
HAL Id: hal-03347058
https://hal.sorbonne-universite.fr/hal-03347058

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

An Analytic Graph Data Model and Query Language for
Exploring the Evolution of Science

Ke Li, Hubert Naacke, Bernd Amann

To cite this version:
Ke Li, Hubert Naacke, Bernd Amann. An Analytic Graph Data Model and Query Language for Ex-
ploring the Evolution of Science. Big Data Research, 2021, 26, pp.100247. �10.1016/j.bdr.2021.100247�.
�hal-03347058�

https://hal.sorbonne-universite.fr/hal-03347058
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

An Analytic Graph Data Model and Query Language for Exploring
the Evolution of Science
Ke Lia,∗, Hubert Naackea,∗ and Bernd Amanna,∗

aLIP6, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France

A R T I C L E I N F O

Keywords:
Topic Modeling
Topic Evolution Networks
LDA
Science Evolution
Big data

A B S T R A C T

In this article we propose a data model and query language for the visualisation and
exploration of topic evolution networks representing the research progress in scien-
tific document archives. Our model is independent of a particular topic extraction and
alignment method and proposes a set of semantic and structural metrics for character-
izing and filtering meaningful topic evolution patterns. These metrics are particularly
useful for the visualization and the exploration of large topic evolution graphs. We
also present a first implementation of our model on top of Apache Spark and experi-
mental results obtained for four real-world document archives.

1. Introduction
There is an increasing demand for practical tools to explore the evolution of scientific research published

in bibliographic archives such as the Web of Science (WoS)1, arXiv2, PubMed [39] or ISTEX3. Revealing
meaningful evolution patterns from these document archives has many applications and can be extended to
synthesize narratives from datasets across multiple domains, including news stories, research papers, legal
cases and works of literature [33].

The evolution of scientific archives can broadly be studied by adopting a cognitive view or a social view
on evolution dynamics. The cognitive view of scientific archive evolution emphasizes the shared knowl-
edge and the change of ideas present in the document contents [22], whereas the social view takes account
of authorship information and social interactions represented, for example, in co-authorship and citation
graphs [13, 34]. There also exist methods which combine both views to study science evolution [16, 41]. In
the interdisciplinary EPIQUE project4, we assume that the evolution only depends on the textual document
contents (title, abstract, main contents). The choice of the cognitive view reduces the number of analysis fea-
tures, but it also decreases the “social” bias and detects more easily possible interactions between scientific
ideas and contributions, independently of any particular scientific community.

Graph-based topic evolution analysis [20, 9, 1, 4] builds on topic evolution networks which track com-
plex temporal evolution dynamics by applying topic discovery and topic alignment methods on a corpus of
time-stamped documents. Figure 1 shows two snippets of a single topic evolution graph extracted from the
arXiv5 corpus using the EPIQUE system. The graph covers the years between 2000 and 2006 decomposed
into three 3-year time periods overlapping by one year. The topic graph is obtained by applying the EPIQUE

∗Corresponding author
ke.li@lip6.fr (K. Li); hubert.naacke@lip6.fr (H. Naacke); bernd.amann@lip6.fr (B. Amann)

ORCID(s): 0000-0003-3598-4129 (K. Li); 0000-0003-0559-9908 (H. Naacke); 0000-0002-6822-4049 (B. Amann)
1https://clarivate.com/webofsciencegroup/solutions/web-of-science/
2https://arxiv.org/
3https://www.istex.fr/
4This work was funded by French ANR-16-CE38-0002-01 project EPIQUE
5https://arxiv.org/

Ke Li, et al.: Preprint submitted to Elsevier Page 1 of 29
© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S2214579621000642
Manuscript_efaad6bf93bbc8c422d956b8730072ce

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2214579621000642
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S2214579621000642

Figure 1: Pivot topics containing term “database” extracted from arXiv, green = emerging terms, blue = stable
terms, red = decaying terms

workflow described in Section 5.1 to the subsets of documents covering each period. This workflow in-
cludes a standard NLP document pre-processing step (term extraction, stopword removal, stemming, term
extraction) and applies the LDA (Latent Dirichlet Allocation) method for extracting a predefined number of
weighted term vectors (topics) describing the scientific publication activity for each period. Finally, topics of
two subsequent periods are connected by applying cosine similarity. Each topic is represented by a rectangle
containing the top-10 weighted topic terms. Emerging terms are shown in green, decaying term boxes are
colored in red, stable terms which exist both, in ancestor topics and in descendant topics, are grouped in blue
boxes and specific terms which appear only in the current topic are in white. The thickness of the alignment
edges reflects the cosine-similarity of the connected topic (term vectors). Several topics in both subgraphs
contain the term “database” and we can observe different evolution patterns. The left subgraph shows that
in period 2002 − 2004, topic 77 (“databases, queries, optimization, integration”) splits in two research di-
rections “databases, queries and constraints” (topics 100, 188) and “prediction, probability, random” (topics
104, 191, 152). The right subgraph covers the same period with topics related to “data mining” (83), “data
access interfaces” (90), “information retrieval” (92), “logics, semantics” (80) and “knowledge, reasoning”
(54). The first three topics converge in 2002 − 2004 into a single topic on “object, xml, store, data mining”
(146) which splits in the period of 2004 − 2006 into “storage servers” (170), “data technique” (168), “data
mining and management” (158) and “knowledge and ontologies” (150).

This article addresses two main issues when building and exploring topic evolution networks. First,
building “meaningful” topic evolution networks is difficult and often an iterative process where domain
experts must tune method-specific hyper-parameters and thresholds with respect to a given dataset and an
expected output. This tuning process also includes the threshold-based filtering of topic alignment edges
to reduce the network complexity. A second challenge concerns the visual exploration of large topic evolu-

Ke Li, et al.: Preprint submitted to Elsevier Page 2 of 29

tion networks. Whereas existing graph visualisation standards and tools like Gephi 6 or Graphviz 7 can be
used to generate high-quality visualisations, their use for exploring large graphs and identifying meaningful
evolution patterns is still limited.

In [25], we proposed a generic framework for the computation and interactive exploration of evolution
networks. This framework includes a high-level data model using standard document and data processing
technologies for extracting, storing and exploring topic evolution networks. The graph model relies on the
notion of pivot topic graphs, which describe the contents and the evolution dynamics of topics at different
levels of detail. The model also includes a high-level filter-based query language which enables users to
interactively explore the evolution of topics by composing structural, temporal and semantic topic filters.
These topic filters include structural conditions on the evolution graph properties like average out- and in-
degree, and temporal conditions on the topic term trends like term emergence and decay. To achieve a
high level of interactivity, we choose to materialize these properties by computing and storing all possible
aggregated values in advance. This kind of materialization is computation and storage-intensive, but also
can directly benefit of standard big data technologies to achieve scalability. Its main benefit is that even
complex structural and temporal topic filters can be implemented by simple value-based selections on the
generated topic properties.

This article extends this work in different directions:

• A pivot topic calculus describing the formal semantics of the query language introduced in [25]. This
extension also includes a formal analysis of the monotonicity properties of pivot filter expressions.

• An optimized incremental transitive closure algorithm for the materialization of pivot graphs. This algo-
rithm is the core of the materialization process and implemented using Apache/Spark SQL.

• A detailed experimental evaluation of the performance of the different workflow steps including the 𝐿𝐷𝐴
topic generation, the pivot graph computation, the topic labeling and the graph metrics computation over
four real-world datasets. This evaluation also includes experiments measuring the scalability of our pivot
graph generation algorithm over larger synthetic topic evolution graphs.

The remainder of this paper is organized as follows. The next section introduces the related work on
topic evolution models and is followed by Section 3 which defines the EPIQUE pivot graph model. Section 4
describes our pivot graph query language including pivot topic functions and calculus. Section 5 gives an
outline of the algorithms for building topic evolution networks and explains our query evaluation strategy. In
Section 6 we detail the implementation of pivot graph computation. Then in Section 7, some experimental
results obtained by applying our pivot graph model on four different document archives will be illustrated.
The final section presents our conclusions and outlines future work.

2. Related Work
2.1. Topic Modeling

Topic modeling is an unsupervised text mining task which consists of extracting a compact representa-
tion of the contents represented in one or several documents. Topics are in general represented by groups
of unweighted or weighted terms. Topic modeling helps in document classification [31], sentiment analy-
sis [26], topic discovery [8], image object localization [30], etc.

Most topic models are based on the assumption that groups of words describing a semantic concept
(topic) will often occur together in semantically similar documents. In other words, the semantics of a

6https://gephi.org/
7https://www.graphviz.org/

Ke Li, et al.: Preprint submitted to Elsevier Page 3 of 29

document is actually governed by some latent variables and the goal of topic modeling is to uncover these
latent variables that shape the meaning of the document and the whole corpus.

Statistical topic models like probabilistic latent semantic analysis (pLSA) [17] use a probabilistic method
to generate documents as mixtures of a low-dimensional set of topics. LSA models the probability 𝑃 (𝑊 ,𝐷)
of each (word, document) co-occurrence as a mixture of conditionally independent multinomial distributions
as shown in the following formula with 𝑍 being the set of estimated topics:

𝑃 (𝑊 ,𝐷) = 𝑃 (𝐷)
∑
𝑍

𝑃 (𝑍|𝐷)𝑃 (𝑊 |𝑍)

However, in this formula, the number of parameters grows linearly with the number of documents and it is
difficult to assign probabilities to documents which are not part of the training set. LDA [8] is a Bayesian
version of pLSA procedure and follows the intuition that the probability distribution over words is skewed
and apply a sparse Dirichlet prior to model the per-document topic and per-topic word distributions. LDA
only needs the definition of two Dirichlet priors (word and topic distribution) and an additional parameter
𝐾 which denotes the number of topics to be generated. Hierarchical Dirichlet Process (HDP) [35] is an
extension of LDA which addresses the case where the number of topics is not known a priori. Much like
LDA, HDP models topics as mixtures of words, but the number of topics also becomes a random variable
generated by a Dirichlet process. However, it has been shown that HDP is inconsistent for estimating the
number of topics even with an infinite amount of data [28]. Furthermore, HDP does not scale to very large
document corpus.

The goal of dynamic topic models [5, 7, 36, 38] is to capture the evolution of topics in a sequential
document corpus. These models not only extract topics from documents for different time periods, but also
detect trends of the term usage within these topics. This allows them to achieve better accuracy than static
topic models for the prediction of the topics of a given period from the topics of the previous period. In our
work, we are interested in generating and exploring topic graphs connecting similar topics from different
time periods and the use of such dynamic models would obviously have sense. However the computation
complexity quickly increases as time granularity increases and we decided to apply a different solution. In
order to achieve a "smooth term semantics shift" in topics from different periods, we define overlapping time
periods to extract subsets of documents and apply static LDA topic extraction to each overlapping subset. As
our experiments show, this strategy allows us to produces meaningful topic alignments with lower processing
costs. The comparison with an approach using dynamic topic models over disjoint periods is an open future
work.

2.2. Topic Detection and Trend Analysis
Topic detection and trend analysis studies the temporal evolution of topics within a document stream.

The process consists of detecting emerging topics and following their evolution including their decay. The
topic detection and tracking system of [21] aims to identify and follow event-based topics across incoming
streams of documents. Usually, a tracking system is given seed documents to monitor the document stream
for further documents on the same topic, whereas a detection system performs an unsupervised clustering
of the incoming document stream. [12] describes a tracking system which converts an unsupervised Topic
Detection system into a supervised Topic Tracking system by sharing the confidence score. In a sense, it is
the conversion of the output of a detection system into the output of a tracking system. A Gibbs Sampling
based implementation of LDA has been applied by [14] to analyse 28 154 abstracts published in PNAS from
1991 to 2001. The authors proposed a method for estimating the optimal number of topics (based on the log
likelihood) by using Bayesian model selection and studies the evolution of topics by applying a linear trend
analysis on the mean 𝜃 values (document distributions over the topics) by year. Hu et. al. [18] applied LDA
and regression analysis to identify different topic evolution patterns for preprints and papers from arXiv

Ke Li, et al.: Preprint submitted to Elsevier Page 4 of 29

and the Web of Science (WoS) in astrophysics for the last 20 years (1992 − 2011). The authors redefine
the notion of topic trend and popularity, and demonstrate that topics in WoS lose their popularity much
earlier than similar topics in arXiv, and open access preprints (like arXiv) have stronger growth tendency as
compared to printed publications. Breakthrough research may not be the mainstream area, but can attract a
significant amount of citations. For that reason, [42] proposes Topical Impact over Time (TIoT) which can
be used for detecting trending topics and suggesting impactful papers in a bibliographical database. They
applied collapsed Gibbs sampling for approximate inference and citation counts to quantify topical impact.

Our work models the evolution of topics by subgraphs connecting similar topics from different time
periods without measuring and comparing their distribution, popularity and impact. More generally, trend
analysis describes the temporal evolution of the popularity, the utility or the interest of topics, but does not
take account of their structural evolution where one topic can evolve into several sub-topics or several topics
can merge into a single topic.

2.3. Topic Evolution Networks
Topic evolution networks represent the structural topic evolution and track complex temporal changes

by periodic topic discovery and directed acyclic networks aligning topics of different periods. Existing evo-
lution network based frameworks mainly can be distinguished by the chosen topic extraction and alignment
methods.

