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Recent reports indicate that the health of our planet is getting worse and that genuine
transformative changes are pressing. So far, efforts to ameliorate Earth’s ecosystem
crises have been insufficient, as these often depart from current knowledge of the
underlying ecological processes. Nowadays, biodiversity loss and the alterations in
biogeochemical cycles are reaching thresholds that put the survival of our species at
risk. Biological interactions are fundamental for achieving biological conservation and
restoration of ecological processes, especially those that contribute to nutrient cycles.
Microorganism are recognized as key players in ecological interactions and nutrient
cycling, both free-living and in symbiotic associations with multicellular organisms.
This latter assemblage work as a functional ecological unit called “holobiont.” Here,
we review the emergent ecosystem properties derived from holobionts, with special
emphasis on detritivorous terrestrial arthropods and their symbiotic microorganisms.
We revisit their relevance in the cycling of recalcitrant organic compounds (e.g., lignin
and cellulose). Finally, based on the interconnection between biodiversity and nutrient
cycling, we propose that a multicellular organism and its associates constitute an
Ecosystem Holobiont (EH). This EH is the functional unit characterized by carrying out
key ecosystem processes. We emphasize that in order to meet the challenge to restore
the health of our planet it is critical to reduce anthropic pressures that may threaten not
only individual entities (known as “bionts”) but also the stability of the associations that
give rise to EH and their ecological functions.

Keywords: mutualism, planetary boundaries, ecosystem engineers, ecosystem services, detritivore arthropods

INTRODUCTION

Recent reports from the United Nations’ Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services (IPBES), declared that the Earth’s ecosystem health has
become progressively worse at an unprecedented accelerating pace [Intergovernmental Science-
Policy Platform on Biodiversity and Ecosystem Services (IPBES) and United Nations, 2020]. Our
species has put at risk much of Earth’s biodiversity and ecosystem processes (Brooks et al., 2002;
Pievani, 2014; Lade et al., 2019). The loss of biodiversity and damage to ecosystems is of such a
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magnitude that it is being directly linked to current global
crises (i.e., sanitary, developmental, economic, security, and
social). The diverse initiatives and efforts to biodiversity decline,
such as the “Sustainable Development Goals” (Glossary), have
had no real impact on biodiversity conservation and even less
on ecological process restoration (Zeng et al., 2020). It has
been proposed that only true “transformative changes,” aimed
not only at protecting, but also at restoring nature’s critical
condition will change the current biodiversity and environmental
health decline [Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services (IPBES) and United Nations,
2020]. Coherently, the decline of “genetic biodiversity” (i.e.,
biodiversity loss; Hooper et al., 2012) and alterations of the
biogeochemical cycles (Glossary; Sabater, 2008; Pinder et al.,
2013; Nielsen and Ball, 2015) have been considered among
the most severely compromised Planetary Boundaries (Glossary;
Rockström et al., 2009; Steffen et al., 2015).

These two Planetary Boundaries, biodiversity and
biogeochemical cycles are not independent. Ecosystem processes
such as nutrient cycles are highly dependent on biological
diversity (Lacroix and Abbadie, 1998; Falkowski et al., 2008;
Gamfeldt et al., 2008; Naeem et al., 2012; Bishop et al., 2020). Even
the faculty of ecosystems to sustain multiple and simultaneous
functions and services (i.e., ecosystems’ multifunctionality
properties, see Glossary) are only possible when a highly diverse
community is considered (Hector and Bagchi, 2007; Maestre
et al., 2012). This calls into question the idea of function
redundancy with “expendable” elements in biodiversity (Hector
and Bagchi, 2007; Allan et al., 2015) and challenges us to develop
new perspectives to apply this knowledge to conservation and
the restoration of the environment.

A canonical example of the importance of community
diversity for maintaining ecosystem health is the role of
its above-mentioned multifunctional properties in relation to
planet Earth’s nutrient cycles (Glossary; Crawford, 2005). To
understand this case, it is necessary to review the role of
microorganism communities as the basic elements connecting
ecosystem processes with biodiversity. The history of life on our
planet and the constancy of its ecosystems have depended largely
on microorganism community functional diversity, allowing the
Earth to be habitable by other (uni- or multi-cellular) life forms
(Margulis, 1993; Kasting and Siefert, 2002; Hohmann-Marriott
and Blankenship, 2011). These biogeochemical processes are
until today essential for the maintenance of life on earth
(Madsen, 2011). Microbial metabolism and biogeochemical
cycles developed together in such a way that they shaped
our planet atmosphere (Falkowski et al., 2008; Fenchel et al.,
2012). The first forms of microbial life, more than 3.7 million
years ago, were exposed to an environment full of toxic
gases such as dinitrogen (N2), carbon dioxide (CO2), methane
(CH4), and ammonia (NH3), among others (Margulis, 1993;
Falkowski et al., 2008; Barton and Northup, 2011; Dodd et al.,
2017). Microorganism communities gradually adapted to these
conditions, using these gases as energy sources (Margulis, 1993;
Kasting and Siefert, 2002; Hohmann-Marriott and Blankenship,
2011). Microorganism biodiversity relevance as the foundation
of ecosystem dynamics is apparent even today in the cycles of

the six mayor elements; H, C, N, O, S, and P (Falkowski et al.,
2008). Particularly soil nitrogen cycle depends on microorganism
communities; bacteria, fungi, and archaea and their diversity
have been found associated with N in all its phases; fixation,
mineralization, nitrification and denitrification (Hayatsu et al.,
2008). Nitrogen is key to life on our planet, since it constitutes
a prime part of the molecules that make up living organisms
such as DNA, RNA, amino acids and proteins. However, it
is currently thought that anthropic effects such as intensive
agriculture, livestock and indiscriminate use of fertilizers are
causing deep alterations to this cycle (Guiry et al., 2018; Wang
et al., 2018), which is one of the above-mentioned global
planetary boundaries exceeded (Steffen et al., 2015). Considering
the interconnectedness and relevance of biodiversity for the
protection and restoration of ecosystem health, it is key to
understand the anthropic effects on microbial communities
(Falkowski et al., 2008; Gillings and Paulsen, 2014). Thanks
to methodological and epistemological advances in the study
of biological interactions, novel venues have opened allowing
to ponder the importance of microorganism communities
(Krumbein, 1996; Barton and Northup, 2011). Therefore, in
this work we propose it is necessary to incorporate this body
of knowledge to biodiversity conservation in order to a more
effective contribution to the maintenance of ecological processes
that allow the Earth ecosystems’ functioning.

