-19 severity is associated with immune
disorders, there is a lack of robust biomarkers that identify at
admission groups of hospitalized patients who will experience
poor clinical outcome. In addition, several immunomodulators
(dexamethasone and anti-IL-6R) are currently proposed to
patients, with controversies with respect to their efficacy and
there is no consensus about the use of these immunomodulatory
drugs (23–27). The use of dexamethasone for up to 10 days was
however shown to reduce 28-day mortality compared to usual
care in patients needing oxygen or receiving invasive mechanical
ventilation at randomization (28).

The aim of the present study was to segregate and
characterize hospitalized COVID-19 patients based on their
immune profile. We therefore performed an extensive analysis
of immune parameters on a cohort of hospitalized COVID-19
patients, integrating flow cytometry, transcriptomic data, and
multiple clinical variables reflecting organ damages. We
identified two groups of patients based on immune gene
expression, that segregate with disease severity. We propose a
combined association of easily quantifiable biomarkers, called
“SARS-Score” that allow an accurate classification of the patients.
Frontiers in Immunology | www.frontiersin.org 2
Finally, after validation of the signature on public data, we used
in silico tools to propose a personalized medicine in COVID-19,
that could specifically correspond to each group of patients.
MATERIALS AND METHODS

Patient’s Cohort
A prospective observational cohort study of 36 adult patients
(≥18 years old) with available samples admitted in the Georges
Pompidou European Hospital (Paris, France) since March 2020
was analyzed in this study. All patients were diagnosed with
COVID-19, i.e. positive for SARS-CoV-2 nucleic acid on real-
time reverse transcription-polymerase chain reaction (RT-PCR)
assays of nasopharyngeal swab specimens, in accordance with
the World Health Organization (WHO) COVID-19 technical
guidance (https://apps,who,int/iris/handle/10665/330854). On
admission, all patients required oxygen and 27 were admitted
in the ICU with the need of invasive mechanical ventilation. This
study was approved by the medical ethic committee
(CERAPHP·5 approval number 00011928). Patients included
in the present study, or their relatives, were informed that their
medical data could be used for research purposes in accordance
with the General Data Protection Regulation (EU 210 2016/679).
Clinical and biological variables were obtained at admission,
reflecting lung, liver, renal and cardiac function and hemostasis
(Supplementary Table 6).

For each patient, the day after admission, blood was collected in
PAXgene tubes (Promega, Madison, WI, USA) for further RNA
extraction, or in citrate tubes for flow cytometry analyses. Plasma
was frozen for assay of cytokine levels, and peripheral blood
mononuclear cells (PBMC) were isolated and frozen for further
flow cytometry analysis. Samples from non-infected control subjects
were purchased from the French Blood Establishment.

Flow Cytometry
Thawed cells were stained with live/dead for viability
(Thermofisher, Waltham, MA, USA), monoclonal antibodies
(mAbs) directed against CD3, CD209 (Beckman Coulter, Brea,
CA, USA), CD14, CD16, CD19, CD56, CD86, CD299 (BD
Biosciences), CD8, CD40, HLA-DR (BioLegend, San Diego,
CA, USA) and CD163 (Miltenyi Bergisch Gladbach, Germany),
for 30’ at 4°C in PBS and 10% FCS medium. Staining was
acquired on Fortessa X20 (BD Biosciences, San Jose, CA, USA)
and analyzed using FlowJo software.

The unsupervised analysis was done using Excyted pipeline
(https://github,com/maximemeylan/Excyted). Intensity values of
events gated from live cells were normalized using the Logicle
transformation. Unsupervised clustering and Uniform Manifold
Approximation and Projection (UMAP) were computed with
10,000 events for each sample using k = 30.

Luminex
Plasma cytokines were measured by Luminex technology (Bio-
Plex, Bio-Rad, 27-Plex Assays panel, Marnes-la-Coquette,
France) according to the manufacturer’s instructions.
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RNA Extraction
Total RNA was purified from frozen PBMCs of COVID-19 patients
using the Maxwell 16 LEV simplyRNA Cells Kit (Promega,
Madison, WI, USA), according to the manufacturer’s instructions.
Cell pellets were dispersed in the chilled 1-Thioglycerol/
Homogenization Solution. Total RNA was eluted in a low volume
of 50 ml, RNA quality and quantity were estimated on a NanoChip
(Total Eukaryote RNA Assay Nano II Kit, Qiagen, Düsseldorf,
Germany) by capillary electrophoresis (BioAnalyzer, Agilent
Technologies, Santa Clara, CA, USA). Samples with a RIN ≥8
were considered suitable for Reverse Transcription and Real-Time
PCR experiments.

Reverse Transcription
Reverse-transcriptions were carried out on the entire RNA sample
in a 20 ml total reaction volume with the High-Capacity cDNA
Reverse Transcription Kit with RNAse inhibitor (PN 4368814,
Applied Biosystems, Waltham, MA, USA) according to the
manufacturer’s instructions. Concentration of cDNA was
estimated with a Qubit 3.0 Fluorometer (Q33216, Thermofisher).