Instead of characterizing the evolving topics at fixed time points, [20] defines a topic as a quantized unit
of evolutionary change in content and identifies topics along with the time that they start to appear in the
corpus. They use the mixture of word distributions to discover topics and then connect topics to form a
topic evolution graph using a measure derived from the underlying document network such as the citation
network. [9] comes up with a method to enable a bottom-up reconstruction of the dynamics of scientific
fields. They generate topics by word co-occurrence graphs and align inter-temporal topics by Jaccard sim-
ilarity [19]. [1] generates topics by a Hierarchical Dirichlet Process (HDP) [35] and uses Bhattacharyya
similarity [6], representing the gradual speciation and convergence similar to biologic evolution, for iden-
tifying topic alignments. The alignment process also applies (asymmetric) Kullback-Leibler divergence
(KLD) [23] for detecting topic split and merge. [4] proposes a HDP-based framework for the discovery of
the topical content of a data corpus and the tracking of its complex structural changes across the temporal
dimension by using Hellinger distance, BHD and Jaccard similarity. In constructing a similarity graph they
use a threshold to eliminate automatically weak edges, retaining only the connections between sufficiently
similar topics in adjacent epochs. [32] introduces a novel approach to the early detection of research topics
by using the Computer Science Ontology8 to model research topics in the Rexplore system. They apply a
Clique Percolation Method (ACPM) for analyzing the dynamics between existent topics.

Other examples of science evolution studies apply unsupervised topic modeling to the ACL Anthology to
analyze historical trends in the field of Computational Linguistics from 1978 to 2006 [15]. How “cognitive
science” as a field has changed over the last three decades has been explored by [11]. And [10] analyzes
topic evolution patterns (split, merge and knowledge transfer) in the field of Information retrieval (IR).

Our article extends previous works on topic evolution networks by a formal query language based on a
set of semantic and structural graph filters to define complex topic evolution patterns.

3. Pivot Graph Model
This section presents the topic evolution model implemented in the EPIQUE workflow. The model is

based on a multi-stage graph representation of topic evolution networks and introduces the notion of pivot
evolution graphs to model the evolution of individual topics.

8http://cso.kmi.open.ac.uk/

Ke Li, et al.: Preprint submitted to Elsevier Page 5 of 29

Definition 1 (topic). Let 𝑉 be a vocabulary of terms and 𝑃 be an ordered sequence of time periods. A topic
is a pair 𝑡 = (𝑣, 𝑝) composed of a (sparse) weighted term vector 𝑣 ∈ ℝ|𝑉 | and a period 𝑝 ∈ 𝑃 . We will
denote by 𝑡.𝑡𝑒𝑟𝑚𝑠 the term vector and by 𝑡.𝑝𝑒𝑟𝑖𝑜𝑑 the period of 𝑡.

Definition 2 (topic evolution graph). Let 𝑇 be a set of topics, 𝑠𝑖𝑚 ∶ 𝑇 ×𝑇 → [0, 1] a similarity function es-
timating the semantic proximity of the term vectors of two topics. A topic evolution graph over 𝑇 is a directed
labeled multistage graph  = (𝑇 ,𝐸, 𝑠𝑖𝑚) over 𝑇 where the edges 𝐸 connect all topics from consecutive pe-
riods with positive similarity values. That is, 𝐸 = {(𝑡𝑖, 𝑡𝑗) ∈ 𝑇 |𝑠𝑖𝑚(𝑡𝑖, 𝑡𝑗) > 0 ∧ 𝑡𝑗 .𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑡𝑖.𝑝𝑒𝑟𝑖𝑜𝑑 + 1}.

Example 1. In Figure 1, 𝑃 has 3 periods: 𝑝1=“2000 − 2002”, 𝑝2=“2002 − 2004” 𝑝3=“2004 − 2006”,
𝑇𝑝1 contains topics 𝑡54 to 𝑡92, and topic 𝑡77 = (𝑣, 𝑝1), where 𝑣 is a weighted vector with positive weights for
terms “𝑞𝑢𝑒𝑟𝑖”, “𝑜𝑝𝑡𝑖𝑚”, “𝑑𝑎𝑡𝑎𝑏𝑎𝑠”, etc. Each topics is labeled by its top-10 highest ranked terms and topic
similarity is estimated by the cosine similarity between the corresponding two term vectors. The similarity
between topic 𝑡77 and topic 𝑡100 is 𝑠𝑖𝑚(𝑡77, 𝑡100) = 0.74.

Topic evolution graphs only connect topics from two subsequent periods and it is not possible to directly
connect two very similar topics 𝑡 and 𝑡′ from two distant periods |𝑡.𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑡′.𝑝𝑒𝑟𝑖𝑜𝑑| > 1. This condition
seems very restrictive and rejects a number of interesting evolution links. Whereas this restriction could
safely be lifted without invalidating our approach, it also can be justified by several observations:

• Our model does not include any similarity threshold for connecting two topics. This means in particular
that two similar but distant topics can still be connected by a path traversing some less similar topics (in
Section 4.1 we introduce a graph evolution function 𝑝𝑒𝑣𝑜𝑙𝛿 which allows to compare any topic with any
other reachable topic).

• Multistage graphs are visually more comprehensible than general directed acyclic graphs.

• The distance between topics also depends on the periodization scale and it is possible to generate evolution
graphs with different granularity for the same document corpus.

• This restriction also reduces the size and complexity of evolution graphs and the corresponding compu-
tation costs and memory/disk space.

Analyzing topic evolution graphs is a complex task which includes various filtering operations for iden-
tifying topics by their terms, removing alignment edges below a certain threshold, selecting subgraphs with
a specific structure, etc. To solve this task, we propose a query language which allows users to extract con-
nected subgraphs containing a given topic 𝑡 and all alignment edges with some minimal similarity value
𝛽. This decomposition allows to formulate high-level filters for characterizing the semantic (labels) and
structural (split, merge) evolution of topics over time.

Definition 3 (pivot topics and pivot evolution graphs). Let 𝑡 ∈ 𝑇 be a topic in some topic evolution graph = (𝑇 ,𝐸, 𝑠𝑖𝑚) and 𝛽 ∈ [0, 1]. The pair (𝑡, 𝛽) is called a pivot topic of 𝑡 with similarity threshold 𝛽. Then,
a connected subgraph (𝑡, 𝛽) = (𝑇 ′, 𝐸′, 𝑠𝑖𝑚, 𝛽) of  is a pivot (evolution) graph of pivot topic (𝑡, 𝛽) if 𝑡 ∈ 𝑇 ′

and 𝑠𝑖𝑚(𝑡′, 𝑡′′) ≥ 𝛽 for all similarity edges (𝑡′, 𝑡′′) ∈ 𝐸′.

We distinguish three particular pivot evolution graphs among all possible pivot graphs of a given pivot
topic (𝑡, 𝛽), :

Definition 4 (future, past and history of a pivot topic). The future of some pivot topic (𝑡, 𝛽) is the maxi-
mal pivot evolution graph 𝑓𝑢𝑡𝑢𝑟𝑒(𝑡, 𝛽) which contains all paths with source 𝑡. Equivalently, the past of some
pivot topic (𝑡, 𝛽) is the maximal pivot evolution graph 𝑝𝑎𝑠𝑡(𝑡, 𝛽) which contains all paths with target 𝑡. The
union of the past and future ∗(𝑡, 𝛽) = 𝑝𝑎𝑠𝑡(𝑡, 𝛽) ∪ 𝑓𝑢𝑡𝑢𝑟𝑒(𝑡, 𝛽) is called the history of pivot topic (𝑡, 𝛽).

Ke Li, et al.: Preprint submitted to Elsevier Page 6 of 29

By Definition 3, since 𝛽𝑖 ∈ [0, 1] is a real number, for each topic 𝑡 there exists an infinite number of
pivot topics (𝑡, 𝛽𝑖). However, the number of pivot topics with different pivot histories is finite and depends
on the distribution of the similarity values in the topic evolution graph. This observation is formalized in
the following definition and proposition.

Definition 5 (topic spectrum). Let ∗(𝑡, 0) = (𝑇 ,𝐸, 𝑠𝑖𝑚) be the complete history of 𝑡 (the maximal con-
nected subgraph of  containig 𝑡) and 𝑆(𝑡) = {𝑠𝑖𝑚(𝑡, 𝑡′)|(𝑡, 𝑡′) ∈ 𝐸} be the set of distinct similarity values
(edge labels) in ∗(𝑡, 0). We call 𝑆(𝑡) the spectrum of 𝑡.

Example 2. The topic spectrum of the left graph in Figure 1 contains values 0.33, 0.35, 0.36, 0.45 and 0.74.

Proposition 1. The number of distinct pivot histories ∗(𝑡, 𝛽), 𝛽 ∈ [0, 1], of a topic 𝑡 is smaller or equal to
the size |𝑆(𝑡)| of the topic spectrum of 𝑡.

Proof 1. Suppose that 𝑆(𝑡) = {𝛽1, 𝛽2, ..., 𝛽𝑛} and 𝛽𝑖 < 𝛽𝑖+1 for all 1 ≤ 𝑖 < 𝑛. Then 𝑛 = |𝑆(𝑡)| and it is
sufficient to show that ∗(𝑡, 𝛽) = ∗(𝑡, 𝛽′) for all 𝛽 and 𝛽′ where (1) 𝛽𝑖 ≤ 𝛽 < 𝛽′ < 𝛽𝑖+1. We apply a proof by
contradiction. By Definition 4, ∗(𝑡, 𝛽) is the maximal connected subgraph of  containing topic 𝑡 where all
edges (𝑡′, 𝑡′′) have a weight 𝑠𝑖𝑚(𝑡′, 𝑡′′) ≥ 𝛽. Then it is easy to see that for all 𝛽, 𝛽′ where 𝛽 ≤ 𝛽′, ∗(𝑡, 𝛽′) ⊆∗(𝑡, 𝛽). Suppose that both histories ∗(𝑡, 𝛽′) and ∗(𝑡, 𝛽) are different, i.e., ∗(𝑡, 𝛽′) ⊂ ∗(𝑡, 𝛽). Then there
exists an edge (𝑡1, 𝑡2) in ∗(𝑡, 𝛽) where (2) 𝛽 ≤ 𝑠𝑖𝑚(𝑡1, 𝑡2) < 𝛽′. By 𝛽′ < 𝛽𝑖+1 and Definition 5, we also obtain∗(𝑡, 𝛽𝑖+1) ⊂ ∗(𝑡, 𝛽′), i.e., there exists another edge (𝑡3, 𝑡4) in ∗(𝑡, 𝛽′) where (3) 𝛽′ ≤ 𝑠𝑖𝑚(𝑡3, 𝑡4) < 𝛽𝑖+1.
From (1), (2) and (3) we obtain 𝛽𝑖 ≤ 𝛽 ≤ 𝑠𝑖𝑚(𝑡1, 𝑡2) < 𝛽′ ≤ 𝑠𝑖𝑚(𝑡3, 𝑡4) < 𝛽𝑖+1, i.e., there exist two edges in∗(𝑡, 0) with two different similarity values in [𝛽𝑖, 𝛽𝑖+1[which is in contradiction with Definition 5.

4. Pivot Graph Query Language
The goal of our pivot graph model is to define a query language which allows users to filter topics ac-

cording to useful criteria concerning the evolution of the vocabulary and the structure of their pivot evolution
graphs.

4.1. Pivot Topic Functions
The first two pivot topic functions return the period and the label of a pivot topic. Both functions are

independent of the 𝛽 threshold, the future and the past of the pivot topic. Function period returns the topic
period of the pivot topic:

𝑝𝑒𝑟𝑖𝑜𝑑(𝑡) = 𝑡.𝑝𝑒𝑟𝑖𝑜𝑑 (1)

All topics 𝑡 ∈ 𝑇 are labeled by a subset of terms 𝑙𝑎𝑏𝑒𝑙𝑠(𝑡) ⊆ 𝑉 . For example, in our system 𝑙𝑎𝑏𝑒𝑙𝑠(𝑡)
returns the 𝑘 first terms in vocabulary 𝑉 ranked by the weighted vector 𝑡.𝑡𝑒𝑟𝑚𝑠:

𝑙𝑎𝑏𝑒𝑙𝑠(𝑡) = 𝑡𝑜𝑝𝑘(𝑉): top-k terms in 𝑉 ranked by vector 𝑡.𝑡𝑒𝑟𝑚𝑠 (2)

The evolution of a topic 𝑡 can be characterized by the structure of the future pivot evolution graph𝑓𝑢𝑡𝑢𝑟𝑒(𝑡, 𝛽) and the pivot evolution graph past 𝑝𝑎𝑠𝑡(𝑡, 𝛽) of its pivot topics (𝑡, 𝛽). In the following, let
𝛿 ∈ {𝑓𝑢𝑡𝑢𝑟𝑒, 𝑝𝑎𝑠𝑡} and 𝛿(𝑡, 𝛽) denote the past (𝛿 = 𝑝𝑎𝑠𝑡) or the future (𝛿 = 𝑓𝑢𝑡𝑢𝑟𝑒) of (𝑡, 𝛽).