Microorganisms’ lifestyles can be broadly classified as free-
living or associated with a multicellular host (Barton and
Northup, 2011). In this work we review the relevance of current
knowledge regarding this second major group (i.e., associated
with a multicellular host, in an exo or endosymbiotic association,
see Glossary) for the preservation and restoration of threatened
nature. Specifically, our objectives are: (1) To review the
ecosystem importance of the symbiosis between microorganisms
and terrestrial arthropods in key processes for the maintenance
of ecosystems (i.e., biogeochemical cycles), (2) To discuss how
anthropic pressures (pollution and loss of habitat) can alter
this symbiosis, and (3) debate the possibilities and challenges
of incorporating this conceptual framework into conservation
sciences in the current global scenario.

MULTICELLULAR ASSOCIATIONS: THE
ECOSYSTEM HOLOBIONT

All multicellular organisms, e.g., animals and plants, have
symbiotic interactions with microorganisms (Zilber-Rosenberg
and Rosenberg, 2008; Bordenstein and Theis, 2015; Carthey et al.,
2019). Microbiota and their hosts (either plants or animals) are
capable of performing different ecosystem functions in a way
that could not take place in the absence of these interactions
(Koide, 2000; Selosse et al., 2004; Peirano, 2007; Tripp et al.,
2017). In an evolutionary context, these phenomena have also
been described as hologenomic adaptations (see Glossary), where
new adaptive traits emerge as a result of the symbiosis between
microorganisms and their multicellular hosts (Finlay et al.,
1997; Kitade, 2004; Korb, 2007; Six, 2013; Dietrich et al., 2014;
Zepeda Mendoza et al., 2018; Bredon et al., 2020; Suárez, 2020;
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Suárez and Triviño, 2020). These emergent properties are often
associated to fundamental ecological processes that contribute to
the maintenance of ecosystems, such as matter and energy flows
(Figures 1, 2 and Supplementary Table 1). Ecologically sound
examples are the dependence of plants on microorganisms in
the rhizosphere (Mendes et al., 2013), the obligatory intracellular
symbionts of vertebrates and invertebrates (Sabree et al., 2009;
Tokuda et al., 2013; Ju et al., 2020) as well as macroalgae
and their associated microbiota. In all these examples these
associations’ emergent properties fulfill key ecosystem functions
(van der Loos et al., 2019). Unfortunately, all of these processes
are being strongly affected by anthropic activities (Marzinelli
et al., 2018). These delicate key processes have been evidenced
extensively in plants, for instance in the participation of
plant microbiota in the biogeochemical cycles of nitrogen and
methane, thanks to the interaction with microorganisms present
in the rhizosphere (Turner et al., 2013). In this process human-
derived perturbations have been found to arrest the contribution
of this association in nutrient cycling (Turner et al., 2013).
Likewise, the carbon and phosphorus cycles, fundamental in the
ability of forests to store carbon dioxide, are carried out by trees
in association with Rhizobium spp. (Batterman et al., 2013) and
Rhizobacteria spp. (Granada et al., 2018).

Microbial associations have also been linked to the regulation
of different ecological dynamics, for example the association
between coral and dinoflagellate colonies, which form large
reefs allowing the development of a miscellaneous community
including fish and marine invertebrates, among others (Frade
et al., 2008). There are also examples of the emergent benefits
of microbial interactions with vertebrates, such as the case
of carrion-feeding birds (Accipitriformes: Cathartidae). These
have a strong adaptation to eat carrion thanks to the diversity
of the microbial community of their skin. The processes of
decomposition of organic matter of animal origin, and its further
nutrient cycling, are accelerated through the action of these
birds (Roggenbuck et al., 2014). Terrestrial invertebrates and
their associated microorganisms have a fundamental role in
the processes of plant-derived organic matter cycling and the
subsequent nutrient flow (Hättenschwiler and Gasser, 2005; da
Silva Correia et al., 2018). Such is the recurrence and value
of these associations in nature that multicellular organisms,
along with their community of microorganisms (microbiota),
are currently being considered as an integrated and organized
unit called “Holobiont” (see Glossary). This corresponds to a
functional unit of life itself, capable of emergent properties
that cannot be carried out by their parts or “bionts” (see
Glossary) separately (Meyer-Abich, 1943; Margulis and Fester,
1991; Zilber-Rosenberg and Rosenberg, 2008; Guerrero et al.,
2013; Six, 2013; Bordenstein and Theis, 2015; Theis et al.,
2016; Carthey et al., 2019; Bredon et al., 2020). Although this
definition has been criticized, mainly because it is still debated
whether holobionts would constitute an evolutionary unit or
unit of selection (Moran and Sloan, 2015; Douglas and Werren,
2016; Skillings, 2016; Stencel and Wloch-Salamon, 2018). Beyond
that discussion, microbiota actively participating in biological
processes such as reproduction and nutrition that have been
described in all multicellular organisms (Moya and Ferrer, 2016;

Gales et al., 2018; Ju et al., 2020; Supplementary Table 1).
Alteration of the microorganism community leads to detrimental
effects on their multicellular hosts in the vast majority of cases
(Zhang et al., 2015; Warne et al., 2019).

However, beyond the evolutionary processes that underlie
the existence of holobionts and further away, of understanding
symbiosis as a mechanism of evolution (Klass et al., 2008; Zilber-
Rosenberg and Rosenberg, 2008; Guerrero et al., 2013; Dietrich
et al., 2014; Bordenstein and Theis, 2015; see symbiogenesis in
Glossary), in this work we aim to incorporate and highlight
the ecosystem aspects that make this integration a paramount
phenomenon for the stability of key ecological processes. In
addition of being relevant as selection units, holobionts are
an ecosystemic unit with different elements integrated at a
functional level (Catania et al., 2016; Doolittle and Booth, 2017;
Lloyd and Wade, 2019; Suárez, 2020; Suárez and Stencel, 2020;
Figure 1). This integrated unit is fundamental for ecosystems
conservation as a whole. Thus, we propose the concept
of “Ecosystem Holobiont” (hereafter “EH”) as a functional
unit resulting from the integration of “bionts” composed
by a multicellular organism together with its microorganism
community, and the emergent properties that are generated as a
result of the existence of this functional unit are indispensable for
key ecological processes (Catania et al., 2016; Doolittle and Booth,
2017; Suárez, 2020; Suárez and Triviño, 2020; Glossary). EHs
are fundamental for the adequate decomposition of recalcitrant
organic compounds, e.g., lignin and cellulose, needed for nutrient
cycling in soils (Guerrero et al., 2013; Six, 2013; Bredon et al.,
2018, 2020; Supplementary Table 1).