Semi-Quantitative Real-Time Polymerase
Chain Reaction
Real-time PCR were performed with 40 ng of cDNA using the 2×
TaqMan Universal Master Mix (Applied Biosystems) and 20×
Taqman® Gene Expression Assay for the detection of human
targets TLR3, TLR7, RIG-I, and MDA-5. Reactions took place in
a Hard-Shell 384-well PCR plate (Biorad, Hercules, CA, USA) in
a 10 ml total reaction volume. Detection and semi-quantification
of gene expression were performed on a CFX384 Touch™ Real-
Time PCR Detection Instrument (Biorad). Technical triplicates
were carried out. Semi-quantitative real-time PCR results were
analyzed with the dedicated CFX Manager software (Biorad).
Data standardization was carried out using the Ct obtained for
the Human GAPDH housekeeping gene. The DCt were used to
evaluate the differential expressions by estimation of the
Fold Change.

nCounter® Gene Expression
The kit used for the Gene Expression analysis was the
nCounter®Cancer Immune™ Panel (NanoString Technologies,
Seattle, WA, USA). A master mix was created by adding 70 ml of
hybridization buffer to cancer immune reporter code set tube.
Hybridization step was performed in the nCounter 12-well
Notched Strip Tubes. The following components were added
respectively: 8 ml of MasterMix, 100 ng of RNA in a volume of
5 ml, 2 ml of capture probe set. The tubes were immediately
incubated 21 h in a pre-heated 65°C thermal cycler. Once removed
from the thermal cycler, hybridization reactions were immediately
processed with the nCounter Prep-station for purification step
and immobilization in a cartridge. Finally, data collection was
carried out in the nCounter® Digital Analyzer (FOV555).

Nanostring nCounter Data Analysis
Quality control of nCounter data was performed with the
nSolver software developed by NanoString Technologies.
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Samples with insufficient detection limit were excluded from
the analysis. A hierarchical clustering was performed on the
normalized nCounter data using Euclidean distance and the
Ward method. Normalization was performed with the package
NanoStringNorm (29). The nCounter data embed positives (6),
negatives (8) and housekeeping genes (30) required to normalize
data. The package gplots was used to generate a heatmap
showing the hierarchical clustering and the relative genes
expression. Principal component analysis on normalized
nCounter data was performed with the package factoextra.

Differential gene expression analysis based on NanoString
nCouter data was performed using the Nanostringdiff package
version 1.20.0 (available from Bioconductor) (31). The
normalization procedure and the identification of differentially
expressed genes between groups were done using methods
provided by the package. The adjusted p-values (q-values) were
calculated using the Benjamini and Hochberg procedure (false
discovery rate). Genes with q-value <0.05 and a fold change
greater than 2 (log2 fold change >1) or less than −2 (log2 Fold
change <−1) have been identified as overexpressed genes or
underexpressed genes respectively. Volcano plot showing the
results was generated with the package EnhancedVolcano.

Gene Enrichment Analysis
Enrichment analysis was performed using the package EnrichR
downloaded from CRAN (32, 33). For tissue and cell signatures
we used The Human Genome Atlas. For biological process and
pathway signatures we used KEGG 2019 and Gene Ontology
Biological Process 2018. For drug signatures we used DsigDB
and signatures from the GEO Drug perturbation. Signatures
were ordered according to the q-values and only the more
significant signatures were considered relevant (q-values <0.05).

Public RNAseq Data (GSE157103)
In order to confirm our results on a larger cohort, we downloaded
the TPM normalized RNA seq data from the GSE157103 dataset
(34). The data include transcriptomic data from 100 COVID-19
patients (whole blood) and corresponding clinical annotations.

Statistical Analyses
The statistical analysis was performed using R 4.0.2 and appropriate
packages available from CRAN or Bioconductor. For quantitative
variables, we used the Mann–Whitney–Wilcoxon test to compare
the distribution between two groups. For correlation analysis, we
used the Spearman method. Correlation coefficient and p-values
was calculated with the package hmisc and correlogram was
generated with the package corrplot.
RESULTS

COVID-19 Patient Clinical Characteristics,
Immunophenotyping and Gene Expression
Signature
We analyzed a prospective cohort of 36 hospitalized COVID-19
patients (mean age of 62 years) with a clinical course ranging
July 2021 | Volume 12 | Article 701273
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from moderate to severe disease, with nine patients hospitalized
in the general ward and 27 needing ICU admission
(Supplementary Table 1). We extensively collected clinical
and routine laboratory tests on admission reflecting lung, liver,
renal, cardiovascular functions and hemostasis.

We first compared the immune profiles of COVID-19
patients to those of 10 healthy donors (controls) by flow
cytometry analysis of PBMCs (gating strategy shown in
Supplementary Figure 1). We found lymphopenia with a
decrease of both T and B cells numbers in COVID-19 patients,
as previously reported (21), while no difference in NK and NKT
cells (Supplementary Figure 2A). Monocytes, are not different
in numbers, but display high expression of CD16, CD40, CD163
and a low expression of HLA-DR compared to healthy donors
meaning either an over-activated phenotype or a compensatory
anti-inflammatory response as CD86 is not upregulated in
COVID patients (Supplementary Figures 2B, C). The
expression level of the viral sensors TLR3, TLR7, DDX58
coding for RIG-I and interferon induced with helicase C
domain 1 (IFIH1) coding for MDA-5 were highly variable
among patients (Supplementary Figure 2D). TLR7 was the
sole sensor significantly overexpressed in COVID-19 patients
as compared to controls.