Path Function: The following function computes the set of topics that appear in the past and in the future
of (𝑡, 𝛽), respectively:

𝑝𝑎𝑡ℎ𝛿(𝑡, 𝛽) = {𝑡′|𝑡′ topic in 𝛿(𝑡, 𝛽)} (3)

Ke Li, et al.: Preprint submitted to Elsevier Page 7 of 29

Term Evolution Functions: Term labels are useful to analyze the evolution of terms within the topic evolu-
tion graphs and to filter topics by their contents. For each pivot topic, we define the two sets 𝑙𝑎𝑏𝑒𝑙𝑠𝑝𝑎𝑠𝑡(𝑡, 𝛽)
and 𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑢𝑡𝑢𝑟𝑒(𝑡, 𝛽) of topic labels which contain terms appearing, respectively, in the past and the future
of pivot topic (𝑡, 𝛽):

𝑙𝑎𝑏𝑒𝑙𝑠𝛿(𝑡, 𝛽) = {𝑙|𝑡′ ∈ 𝑝𝑎𝑡ℎ𝛿(𝑡, 𝛽) ∧ 𝑙 ∈ 𝑙𝑎𝑏𝑒𝑙𝑠(𝑡′)} (4)

Observe that 𝑙𝑎𝑏𝑒𝑙𝑠(𝑡) is defined independently of 𝛽, whereas 𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑢𝑡𝑢𝑟𝑒(𝑡, 𝛽) and 𝑙𝑎𝑏𝑒𝑙𝑠𝑝𝑎𝑠𝑡(𝑡, 𝛽) might
change for different 𝛽 thresholds. The label terms of some pivot (𝑡, 𝛽) can be classified into four disjoint
categories:

- Emerging terms which exist in the future but not in the past:

𝑒𝑚𝑒𝑟𝑔𝑒(𝑡, 𝛽) = 𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑢𝑡𝑢𝑟𝑒(𝑡, 𝛽) − 𝑙𝑎𝑏𝑒𝑙𝑠𝑝𝑎𝑠𝑡(𝑡, 𝛽) (5)

- Decaying terms which exist in the past but not in the future:

𝑑𝑒𝑐𝑎𝑦(𝑡, 𝛽) = 𝑙𝑎𝑏𝑒𝑙𝑠𝑝𝑎𝑠𝑡(𝑡, 𝛽) − 𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑢𝑡𝑢𝑟𝑒(𝑡, 𝛽) (6)

- Stable terms which exist in the past and the future:

𝑠𝑡𝑎𝑏𝑙𝑒(𝑡, 𝛽) = 𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑢𝑡𝑢𝑟𝑒(𝑡, 𝛽) ∩ 𝑙𝑎𝑏𝑒𝑙𝑠𝑝𝑎𝑠𝑡(𝑡, 𝛽) (7)

- Specific terms which neither exist in the past nor in the future topics of 𝑡:

specific(𝑡, 𝛽) = 𝑡.𝑙𝑎𝑏𝑒𝑙𝑠 − (𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑢𝑡𝑢𝑟𝑒(𝑡, 𝛽) ∪ 𝑙𝑎𝑏𝑒𝑙𝑠𝑝𝑎𝑠𝑡(𝑡, 𝛽)) (8)

Graph Evolution Functions: The 𝛿-liveliness 𝑙𝑖𝑣𝑒𝛿(𝑡, 𝛽) is defined by the diameter of its pivot graph 𝛿(𝑡, 𝛽).

𝑙𝑖𝑣𝑒𝛿(𝑡, 𝛽) = 𝑚𝑎𝑥{𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑎𝑡ℎ)|𝑝𝑎𝑡ℎis a path in 𝛿(𝑡, 𝛽)} (9)

A high total liveliness value 𝑙𝑖𝑣𝑒𝑝𝑎𝑠𝑡(𝑡, 𝛽) + 𝑙𝑖𝑣𝑒𝑓𝑢𝑡𝑢𝑟𝑒(𝑡, 𝛽) describes a long living topic, a past value
𝑙𝑖𝑣𝑒𝑝𝑎𝑠𝑡(𝑡, 𝛽) = 0 means that topic 𝑡 is emerging and a future value 𝑙𝑖𝑣𝑒𝑓𝑢𝑡𝑢𝑟𝑒(𝑡, 𝛽) = 0 corresponds to a
decaying topic.

The 𝛿-relative evolution degree 𝑟𝑒𝑣𝑜𝑙𝛿(𝑡, 𝛽) is defined by the average topic dissimilarity (edge) weight
in 𝛿(𝑡, 𝛽) = (𝑇 ,𝐸, 𝑠𝑖𝑚).

𝑟𝑒𝑣𝑜𝑙𝛿(𝑡, 𝛽) = 1 − 𝑎𝑣𝑔(𝑡𝑖,𝑡𝑗)∈𝐸(𝑠𝑖𝑚(𝑡𝑖, 𝑡𝑗)) (10)

A low relative evolution degree states that most topics evolve slowly in time whereas a high value signifies
that most topics have an important “semantic gap”. By definition, we have 𝑟𝑒𝑣𝑜𝑙𝛿(𝑡, 𝛽) ≤ 1 − 𝛽.

The 𝛿-pivot evolution degree 𝑝𝑒𝑣𝑜𝑙𝛿(𝑡, 𝛽) is defined by the average dissimilarity of all topics in 𝛿(𝑡, 𝛽) =
(𝑇 ,𝐸, 𝑠𝑖𝑚) with respect to the pivot topic 𝑡.

𝑝𝑒𝑣𝑜𝑙𝛿(𝑡, 𝛽) = 1 − 𝑎𝑣𝑔𝑡𝑖∈𝑇 (𝑠𝑖𝑚(𝑡, 𝑡𝑖))) (11)

A low pivot evolution degree signifies that the pivot topic does not evolve much (all other topics are
similar), whereas a high value indicates that the pivot topic evolves rapidly .

Ke Li, et al.: Preprint submitted to Elsevier Page 8 of 29

The 𝛿-split degree 𝑠𝑝𝑙𝑖𝑡𝛿(𝑡, 𝛽) is defined by the average outdegree of 𝛿(𝑡, 𝛽) = (𝑇 ,𝐸, 𝑠𝑖𝑚).

𝑠𝑝𝑙𝑖𝑡𝛿(𝑡, 𝛽) =
|𝐸||{𝑡𝑖|𝑡𝑖 ∈ 𝑇 ∧ (𝑡𝑖, 𝑡𝑗) ∈ 𝐸}| (12)

A low value signifies that the topics evolve along linear paths and a high value signifies that the topics
split into several future sub-topics.

The 𝛿-convergence degree 𝑐𝑜𝑛𝑣𝛿(𝑡, 𝛽) is defined by the average indegree of 𝛿(𝑡, 𝛽) = (𝑇 ,𝐸, 𝑠𝑖𝑚).

𝑐𝑜𝑛𝑣𝛿(𝑡, 𝛽) =
|𝐸||{𝑡𝑗|𝑡𝑗 ∈ 𝑇 ∧ (𝑡𝑖, 𝑡𝑗) ∈ 𝐸}| (13)

A low value signifies that many topics depend on a single parent topic and a high value signifies that
many topics are the result of the fusion of past topics.

Monotonic pivot functions: A pivot topic function 𝑓 can be monotonic with respect to 𝛽. More precisely, if
for all topics 𝑡 and thresholds 𝛽 ≤ 𝛽′ (if 𝑓 returns a set, then ≤ corresponds to ⊆ and ≥ corresponds to ⊇):

- 𝑓 (𝑡, 𝛽) ≤ 𝑓 (𝑡, 𝛽′), then 𝑓 is monotonically increasing;

- 𝑓 (𝑡, 𝛽) ≥ 𝑓 (𝑡, 𝛽′), then 𝑓 is monotonically decreasing;

- 𝑓 is non-monotonic otherwise.

A function which is monotonically increasing and monotonically decreasing is called constant (𝑓 (𝑡, 𝛽) =
𝑓 (𝑡, 𝛽′) for all 𝛽, 𝛽′).

Example 3. For example, 𝑙𝑖𝑣𝑒𝛿 is monotonically decreasing since for any 𝑡 and 𝛽 ≤ 𝛽′, pivot graph (𝑡, 𝛽′)
is a subgraph of (𝑡, 𝛽) with a diameter 𝑙𝑖𝑣𝑒𝛿(𝑡, 𝛽′) <= 𝑙𝑖𝑣𝑒𝛿(𝑡, 𝛽). Similarly, term labeling function specific
is monotonically increasing, i.e., if label 𝑙 is specific for (𝑡, 𝛽) (it does not appear in the past or the future of
(𝑡, 𝛽)), it is also specific for all (𝑡, 𝛽′) where 𝛽 ≤ 𝛽′. This follows from the fact that 𝑝𝑎𝑠𝑡(𝑡, 𝛽′) is a subgraph
of 𝑝𝑎𝑠𝑡(𝑡, 𝛽) and 𝑓𝑢𝑡𝑢𝑟𝑒(𝑡, 𝛽′) is a subgraph of 𝑓𝑢𝑡𝑢𝑟𝑒(𝑡, 𝛽) for all 𝛽 ≤ 𝛽′ and using the definition of specific.
Functions 𝑙𝑎𝑏𝑒𝑙𝑠 and 𝑝𝑒𝑟𝑖𝑜𝑑 are constant (return the same local label and period independently of 𝛽), 𝑝𝑎𝑡ℎ𝛿,
𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑢𝑡𝑢𝑟𝑒 and 𝑙𝑎𝑏𝑒𝑙𝑠𝑝𝑎𝑠𝑡 filters are monotonically decreasing.

4.2. Pivot Topic Calculus
The graph and term evolution functions allow to characterize the degree and the complexity of the evo-

lution of pivot topics (𝑡, 𝛽). Combined with other filters on the topic labels and the graph structure, it is
possible to filter pivot topics satisfying rich topic evolution patterns.

Definition 6 (pivot topic filters). Let 𝑡, 𝑡′ ∈ 𝑇 be two topics , 𝑀 be a set of pivot topic functions, 𝜙 ∈ {=
,≤,≥, <, >} be a set of comparison predicates, 𝑐 be a numerical constant, 𝑙 be a term (label):

- The expression 𝑡′ ∈ 𝑝𝑎𝑡ℎ𝛿 is a path filter which is true for (𝑡, 𝛽) if 𝑡′ is connected to 𝑡 by a path in the future
(𝛿 = 𝑓𝑢𝑡𝑢𝑟𝑒) or the past (𝛿 = 𝑝𝑎𝑠𝑡) of (𝑡, 𝛽) and false otherwise;

- The expression 𝑙 ∈ 𝑙𝑎𝑏𝑒𝑙𝑠𝛿 is a term label filter which is true for (𝑡, 𝛽) if 𝑙 is a local (𝛿 is empty), future
(𝛿 = 𝑓𝑢𝑡𝑢𝑟𝑒) or past (𝛿 = 𝑝𝑎𝑠𝑡) label of (𝑡, 𝛽) and false otherwise;

- If 𝑒𝑣𝑜𝑙𝛿 is a graph evolution function, then 𝑒𝑣𝑜𝑙𝛿 𝜙 𝑐 is a graph evolution filter which is true for (𝑡, 𝛽) if
𝑒𝑣𝑜𝑙𝛿(𝑡, 𝛽)𝜙 𝑐 and false otherwise;

Ke Li, et al.: Preprint submitted to Elsevier Page 9 of 29

Table 1
Monotonicity propagation of complex filter predicates

𝑃 𝑃 ′ 𝑃 ∧ 𝑃 ′ 𝑃 ∨ 𝑃 ′ ¬𝑃

monotonic monotonic monotonic monotonic anti-monotonic
monotonic anti-monotonic non monotonic static anti-monotonic
monotonic non monotonic non monotonic monotonic anti-monotonic
monotonic static monotonic static anti-monotonic

anti-monotonic anti-monotonic anti-monotonic anti-monotonic monotonic
anti-monotonic non monotonic non monotonic anti-monotonic monotonic
anti-monotonic static anti-monotonic anti-monotonic monotonic
non monotonic non monotonic non monotonic non monotonic non monotonic
non monotonic static non monotonic static non monotonic

static static static static static

- The expression 𝑝𝑒𝑟𝑖𝑜𝑑 𝜙 𝑐 is a period filter which is true for a topic (𝑡, 𝛽) if 𝑡.𝑝𝑒𝑟𝑖𝑜𝑑 𝜙 𝑐 and false otherwise;

- If 𝑃 and 𝑃 ′ are pivot topic filters, then 𝑃 ∧ 𝑃 ′, 𝑃 ∨ 𝑃 ′ and ¬𝑃 are complex pivot topic filters with truth
values following the semantics of the logical connectors ∧, ∨ and ¬.

In the following we will name filters by the name of the topic functions they use. For example𝐿 ⊆ 𝑙𝑎𝑏𝑒𝑙𝑠
is called a 𝑙𝑎𝑏𝑒𝑙𝑠 filter. Observe that can then redefine the term label filters 𝑒𝑚𝑒𝑟𝑔𝑒, 𝑑𝑒𝑐𝑎𝑦, 𝑠𝑡𝑎𝑏𝑙𝑒 and specific
using 𝑙𝑎𝑏𝑒𝑙𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠𝑝𝑎𝑠𝑡 and 𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑢𝑡𝑢𝑟𝑒:

- emerging local terms which do not exist in past topics: 𝑙 ∈ 𝑒𝑚𝑒𝑟𝑔𝑒 ≡ 𝑙 ∈ 𝑙𝑎𝑏𝑒𝑙𝑠 ∧ 𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑢𝑡𝑢𝑟𝑒 ∧ 𝑙 ∉
𝑙𝑎𝑏𝑒𝑙𝑠𝑝𝑎𝑠𝑡

- decaying local terms which do not exist in future topics: 𝑙 ∈ 𝑑𝑒𝑐𝑎𝑦 ≡ 𝑙 ∈ 𝑙𝑎𝑏𝑒𝑙𝑠 ∧ 𝑙𝑎𝑏𝑒𝑙𝑠𝑝𝑎𝑠𝑡 ∧ 𝑙 ∉
𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑢𝑡𝑢𝑟𝑒

- stable local terms which exist in the past and the future topics of 𝑡: 𝑙 ∈ 𝑠𝑡𝑎𝑏𝑙𝑒 ≡ 𝑙 ∈ 𝑙𝑎𝑏𝑒𝑙𝑠∧ 𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑢𝑡𝑢𝑟𝑒∧
𝑙𝑎𝑏𝑒𝑙𝑠𝑝𝑎𝑠𝑡

- specific local terms which neither exist in the past nor in the future topics of 𝑡: 𝑙 ∈ specific ≡ 𝑙 ∈
𝑙𝑎𝑏𝑒𝑙𝑠 ∧ 𝑙 ∉ 𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑢𝑡𝑢𝑟𝑒 ∧ 𝑙 ∉ 𝑙𝑎𝑏𝑒𝑙𝑠𝑝𝑎𝑠𝑡)

Pivot Filter Monotonicity: The monotonicity property of pivot functions presented in Section 4.1 can di-
rectly be transposed to pivot topic filters. More precisely, for all monotonically increasing functions 𝐹 ,
predicate 𝑝𝑟𝑒𝑑 = 𝑙 ∈ 𝐹 (𝐹 returns a set) or predicate 𝑝𝑟𝑒𝑑 = 𝐹 ≥ 𝑐 (𝐹 returns a number) are mono-
tonic9. Symmetrically, for all monotonically decreasing functions 𝐹 , predicate 𝑝𝑟𝑒𝑑 = 𝑙 ∈ 𝐹 (𝐹 returns
a set) or predicate 𝑝𝑟𝑒𝑑 = 𝐹 ≥ 𝑐 (𝐹 returns a number) are anti-monotonic10. Finally, if 𝐹 is constant or
non-monotonic, the corresponding filters are static or non-monotonic.