In order to further illustrate the significance of the relation
of EHs for biogeochemical cycles, we will review one milestone
in Earth history that shows the relevance of microorganisms
and multicellular integration in nutrient cycling. Between the
Devonian and the Permian, 400 to 250 million years before
present (MY), organic decomposition rates were increasing
(Berner, 1990, 2001; Raymond et al., 2001). During the late
Devonian, about 376–360 MY, the first trees appeared thanks to
the development of evolutionary innovations such as lignin and
cellulose (Algeo et al., 2001; Berner, 2001). These secondary plant
compounds were difficult to digest for multicellular organisms
that fed on plants living at that time (Martin, 1991; Calderón-
Cortés et al., 2012). There is evidence of decomposition of
wood material by lignolytic fungi from the late Carboniferous,
358.9–298.9 MY (Floudas et al., 2012). However, the activity
of these fungi alone would not explain the increase in overall
decomposition rates (Raymond et al., 2001). It has been
then proposed that the radiation and evolution of detritivore
invertebrates during the Carboniferous had a fundamental role
in the decomposition of lignified plant litter (Nalepa et al.,
2001; Kellogg and Taylor, 2004; Grimaldi and Engel, 2005).
At first, detritivore invertebrates contributed by fractionating
plant-derived materials mechanically, reducing them. At the
same time, their foraging activity increased the contact surface
with microorganism communities, facilitating decomposition
(Shear and Kukalová-Peck, 1990; Crawford, 1992; Nalepa et al.,
2001). This early exosymbiotic interaction (Glossary) between
microorganisms and detritivores was only the beginning of
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FIGURE 1 | Ecosystem holobiont. The red lines show the functional integration between bionts resulting in the development of emergent properties with
ecosystemic functions. For the case of the ecosystem holobiont, these properties are key ecosystem process such as the sustaining of nutrient cycling. Scheme
based on the proposals of Catania et al. (2016) and Suárez (2020).

an association that was slowly forged and cemented (Shear,
1991; Birkemoe et al., 2018). It has been suggested that this
partnership was established through successive accidental intakes
by invertebrates of microorganisms that were on the plant
material (Ademolu et al., 2015). Then in the Mesozoic, 252
to 66 MY, different arthropod lineages, highly specialized in
the decomposition of wood, developed complex interactions
with a community of intestinal endosymbionts (see Glossary)
and started to radiate (Grimaldi and Engel, 2005). There are
fossil records of protists associated with cockroaches from
the early Cretaceous (Poinar, 2009), as well as fossilized
feces from these insects with leaves remnants, wood, cycad
pollen and endosymbiotic protists (Hinkelman and Vršanská,
2020). The acquisition of flagellated symbionts during the late
Jurassic period in lower termites allowed the hydrolysis of
cellulose and fermentation products that were then absorbed
by the host intestine (Bignell et al., 2010). Other forms
of increasingly sophisticated symbiosis (Glossary) evolved by
additional associations between arthropods and microorganisms,
for example fungus-growing ants; where there is an intricate
interaction between ants (Hymenoptera), fungi and actinomycete
bacteria that probably originated during the Eocene (Schultz and
Brady, 2008). Furthermore, today there are several cockroach
lineages, such as Cryptocercidae, Blaberidae, Panesthinae and
Zetoborinae (Blattodea), whose species show close intestinal
endosymbionts interactions (Grandcolas and Deleporte, 1996;
Guerrero et al., 2013) that allow this kind of EH to digest
wood (Nalepa, 1984; Pellens et al., 2002; Brugerolle et al.,
2003; Kitade, 2004; Korb, 2007; Bignell et al., 2010; Brune,
2014; Dietrich et al., 2014). Termites are also been considered
“ecosystem engineers” (Glossary), since they play an irreplaceable
role in nutrient cycling in arid and tropical ecosystems (Guerrero
et al., 2013; Jouquet et al., 2016). For example, it has been
found that termites contribute to soil physicochemical properties,

soil turnover, water infiltration rate and soil microorganism
diversity (Kaiser et al., 2017). However, this highly relevant
function could not be carried out without the interaction
between the multicellular (termite) organism and its complex
intestinal endosymbiont assemblage (Kitade, 2004; Korb, 2007).
The microorganism community associated with termites is
composed of protists, bacteria and archaea (Brune, 2014). This
EH organization is a necessary feature that confers the emergent
properties that allow this entity to process lignified plant material,
contributing to soil nutrient cycling as one of its emergent
ecosystemic functions.

Considering these examples, it is also important to remind
that the importance of the emergent properties resulting from the
symbiosis between multicellular and microorganisms has been
already emphasized by other authors (Catania et al., 2016; Suárez
and Triviño, 2020). Therefore, there is both a corpus of evidences
and rationale to contemplate the stability of the whole integration
of bionts as the focus of conservation and restoration in order
to preserve the associated processes they provide. A recent
study developed in Burkina Faso illustrates the importance of
EH; it showed that termite contribution to different aspects of
ecosystem services depends on the species, and concomitantly
on their obligatory association with intestinal endosymbionts
(Kaiser et al., 2017). In the following section we develop
further the relevance of terrestrial invertebrates along with their
associated microorganisms and their ecosystem function.