The most important difference being observed for monocytes,
we performed an unsupervised analysis of the flow cytometry
data on CD14+ cells. We identified 19 clusters (Supplementary
Figure 3A) of which 16 are significantly differentially
represented between the control group and COVID-19 patients
(eight clusters more abundant and eight less abundant), and
showing different expression profiles of monocytes markers as
shown in the heatmap representation (Supplementary
Figure 3B). For each COVID-19 patient, we then correlated
the percentages of each differentially represented cluster with the
levels of cytokines and chemokines that were evaluated by
luminex assay, markers of blood vessels and of organs
dysfunctions and viral sensors expression. We found that over-
represented clusters are correlated with inflammatory cytokines and
chemokines (IL-6, IL-18, sIL-6Ra, sTNFR1, CXCL10, CCL2 and
eotaxin) and markers of vessel inflammation, whereas a negative
correlation was found between the under-expressed clusters and
these inflammatory molecules (Supplementary Figure 3C).

Altogether, these data showed a distinct immune profile of
COVID-19 patients as compared to healthy donors with a strong
heterogeneity among hospitalized COVID-19 patients, both in
terms of immune populations, activation status and viral
sensors expression.

Immune Signature Identifies Two Groups
of COVID-19 Patients
Hierarchical clustering of transcriptomic analysis of 730 immune
related genes from PBMC of COVID-19 patients with available
samples (n = 25) at admission and of 10 healthy donors, revealed
a complete segregation between controls and patients, except for
one patient who developed a moderate disease (WHO score = 4)
with a short non-ICU hospitalization (Figure 1A). Overall, 35%
of the immune related genes explored were differentially
Frontiers in Immunology | www.frontiersin.org 4
expressed between patients and controls, with 178 genes
overexpressed and 80 genes under-expressed (Supplementary
Tables 2 and 3).

Strikingly, hospitalized COVID-19 patients segregated into
two groups 1 and 2 (Figure 1A). Principal component analysis of
transcriptomic features of whole blood at the onset of
hospitalization revealed that group 1 (blue) was closer to
healthy controls than group 2 (red) (Figure 1B). Delay
between the onset of symptoms and sample collection
(performed day 2 of hospitalization) was identical in the two
groups (9.5 and 9.9 days for groups 1 and 2, respectively, P-value =
0.3672), indicating that transcriptomic differences were not due to
temporal discrepancies. Seventy genes (i.e. signature A) and 45
genes (i.e. signature B) were significantly over-expressed and
under-expressed, respectively, in group 2, as compared to group
1 patients (Figure 1C and Supplementary Tables 4, 5). Using the
Venn-diagram representation, we identified that among the 39
genes differentially expressed between group 1, group 2 and
controls, 34 belong to the group 2 and only four to the group 1,
which confirms that group 2 is characterized by a specific gene
expression signature. Moreover, we also showed that group 2
display the most important difference in number of genes
differentially expressed between all COVID patients, or each
group and controls (Figure 1D). Genes up-regulated in group 2
belong to signatures of myeloid cells, neutrophil activity,
inflammatory response, TLR and type I IFN signaling pathways,
and inhibition of T cell proliferation (i.e. arginase 1, PDL1, PDL2
and CD276/B7-H3), (Figure 1E and Supplementary Table 4). At
the opposite, genes involved in CD8 and NK cell function, T cell
activation, T helper (Th) differentiation, co-stimulatory receptors
(TNFRSF4 (OX40), ICOSLG (ICOS ligand), TNFRSF18 (GITR)
and TNFRSF11A (RANK)), and antigen presentation, were down-
regulated in group 2 (signature B; Figure 1F and Supplementary
Table 5). These results are compatible with the coexistence of
patients with a distinct immune profile: (i) adaptive immune
response triggering (i.e. group 1), (ii) exacerbated myeloid and
innate responses, with dysfunctional adaptive immune response
(i.e. group 2).

Clinical Outcome in Patient’s Groups
According to Immune Signature
Patients of group 2 did not differ from group 1 for age and
diabetes, but have a higher body mass index compared to group 1
(Supplementary Table 6). The severity of respiratory distress in
each group was estimated by the WHO score. Patients without
oxygen therapy, oxygen by mask, or nasal prongs had a 4–5
WHO score, whereas patients requiring oxygen by NIV or high
flow, mechanical ventilation or extracorporeal membrane
oxygenation (reflecting a severe lung damage) had >6 WHO
score. Strikingly, almost all patients (15/16; 94%) from group 2
had severe respiratory distress (>6 WHO score) as compared to
25% (2/8) in group 1 (P = 0.0013) (Figure 2A). Differential
biological variables between the two groups, reflecting other vital
organs and tissues (i.e. liver, kidney, heart and blood vessels)
(Supplementary Table 6) were investigated. Among them
Hepatic Steatosis Index (HSI) and prothrombin ratio (% PR)
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FIGURE 1 | Transcriptomic immune gene signature identifies two groups of COVID-19 patients. (A) Heatmap representation showing relative expression of immune
genes by COVID-19 and controls reveals the presence of two groups of patients: group 1 (blue) and group 2 (red). (B) Principal component analysis of COVID-19
and controls shows that group 1 is intermediate between controls and group 2 COVID-19 patients. (C) Volcano Plot showing differentially expressed genes between
group 2 and group 1. X axis displays fold changes between the two groups and Y axis the −log10 (p value). Differentially overexpressed genes (Signature A—
highlighted in purple) and under-expressed genes (Signature B—highlighted in yellow) by group 2 as compared to group 1 patients were characterized by fold
changes superior/inferior to 2 and with a significant p value (<0.05). (D) Venn diagrams showing common differentially expressed genes between group 1, group 2
and controls. (E, F) Enrichment analysis of genes of the signatures A and B (respectively up-regulated and down-regulated in group 2) using EnrichR and three
different datasets. The histogram shows the first five more significant enriched signatures from The Human Genome Atlas (HGA). corresponding to tissue and cell
signatures. The bubble plot shows the first 15 more significant enriched signatures from the Kyoto Encyclopedia of Genes and Genome (KEGG) and Gene Ontology
Biological process (GO), corresponding to biological pathway signatures. Signatures are ordered according to adjusted p-values, the color graduation shows the
percentage of genes overlapping between the datasets signature and our own signature.
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reflecting liver damage, urinary Na+ and Na+/K+ reflecting
kidney injury, troponin for cardiac damage, and E-selectin and
placental growth factor (PlGF) reflecting the vessel status were
significantly different in group 2 patients as compared to group 1
(Figure 2B). Overall, multi-organ failure, potentially exacerbated
by endothelium damage and thrombosis was more pronounced
in group 2 patients. Finally, 88% (7/8) of death belongs to group
2 (Figure 2A), underlying distinct clinical outcome associated
with differential immune patterns of patients’ groups.