Table 1 summarizes the monotonicity propagation for Boolean combinations of monotonic, anti-
monotonic, non monotonic and static predicates.

Example 4. The filter predicate specific is monotonic since it is the conjunction of two monotonic predicates:
specific ≡ 𝑙𝑎𝑏𝑒𝑙𝑠 ∧ ¬(𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑢𝑡𝑢𝑟𝑒 ∨ 𝑙𝑎𝑏𝑒𝑙𝑠𝑝𝑎𝑠𝑡) (observe that 𝑙 ∈ 𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑢𝑡𝑢𝑟𝑒 ∨ 𝑙 ∈ 𝑙𝑎𝑏𝑒𝑙𝑠𝑝𝑎𝑠𝑡 is anti-
monotonic and its negation 𝑙 ∉ 𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑢𝑡𝑢𝑟𝑒 ∧ 𝑙 ∈ 𝑙𝑎𝑏𝑒𝑙𝑠𝑝𝑎𝑠𝑡 is monotonic). The filter predicate 𝑠𝑡𝑎𝑏𝑙𝑒

9For all (𝑡, 𝛽), if 𝑙 ∈ 𝐹 holds for (𝑡, 𝛽) then 𝑙 ∈ 𝐹 holds for all (𝑡, 𝛽′) where 𝛽′ ≥ 𝛽.
10For all (𝑡, 𝛽), if 𝑙 ∈ 𝐹 holds for (𝑡, 𝛽) then 𝑙 ∈ 𝐹 holds for all (𝑡, 𝛽′) where 𝛽′ ≤ 𝛽.

Ke Li, et al.: Preprint submitted to Elsevier Page 10 of 29

Table 2
Pivot Filter Expressions

Expression 𝐹 Semantics 𝐹 Monotonicity Expression 𝐹 Semantics 𝐹 Monotonicity (𝜙 =≤)
Contains(L) ∃𝑙 ∈ 𝐿 ∶ 𝑙 ∈ 𝑙𝑎𝑏𝑒𝑙𝑠 static Live 𝜙 c 𝑙𝑖𝑣𝑒𝛿 𝜙 𝑐 anti-monotonic
Emerge(L) ∃𝑙 ∈ 𝐿 ∶ 𝑙 ∈ 𝑒𝑚𝑒𝑟𝑔𝑒 non monotonic Revol 𝜙 c 𝑟𝑒𝑣𝑜𝑙𝛿 𝜙 𝑐 non monotonic
Decay(L) ∃𝑙 ∈ 𝐿 ∶ 𝑙 ∈ 𝑑𝑒𝑐𝑎𝑦 non monotonic Pevol 𝜙 c 𝑝𝑒𝑣𝑜𝑙𝛿 𝜙 𝑐 non monotonic
Stable(L) ∃𝑙 ∈ 𝐿 ∶ 𝑙 ∈ 𝑠𝑡𝑎𝑏𝑙𝑒 anti-monotonic Split 𝜙 c 𝑠𝑝𝑙𝑖𝑡𝛿 𝜙 𝑐 non monotonic
Specific(L) ∃𝑙 ∈ 𝐿 ∶ 𝑙 ∈ 𝑠𝑝𝑒𝑐𝑖𝑓 𝑖𝑐 monotonic Conv 𝜙 c 𝑐𝑜𝑛𝑣𝛿 𝜙 𝑐 non monotonic

Period 𝜙 c 𝑝𝑒𝑟𝑖𝑜𝑑 𝜙 𝑐 static
a Atomic filter expressions

Expression 𝐹 Semantics 𝐹 Monotonicity

F1.F2 𝐹1 ∧ 𝐹2 see Table 1
Minus(F1) ¬𝐹1 see Table 1
F1.Union(F2) 𝐹1 ∨ 𝐹2 see Table 1
Path(F1) ∃𝑡 ∶ 𝑡 ⊧ 𝐹1 ∧ 𝑡 ∈ 𝑝𝑎𝑡ℎ𝛿 anti-monotonic

b Complex filter expressions

Expression Semantics

Future 𝛿 ∶= 𝑓𝑢𝑡𝑢𝑟𝑒
Past 𝛿 ∶= 𝑝𝑎𝑠𝑡

c Graph projection

is anti-monotonic since it is the conjunction of a non monotonic and two anti-monotonic predicates. The
two term evolution predicates 𝑒𝑚𝑒𝑟𝑔𝑒 and 𝑑𝑒𝑐𝑎𝑦 are conjunctions of a monotonic and an anti-monotonic
predicate and, therefore non monotonic (if 𝑙 ∈ 𝑒𝑚𝑒𝑟𝑔𝑒 is true for (𝑡, 𝛽) it can be true or false for (𝑡, 𝛽′) with
𝛽′ > 𝛽 or 𝛽′ < 𝛽).

4.3. Pivot Topic Query Language
Let 𝐷𝐵(𝑇 , 𝑠𝑖𝑚) = {(𝑡, 𝛽)|𝑡 ∈ 𝑇 ∧ 𝛽 ∈ 𝑆(𝑡)} be the set of pivot topics defined by a set of topics 𝑇 and a

similarity function 𝑠𝑖𝑚. We call 𝐷𝐵 the pivot database defined by 𝑇 and 𝑠𝑖𝑚. In the following, we define
a query language for extracting pivot topic subsets 𝑃 𝑖𝑣𝑜𝑡𝑠 ⊆ 𝐷𝐵. The semantics of this query language is
based on the pivot topic calculus we have introduced in Section 4.2.

Let 𝐿 denote a set of terms and 𝑐 be a numerical constant. Atomic filter expressions and their semantics
are defined using the topic calculus as shown in Table 2a. The first column corresponds to the query expres-
sion, the second column defines the corresponding quantified filter predicate and the third column shows the
monotonicity property of each filter for 𝜙 =≤. Filter expressions can be composed to build complex filter
expressions as shown in Table 2b. Finally, the query language defines two projection operators Future and
Past (Table 2c) which modify the future/past parameter 𝛿 (𝛿 = 𝑓𝑢𝑡𝑢𝑟𝑒 by default).

Definition 7 (pivot query). Let𝐷𝐵 be a pivot database (set of pivot topics), 𝑄 be a pivot filter and 𝐼(𝑄, 𝑡, 𝛽)
be a truth-functional interpretation of the pivot topic predicate 𝑄 given pivot topic (𝑡, 𝛽). The expression
𝐷𝐵.𝑄 is a query which returns all pivot topics in 𝐷𝐵 where 𝑄 is true.

𝐷𝐵.𝑄 = {(𝑡, 𝛽)|(𝑡, 𝛽) ∈ 𝐷𝐵 ∧ 𝐼(𝑄, 𝑡, 𝛽)}

Example 5. Our query language allows to filter pivot topics according to some evolution pattern defined by
the combination of graph evolution filters.

- For example query 𝑄1 filters all pivot topics with high future relative and high pivot evolution degrees,
where each future topic has two child topics in average and there exist future subtopics related to the pivot
topic with a minimal distance of 5 periods:

Ke Li, et al.: Preprint submitted to Elsevier Page 11 of 29

Q1 : DB . Future . Revol (> = 0 . 5) . Pevo l (> = 0 . 6) . S p l i t (>=2) . Live (=5)

𝑄1 ∶ 𝑟𝑒𝑣𝑜𝑙𝑓𝑢𝑡𝑢𝑟𝑒 ≥ 0.5 ∧ 𝑝𝑒𝑣𝑜𝑙𝑓𝑢𝑡𝑢𝑟𝑒 ≥ 0.6 ∧ 𝑠𝑝𝑙𝑖𝑡𝑓𝑢𝑡𝑢𝑟𝑒 ≥ 2 ∧ 𝑙𝑖𝑣𝑒𝑓𝑢𝑡𝑢𝑟𝑒 = 5

Parameter 𝛿 is by default equal to 𝑓𝑢𝑡𝑢𝑟𝑒.
The result of query 𝑄1 is shown in Figure 2.

Figure 2: 𝑄1 ∶ 𝑟𝑒𝑣𝑜𝑙𝑓𝑢𝑡𝑢𝑟𝑒 ≥ 0.5 ∧ 𝑝𝑒𝑣𝑜𝑙𝑓𝑢𝑡𝑢𝑟𝑒 ≥ 0.6 ∧ 𝑠𝑝𝑙𝑖𝑡𝑓𝑢𝑡𝑢𝑟𝑒 ≥ 2 ∧ 𝑙𝑖𝑣𝑒𝑓𝑢𝑡𝑢𝑟𝑒 = 5

Apart from these graph structure-based filters, our query language also allows users to define other
multi-dimensional filtering criteria including topic labels and temporal conditions for the selection of pivot
topics:
- Find all topics with the decaying term “big data” and without emerging term “deep learning”:

Q2 : DB . Decay ("big␣data") . Minus (Emerge ("deep␣learning"))

𝑄2 ∶ “big data” ∈ 𝑑𝑒𝑐𝑎𝑦 ∧ “deep learning” ∉ 𝑒𝑚𝑒𝑟𝑔𝑒

- Find all topics with an emerging term “deep learning” where the past contains a path to a topic with the
decaying term “big data”:
Q3 : DB . Emerge ("deep␣learning") . Pas t . Path (Decay ("big␣data"))

𝑄3 ∶ “deep learning” ∈ 𝑒𝑚𝑒𝑟𝑔𝑒.𝑝𝑎𝑡ℎ𝑝𝑎𝑠𝑡(“big data” ∈ 𝑑𝑒𝑐𝑎𝑦)

Observe that expression Past changes parameter 𝛿 to 𝑝𝑎𝑠𝑡 for the following sub-expression Path.
Three other queries and their results can be found in Appendix A.

Ke Li, et al.: Preprint submitted to Elsevier Page 12 of 29

5. Query Evaluation Strategy
Our query evaluation strategy consists of precomputing all pivot graphs 𝑓𝑢𝑡𝑢𝑟𝑒(𝑡, 𝛽𝑖) and 𝑝𝑎𝑠𝑡(𝑡, 𝛽𝑖) for

a sequence of thresholds 𝛽0, 𝛽1, ..., 𝛽𝑛 where 𝛽𝑖 < 𝛽𝑖+1 with the corresponding labels and graph evolution
metrics. The computation of the pivot graphs is done once independently of any pivot topic queries and
the generated tables can be processed using standard, non-recursive SQL queries for computing topic labels
(Section 6.3) and graph evolution metrics (Section 6.4) and evaluating pivot query expressions (Section 6.5).

An alternative strategy would be to materialize pivot graphs during query processing. This would avoid
data preprocessing and data storage costs but also lead to higher query execution time. Whereas we be-
lieve the first strategy is better adapted to our current query-based graph exploration application, the second
scenario is part of future work. Our goal is in particular to study optimization strategies which exploit the
commutativitiy and monotonicity of filter predicates to generate efficient query execution plans.

5.1. EPIQUE Workflow
Figure 3 and Algorithm 1 detail the main steps of the EPIQUE workflow.

Algorithm 1 Workflow Overview
1: procedure GENERATEPIVOTGRAPHS(C, P, B)
2: C’ ← preprocessing(C)
3: C” ← periodization(C’,P)
4: T ← topic_modeling(C”)
5: G ← topic_alignment(T)
6: A ← compute_pivot_graphs(G, B)
7: L ← compute_labels(A)
8: M ← compute_graph_metrics(A)
9: return (A,L,M)

10: end procedure

The input of the workflow is a document corpus 𝐶 , a set of possibly overlapping time periods 𝑃 , a list
of 𝛽-thresholds 𝐵 and some method-specific parameters (like the number of topics for LDA). The workflow
starts with a standard document pre-processing step composed of some lexical analysis, stop-word removal,
stemming, index term generation and term selection. The main goal of this step is to extract for each docu-
ment a term vector which precisely describes the scientific document contents.

The document preprocessing step is followed by a corpus periodization step which decomposes the
document collection 𝐶 ′ according to a sequence of continuous and possibly overlapping time periods 𝑃 (left
part of Figure 3). Each period defines the subset of documents published during the period. The choice of
the window size and sliding step depends on the granularity of the document time-stamps (year, month, day)
and on the number of available documents in each period. In the following step, each periodized corpus
in 𝐶 ′′ is analyzed by a topic model. In our prototype, we use the LDA [8] implementation provided by the
machine learning library Spark MLlib [27] to extract the topics for each corpus period. The output of LDA is
a topic-term matrix describing each topic as a weighted term vector. LDA requires to set the number of topics
to be generated in advance. Tuning this parameter is important and subtle because it strongly influences the
diversity of the topics generated for each time period. We show in Section 7.2 how experts can be assisted
in choosing the right number of topics.