TERRESTRIAL ARTHROPODS AS A
CASE OF ECOSYSTEM HOLOBIONTS

Along with the battery of digestive enzymes that arthropods
produce endogenously (Watanabe and Tokuda, 2010),
multicellular biont’s association with microorganisms allows
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FIGURE 2 | Emergent properties. (A) Examples of arthropods comprising
Ecosystem Holobionts (EH) in conjunction with their associated
microbiological bionts, from left to right: (i) ants, (ii) bark beetle, (iii) millipedes,
(iv) woodlice, (v) cockroaches, and (vi) termites. These animal-microorganism
associations are also represented in two contrasting scenarios: an
undisturbed ecosystem (B) and a human-altered ecosystem (C). For (B,C)
green arrows show nutrient cycles produced by the action of free-living
microorganisms, and orange arrows the cycles in which EHs participate
(within the dotted line). Arrows width illustrates the degree of anthropogenic
disturbances impacting nutrient cycling processes, with thinner lines indicating
greater degree of alteration.

this association to exploit low nutrient food resources (Six,
2013; Brune, 2014). In many cases the partnership with
symbiotic microorganisms is essential for terrestrial arthropods
to complete their life cycle (Kukor and Martin, 1983; Klepzig
et al., 2009). Here we provide some examples of arthropods
and their microbial associates, that could be considered
EH under our proposal scope, focusing on their role in
nutrient cycling in terrestrial ecosystems (Figures 1, 2A and
Supplementary Table 1).

Ants
These insects, belonging to the order Hymenoptera, family
Formicidae (Ward, 2007), constitute the most abundant group

of terrestrial arthropods, with an outstanding biomass of
approximately 70 Mt of carbon (Tuma et al., 2020). To date, there
are approximately 12,500 ant species described worldwide (Ward,
2010). Ants are widely recognized ecosystem engineers, mainly
due to their influence on soil characteristics, nutrient cycling and
resource availability (Jouquet et al., 2006; Tuma et al., 2020).
For example, decomposition rates of cellulose-rich substrates
have been shown to average 1.5 times higher and the net
mineralization rates of N in Pogonomyrmex rugosus Emery, 1895
nests (Wagner and Jones, 2006). All these ecosystemic functions
are carried out thanks to microbial partnerships. Ants have
symbiotic relationships with multiple types of organisms, often
involving more than two trophic levels (Ness et al., 2010), and are
therefore considered multiparty symbiotic communities (Blatrix
et al., 2009). Among the most remarkable and sophisticated
examples are exosymbiotic relationships between leaf-cutter ants,
fungi, yeasts and bacteria, where ants can set up farming systems
thanks to these microorganisms (Schultz and Brady, 2008).
These activities influence nutrient cycles by modifying primary
productivity (Haines, 1975). It has been shown that N2 fixation
exists in fungal gardens of at least eight species of leaf-cutter
ants, as a result of nitrogen-fixing bacteria (Pinto-Tomás et al.,
2009; Sapountzis et al., 2016). Two meta-analyses revealed that
the refuse material from leaf-cutter ants nests show high levels of
fertility, which constitute proper environments for plant growth
(Farji-Brener and Werenkraut, 2015, 2017). Both the nests and
the areas surrounding them, including refuse material areas, have
a characteristic microbiota modulated by leaf-cutter ant activity;
studies have suggested that these communities contribute to
biodegradation and nutrient cycling processes (Lucas et al.,
2017). Mound-building ants, from temperate and boreal forests,
modify the properties of the soil where their mounds are located,
generating soils with higher nitrogen and phosphorous content
than the surrounding soil (Jurgensen et al., 2008). Studies have
shown that the intestinal endosymbiont microbiota of leaf-
cutter ants, which feed on fungal cultures, is composed of
rhizobial N-fixing symbionts (Sapountzis et al., 2015). Ants
have intestinal endosymbionts, for example intestinal bacterial
communities have been found in Cephalotes spp. Latreille, 1802,
that allow them to recycle nitrogenous residues from their diet
(Hu et al., 2018). Diverse bacterial communities have been
observed in the ileum of ant digestive system that may play
a role in polysaccharide biodegradation (Bution and Caetano,
2008). This functional unit is strongly influencing nutrient
cycling in terrestrial ecosystems; thus, it must be considered
in the conservation actions that seek restoration. Once again
while most efforts and resources in conservation policies are
focused on charismatic vertebrates (Cardoso et al., 2011) relevant
EH arthropods such as ants are being underestimated and
unprotected. This must change in order to revert current global
ecosystemic decline.

Bark Beetles
These coleopterans and their microorganism partners stand out
as a case in which the resulting EH from this association is
extremely important for the ecosystemic role of biodegradation,
i.e., decomposition of recalcitrant plant material, such as
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cellulose and lignin. Therefore, this EH is very important for
carbon cycling in its environment. Bark beetles belong to the
Curculionidae family (subfamilies Scolytinae and Platypodinae).
There are currently around 3,500 species that build and inhabit
galleries under the bark of trees where they spend most of
their life. It is also where they lay eggs; the larvae feed and
develop in the same substrate (Kirkendall et al., 2015). These
coleopteran bionts have symbiotic interaction with a variety of
filamentous fungi and yeasts, mostly Ascomycetes of the genera;
Ophthalmoma, Ceratocystiopsis, Grosmannia, and Ceratocystis
that are capable of degrading the xylem, which is then eaten
by beetles (Breznak, 1982; Spatafora, 2001; Six and Wingfield,
2011). It has been discovered that essential nutrients for the
development of beetles are available thanks to the action of
these fungi associates (Ayres et al., 2000). Most bark beetle
species carry spores, either over the exoskeleton cuticle or in
specialized structures called mycangia (Six and Paine, 1999).
It is possible to suggest these bionts may also help catalyzing
the action of their microorganism partners by increasing their
vagility through the ecosystem. Thus, these evidences support
that this association can be considered as an EH. The impact of
bark beetles on biogeochemical cycles (i.e., Carbon and Nitrogen)
has been demonstrated in pine forests. It has been observed
that the C/N ratio varied between pine plots with and without
beetles, and was lower in the patches where they are found
(Morehouse et al., 2008). This is significant also because it favors
other detritivores to thrive, for instance woodlice. It has been
proven that soils with low C/N ratio are more palatable (Gerlach
et al., 2014) and maintain stable woodlouse populations (Kautz
et al., 2000). In spruce forests (Pinaceae) that had been wiped out
by bark beetles it was observed an increase in soluble N (NH4-
N, organic N) and in P in the upper soil horizons, in contrast
with plots without them (Kaňa et al., 2013). So far, most studies
about bark-eating insects and their associated microorganisms
have focused on the harm that these EHs do to trees: “the main
model postulates that fungal associates of tree-killing bark beetles
are responsible for overwhelming tree defenses and incurring
in host tree mortality” (Six and Wingfield, 2011). However, it
is necessary to rethink the importance of bark beetles, shifting
from the perspective of a pest to be able to visualize their
contribution in the cycling of nutrients. In this way we will
be able to manage and conserve the processes that underlie
their life cycle.