We then compared the immune populations between both
groups of COVID-19 patients. The group 2 was characterized by
increased total leucocytes counts, with a profound lymphopenia,
a decreased proportion of CD8+ T cells and increased proportion
of CD4+ T cells, a decrease in NK cells and an increase of
neutrophils (Figure 2C). In addition, group 2 patients presented
with higher plasma level of proinflammatory cytokines (IL-6, IL-
8, TNF-a, soluble TNF receptor 2 (sTNFR2)), of IL-4 and IL-7,
and of anti-inflammatory heme oxygenase 1 (HMOX1) (Figure 2D
and Supplementary Table 7). These data confirmed a higher
inflammatory response, neutrophilia and reduced NK and T cell
responses in group 2, whereas group 1 had a profile favoring an
adaptive immune response. Of note, group 2 patients displayed a
higher expression of TLR3 on PBMC (with no difference for TLR7,
RIG-I and MDA-5) (Figure 2D).

Immune Gene Signature Identifies a
Similar Group of Severe Patients in
Public Cohort
In order to confirm our results, gene signatures A and B, on which
we based the definition of patient’s groups with distinct prognosis,
we investigated an independent public cohort of 100 hospitalized
COVID-19 patients, with available RNAseq (GSE157103) and
clinical data sets. All the genes of the signature were not detected
in the dataset, so we first verified whether the expressed genes of
each signature were co-expressed in this public cohort dataset and
performed a gene enrichment analysis to show that we keep the
same enrichment signature. (Supplementary Figure 4A). This
analysis confirmed that genes of the signature A correspond to
myeloid and neutrophil signatures, complement and coagulation
and negative regulation of T cell responses, whereas genes of the
signature B correspond mainly to positive regulation of immune
responses (antigen presentation, T and NK cell activation)
(Supplementary Figure 4B).

Hierarchical clustering showed that gene signatures A and B
segregated two groups of patients, as observed in our previous
cohort (Figure 3A). Patients of group 2 compared to group 1 had
higher comorbidity (Charlson score), longer duration of
hospitalization, were more often hospitalized in ICU with
higher ICU severity scores (APACHE II and SOFA), and
required more often invasive mechanical ventilation (Figure 3A).

We finally calculated, for each patient, the correlation
between the mean expression of signatures A and B and
clinical and biological data related to severity of the disease.
Interestingly, patients expressing signature B had no invasive
mechanical ventilation and were not hospitalized in ICU,
suggesting a milder form of COVID-19 infection (Figure 3B).
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Biological markers of inflammation (CRP and fibrinogene) and
of tissue injury (lactate), were also significantly correlated with
the mean expression of signature A, which correspond to group 2
patients (Figure 3C).

These data confirm that the immune signatures, determined
the second day of hospitalization, were able to classify patients
and predict distinct clinical evolution.

Identification and Validation of a
SARS-Score
We then searched for a minimal combination of immune gene
signature and of clinical biomarkers which would make it
possible to determine which patients are most at risk to evolve
into a poor clinical outcome. To obtain the minimal combination
of genes, we selected the ones for which the expression was the
most discriminant between groups 1 and 2 (Figure 4A). We thus
identified seven genes (CEACAM1, S100A8, S100A12, CSF1R,
TLR5, CD59 and CD96) with less than 10% of distribution
overlap between the two groups of patients. In parallel, we
determined among clinical data, a combination of eight clinical
variables that are easily obtainable in routine. To create a
stringent score, we defined for each clinical biomarker, a
threshold corresponding to a classification in group 1 or 2
(Figure 4B). These thresholds correspond to the extreme
quartiles (first and last 25%) of the total distribution among
the cohort. Combined together, these biomarkers constitute a
powerful score, called SARS-Score, that could be useful to guide
therapeutic management of severe patients.