The extracted topic-term vectors 𝑇 from different periods are aligned with an appropriate similarity
measure to produce a complete alignment graph 𝑆𝑖𝑚. The complete alignment graph 𝑆𝑖𝑚 connecting all
topics from different periods is necessary to compute the pivot evolution graphs as shown in Section 5.2. It

Ke Li, et al.: Preprint submitted to Elsevier Page 13 of 29

Figure 3: Topic evolution model of EPIQUE workflow

also can be used to extract the topic evolution graph 𝐺 (central part of Figure 3) connecting all topics from
subsequent periods. In our experiments, we use cosine similarity which performs well for aligning sparse
topic-term vectors. Observe that the choice of LDA and cosine similarity does not exclude the use of other
topic models and similarity measures like Jaccard similarity [19] or Battacharya similarity [6]11.

The next step produces the pivot evolution graphs following the model introduced in Section 3 (right
part of Figure 3). The global evolution graph 𝐺 is transformed into |𝐵| families of pivot evolution graphs
defined by a set of alignment thresholds 𝛽𝑖 ∈ 𝐵. Each family contains the future and past pivot graphs of
all pivot topics (𝑡, 𝛽𝑖). We only consider pivot graphs with at least one edge and ignore isolated pivot topics
(single node graphs). The final database then contains at most |𝐵|× |𝑇 | pivot topics with a future and a past
pivot evolution graph for pivot topic.

The last two steps compute the topic labels and graph metrics as defined in Section 4. The resulting
data can then be queried using the filters defined in Section 4.3. In the following section, we describe in
more detail the central task of this workflow concerning the computation of the pivot topic graphs. An
implementation of the workflow is described in Section 6.

5.2. Pivot Graph Computation
We use a Datalog-like syntax for presenting our pivot graph generation approach. An efficient algorithm

and implementation on top of Apache Spark is discussed in Section 6. This implementation avoids redun-
dant computation by exploiting the monotonicity of pivot graphs where 𝛿 ∈ {𝑓𝑢𝑡𝑢𝑟𝑒, 𝑝𝑎𝑠𝑡}, 𝛿(𝑡, 𝛽𝑖+1) is a
subgraph of 𝛿(𝑡, 𝛽𝑖) for all 0 ≤ 𝑖 < 𝑛.

The input of the Datalog program (Algorithm 2) is a topic table 𝑇 𝑜𝑝𝑖𝑐𝑠(𝑡, 𝑝) storing the pivot topic
identifiers 𝑡 with their periods 𝑝, a topic similarity matrix 𝑆𝑖𝑚(𝑡1, 𝑡2, 𝑠) where 𝑠 = 𝑠𝑖𝑚(𝑡1, 𝑡2) is the similarity
between topic 𝑡1 and topic 𝑡2, and a sequence of 𝛽𝑖 values defined as a binary table 𝐵𝑒𝑡𝑎(𝑏, 𝑖). The first rule
(Rule 1) defines the alignment graph table 𝐺𝑟𝑎𝑝ℎ(𝑡1, 𝑡2, 𝑠) which connects all topics 𝑡1 of period 𝑝 to all
topics 𝑡2 of period 𝑝 + 1 where there exists an evolution edge of similarity 𝑠 = 𝑠𝑖𝑚(𝑡1, 𝑡2). Starting from
𝐺𝑟𝑎𝑝ℎ, the following rules (Rules 2 to 7) compute all pivot topic evolution graphs for all topics in 𝑇 and
beta value 𝛽𝑖. This is done by first generating table 𝑇𝐶(𝑡1, 𝑡2, 𝑑, 𝑖) containing the transitive closure of the
alignment subgraph of 𝐺𝑟𝑎𝑝ℎ where all edges have a weight greater or equal to 𝛽𝑖 and 𝑑 is the graph distance

11In [29] we have addressed the problem of computing very large cosine-similarity graphs in parallel on Apache Spark.

Ke Li, et al.: Preprint submitted to Elsevier Page 14 of 29

between 𝑡1 and 𝑡212. Tables 𝑃𝑎𝑠𝑡 and 𝐹𝑢𝑡𝑢𝑟𝑒 contain the pivot topic evolution graphs 𝛿(𝑡, 𝛽𝑖) of all topics
𝑡 where a tuple (𝑡, 𝑥, 𝑦, 𝑟𝑠, 𝑝𝑠, 𝑑, 𝑖) represents an edge (𝑥, 𝑦, 𝑠) in pivot graph 𝛿(𝑡, 𝛽𝑖) of pivot topic 𝑡 with
relative evolution similarity 𝑟𝑠, pivot evolution similarity 𝑝𝑠 of 𝑥 (𝑃𝑎𝑠𝑡) and 𝑦 (𝐹𝑢𝑡𝑢𝑟𝑒) and distance 𝑑 of 𝑥
(𝑃𝑎𝑠𝑡) and 𝑦 (𝐹𝑢𝑡𝑢𝑟𝑒) from 𝑡.

Algorithm 2 Pivot graph computation using Datalog
1: Graph(x,y,s) ← Topics(x,p), Topics(y,p+1), Sim(x,y,s).
2: TC(x,y,1,i) ← Graph(x,y,s), Beta(b,i), s>=b.
3: TC(x,z,d+1,i) ← TC(x,y,d,i), Graph(y,z,s), Beta(b,i), s>=b.
4: Future(t,t,y,s,s,1,i) ← Graph(t,y,s), Beta(b,i), s>=b.
5: Future(t,x,y,rs,ps,d+1,i) ← TC(t,x,d,i), Graph(x,y,rs), Sim(t,y,ps).
6: Past(t,x,t,s,s,1,i) ← Graph(x,t,s), Beta(b,i), s>=b.
7: Past(t,x,y,rs,ps,d+1,i) ← TC(y,t,d,i), Graph(x,y,rs), Sim(x,t,ps).

Table size estimation: We can estimate the size of each table as follows. Let 𝑝 be the number of periods, 𝑡
be the number of topics per period, 𝑘 be the maximal outdegree and indegree in 𝐺𝑟𝑎𝑝ℎ and 𝑏 be the number
of 𝛽𝑖 thresholds. Then the size (number of edges) of 𝐺𝑟𝑎𝑝ℎ is bound by |𝐺𝑟𝑎𝑝ℎ| ≤ 𝑘 ∗ 𝑡 ∗ (𝑝 − 1): 𝐺𝑟𝑎𝑝ℎ
is a (directed acyclic) multistage graph where each topic (except the leaves) have maximally 𝑘 child links.
The size of the transitive closure 𝑇𝐶 is bound by |𝑇𝐶| ≤ 𝑏 ∗ 𝑘 ∗ 𝑡 ∗ 𝑝 ∗ (𝑝 − 1)∕2 (𝑏 times the size of the
transitive closure of 𝐺𝑟𝑎𝑝ℎ). Finally, both tables 𝐹𝑢𝑡𝑢𝑟𝑒 and 𝑃𝑎𝑠𝑡, contain for each tuple (𝑥, 𝑦, 𝑑, 𝑖) in the
transitive closure 𝑇𝐶 (𝑥 and 𝑦 are connected by a path of length 𝑑), at most 𝑘 tuples 𝐹𝑢𝑡𝑢𝑟𝑒(𝑥, 𝑦, 𝑧, _, _, _)
and at most 𝑘 tuples 𝑃𝑎𝑠𝑡(𝑦, 𝑥, 𝑧, _, _, _). Therefore, the size of 𝐹𝑢𝑡𝑢𝑟𝑒 and 𝑃𝑎𝑠𝑡 is bound by 𝑘 times the
size of the transitive closure: |𝐹𝑢𝑡𝑢𝑟𝑒| ≤ 𝑏 ∗ 𝑘2 ∗ 𝑡 ∗ 𝑝 ∗ (𝑝 − 1)∕2. As our experiments show, even for
small 𝛽-thresholds (𝛽 = 0.2) the maximum indegree and outdegree of a topics is smaller than 𝑘 = 10 and
we generally assume about 𝑡 = 100 topics over 𝑝 = 20 periods. Then, for 𝑏 = 10 the size of the transitive
closure is |𝑇𝐶| ≤ 10 ∗ 10 ∗ 100 ∗ 10 ∗ 19 = 1.9 ∗ 106 edges and the size of |𝐹𝑢𝑡𝑢𝑟𝑒| ≤ 1.9 ∗ 107
edges. These numbers are much smaller in practice (see Section 7) and current big data frameworks can
easily manage graphs of this size.

6. Implementation
This section presents the implementation of the topic evolution model in the context of the EPIQUE

project.

6.1. System Architecture
Figure 4 gives an overview of the architecture of our web application implemented on top of Apache

Spark and Jupyter Notebook. The entire process to study science evolution over a corpus is split into two
applications for building the pivot evolution graphs and for interactively exploring these graphs. Each appli-
cation corresponds to a separate user interface. The evolution graph generation application is implemented
in Scala and executed through the Spylon13 kernel. The evolution graph exploration application uses a stan-
dard Python kernel to take advantage of advanced Python 3 graphical user interface libraries for facilitating
user interaction.

Figure 5 displays a screenshot of our intuitive declarative query-by-example interface where users can
specify their exploration goal and visualize pivot topic evolution graphs. These graphs are pre-computed in
order to ensure fast query answer display.

12Since alignment 𝐺𝑟𝑎𝑝ℎ is a multistage graph, all paths between two nodes are of the same length.
13https://github.com/Valassis-Digital-Media/spylon-kernel

Ke Li, et al.: Preprint submitted to Elsevier Page 15 of 29

Figure 4: Architecture overview of EPIQUE web application

Figure 5: Screenshot of the UI of EPIQUE web application

6.2. Pivot graph generation algorithm
Algorithm 3 on Page 17 shows our pivot graph computation implementation using the Spark

DataFrame [2] model and algebra. A Spark DataFrame is equivalent to a relational database table and
can be transformed into a new DataFrames through relational operations including projection (select), filter
(where), join, and aggregations (groupBy). Algebraic expressions are built by concatenating the relational
operators starting from the input DataFrame. For example, the expression in line 5, applies the following

Ke Li, et al.: Preprint submitted to Elsevier Page 16 of 29

Algorithm 3 Pivot graph computation using the Spark data model and algebra
1: Input: topic similarity DataFrame 𝑆𝑖𝑚(𝑡1, 𝑡2, 𝑠𝑖𝑚)
2: Output: a pair (𝐹𝑢𝑡𝑢𝑟𝑒, 𝑃 𝑎𝑠𝑡) of future and past pivot graph DataFrames for each beta value 𝛽𝑖.
3: for 𝑖 = 𝑛...0 do
4: ∕∕ Graph(t1, t2, sim) : topic alignment graph for 𝛽𝑖 (rule 1 in Algorithm 2)
5: Graph = Sim.where(𝑠𝑖𝑚 ⩾ 𝛽𝑖 ∧ 𝑡1.𝑝𝑒𝑟𝑖𝑜𝑑 + 1 = 𝑡2.𝑝𝑒𝑟𝑖𝑜𝑑)
6: ∕∕ Transitive closure computation (rules 3 and 4 in Algorithm 2)
7: if i=n then
8: oldTC = ∅ ∕∕ oldTC is empty for 𝛽𝑛
9: ∕∕ newGraph(t1, t2, d) : new alignment edges (d=1) where sim ≥ 𝛽𝑛

10: newGraph = Graph.select(t1,t2,1 as d)
11: else
12: ∕∕ newGraph(t1, t2, d) : new alignment edges (d=1) where sim ∈ [𝛽𝑖, 𝛽𝑖+1[
13: newGraph = Graph.where(sim < 𝛽𝑖+1).select(t1,t2,1 as d)
14: ∕∕ newTCEdges(t1, t2, d) : new alignment edges (d>1) between newGraph and oldTC
15: newTCEdges = newGraph.join(oldTC, newGraph.t2 = oldTC.t1)
16: .select(newGraph.t1, oldTC.t2, newGraph.d + 1 as d)
17: newGraph = newGraph.union(newTCEdges) ∕∕ add newTCEdges to newGraph
18: end if
19: deltaTC = oldTC.union(newGraph) ∕∕ deltaTC(t1, t2, d): oldTC + newGraph
20: ∕∕ Semi-naive evaluation (rule 3 in Algorithm 2)
21: newTC = deltaTC ∕∕ newTC(t1, t2, d) : trans. closure of deltaTC
22: while deltaTC ≠ ∅ do
23: deltaTC = deltaTC.join(newGraph, deltaTC.t2 = newGraph.t1)
24: .select(deltaTC.t1, newGraph.t2, deltaTC.d + newGraph.d)
25: newTC = newTC.union(deltaTC)
26: end while
27: ∕∕ Generate Future(p,t1, t2,sim, d, psim) (rules 4 and 5 in Algorithm 2)
28: Future = Graph.select(t1 as p, t1, t2, sim, 1, sim as psim)
29: FutureTC = newTC.join(Graph, newTC.t2 = Graph.t1)
30: .join(Sim, Sim.t1 = newTC.t1 ∧ Sim.t2 = Graph.t2)
31: .select(newTC.t1 as p, Graph.t1, Graph.t2, Graph.sim, newTC.d+1 as d, Sim.sim as psim)
32: Future = Future.union(FutureTC)
33: ∕∕ Generate Past(p,t1, t2,sim, d, psim) (rules 6 and 7 in Algorithm 2)
34: Past = Graph.select(t2 as p, t1, t2, sim, 1, sim as psim)
35: PastTC = newTC.join(Graph,newTC.t1 = Graph.t2)
36: .join(Sim, Sim.t1 = Graph.t1 ∧ Sim.t2 = newTC.t2)
37: .select(newTC.t2 as p, Graph.t1, Graph.t2, Graph.sim, newTC.d+1 as d, Sim.sim as psim)
38: Past = Past.union(PastTC)
39: store Future and Past on disk ∕∕ store all future and past pivot graphs for 𝛽𝑖
40: oldTC=newTC
41: end for