Millipedes
Millipedes are arthropods of the Class Diplopoda. There are
around 12,000 described species, but it is estimated that there
could be around 80,000 and the vast majority are classified
as detritivorous (Sierwald and Bond, 2007). They tend to
be an important part of the litter arthropod biomass in
different ecosystems (Crawford, 1976; Golovatch and Kime, 2009;
Seeber et al., 2010). They are also essential in biodegradation
of carbon and soil humification in terrestrial ecosystems
(Alagesan, 2016; Pokhylenko et al., 2020; Supplementary
Table 1). It has been found that the action of millipedes
on leaf litter decreases the C/N ratio and improves some
characteristics such as humidity and pH from acidic to neutral

(Ashwini and Sridhar, 2006). There is also evidence that these
invertebrates and their microbiota as a whole positively affect
soil aggregation, levels of nitrogen and labile phosphorus (da
Silva et al., 2017). The millipede gut is an ideal habitat
for the development of symbiotic bacteria with enzymatic
properties capable of cellulose and hemicellulose biodegradation
(Taylor, 1982; Guzev and Byzov, 2006; Ramanathan and
Alagesan, 2012). In the same fashion, yeast communities able
to reuse uric acid have been found in millipedes’ hindgut,
providing intestinal bacteria with compounds rich in nitrogen
(Byzov et al., 1993). Millipedes can also influence the free
microbial leaf litter community. It was observed that leaf
litter fragmentation and the presence of the feces produced
by this EH increased the CO2 release due to microbial
metabolism, which has positive effects on decomposition rates
(Suzuki et al., 2013). It has recently been observed that these
arthropods are susceptible to urbanization, showing a reduction
in species and functional richness in anthropized habitats
(Tóth and Hornung, 2019).

Woodlice
Another astounding example are the terrestrial isopods
(Oniscidea), also known as woodlice. These terrestrial
crustaceans are among the indispensable and most abundant
detritivore soil macrofauna for many temperate habitats, actively
participating in nutrient cycling (Hedde et al., 2007; Vos et al.,
2011; Sutton, 2013; Zuo et al., 2014; Chen and Shaner, 2018;
Pokhylenko et al., 2020). Woodlice also constitute a fundamental
fraction of the macroarthropod fauna in tropical forests and
nearby fast-growing plantations (Pellens and Garay, 1999).
As with the case of termites, the importance of terrestrial
isopods for ecological restoration has been highlighted due
to their role in litter and soil nutrient cycling processes,
accelerating the biodegradation of plant material (Snyder and
Hendrix, 2008). For example, the enzymatic battery of the
Armadillidium vulgare (Latreille, 1804), that breaks down
polysaccharides (e.g., lignocellulose), is produced endogenously
by this arthropod in association with its microbiota (Zimmer
and Topp, 1998; Dittmer et al., 2016; Bredon et al., 2018).
These enzymes have recently been described in detail for
at least four woodlouse species, suggesting that this trait
was one of the keys in the success of the colonization of
terrestrial environments by this group (Bredon et al., 2020).
Experiments have shown the positive impact of these arthropods
on microbial respiration and macronutrient availability in
the soil (Teuben, 1991; Kautz and Topp, 1999). Considering
these findings, woodlouse conservation should be a priority to
protect and maintain biogeochemical cycles. The significance
of these arthropods as bioindicators of ecosystems health
status has been already emphasized (Paoletti and Hassall,
1999; Solomou et al., 2019), together with their ability to
accumulate heavy metals in their hepatopancreas (midgut
caeca) vesicles (Hopkin and Martin, 1982; Papp et al., 2019).
However, there is no certainty on the impact that this could
have on their performance as detritivores, since this tissue
also harbors microorganisms related with cellulose and lignin
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biodegradation (Hobbelen et al., 2004; Dittmer et al., 2016;
Supplementary Table 1).

Cockroaches
Cockroaches belong to the order Blattodea, and have more
than 4,600 species described (Princis, 1962-1971; Beccaloni and
Eggleton, 2013), which is likely to represent one fourth of
their total diversity (Pellens and Grandcolas, 2007). Despite
their bad reputation, only 20–30 (less than 1%) of these
species are considered pests (Bell et al., 2007). The remaining
cockroaches correspond to native species inhabiting diverse
wild environments from deserts to tropical forests, where they
are most diverse (e.g., 644 spp. in Brazil; 238 spp. in the
Guiana Shield - Pellens and Grandcolas, 2007; Evangelista
et al., 2017, respectively). Cockroaches can be found in a great
diversity of microhabitats from the canopy to underground
caves and tree holes, and often move across habitats in spite
of habitat specialization (e.g., Grandcolas, 1993a; Weinstein,
1994; Pellens et al., 2007b, 2011). Some species are known
to contribute to specific processes such as seed dispersal
(Uehara and Sugiura, 2017), plant pollination (Nagamitsu and
Inoue, 1997; Vlasáková, 2015; Suetsugu, 2019) and probably
as scavengers in birds’ nests (Van Baaren et al., 2002). But
their most generalized contribution is to the breakdown of
organic debris (Nalepa et al., 2001; Sabo et al., 2005; Bell
et al., 2007). One extreme specialization of cockroaches’ concerns
wood-feeding, as it involves complex interactions with flagellates
(Mastigophora) or ciliates (Ciliophora). This association conform
an EH directly involved in the decomposition of cellulose and
lignin (Grandcolas, 1995; Pellens et al., 2002; Brugerolle et al.,
2003; Berlanga et al., 2016), and mechanisms that assure the
transmission of endosymbionts among individuals and across
generations. These interactions, related to life in a confined
environment and to a nutrient-poor diet, have been hypothesized
to be at the origin of sub-social behavior in Dictyoptera,
which appeared independently in very different lineages (Pellens
et al., 2007a; Klass et al., 2008; see also Grandcolas, 1993b
and Murienne et al., 2008 for examples of xylophagy in other
families). Although much remains to be studied about the role
of cockroaches and their microorganism partners as EH involved
in the decomposition of organic matter, available results suggest
that their impact is not negligible. Thanks to the alliance between
these insects their gut microbiota bionts, this EH is capable of
digesting recalcitrant plant materials (Prins, 1991). When hosted
in the cockroach gut, its symbiotic bacteria produce enzymes
capable cellulose biodegradation, contributing with this emergent
ecosystemic property (Cruden and Markovetz, 1987). Greater
species richness was found in places in tropical forests with
high phosphorus content, an interesting result since there may
be a relationship between the action of cockroaches and the
availability of this element (Tarli et al., 2014). Experimental
studies have shown that the intestinal microbiota of different
groups of cockroaches are usually quite stable, independent
of their diet (Lampert et al., 2019). This presumably provides
flexibility in the use of food resources, positioning these insects as
an important element of soil trophic networks (Ardestani et al.,
2020). Their ability to survive on diets poor in nitrogen thanks to