We validated clinical part of this score on another cohort of
51 COVID-19 hospitalized patients (from HEGP hospital) and
were able to classify 48 of them in group 1 or 2 (Figure 4C). We
confirmed that group 2 patients of this cohort are characterized
by a high WHO score (96.6% >6 for group 2, 10.5% >6 for group
1); p = 9.6e−09), ICU hospitalization (100% in ICU for group 2,
31.6% for group 1; p = 1.24e−07), high rate of death (41% for
group 2, 21% for group 1; p = 0.12) (Supplementary Figure 5).

Identification of Potential
Therapeutic Targets
We then investigated which drugs could be beneficial for each group
of patients. To this end, we performed a drug-set enrichment
analysis using EnrichR and drug signature databases (DsigDB
(35) and GEO). Those databases include genes differentially
expressed after drug treatment which induced a phenotype of
interest by its action on known or unknown (off-target effects)
targets, resulting in modification of gene expression. The objective
of this approach is to identify drugs that would induce the
downregulation of signature A (Figure 5A) and the upregulation
of signature B (Figure 5B). Most of the drugs identified with this
approach were immunomodulatory drugs.We found two inhibitors
of cytokines: Tocilizumab (anti-IL-6 receptor) and Etanercept (anti-
TNF-a receptor), glucocorticoids (dexamethasone. prednisolone
and hydrocortisone), anti-inflammatory (aspirin, curcumin and
parthenolide) and immunosuppressive (tacrolimus and
mycophenolate) drugs. We also identify repurposed drugs with
immunomodulatory properties like imatinib, thalidomide,
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A

B

C

D

FIGURE 2 | Immune and clinical characteristics of groups 1 and 2 COVID-19 patients. (A) Comparison of WHO score, of need for ICU hospitalization and of death
status between group 1 (blue) and 2 (red) patients. (B) Comparison of clinical values reflecting liver (HSI and prothrombin ratio), renal [Na/K and Na (U)], cardiac
function (troponin), and blood vessels (E-selectin and PIGF) between groups 1 and 2 patients. Only the values showing significant differences between the two
groups are shown. (C) Comparison of immune cells quantification in groups 1 and 2 patients. (D) Comparison of TLR3 expression and cytokines quantification in
two groups of patients (by Luminex assay). Statistical analyses were performed by Wilcoxon test using GraphPad software. *p < 0.05; **p < 0.01; ***p < 0.001. ICU,
Intensive Care Unit; PlGF, Placental Growth Factor.
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isotretinoin, atorvastatin, vemurafenib and rosiglitazone.
Interestingly, most of these drugs are being tested in clinical trials
(Table 1) but further investigations are needed to confirm a
potential benefit effect in COVID-19 patients. Nevertheless,
these results highlight the importance of administering
immunomodulatory therapies specifically to patients of group 2.
DISCUSSION

While immune characterization of the severe COVID-19
patients is now quite precise, notably dysregulated responses
with a strong inflammation and a defect of IFN response (36, 37),
Frontiers in Immunology | www.frontiersin.org 8
a few immunologic studies on predictive factors of the clinical
outcome and drug selection have been made (38, 39).

Different molecules of interest were pointed out that could be
targeted in severe COVID-19 patients. A multi-omics analysis
identified 219 molecules highly correlated with COVID-19 status
and severity, involved in complement system activation,
dysregulated lipid transport and neutrophil activation, vessel
damage and blood coagulation (34). The chemokine CXCL10
has also been identified as a plasma biomarker of impaired CD4+

and CD8+ T cell responses in acute COVID-19 (22), and S100A8
and S100A9 alarmins, known to be released by myeloid cells in
inflammatory situations, are biomarkers of monocytes and
neutrophil subsets alterations (20). Finally, a recent study
A

B C

FIGURE 3 | Signatures A and B identify two groups of patients in a public COVID-19 patient cohort (RNAseq data). (A) Heatmap showing relative expression of the
gene signature and hierarchical clustering of COVID-19 patients with clinical and biological annotation. (B) Mean expression of the signatures A and B according to
type of service hospitalization (ICU or not) and the need of mechanical ventilation (yes or not). (C) Significant correlation between the mean expression of—signatures
A and B with the different clinical scores and biological values. Correlations were determined with the spearman correlation coefficient. NS, not significant.
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A

B

C

FIGURE 4 | Definition of a SARS-Score for hospitalized patients and proposal of therapeutic agents. (A) Radar plot showing biomarkers from the signatures. We
selected the genes with less than 10% of distribution overlap between the two groups of patients. The data shown are the log2 fold change of the mean of group 1
(blue) or group 2 (red) relative to controls. (B) The SARS-Score is composed of seven genetic (left) and eight clinical variables (right). For each variable, the upper part
of the table displays the thresholds defined to classify patients in group 1 (blue) or 2 (yellow). These thresholds correspond to the first (25%) and last quartile (75%) of
the total distribution, except for the WHO score which corresponds to the threshold between mild and severe disease (WHO Score = 6). The lower part of the table
shows the application of the SARS-Score on our cohort. The blue and yellow cells correspond to values allowing a classification in group 1 or 2, respectively. Gray
cells represent values that do not allow classification and white cells correspond to missing values. The final score (column “classification obtained”) is obtained by
adding up the number of each colored cell. (C). Application of the clinical part of the SARS-Score on 51 COVID-19 patients. The color code and the thresholds used
are the same as in (B). Patients having more blue or yellow cells are classified as “group 1” or “group 2”, respectively. Patient having the same number of blue and
yellow cells are considered as “Unclassified”.
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revealed that a combination of 12 biomarkers, including CCL2,
IL-15, soluble ST2 (sST2), NGAL, sTNFRSF1A, ferritin, IL-6,
S100A9, MMP-9, IL-2, sVEGFR1 and IL-10, was associated with
mortality (38). As observed in previous studies (18, 21), our
cohort of patients exhibit a profound lymphopenia and
alterations of the myeloid compartment, with an increase of
circulating “dysfunctional” CD14+CD163+ and CD14+HLA-