Ke Li, et al.: Preprint submitted to Elsevier Page 17 of 29

relational selection on DataFrame Sim:

𝐺𝑟𝑎𝑝ℎ = 𝜎𝑠𝑖𝑚⩾𝛽𝑖∧𝑡1.𝑝𝑒𝑟𝑖𝑜𝑑+1=𝑡2.𝑝𝑒𝑟𝑖𝑜𝑑(𝑆𝑖𝑚)

A projection of DataFrame Graph on the three attributes 𝑡1, 𝑡2, 𝑙 is shown in line 10 (attribute 𝑙 is intialized
with value 1). Finally, line 15 defines a relational join between the two DataFrames newGraph and 𝑜𝑙𝑑𝑇𝐶
followed by a projection where attribute 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ.𝑑 + 1 is incremented by one:

𝑛𝑒𝑤𝑇𝐶𝐸𝑑𝑔𝑒𝑠 = 𝜋𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ.𝑡1,𝑜𝑙𝑑𝑇𝐶.𝑡2,𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ.𝑑+1(𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ ⋈𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ.𝑡2=𝑜𝑙𝑑𝑇𝐶.𝑡1 𝑜𝑙𝑑𝑇𝐶)

Algorithm 3 computes and stores for each alignment threshold 𝛽𝑖 (0 ≤ 𝑖 ≤ 𝑛) two tables 𝐹𝑢𝑡𝑢𝑟𝑒 and 𝑃𝑎𝑠𝑡
as defined in Section 5.2. The pivot graph computation relies on an efficient transitive closure algorithm to
connect all the reachable topics starting from any pivot topic. This computation may be expensive for large
and highly connected graphs. The main idea of the proposed implementation is to benefit from the inclusion
property ∗(𝑡, 𝛽𝑖+1) ⊆ ∗(𝑡, 𝛽𝑖) (0 ≤ 𝑖 < 𝑛) mentioned in Section 5.2. This property implies that, for
decreasing 𝑖, the transitive closure 𝑇𝐶𝑖+1 obtained for 𝛽𝑖+1 is included in the transitive closure of 𝑇𝐶𝑖 for 𝛽𝑖
and therefore gives the opportunity to reuse the transitive closure results among the successive iterations.

The iterative computation starts on line 3 from the highest value 𝛽𝑛. The first step (lines 5) defines the
complete 𝐺𝑟𝑎𝑝ℎ for 𝛽𝑖 containing all alignment edges where 𝑠𝑖𝑚 ≥ 𝛽𝑖. The following steps (lines 7 to
18) compute the table 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ with all new direct alignment edges where 𝑠𝑖𝑚 ∈ [𝛽𝑖, 𝛽𝑖+1[and all new
"transitive" alignment edges which exist between the new nodes and the previous transitive closure table
𝑜𝑙𝑑𝑇𝐶 (𝑜𝑙𝑑𝑇𝐶 = ∅ for 𝑖 = 𝑛). Observe that 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ contains only edges that do not exist in 𝑜𝑙𝑑𝑇𝐶
and connects all new nodes in 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ to all reachable nodes in 𝑜𝑙𝑑𝑇𝐶 . However, it still misses the new
edges which might connect two nodes in 𝑜𝑙𝑑𝑇𝐶 by a new path generated by the new edges. These new
edges can be obtained by computing the transitive closure on table 𝑑𝑒𝑙𝑡𝑎𝑇𝐶 , which is initialized with all
new edges in 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ and the old TC edges in 𝑜𝑙𝑑𝑇𝐶 (line 19). We then have the following definition of
𝑑𝑒𝑙𝑡𝑎𝑇𝐶 (the join predicates are ignored for simplification):

𝑑𝑒𝑙𝑡𝑎𝑇𝐶 = (𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ ⋈ 𝑜𝑙𝑑𝑇𝐶) ∪ 𝑜𝑙𝑑𝑇𝐶 ∪ 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ

We then compute the transitive closure 𝑛𝑒𝑤𝑇𝐶 of 𝑑𝑒𝑙𝑡𝑎𝑇𝐶 (lines 21 to 26) where each step joins 𝑑𝑒𝑙𝑡𝑎𝑇𝐶
only with new edges in 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ until reaching the fixpoint where 𝑑𝑒𝑙𝑡𝑎𝑇𝐶 = ∅:

𝑛𝑒𝑤𝑇𝐶0 = 𝑑𝑒𝑙𝑡𝑎𝑇𝐶
𝑑𝑒𝑙𝑡𝑎𝑇𝐶𝑖+1 = 𝑑𝑒𝑙𝑡𝑎𝑇𝐶𝑖 ⋈ 𝑛𝑒𝑤𝐺𝑟𝑎𝑝ℎ
𝑛𝑒𝑤𝑇𝐶𝑖+1 = 𝑛𝑒𝑤𝑇𝐶𝑖 ∪ 𝑑𝑒𝑙𝑡𝑎𝑇𝐶𝑖+1

This strategy is similar to the semi-naive transitive closure algorithm [3] and guarantees that no TC edge is
computed twice in the whole process. More precisely, the number of iterations (joins) is bound by the length
of the longest path composed of new edges with 𝑠𝑖𝑚 ∈ [𝛽𝑖, 𝛽𝑖+1[. This can drastically reduce the computation
cost as shown in our experiments. The remaining steps (lines 27 to 38) generate the 𝐹𝑢𝑡𝑢𝑟𝑒 pivot graphs
and 𝑃𝑎𝑠𝑡 pivot graphs by joining the tables 𝑛𝑒𝑤𝑇𝐶 , 𝐺𝑟𝑎𝑝ℎ and 𝑆𝑖𝑚 (rules 4 and 7 in Algorithm 2). Both
tables are stored at the end of each iteration step.

6.3. Topic labeling
Pivot topic labels can be computed with Spark SQL [2] by defining a query over the pivot evolution tables

𝐹𝑢𝑡𝑢𝑟𝑒(𝑡, 𝑥, 𝑦, 𝑟𝑠, 𝑝𝑠, 𝑑, 𝑖) and 𝑃𝑎𝑠𝑡(𝑡, 𝑥, 𝑦, 𝑟𝑠, 𝑝𝑠, 𝑑, 𝑖) as defined in Section 5.2. The following query creates
three temporary views 𝐹𝐿𝑎𝑏𝑒𝑙𝑠, 𝑃𝐿𝑎𝑏𝑒𝑙𝑠 and 𝑇𝑚𝑝𝐿𝑎𝑏𝑒𝑙𝑠. The first two views contain for each pivot topic

Ke Li, et al.: Preprint submitted to Elsevier Page 18 of 29

(𝑡, 𝑖) the list of future and the past terms respectively. The query uses the aggregate function 𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑛𝑐𝑎𝑡
to concatenate the terms of the future and past topics for each pivot topic. The view TmpLabels combines
the previous two views in order to facilitate the generation of topic labels in the final query expression
applying the term label predicates defined in Section 4.2. The final query on view TmpLabels uses three set
operations 𝑔𝑟𝑜𝑢𝑝_𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡, 𝑔𝑟𝑜𝑢𝑝_𝑒𝑥𝑐𝑒𝑝𝑡 and 𝑔𝑟𝑜𝑢𝑝_𝑢𝑛𝑖𝑜𝑛 to compute the stable, emerging, decaying and
specific terms as defined in Section 4.1. The result is stored in a new table 𝑃 𝑖𝑣𝑜𝑡𝐿𝑎𝑏𝑒𝑙𝑠.

Listing 1: Topic labeling query
c r e a t e t a b l e P i v o t L a b e l s as (

with FLabels as (
s e l e c t t , i ,

group_concat (y . t e r m s) as f u t u r e T e r m s
from Future

group by t , i
) ,
PLabels as (

s e l e c t t , i ,
group_concat (x . t e r m s) as pas tTerms

from Past
group by t , i

) ,
TmpLabels as (

s e l e c t t , i ,
a r r a y _ i n t e r s e c t (t . t erms , f u t u r e T e r m s) as f u t u r e L a b e l ,
a r r a y _ i n t e r s e c t (t . t erms , pas tTerms) as p a s t L a b e l

from FLabels tab1 , PLabels t ab2
where t ab1 . t = t ab2 . t and t ab1 . i = t ab2 . i

)
s e l e c t t , i ,

a r r a y _ i n t e r s e c t (f u t u r e L a b e l , p a s t L a b e l) as s t a b l e ,
array_except (f u t u r e L a b e l , p a s t L a b e l) as emerging ,
array_except (p a s t L a b e l , f u t u r e L a b e l) as decaying ,
array_except (t . t erms , array_union (f u t u r e L a b e l , p a s t L a b e l)) as s p e c i f i c

from TmpLabels
)

6.4. Graph Metrics Computation
The liveliness, relative evolution degree, pivot evolution degree, split degree and convergence degree

of all pivot evolution graphs can directly be computed by a standard SQL aggregation query. The follow-
ing query computes these metrics for all 𝐹𝑢𝑡𝑢𝑟𝑒(𝑡, 𝑥, 𝑦, 𝑟𝑠, 𝑝𝑠, 𝑑, 𝑖) pivot evolution graphs. Due to the pre-
computation of pivot graphs, more graph metrics can be integrated flexibly and carried out immediately by
using this simple SQL aggregation query in the future:

Listing 2: Graph metrics computation query
c r e a t e t a b l e P ivotFuture as

s e l e c t t , i max (d) as l i v e l i n e s s ,
1−avg (r s) as revo l ,
1−avg (ps) as pevol ,
count (∗) / count (d i s t i n c t x) as s p l i t ,
count (∗) / count (d i s t i n c t y) as conv

from Future

Ke Li, et al.: Preprint submitted to Elsevier Page 19 of 29

Table 3
Dataset statistics
Datasets #𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 Period #𝑃𝑒𝑟𝑖𝑜𝑑𝑠 (total) #𝑇 /period

Glyphosate 4640 1994 − 2013 10 30
ISTEX 13 423 1991 − 2010 10 30
arXiv 1 156 114 1998 − 2017 10 100
Wiley 1 023 515 1996 − 2015 10 200

group by t , i

6.5. Pivot Queries
Pivot queries are translated into standard SQL query where each pivot filter becomes a predicate in the

query where clause:

Listing 3: Pivot query example
s e l e c t ∗

from PivotFuture t o p i c , P i v o t L a b e l s l a b e l
where t o p i c . t = l a b e l . t and t o p i c . i = l a b e l . i

and c o n t a i n s (l a b e l . emerging , 'deep␣learning')
and c o n t a i n s (l a b e l . s t a b l e , 'database')
and t o p i c . l i v e l i n e s s > 8 and t o p i c . s p l i t < 3

Observe that for evaluating the pivot query filters presented in Section 4.3 without the 𝑃𝑎𝑡ℎ-operator,
it is sufficient to store 𝐺𝑟𝑎𝑝ℎ (for visualization), 𝑃 𝑖𝑣𝑜𝑡𝐹𝑢𝑡𝑢𝑟𝑒, 𝑃 𝑖𝑣𝑜𝑡𝑃 𝑎𝑠𝑡, 𝑃 𝑖𝑣𝑜𝑡𝐴𝑙𝑙 (for filtering)
and 𝑃 𝑖𝑣𝑜𝑡𝐿𝑎𝑏𝑒𝑙𝑠. An efficient implementation of 𝑃𝑎𝑡ℎ queries, for example by using graph-labeling
schemes [37] for checking node reachability in acyclic graphs, is part of our future work.

7. Experiments
7.1. Experiment Setting

We conducted our experiments on four real-world data sets of different scales by using the titles and
the abstracts of each document. The smallest dataset contains 4640 documents about research related to the
Glyphosate herbicide. The second dataset ISTEX contains 13 423 articles in the domain of ecological eco-
nomics and environmental economics. The arXiv corpus is a repository of electronic preprints approved for
publication after moderation. This repository consists of 1.15 million scientific publications in the fields of
mathematics, physics, astronomy, electrical engineering, computer science (arXiv.CS), etc. The last dataset
is a sample of the Wiley online library which contains 1 million documents covering the fields of arXiv and
additional fields such as agriculture, art, humanities, etc.

The statistics over these four data sets are summarized in Table 3, where #𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 is the total number
of documents and #𝑇 is the number of topics per period we used in our experiments. All datasets cover
a different period of 20 years which is split into 10 slices by using a sliding 3-year time window with an
overlap of 1 year. The number of documents covered by each period is different but remains in the same order
of magnitude. In particular, we did not apply any sampling before generating the document-term matrix and
executing LDA topic extraction.

The EPIQUE workflow is implemented on top of Apache Spark version 2.4, Scala version 2.11 and Java
version 8. Our experiments have shown that most workflow stages can be efficiently executed on a single
node. In the following experiments on the real world datasets, we show the results obtained by the execution
on a single machine with a hyperthreaded 3.1 GHz Intel Core i7-7920HQ processor (4 CPU cores), 16 GB

Ke Li, et al.: Preprint submitted to Elsevier Page 20 of 29

RAM and a 512 GB SSD disc. For testing the scalability of the pivot computation algorithm (Section 7.4)
we use a Spark cluster with 11 nodes.