the symbionts within their fat bodies (Blattabacterium spp.) allow
them to develop in substrates with a high C/N ratio, which would
put this cockroach- Blattabacterium interaction in the first line
of recalcitrant organic compound biodegradation (Sabree et al.,
2009; Tokuda et al., 2013). Although the ecosystem relevance
of cockroaches and their associates have been recognized, the
scientific literature regarding this group and its microbiota in
wild environments is scarce, so the detritivore role of these
EHs is still not fully understood. For example, cockroaches
can harbor nitrogen-fixing bacteria in their gut microbiota
(Cruden and Markovetz, 1987), therefore their participation in
biogeochemical cycles is most likely being underestimated. Due
to the fact that few research groups are currently studying this
wild EH, i.e., most cockroach research is focused on pest species,
their relevance has been largely underestimated. Although more
research is needed to fully understand their contribution, it is
desirable that these associations can be considered in further
conservation plans involving the cycling of nutrients in diverse
terrestrial ecosystems.

Termites
Termites (Blattodea: epifamily Termitoidea) are xylophagous
organisms by excellence. Their global dry biomass is estimated
to be around 50 Mt of carbon, which represents one fourth
of total arthropod biomass (Tuma et al., 2020). They are
capable of degrading cellulose and lignin thanks to the
mutualistic interaction with their intestinal microbiota. This is
composed mainly of prokaryotic organisms such as bacteria
and archaea, and eukaryotes such as protists (Engel and
Moran, 2013; Ni and Tokuda, 2013; Brune, 2014). Flagellates
(Mastigophora) are also capable of breaking down cellulose,
while prokaryotes contribute in the fermentation of soluble
metabolites resulting from this breaking down (Brune and
Stingl, 2005). It has been demonstrated that the association of
termites and microorganisms is responsible for approximately
10% of the mineralization and biodegradation of carbon from
soil litter in forests in Thailand (Yamada et al., 2005). In
semi-arid ecosystems, such as the Australian Mulga (Acacia
aneura F. Muell. ex Benth. – Fabaceae) forests, the partnership
between termites and microorganisms’ contributes as the most
relevant detritivorous function. Their gallery construction in
the first 20 cm of the soil contributes to the degradation of
organic matter, hence to plant and soil water retention capacity
(Whitford et al., 1992). In tropical savannas, where termites
are very abundant, it has been proposed that an important
part of the CH4 balance is due to invertebrate-microorganism
partnerships, since their activity contributes to the cycling of
21% of the methane produced by the soil (Jamali et al., 2011).
Furthermore, in temperate ecosystems such as the forests of the
southeastern United States, termites of the genus Reticulitermes
Holmgren, 1913 (Rhinotermitidae) exert relevant influence on
nutrient cycles, particularly increasing C and Ca in the soil (Myer
and Forschler, 2019). In addition to intestinal endosymbionts,
termites can have exosymbiotic (see Glossary) interactions
with fungi, as is the case of Termitomyces spp. Heim, 1942
(Lyophyllaceae), which allows the degradation of recalcitrant
materials from litter and wood before the ingestion by termites
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(Rouland-Lefèvre et al., 2006), this strategy reduces the C/N ratio
of the substrate (Higashi et al., 1992). Nevertheless, despite their
widely recognized importance in terrestrial ecosystems (Johnson
and Whitford, 1975; Freymann et al., 2008; Jouquet et al., 2011;
Harit et al., 2017), insufficient emphasis has been placed on
studies of termite-microorganisms EH conservation worldwide,
except for a few examples (see Davies et al., 2010, 2020;
LeClare et al., 2020). Present-day evidences on their fundamental
contribution to the stability of terrestrial ecosystems and thus
the maintenance of Earth’s functioning should encourage their
explicit inclusion in conservation and restoration programs and
policy-making.

THREATS TO ECOLOGICAL PROCESSES
MEDIATED BY ECOSYSTEM
HOLOBIONTS

Several anthropic pressures are causing negative impacts on EHs
and their associated ecological processes (Figures 2B,C). Here we
will briefly mention those that are most relevant, according to
the available scientific literature. These hazards can be broadly
classified into two related categories: (i) Contamination and (ii)
Land use change. Both alterations are considered direct drivers
of biodiversity loss (IPBES, 2019). Below we review some of the
most relevant factors reported in the literature.