DRlow monocytes as compared to controls. The immune gene
signature shows an enrichment in innate myeloid immune
profile, complement and coagulation cascades—consistent with
the complement activation and hemostasis troubles described
in COVID-19 (34)—and in neutrophil activation and
degranulation—in line with neutrophils count and neutrophil
extracellular traps (NETs) that were reported to be associated
with COVID-19 severity (40). Altogether, these first results
confirmed that despite a small number of patients, our cohort
exhibited similar immune characteristics compared with
previous published cohorts of severe COVID-19 patients.

The need of robust predictive biomarkers of COVID-19
severity led us to deeply characterize the immune signature of
hospitalized COVID-19 patients at admission to search for early
immune specificities that are linked to later multi-organ failure
and severity of the disease. We have observed a strong
heterogeneity among hospitalized COVID-19 patients and
found two distinct groups. These two sub-groups of
hospitalized Covid-19 patients were characterized by a distinct
immune gene signature, and clinical outcome.

The group 1 is closer to the control group whereas the group 2
is more distant. Indeed, compared to group 1, the group 2
overexpresses a signature linked to myeloid immune response,
cytokine mediated signaling pathways including type I IFN, and
neutrophils chemotaxis and under-expresses a signature linked
to NK and CD8+ T cell responses, T cell activation, Th17
response and antigen presenting pathways. Conflicting results
have been reported for the role of type I IFN in COVID-19
patients: while type I IFNs are essential to control the disease in
Frontiers in Immunology | www.frontiersin.org 10
the early steps of infection, it seems to exacerbate inflammation
during severe disease (41).

Interestingly, we also found an over-expression in the group 2
of alarmins (S100A8 and S100A12) that have been shown to be
specifically linked with neutrophil recruitment in fatal
coronavirus infections (18, 20, 42). Of note, if pro-
inflammatory cytokines were correlated with monocytes
clusters more abundant in COVID-19 patients, they were not
different between groups 1 and 2. This is probably due to the
small number of patients in each group.

Dramatically, when we compared the clinical data between
the two groups, the group 2 was more severe than the group 1,
showing a strong correlation between immune signatures and
the severity of the disease. Indeed, the group 2 was characterized
by a multi-organ failure (as indicated by the SOFA score) and an
increased mortality rate: 44% of the group 2, and only 12% in the
group 1. Of note, the only patient from group 1 who died suffered
from recurrent breast cancer.

To assess whether segregation of hospitalized severe patients
was still found in an independent larger cohort, we applied our
immune signatures A and B on a public database of 100
hospitalized COVID-19 patients (GSE157103). Again, the
patients expressing the signature A at admission were more
often admitted in ICU, needed more frequently invasive
mechanical ventilation and their comorbidity (Charlson) and
severity (SOFA and APACHE II) scores were higher than
patients expressing the signature B. This result confirms the
strength of the correlation between our immune profiles and the
clinical severity of the disease.

Finally, knowing that our immune signature could be
predictive of the clinical outcome of COVID-19, we created a
score, the SARS-Score, to classify the patients with easy
obtainable clinical data and highly specific genes. We propose
a score, composed of eight clinical parameters reflecting multi-
organ failure and seven genes from our transcriptomic analysis,
after their validation at the protein level. Applied to our cohort,
A B

FIGURE 5 | Drug discovery and clinical assays. (A, B) Enrichment analysis of drug signatures from DsigDB and GEO drug perturbations to down-regulate Signature
A or up-regulate signature B, respectively.
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the SARS-Score allows perfectly discriminating patients of
groups 1 and 2, either using clinical data and/or immune
variables, and even allows proposing a therapy specific to the
group the patient belongs to (Figure 6).

Indeed, results about treatments of COVID-19 patients are
highly controversial (43–46), probably in part because severe
COVID-19 patients were considered as a homogeneous
population. Based on the immune signature, we performed a
drug gene set enrichment analysis to propose differential
therapeutics, alone or in combination, that could specifically
correspond to each group of patients. With this approach, we
took into account both the specific pharmacology of the drug and
the overall effect on the modulation of genes expression. We
found several drugs that would revert the signatures A and B:
Frontiers in Immunology | www.frontiersin.org 11
our study suggests that inhibiting pro-inflammatory cytokines
would be beneficial for group 2 patients. This could be achieved
by cytokine receptors blockade such as Tocilizumab or
Etanercept to target IL-6R or TNFaR, respectively. Blocking
TNFaR has already been proposed in COVID-19 (47) and might
be a strong candidate as it can regulate both signatures A and B.
On the contrary, group 1 patients would probably benefit from
drugs that activate antiviral adaptive immune cell responses. This
could be achieved by repurposing molecules such as Imatinib,
Thalidomide, Isotretinoin or Atorvastatin, that are already in
clinical trials in COVID-19 (NCT04422678, NCT04273529,
NCT04361422 and NCT04380402. respectively) (30, 48–50), or
monoclonal antibodies targeting immune co-stimulatory
molecules TNFRSF4 (OX40), TNFRSF18 (GITR) or LAG3
TABLE 1 | Clinical trials using drugs that could down-regulate the signature A and up-regulate the signature B (last update: June 16, 2021).