7.2. Diversity-based Topic Number Selection

(a) 1998-2000 (b) 2008-2010

Figure 6: Dissimilarity distribution (diversity) by number of topics in arXiv.CS

In order to build pivot graphs over more representative topic sets, we use topic diversity for estimating
the quality of a topic set. The topic diversity inside a period can be estimated by observing the dissimilarity
distribution over all topic pairs inside the period. For example, Figure 6(a) and Figure 6(b) show the topic
diversity obtained for different LDA models applied to 1164 documents published in arXiv.CS during 1998
to 2000 and 16 072 documents published in arXiv.CS from 2008 to 2010. Each LDA model corresponds
to a different number of topics #𝑇 ranging from 10 to 150. For example, for the smaller corpus, we can
see in Figure 6(a) that for a topic number #𝑇 ranging between 40 and 60, less than 5 percent (blue line) of
all topic pairs have a similarity value higher than 0.1 (dissimilarity value lower than 0.9) and any number
in this range is a good choice. Figure 6(b) shows that for the larger corpus, LDA achieves high diversity
even for 140 topics. Our experiments on the different scientific document archives have confirmed that the
diversity of topics produced by LDA mainly depends on the size of the analyzed document set (see Table 3).
In our implementation, we propose experts to generate the visual diversity diagram on a chosen period and to
choose a fixed number of topics in the optimal range, where higher topic numbers produce topics described
by a more specific vocabulary than lower numbers. The extension to an automatic grid-search based topic
number estimation step is straightforward.

7.3. LDA Topic Computation
𝐿𝐷𝐴 is applied on a document-term matrix containing the term frequency for each term/document pair.

This matrix has been obtained by preprocessing the full archives of raw text documents (title + abstract).
The preprocessing includes special character removal, tokenization, stopword removal, stemming and term
generation (including frequent ngram detection). This preprocessing takes up to 6 hours for large archives
like Wiley (> 1M documents), but is completely automatic and has to be done only once.

Figure 7(a) displays the 𝐿𝐷𝐴 performance on a single machine. We evaluated the total 𝐿𝐷𝐴 execution
time on the document term matrix of each corpus wrt. different CPU core numbers. For the two small
corpus Glyphosate and ISTEX, 𝐿𝐷𝐴 takes about 1 − 2 minutes. It is interesting to see that the cost slightly
increases with more CPUs, which can be explained by an increase of the parallelization overhead. For the

Ke Li, et al.: Preprint submitted to Elsevier Page 21 of 29

(a) LDA performance wrt. number of CPU cores (b) Average execution time for computing LDA VS. #𝑇

Figure 7: LDA performance evaluation on local machine

larger corpus with a million documents such as arXiv and Wiley, each LDA model takes between 2.5 and
7.5 minutes and the parallelization overhead is compensated by the benefit of parallelizing the LDA tasks.

Figure 7(b) presents the average execution time for computing the 𝐿𝐷𝐴 model per period by using 4
CPU cores with respect to different numbers of topics (#𝑇) for each corpus. The computation for LDA in
our workflow is only done once and the performance mainly depends on the number of documents and the
number of extracted topics per period. For example, for Glyphosate with 4640 documents and 30 topics per
period, LDA takes about 15 seconds, whereas it almost takes ten times more for the same number of topics
and about 1 million documents (arXiv). For the arXiv corpus, it takes about 110 seconds to compute a LDA
model with 30 topics, whereas extracting 200 topics doubles the execution time.

7.4. Pivot Graph Computation Performance
The generation of pivot graphs is the main computation step of our workflow including many join queries

necessary for the transitive closure computations (𝑇𝐶 graph) of pivot graphs for different 𝛽 values.
We compare two algorithms. The baseline algorithm (baseline) computes for each 𝛽 threshold, the pivot

graphs of all corresponding pivot topics from scratch whereas the semi-naive Algorithm 3 (SN) incrementally
reuses the result of previous iterations to compute the pivot graphs of new topics for a lower 𝛽 value.

Figure 8 gives a deeper insight of these costs and displays for each corpus, the transitive closure (TC)
computation time by the baseline algorithm (orange line) and the optimized semi-naive Algorithm 3 (yellow
line). The 𝛽 values span from 0.2 to 0.8. The baseline algorithm (gray bars) applies for each 𝛽 threshold
9 iterations (join queries) for generating the TC edges over all 10 periods, whereas the number of joins in
the semi-naive version (blue bars) varies between 2 and 7 iterations, except for the first 𝛽 value. It can be
seen that the execution time of the baseline algorithm (orange dashed line) and the execution time of the
semi-naive algorithm (dotted dashed line) is reduced by about 50%. We also can observe that, even if the
size of the joined table increases exponentially (blue solid line), the execution times mainly depends on the
number of iterations (joins) whereas the cost of each individual join remains constant.

To better illustrate the benefit of the incremental semi-naive evaluation (SN), we have conducted 3 groups
of experiments for each corpus with 𝛽 intervals ranging from 0.2 to 0.8 of different granularity. The results
are shown in Figure 9. For the first group of experiments, the interval step is 0.1 (7 𝛽-values), for the
second group 0.05 (13 𝛽 values) and for the third group 0.02 (31 𝛽 values). The bar chart represents the
total 𝑇𝐶 computation time and the line chart represents the total number of 𝑇𝐶 iterations. It is easy to see
that the computation time mainly depends on the number of iterations and the semi-naive (SN) algorithm
outperforms the baseline solution.

As shown in Figure 8, our optimized algorithm is capable of computing efficiently the pivot graphs for

Ke Li, et al.: Preprint submitted to Elsevier Page 22 of 29

(a) Glyphosate (b) ISTEX

(c) arXiv (d) Wiley

Figure 8: Correlation between the execution time and the number of iterations of transitive closure computation
for each 𝛽 iteration

Figure 9: Comparison between the baseline implementation and the optimized semi-naïve implementation

all real-world topic graphs on a single machine. The largest TC table is computed from the Wiley topic graph
which contains 2000 topics and 360 000 alignment edges and generates 16 364 pivot graphs with 379 428
edges (tuples). Our experiments also showed that the distributed computation on several nodes increases the
execution cost due to additional data shuffling and task management overhead. Whereas this observation
questions the choice of using Spark which is mainly designed for parallel data-intensive computations on
clusters. In particular, Spark uses the Hadoop file system (HDFS), which is designed to efficiently manage
large persistent DataFrames and to reduce distributed data access/storage overhead compared to a standard
file system solution. Nevertheless, the previous experiments do not take account of all workflow steps in-

Ke Li, et al.: Preprint submitted to Elsevier Page 23 of 29

cluding the document storage, preprocessing (stop-word removal, stemming, term extraction) steps which
can benefit of a distributed Spark architecture.

(a) Performance evaluation with synthetic datasets (b) Execution time of different steps to compute TC for
W1000 on the cluster VS. number of worker nodes

Figure 10: Scalability of TC computation with synthetic datasets

For illustrating the pivot graph performance on much larger graphs, we generated several synthetic
datasets (topic graphs) by duplicating the Wiley topic graph. The results of these experiments are shown in
fig. 10(a). Each line corresponds to the execution time of a synthetic topic graph Wx obtained by generating
𝑥 copies of the initial Wiley graph containing 2000 topics and 360 000 alignment edges. Thus W1 contains
the aforementioned topic graph whereas W2000 is the largest synthetic dataset with 4 million topics and 720
million alignment edges. This last graph generates 32 million pivot graphs with 7, 6 billion edges with a
total size of 30 GB on disk.

The number of physical worker nodes ranges from 1 to 8 and each worker node contains one Spark
executor configured with 4 CPU cores and 40 GB memory. Figure 10(a) illustrates the TC computation time
for the synthetic topic graphs 𝑊 1, 𝑊 50 𝑊 200, 𝑊 500, 𝑊 1000 and 𝑊 2000. The edges of all graphs are
distributed randomly on all worker nodes. As we can see, the performance benefit for 𝑊 1 and 𝑊 50 by
increasing the number of worker nodes is very low. As already mentioned, these two datasets cannot benefit
from the cluster since the cost of each task is small compared to the Spark task scheduling and data shuffling
overhead. For larger graphs, it is possible to achieve a 2𝑥 speedup by increasing the number of worker nodes.
We also see that a single node is not able to process 𝑊 2000. The relative benefit decreases with the number
of nodes. This is mainly due to the removal of duplicate edges during the TC computation, which needs data
shuffling between nodes and adds communication cost.

Figure 10(b) shows the total execution time according to the different TC computation steps applied
on 𝑊 1000 with one up to 8 worker nodes. The blue bars correspond to the iterative TC compution costs
shown in Figure 10(a) (yellow line). For example, the TC computation time on one node in Figure 10(b) is
650 seconds which corresponds to the point of the yellow line for one node in Figure 10(a). We apply the
distributed broadcast join algorithm implemented in Spark SQL14. The cost of broadcasting the TC table
to be joined at each iteration is shown in orange except for the single node architecture, which can apply a
simple centralized join operator. The total broadcast time mainly depends on the total data size exchanged
between all nodes and is almost constant for 2, 4 and 8 nodes. Loading the data from the distributed HDFS
file system into memory is improved up to 10 times (from 268 seconds to 26 seconds) by using 8 nodes
instead of 1 (grey bar on the top).

14https://mungingdata.com/apache-spark/broadcast-joins/

Ke Li, et al.: Preprint submitted to Elsevier Page 24 of 29

7.5. Pivot Topic Analysis
The metrics defined in Section 4.1 can be used for the structural and quantitative analysis of the evolution

of topics. The objective of this section is to explore the impact of the main parameters, i.e., the 𝛽 threshold
and the topic number #𝑇 , on the structure and the semantics of the generated pivot evolution graphs.

(a) 𝛽 = 0.2, #𝑇 = 50, #Pivot = 477, #Iso-
lated = 23

(b) 𝛽 = 0.2, #𝑇 = 50, #Pivot = 477, #Iso-
lated = 23

(c) 𝛽 = 0.2, #𝑇 = 50, #Pivot = 477, #Iso-
lated = 23

(d) 𝛽 = 0.5, #𝑇 = 50, #Pivot = 198, #Iso-
lated = 302

(e) 𝛽 = 0.5, #𝑇 = 50, #Pivot = 198, #Iso-
lated = 302

(f) 𝛽 = 0.5, #𝑇 = 50, #Pivot = 198, #Iso-
lated = 302

(g) 𝛽 = 0.5, #𝑇 = 150, #Pivot = 1014, #Iso-
lated = 486

(h) 𝛽 = 0.5, #𝑇 = 150, #Pivot = 1014, #Iso-
lated = 486

(i) 𝛽 = 0.5, #𝑇 = 150, #Pivot = 1014, #Iso-
lated = 486

Figure 11: Distribution of future pivot evolution graphs in arXiv with respect to three groups of metrics by
varying 𝛽 and #𝑇 .

Figure 11 shows the distribution of future pivot evolution graphs in arXiv wrt. three groups of metrics,
the relative evolution degree vs. the pivot evolution degree , the split degree vs. convergence degree and
the liveliness vs. the split degree. The figure is organized into 3 lines of 3 sub-graphs where each line
corresponds to identical fixed parameters 𝛽 and #𝑇 and each sub-graph corresponds to a group of metrics.
On the first line, we set 𝛽 = 0.2 and #𝑇 = 50. On the second line, #𝑇 remains the same (#𝑇 = 50) whereas
𝛽 is increased to 𝛽 = 0.5. On the third line, 𝛽 remains the same as in the 2nd line (𝛽 = 0.5) whereas #𝑇 is
increased to #𝑇 = 150. Each Figure only shows pivot topic graphs with at least two nodes and the number
of isolated topics is reported in the figure captions.

When comparing Figure 11(a) with Figure 11(d), we can see that for the lower threshold 𝛽 = 0.2, pivot
topics evolve more than for the higher value 𝛽 = 0.5. Lower 𝛽 values also allow pivot topics to connect
with more topics than higher 𝛽 values which only connect similar topics. This is shown in Figure 11(b)
which represents a large number of complex pivot topic graphs with higher split and convergence degrees

Ke Li, et al.: Preprint submitted to Elsevier Page 25 of 29

than the pivot topic graphs in Figure 11(e). The previous observation is also confirmed in Figure 11(c) and
Figure 11(f) which compare topic liveliness vs. split degree: the lower threshold 𝛽 = 0.2 generates pivot
graphs which are more complex than pivot graphs with the same liveliness scores generated by 𝛽 = 0.5.
Therefore, for a fixed #𝑇 , varying 𝛽 allows for revealing interesting evolution patterns at different levels of
detail where the evolution of some topic might be too complex for low 𝛽 values and become more intelligible
for higher 𝛽 values.

When the topic number per period increases (#𝑇 = 150 in Figures (g), (h) and (i)), the workflow gen-
erates more pivot graphs, some of which become very complex. For example, in Figure 11(g), pivot topics
tend to evolve a lot even for a low relative evolution degree. The pivot graphs in Figure 11(h) are much
more complex than the graphs generated by the same 𝛽-threshold with #𝑇 = 50 topics (Figure 11(e) and
Figure 11(f)). As we can see, the split degree attains a value of 19 compared with maximal split degree 1.5 in
Figure 11(e). The increase of #𝑇 reduces the proportion of isolated topics, 30% for #𝑇 = 150 compared with
60% for #𝑇 = 50. This is due to the existence of many similar topics in each period, which also increases
the probability that two topics can be aligned.

Our query language allows users to select topics in specific regions of the sub-figures in Figure 11. For
example query 𝑄1 in Example 5 chooses all topics which appear in the upper right window of Figures 11(a)
and on the right part of Figure 11(b) on the line corresponding to the liveliness value 5 in Figure 11(c).