Contamination
The presence of arthropods such as isopods and millipedes
has long been considered a bioindicator of soil health status.
However, the physiological state of these organisms is rarely
considered, much less alterations in their microbiota and
how this affects their performance. Evidence accumulated
through decades points to the impact of chemical products,
e.g., agrochemicals, pharmaceutical products and industrial and
urban-derived contamination (e.g., sewage sludge production)
on soil arthropod populations (Fox, 1964; Andrés et al.,
2011; González-Alcaraz et al., 2020). There is a myriad of
effects of chemical products on these organisms, such as
weight loss, avoidance behavior and stress protein (hsp70)
expression (but see van Gestel and Loureiro, 2018) for a
study in which no negative consequences were reported).
Nonetheless, there is a lack of studies evaluating the long-
term and direct impacts of human-produced chemical products
on terrestrial detritivore performance and subsequently on
nutrient cycling. The closest is a recent study of gene
expression against nickel exposure in Porcellionides pruinosus
(Brandt, 1833) (Isopoda: Porcellionidae), showing a negative
impact on oxidative stress, neurotoxicity and reproduction
(Ferreira et al., 2019). Despite being a relevant contribution
that explores the mechanisms behind the contamination
effects on a soil arthropod, the microbiota dimension was
not considered. Current evidence shows that antifungal and
antibiotic chemical compounds released to the environment are
affecting detritivorous invertebrates. For example, in livestock
production, where antibiotic use is a common practice, there
is evidence that it has negative consequences on dung beetle

(Hammer et al., 2016) and springtail microbiota (Zhang et al.,
2019), which can affect their performance and subsequently
the nutrient cycles associated with their action. However, the
mechanisms underlying this effect are still unclear (Lucas
et al., 2019). Intensive agricultural management such as liming
and fertilization can affect the intestinal microbiota of the
edaphic fauna (Ding et al., 2019a,b). Recent work on soil
collembolas showed that contamination with microplastics
altered their gut microbiota and inhibited their growth (Zhu
et al., 2018a). Other work showed that neonicotinoid and
pyrethroid insecticides, widely used in agriculture, reduce
the detritivore arthropods density (collembola, acari and
diplopoda) as well as the rate of leaf litter decomposition
(Pearsons and Tooker, 2021).

Land Use Change
Habitat loss and degradation due to land use change are
some of the main threats to biodiversity (Caniani et al.,
2016); their impact on biological communities is evident
both compositionally and functionally (Allan et al., 2015).
These ecosystem modifications often alter the interactions
of the microbiota. There have been successful initiatives
regarding agricultural management in relation to the activity of
detritivorous arthropods such as “set-aside,” which consists of
farmers leaving part of their land out of intensive production.
Although this type of management has been efficient in allowing
the establishment of millipedes and woodlice (Tóth et al., 2016),
it must be accompanied by a production system change that
tends toward agroecology in order to reduce exogenous input
such as the use of nitrogenous fertilizers and pesticides that
alter nutrient cycles (Vitousek et al., 1997; Galloway et al.,
2008) and disrupt arthropod populations (Sánchez-Bayo, 2011;
Sánchez-Bayo and Wyckhuys, 2019).

The presence of antibiotic resistance genes has been proven
in the collembolan microbiome. This phenomenon is related to
different uses of soil by this arthropod (arable and park) (Zhu
et al., 2018b). Land use changes can influence the increase of EH
populations such as forest plantations and bark beetles and their
associated microbiome, which could also alter nutrient cycles
(Kaňa et al., 2013).

Tolerance to human alterations has been reported for
mound-building termites in savannah ecosystems, since these
insect’s nests persist despite advance of human alterations.
Yet, the same authors point out the need to understand
how human activities impacts the processes carried out by
this EH (Davies et al., 2020). In another savannah study,
it is shown that at small spatial scales (1–2 km patch
diameter) natural-agricultural landscape heterogeneity strongly
promotes termite foraging activity. Nonetheless, the opposite
effect is seen at a larger landscape scale (5 km), concluding
that landscape heterogeneity can disrupt nutrient cycling
functioning of termite-microorganism associations (LeClare
et al., 2020). Therefore these dynamics are still in need
of further research. For instance, it is also necessary to
consider the type of perturbation and the specific attributes
of this EH. A study comparing primary forest, grazing
areas and agricultural fields found greater termite richness
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and abundance in primary forests and grazing areas than
in agricultural fields, and the structure of termite feeding
groups differed significantly among the three types of land use
(Muvengwi et al., 2017).

FUTURE DIRECTIONS

Considering the conceptual framework proposed by IPBES for
nature’s contribution to people (NCP) (see Glossary) the EH
participates directly in at least two of them; NCP 1: habitat
creation and maintenance; and NCP 8: formation, protection
and decontamination of soils and sediments (Brauman et al.,
2020) mainly through its participation in nutrient cycling
and decomposition of recalcitrant materials (Supplementary
Table 1). This means that this functional unit must be considered
as an object of conservation.

We are facing difficult times when it comes to environmental
conservation, but these are also times of great scientific
discoveries; in recent decades we have seen a technological
revolution that has allowed us a deeper understanding of the way
in which organisms inhabit our planet (Madigan et al., 2015).
Now we must take a further step toward understanding the
biological interactions that make life on earth possible in order
to restore and conserve them.

It is possible that the previous efforts to ameliorate
Earth’s ecosystem crises have not been sufficient because
canonically considered ecological included in these strategies,
may not considered all key components underlying biodiversity’s
ecosystem functions and their interrelationships. In order to
develop strategies to cope with planetary boundaries such
as biodiversity decline and biogeochemical cycles alterations
cannot be regarded without considering EHs, because ecosystem
processes such as nutrient cycles are highly dependent on
biological diversity and its intricated interactions.

Conservation sciences must be nourished by updated
methodological advances as well as epistemological discussions
that seek to explain and understand the organization of life.
In this way, the perspective of the EH’s functional integration
provides us with a more complete view of nature as well
as novel heuristic tools to face this challenge (Catania et al.,
2016; Dupré, 2017; Suárez, 2020). Therefore, its incorporation
into conservation policies and plans would provide concepts
and methods to restore and preserve key processes (i.e.,
biogeochemical cycles) to guarantee ecosystems functioning in
order to take actions that allow the restoration of key ecological
processes for human survival.