Therapeutics Drugs Clinical trial
(numbers)

Results Population of
COVID-19 patients

Ref

Glucocorticoids Dexamethasone Yes (58) Clinical
benefit

In combination with standard care,
increase of ventilator-free days

All patients NCT04327401

Prednisolone Yes (41) Controversial Early administration decrease death rate
and ventilator dependence

Severe NCT04323592

Early short administration improves clinical
outcomes

Moderate and
severe

NCT04374071

May prolong virus shedding Severe NCT04273321
Early short administration don’t reduce
mortality

All patients NCT04343729

Hydrocortisone Yes (10) No result
published

Inhibitors of cytokines Etanercept No No clinical
trial

Tocilizumab Yes (57) Controversial No benefit on disease progression All patients NCT04346355
Don’t improve clinical outcomes at 15
days, and might increase mortality

Severe or critical NCT04403685

Reduce oxygen requirement, ICU stay,
median hospital stay and mortality

Critical NCT04730323

No better clinical status or lower mortality
at 28 days

Severe NCT04320615

No prevention of intubation or death Moderate NCT04356937
Repurposed drugs with
immunomodulatory properties

Thalidomide Yes (3) No result
published

Isotretinoin Yes (9) No result
published

Imatinib Yes (5) No result
published

Atorvastatin Yes (9) No result
published

Rosiglitazone No No clinical
trial

Vemurafenib No No clinical
trial

Immunosupressive drugs Tacrolimus Yes (4) No result
published

Mycophenolate No No result
published

Cytokines Interferon beta Yes (13) No result
published

Anti-inflammatory drugs Parthenolid No No clinical
trial

Curcumin Yes (2) No result
published

Aspirin yes (16) No result
published
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immune checkpoint (overexpressed in group 1 patients).
Immunosuppressive drugs like Tacrolimus—in clinical trials in
COVID-19 (NCT04341038)—appear also as a possible candidate
in our study, although its use has been associated with high
mortality among organ transplant recipients. Finally,
glucocorticoids such as Dexamethasone, Prednisolone or
Hydrocortisone seem to be able to both boost signature B
profile and revert signature A. Interestingly, the clinical efficacy
of corticosteroids have already been correlated with neutrophil-
to-lymphocytes ratio, which we found as a marker of group 2
patients (51, 52).

Altogether, our study provides a fundamental understanding of
the different immune profiles among severe hospitalized COVID-19
patients and provides a score which would be a useful tool to classify
patients and propose accurate treatments for both groups of
patients, towards a more personalized medicine against COVID-19.
Frontiers in Immunology | www.frontiersin.org 12
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by CERAPHP·5 00011928. The patients/participants
provided their written informed consent to participate in this study.
AUTHOR CONTRIBUTIONS

JR, PEF and NJ performed the experiments. JR, PEF, AKi and
MM performed bioinformatic analysis. JR, P-EF, NJ, and IC
FIGURE 6 | Summary of the two groups of hospitalized COVID-19 patients. Groups 1 (blue, left part) and 2 (red, right part) have been defined on differential immune
transcriptomic profiles that correspond to specific immune orientations. The plasmatic and clinical characteristics of these two groups allow to predictively classify the
patients and personalize the therapeutic strategies to improve the outcome of COVID-19 patients.
July 2021 | Volume 12 | Article 701273

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Russick et al. SARS-Score to Guide Therapy of Severe Patients
analyzed the data. NH, AKa, CS, ET, DS, AK, J-SH,ML,
AF, JBA, JLD,MADD, and FP provided clinical samples
and pathological data. IC designed and supervised the study.
JR, PEF, NJ, MADD, FP and IC wrote the manuscript. All
authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the “Institut National de la Sante et
de la Recherche Medicale” (INSERM), Sorbonne Universite,
Universite de Paris.
Frontiers in Immunology | www.frontiersin.org 13
ACKNOWLEDGMENTS

We thank the Hopital Europeen Georges Pompidou hospital for
contributing to the tissue collection. We also thank the CHIC
(Center of Histology Imaging and Cytometry) facility of the
Centre de Recherche des Cordeliers.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2021.701273/
full#supplementary-material
REFERENCES
1. Wang T, Du Z, Zhu F, Cao Z, An Y, Gao Y, et al. Comorbidities and Multi-

Organ Injuries in the Treatment of COVID-19. Lancet (2020) 395:e52.
doi: 10.1016/S0140-6736(20)30558-4

2. Quah P, Li A, Phua J. Mortality Rates of Patients With COVID-19 in the
Intensive Care Unit: A Systematic Review of the Emerging Literature. Crit
Care (2020) 24:1–4. doi: 10.1186/s13054-020-03006-1

3. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical Course and Risk
Factors for Mortality of Adult Inpatients With COVID-19 in Wuhan, China:
A Retrospective Cohort Study. Lancet (2020) 395:1054–62. doi: 10.1016/
S0140-6736(20)30566-3