Figure 12: Visualization of pivot graph 𝑓𝑢𝑡𝑢𝑟𝑒(495, 0.5) where #𝑇 = 150

Figure 12 shows a future arXiv pivot graph generated for #𝑇 = 150 and 𝛽 = 0.5, which corresponds to
a data point in Figure 11(h) where 𝑠𝑝𝑙𝑖𝑡𝑓𝑢𝑡𝑢𝑟𝑒(𝑡, 0.5) = 8.3. The graph connects topics with similarity higher
than 𝛽 = 0.5 and has nevertheless a high split and convergence degree. Figure 13 zooms into the rectangle
of Figure 12 and we can observe that the topics in the second period are very similar which explains why
the single root pivot topic is connected to more than 20 topics in the second period (this problem is solved
by the diversity test described in Section 7.2 which reduces the number of documents per period).

8. Conclusion and Future Work
We have presented a new framework for the visualisation and exploration of topic evolution networks

representing the progress and evolution of research in scientific document archives. This framework is based
on the pivot graph model which represents the evolution of each topic by a set of connected topic evolution
subgraphs. Using this model, the user can express complex filter queries to obtain the relevant pivot topic
graphs. The model has been implemented on top of Apache Spark using LDA and for topic extraction and
Spark SQL for computing pivot topic graphs. We also proposed an efficient incremental transitive closure
algorithm which reduces the number of SQL joins. A first prototype [24] is currently used to extract and
analyze evolution patterns for different scientific domains in collaboration with philosophers of science and
as part of the EPIQUE project.

As future work we intend to explore an alternative pivot graph materialization strategy based on
GraphX [40]. The current relational implementation is mainly based on efficient distributed map-reduce
algebra of Spark SQL. However, as we have seen in our experiments, the transitive closure computation
generates many join query tasks. Whereas each join is executed very rapidly, the task scheduling overhead
is important and the current implementation cannot completely benefit from the parallel Spark architecture.

Ke Li, et al.: Preprint submitted to Elsevier Page 26 of 29

Figure 13: Zoom in Figure 12

Therefore, we intend to apply the Pregel operator of GraphX which implements the bulk-synchronous par-
allel (BSP) messaging abstraction for computing pivot topic labels and statistics. In parallel, we study the
implementation of pivot filters over the original topic evolution graphs (without a preliminary materializa-
tion step) and the opportunities to exploit the monotonicity of certain pivot filters for optimizing complex
queries by cost-based query rewriting strategies.

References
[1] Andrei, V., Arandjelović, O., 2016. Complex temporal topic evolution modelling using the Kullback-Leibler divergence and the Bhattacharyya

distance. EURASIP Journal on Bioinformatics and Systems Biology 2016, 16.
[2] Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K., Meng, X., Kaftan, T., Franklin, M.J., Ghodsi, A., et al., 2015. Spark

sql: Relational data processing in spark, in: Proceedings of the 2015 ACM SIGMOD international conference on management of data, pp.
1383–1394.

[3] Bancilhon, F., 1986. Naive evaluation of recursively defined relations, in: On Knowledge Base Management Systems. Springer, pp. 165–178.
[4] Beykikhoshk, A., Arandjelović, O., Phung, D., Venkatesh, S., 2018. Discovering topic structures of a temporally evolving document corpus.

Knowledge and Information Systems 55, 599–632.
[5] Bhadury, A., Chen, J., Zhu, J., Liu, S., 2016. Scaling Up Dynamic Topic Models, in: Proceedings of the 25th International Conference

on World Wide Web, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland. pp.
381–390.

[6] Bhattacharyya, A., 1943. On a measure of divergence between two statistical populations defined by their probability distributions. Bulletin
of the Calcutta Mathematical Society 35, 99–109.

[7] Blei, D.M., Lafferty, J.D., 2006. Dynamic Topic Models, in: Proceedings of the 23rd International Conference on Machine Learning, ACM,
New York, NY, USA. pp. 113–120.

[8] Blei, D.M., Ng, A.Y., Jordan, M.I., 2003. Latent dirichlet allocation. Journal of machine Learning research 3, 993–1022.
[9] Chavalarias, D., Cointet, J.P.P., 2013. Phylomemetic patterns in science evolution—the rise and fall of scientific fields. PloS one 8, e54847.

[10] Chen, B., Tsutsui, S., Ding, Y., Ma, F., 2017. Understanding the topic evolution in a scientific domain: An exploratory study for the field of
information retrieval. Journal of Informetrics 11, 1175–1189.

[11] Cohen Priva, U., Austerweil, J.L., 2015. Analyzing the history of Cognition using Topic Models. Cognition 135, 4–9.
[12] Franz, M., Ward, T., McCarley, J.S., Zhu, W.J., 2001. Unsupervised and Supervised Clustering for Topic Tracking, in: Proceedings of the

24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, New York, NY, USA. pp.
310–317.

[13] Garfield, E., 1955. Citation Indexes for Science: A New Dimension in Documentation through Association of Ideas. Science 122, 108–111.
[14] Griffiths, T.L., Steyvers, M., 2004. Finding scientific topics. Proceedings of the National Academy of Sciences 101, 5228–5235.
[15] Hall, D., Jurafsky, D., Manning, C.D., 2008. Studying the History of Ideas Using Topic Models, in: Proceedings of the Conference on

Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Stroudsburg, PA, USA. pp. 363–371.

Ke Li, et al.: Preprint submitted to Elsevier Page 27 of 29

[16] He, Q., Chen, B., Pei, J., Qiu, B., Mitra, P., Giles, L., 2009. Detecting Topic Evolution in Scientific Literature: How Can Citations Help?, in:
ACM Conf. on Information and Knowledge Management, New York, NY, USA. pp. 957–966.

[17] Hofmann, T., 1999. Probabilistic latent semantic indexing, in: Proceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval, pp. 50–57.

[18] Hu, B., Dong, X., Zhang, C., Bowman, T.D., Ding, Y., Milojević, S., Ni, C., Yan, E., Larivière, V., 2015. A Lead-lag Analysis of the Topic
Evolution Patterns for Preprints and Publications. J. Assoc. Inf. Sci. Technol. 66, 2643–2656.

[19] Jaccard, P., 1912. The Distribution of the Flora in the Alpine Zone.1. New Phytologist 11, 37–50.
[20] Jo, Y., Hopcroft, J.E., Lagoze, C., 2011. The web of topics: discovering the topology of topic evolution in a corpus, in: Proceedings of the

20th international conference on World wide web, ACM. pp. 257–266.
[21] Kontostathis, A., Galitsky, L.M., Pottenger, W.M., Roy, S., Phelps, D.J., 2004. A survey of emerging trend detection in textual data mining,

in: Survey of text mining. Springer, pp. 185–224.
[22] Kuhn, T.S., Neurath, O., Kuhn, T.S., 1994. The Structure of scientific revolutions. Number ed.-in-chief: Otto Neurath ; Vol. 2 No. 2 in

International encyclopedia of unified science Foundations of the unity of science. 2nd ed., enlarged ed., Chicago Univ. Press, Chicago, Ill.
OCLC: 258260085.

[23] Kullback, S., Leibler, R.A., 1951. On information and sufficiency. Ann. Math. Statist. 22, 79–86.
[24] Li, K., Naacke, H., Amann, B., 2020a. Epique: Extracting meaningful science evolution patterns from large document archives, in: Interna-

tional Conference on Extending Database Technology (EDBT), Copenhagen, Denmark. pp. 619–522. Demonstration.
[25] Li, K., Naacke, H., Amann, B., 2020b. Exploring the evolution of science with pivot topic graphs, in: International Workshop on Big Data

Visual Exploration and Analytics BigVis (EDBT 2020), pp. 1–8.
[26] Lu, B., Ott, M., Cardie, C., Tsou, B.K., 2011. Multi-aspect sentiment analysis with topic models, in: 2011 IEEE 11th international conference

on data mining workshops, IEEE. pp. 81–88.
[27] Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J., Tsai, D., Amde, M., Owen, S., others, 2016. Mllib:

Machine learning in apache spark. The Journal of Machine Learning Research 17, 1235–1241.
[28] Miller, J.W., Harrison, M.T., 2013. A simple example of dirichlet process mixture inconsistency for the number of components, in: Advances

in neural information processing systems, pp. 199–206.
[29] Naacke, H., Ke, L., Amann, B., Curé, O., 2019. Efficient similarity-based alignment of temporally-situated graph nodes with apache spark,

in: 2019 IEEE International Conference on Big Data (Big Data), IEEE. pp. 4793–4798.
[30] Niu, Z., Hua, G., Wang, L., Gao, X., 2017. Knowledge-based topic model for unsupervised object discovery and localization. IEEE Transac-

tions on Image Processing 27, 50–63.
[31] Rubin, T.N., Chambers, A., Smyth, P., Steyvers, M., 2012. Statistical topic models for multi-label document classification. Machine learning

88, 157–208.
[32] Salatino, A.A., Osborne, F., Motta, E., 2018. AUGUR: Forecasting the Emergence of New Research Topics, in: ACM/IEEE on Joint Confer-

ence on Digital Libraries, ACM, New York, NY, USA. pp. 303–312.
[33] Shahaf, D., Guestrin, C., Horvitz, E., Leskovec, J., 2015. Information cartography. Commun. ACM 58, 62–73.
[34] Sun, X., Kaur, J., Milojević, S., Flammini, A., Menczer, F., 2013. Social Dynamics of Science. Scientific Reports 3, 1069.
[35] Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M., 2005. Sharing clusters among related groups: Hierarchical Dirichlet processes, in: Advances

in neural information processing systems, pp. 1385–1392.
[36] Wang, C., Blei, D., Heckerman, D., 2008. Continuous Time Dynamic Topic Models, in: Conference on Uncertainty in Artificial Intelligence,

AUAI Press, Arlington, Virginia, United States. pp. 579–586.
[37] Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X., 2006. Dual labeling: Answering graph reachability queries in constant time, in: 22nd

International Conference on Data Engineering (ICDE’06), IEEE. pp. 75–75.
[38] Wang, X., McCallum, A., 2006. Topics over Time: A non-Markov Continuous-time Model of Topical Trends, in: Int’l Conf. on Knowledge

Discovery and Data Mining, ACM, New York, NY, USA. pp. 424–433.
[39] Wheeler, D.L., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., DiCuccio, M., Edgar, R., Federhen, S.,

et al., 2007. Database resources of the national center for biotechnology information. Nucleic acids research 36, D13–D21.
[40] Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I., 2013. Graphx: A resilient distributed graph system on spark, in: First international

workshop on graph data management experiences and systems, pp. 1–6.
[41] Zhou, D., Ji, X., Zha, H., Giles, C.L., 2006. Topic Evolution and Social Interactions: How Authors Effect Research, in: Proceedings of the

15th ACM International Conference on Information and Knowledge Management, ACM, New York, NY, USA. pp. 248–257.
[42] Zuo, Z., Zhao, K., 2018. A Graphical Model for Topical Impact over Time, in: Proceedings of the 18th ACM/IEEE on Joint Conference on

Digital Libraries, ACM, New York, NY, USA. pp. 405–406.

A. Appendix
In the following examples, all pivot topics are located at the first period in each graph. Observe that

the user does not specify the 𝛽-threshold. Although Figure 14 and Figure 16 have the same structure, they
have different evolution pace (corresponding to different 𝛽 values). The pivot graph in Figure 14 has more
emerging terms (green part) whereas the pivot graph in Figure 16 has more stable terms (blue part) which
correspond to our queries to select high-evolution and low-evolution pivot topics respectively. Compared
with the pivot graph of topic 212 (Figure 16), pivot topic 331 (Figure 15) has a shorter future and a little bit

Ke Li, et al.: Preprint submitted to Elsevier Page 28 of 29

more complex evolution structure.

Figure 14: 𝑄4 ∶ 𝑟𝑒𝑣𝑜𝑙𝑓𝑢𝑡𝑢𝑟𝑒 ≥ 0.5 ∧ 𝑝𝑒𝑣𝑜𝑙𝑓𝑢𝑡𝑢𝑟𝑒 ≥ 0.6 ∧ 𝑠𝑝𝑙𝑖𝑡𝑓𝑢𝑡𝑢𝑟𝑒 ≤ 1.2 ∧ 𝑙𝑖𝑣𝑒𝑓𝑢𝑡𝑢𝑟𝑒 = 5

Figure 15: 𝑄5 ∶ 𝑟𝑒𝑣𝑜𝑙𝑓𝑢𝑡𝑢𝑟𝑒 ≤ 0.4 ∧ 𝑝𝑒𝑣𝑜𝑙𝑓𝑢𝑡𝑢𝑟𝑒 ≤ 0.5 ∧ 𝑠𝑝𝑙𝑖𝑡𝑓𝑢𝑡𝑢𝑟𝑒 ≥ 1.5 ∧ 𝑙𝑖𝑣𝑒𝑓𝑢𝑡𝑢𝑟𝑒 = 3

Figure 16: 𝑄6 ∶ 𝑟𝑒𝑣𝑜𝑙𝑓𝑢𝑡𝑢𝑟𝑒 ≤ 0.4 ∧ 𝑝𝑒𝑣𝑜𝑙𝑓𝑢𝑡𝑢𝑟𝑒 ≤ 0.5 ∧ 𝑠𝑝𝑙𝑖𝑡𝑓𝑢𝑡𝑢𝑟𝑒 ≤ 1.2 ∧ 𝑙𝑖𝑣𝑒𝑓𝑢𝑡𝑢𝑟𝑒 = 5

Ke Li, et al.: Preprint submitted to Elsevier Page 29 of 29