CONCLUDING REMARKS

The scientific community has recently provided evidence
indicating that arthropod populations are declining in many
places in the world, and that the leading causes of this decline
are of anthropic origin (Hallmann et al., 2017; Lister and
Garcia, 2018; Sánchez-Bayo and Wyckhuys, 2019; Eggleton, 2020;
Wagner, 2020). As shown in this essay, this biodiversity loss may

most likely also involve the decline of symbiotic microorganism
diversity associated to these arthropods, which often result of
emergent hologenomic adaptations (see Glossary). This involves
a myriad of mechanisms to transfer this association between
individuals from one generation to another. It is becoming well
established that the loss of all these partnership of organisms
drives to the loss of the associated ecosystem functions, leading
to further alterations in biogeochemical cycles (Eggleton, 2020).
At present day, the nitrogen and phosphorus cycles are already
altered beyond acceptable limits to preserve human well-being
and ecosystem resilience (Steffen et al., 2015). We propose that
the loss of EHs (Figure 1 and Supplementary Table 1) might
lead to severe alterations in ecosystem functioning (Figure 2),
because it involves the depletion of entire microorganisms’
communities integrated with multicellular units and their
associated key ecosystem functions. Therefore, the focus of
conservation and restoration must take into consideration the
integrity of these functional units in order to preserve the
emergent processes they carry out (Figure 2). Without these
EHs, it will be impossible to ensure that safe continuity of
nutrient cycles. Specifically, the probability that nitrogen and
phosphorus cycles remain within boundaries that do not threaten
the safe operating space for humanity may be under threat by
the loss of EHs.

Detritivore arthropods and their microorganism partners
constitute an important portion of the invertebrate-microbial
biomass in multiple ecosystems and have a fundamental role
as EHs in Earth’s nutrient cycling (Supplementary Table 1).
Therefore, it is key to consider them in conservation and
restoration efforts of ecological processes (Paoletti et al., 2007).

In order to synthesize our proposal, in this study we did not
delve into other arthropods that could be considered as EHs, such
as Siricidae wasps, oribatid mites, dung beetles, saproxylic beetles
or springtails, among many others (Supplementary Table 1). For
example, Sirex noctilio Fabricius, 1793 (Hymenoptera: Siricidae),
inoculate the fungus Amylostereum areolatum (Amylostereaceae)
in the wood, using it as an external digester of lignocellulose
compounds (Breznak, 1982; Thompson et al., 2014) and bacterial
symbiosis (Adams et al., 2011). It was discovered that Sirex
cyaneus also has active enzymes of fungal origin in its guts (Kukor
and Martin, 1983). However, to the best of our knowledge the role
of Siricidae wasps and their influence on nutrient cycling has not
been studied yet, therefore we have not treated this case in depth
(see Supplementary Table 1). The same applies to the influences
of bark beetle EHs. Although their contribution to nutrient cycles
has been demonstrated (Kaňa et al., 2013), it is necessary to
comprehend their effect on the ecosystems beyond the paradigms
of forestry production (Six and Wingfield, 2011). Apart from the
fact that these EHs can provoke a decrease in forest production,
the increase in their density due to forest management can
have an impact on biogeochemical cycles. Finally, it is necessary
to consider the microbiota associated with arthropods as
part of a joint epigenetic inheritance system (Villagra and
Frías-Lasserre, 2020), which may allow the maintenance of
lineages and the attributes associated with EHs. Finally, It is
also necessary to explore into evolutionary processes such as
horizontal transfer of genes from microorganisms to arthropods
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(Faddeeva-Vakhrusheva et al., 2017; Bredon et al., 2019), in order
to understand the importance of this integration and thus make
efforts that allow its conservation in order to secure as well as
restore ecosystem functioning on our planet.
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GLOSSARY

Biogeochemical cycles: Cyclic flow of the biosphere elements, through a series of biochemical and geological processes
(Jacobson et al., 2000).

Bionts: Organisms that make up the integration known as holobiont (Margulis and Fester, 1991).
Ecosystem engineers: Organisms whose actions modulate the availability of resources for other species (Jones et al., 1994).
Ecosystem Holobiont: Multicellular host and their associated microbiota participating in key ecological processes for the

functioning of its ecosystems thanks to its holobiont-derived emergent properties (Figure 1, concept developed in this work).
Ecosystem multifunctionality: The ability of ecosystems to sustain multiple functions and services at the same time. This attribute

is highly dependent on the biodiversity present in each ecosystem (Gamfeldt et al., 2008).
Endosymbiont: Symbiotic association where one of the associated organisms (bionts) inhabits inside the body of another biont

(operational definition).
Exosymbiont or ectosymbiont: Symbiotic association where bionts inhabit different bodies (operational definition).
Holobiont: Functional symbiotic unit composed by the integration of multicellular and unicellular organisms. This holobiont

occasionally generates a new features or attributes such as new morphological, physiological or immunological traits, among others.
The holobiont concept has converged independently at different times possibly in the late 19th and early 20th century debates on the
definition of symbiosis (Meyer-Abich, 1943; Margulis, 1990; Suárez, 2018; Baedke et al., 2020).

Hologenome: This correspond to multicellular host genome plus microbiome (Rosenberg et al., 2007; Zilber-Rosenberg and
Rosenberg, 2008).

Hologenomic adaptation: Biological adaptations that have evolved in the holobiont or in a multispecies system
(Suárez and Triviño, 2020).

Microbiome: Microbiota’s genome (Madigan et al., 2015).
Microbiota: Community of microorganisms that is normally located in multicellular host body (Madigan et al., 2015).
Multicellular/Multicellular organisms: Biont formed by more than one cell (Kaiser, 2001).
Nature’s contribution to people: Conceptual framework proposed by the Intergovernmental Science-Policy Platform on

Biodiversity and Ecosystem Services (IPBES). This is based on the idea of ecosystem services (i.e., irreplaceable benefits for humanity
provided by nature), but considering the interrelationship between humans and their ecosystems, and recognizing the role of local
and indigenous people culture knowledge (Díaz et al., 2018).

Planetary Boundaries: Approach to global sustainability where safe operational limits for our species were defined. These limits
include attributes of biodiversity, land use and biogeochemical cycles, among others (Rockström et al., 2009; Steffen et al., 2015).

Sustainable Development Goals (SDGs): Set of objectives developed at the summit of the United Nations Rio+20 in Brazil, 2012.
These goals were proposed to reconcile environmental protection and socioeconomic development (Zeng et al., 2020).

Symbiogenesis: Mechanism by which evolution occurs as a result of symbiosis (Merezhkowsky, 1905; Sapp, 1994).
Symbiosis: In its most classical definition this correspond to biological interactions in which two entities differently named

(different species) live together. Under this concept, cases of mutualism, commensalism and parasitism would be included under
symbiosis conceptual umbrella (De Bary, 1879; Sapp, 1994; Oulhen et al., 2016; Suárez, 2018).
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