4. Merad M, Martin JC. Pathological Inflammation in Patients With COVID-19:
A Key Role for Monocytes and Macrophages. Nat Rev Immunol (2020)
20:355–62. doi: 10.1038/s41577-020-0331-4

5. Chua RL, Lukassen S, Trump S, Hennig BP, Wendisch D, Pott F, et al.
COVID-19 Severity Correlates With Airway Epithelium-Immune Cell
Interactions Identified by Single-Cell Analysis. Nat Biotechnol (2020)
38:970–9. doi: 10.1038/s41587-020-0602-4

6. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K,
Antoniadou A, Antonakos N, et al. Complex Immune Dysregulation in
COVID-19 Patients With Severe Respiratory Failure. Cell Host Microbe
(2020) 27:992–1000. doi: 10.1016/j.chom.2020.04.009

7. Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, et al.
Longitudinal Analyses Reveal Immunological Misfiring in Severe
COVID-19. Nature (2020) 584:463–9. doi: 10.1038/s41586-020-2588-y

8. Messner CB, Demichev V, Wendisch D, Michalick L, White M, Freiwald A, et al.
Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19
Infection. Cell Syst (2020) 11:11–24.e4. doi: 10.1016/j.cels.2020.05.012

9. Wei L-L, Wang W-J, Chen D-X, Xu B. Dysregulation of the Immune
Response Affects the Outcome of Critical COVID-19 Patients. J Med Virol
(2020) 92:2768–76. doi: 10.1002/jmv.26181

10. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al. Immunology
of COVID-19: Current State of the Science. Immunity (2020) 52:910–41.
doi: 10.1016/j.immuni.2020.05.002

11. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R,
et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of
COVID-19. Cell (2020) 181:1036–1045.e9. doi: 10.1016/j.cell.2020.04.026

12. Laing AG, Lorenc A, Del Molino Del Barrio I, Das A, Fish M, Monin L, et al. A
Dynamic COVID-19 Immune Signature Includes Associations With Poor
Prognosis. Nat Med (2020) 26:1623–35. doi: 10.1038/s41591-020-1038-6

13. Del Valle DM, Kim-Schulze S, Huang H-H, Beckmann ND, Nirenberg S,Wang B,
et al. An Inflammatory Cytokine Signature Predicts COVID-19 Severity and
Survival. Nat Med (2020) 26:1636–43. doi: 10.1038/s41591-020-1051-9

14. Galani I-E, Rovina N, Lampropoulou V, Triantafyllia V, Manioudaki M,
Pavlos E, et al. Untuned Antiviral Immunity in COVID-19 Revealed by
Temporal Type I/III Interferon Patterns and Flu Comparison. Nat Immunol
(2021) 22:32–40. doi: 10.1038/s41590-020-00840-x

15. Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, et al. Inborn
Errors of Type I IFN Immunity in Patients With Life-Threatening COVID-19.
Science (2020) 370:eabd4570. doi: 10.1126/science.abd4570
16. Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann H-H, Zhang Y, et al.
Autoantibodies Against Type I IFNs in Patients With Life-Threatening
COVID-19. Science (2020) 370:eabd4585. doi: 10.1126/science.abd4585

17. Veglia F, Perego M, Gabrilovich D. Myeloid-Derived Suppressor Cells Coming of
Age. Nat Immunol (2018) 19:108–19. doi: 10.1038/s41590-017-0022-x

18. Schulte-Schrepping J, Reusch N, Paclik D, Baßler K, Schlickeiser S, Zhang B,
et al. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell
Compartment. Cell (2020) 182:1419–40.e23. doi: 10.1016/j.cell.2020.08.001

19. Venet F, Demaret J, Gossez M, Monneret G. Myeloid Cells in Sepsis-Acquired
Immunodeficiency. Ann NY Acad Sci (2020). doi: 10.1111/nyas.14333

20. Silvin A, Chapuis N, Dunsmore G, Goubet A-G, Dubuisson A, Derosa L, et al.
Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate
Severe From Mild COVID-19. Cell (2020) 182:1401–18.e18. doi: 10.1016/
j.cell.2020.08.002

21. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and
Immunological Features of Severe and Moderate Coronavirus Disease 2019.
J Clin Invest (2020) 130:2620–9. doi: 10.1172/JCI137244

22. Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM,
Weiskopf D, et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in
Acute COVID-19 and Associations With Age and Disease Severity. Cell
(2020) 183:996–1012.e19. doi: 10.1016/j.cell.2020.09.038

23. Rosas IO, Bräu N, Waters M, Go RC, Hunter BD, Bhagani S, et al.
Tocilizumab in Hospitalized Patients With Severe COVID-19 Pneumonia.
N Engl J Med (2021) 384:1503–16. doi: 10.1056/NEJMoa2028700

24. Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, et al. Tocilizumab
in Patients Hospitalized With COVID-19 Pneumonia. N Engl J Med (2021)
384:20–30. doi: 10.1056/NEJMoa2030340

25. Stone JH, Frigault MJ, Serling-Boyd NJ, Fernandes AD, Harvey L, Foulkes AS,
et al. Efficacy of Tocilizumab in Patients Hospitalized With COVID-19. New
Engl J Med (2020) 383:2333–44. doi: 10.1056/NEJMoa2028836
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