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Abstract. Many problems arising in biology display a complex system dy-

namics at different scales of space and time. For this reason, multiscale math-

ematical models have attracted a great attention as they enable to take into
account phenomena evolving at several characteristic lengths. However, they

require advanced model reduction techniques to reduce the computational cost

of solving all the scales.
In this work, we present a novel version of the Keller-Segel model of chemotaxis

on embedded multiscale geometries, i.e., one-dimensional networks embedded

in three-dimensional bulk domains. Applying a model reduction technique
based on spatial averaging for geometrical order reduction, we reduce a fully

three-dimensional Keller-Segel system to a coupled 3D-1D multiscale model. In

the reduced model, the dynamics of the cellular population evolves on a one-
dimensional network and its migration is influenced by a three-dimensional

chemical signal evolving in the bulk domain. We propose the multiscale ver-
sion of the Keller-Segel model as a realistic approach to describe the invasion

of malignant cancer cells along the collagen fibers that constitute the extra-

cellular matrix. Performing several numerical simulations, we investigate how
the invasive abilities of the cells are affected by the topography of the network

(i.e., matrix fibers orientation and alignment) as well as by three-dimensional

spatial effects. We discuss these results in light of biological evidences.

1. Introduction. In many complex biological systems the macroscopic, visible dy-
namics is the result of exchanges and communications between features that act at
different scales of time and space. Working like microscopic lens, mathematical
modeling allows to capture the variety of phenomena that characterize multiscale
systems. For this reason, in recent years the development, analysis and numeri-
cal resolution of multiscale models has become a fertile field of research in applied
mathematics. Multiscale models have been successful in the description of a large
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variety of phenomena, in particular in the context of biomedical sciences. For in-
stance, cellular growth and migration are regulated by the much smaller proteins
inside the cells [40]; metastatic invasion is influenced by the reciprocal communi-
cations between the cells and the surrounding tissue [49]; in microcirculation and
cardiac tissue perfusion, oxygen and nutrients can be exchanged between the tissue
and the network of small capillary vessels [18, 38]. In the latter field of applica-
tion, the multiscale feature arises from exchanges between embedded geometries:
small-scale networks of capillaries are embedded in a surrounding bulk structure
(the cardiac tissue).
Despite the growing performance of computers, the numerical resolution of realistic
multiscale problems could remain very demanding from a computational viewpoint,
as it would require very fine grids to solve the smallest scales. As a consequence,
significant e↵orts have been put into the development and analysis of novel models
and numerical methods that allow to reduce the computational complexity of mul-
tiscale problems. Here, we focus on the topological model reduction method [17,
28, 41] that, based on spatial averaging techniques, enables to reduce a fully three-
dimensional problem involving embedded multiscale geometries into one that fea-
tures coupled partial di↵erential equations with di↵erent dimensions, i.e., 3D-1D.
The formulation and the analysis of coupled 3D-1D problems was performed by
D’Angelo [16, 17, 18] and applied in a large variety of contexts, for instance micro-
circulation [38] and drug delivery for tumor treatments [10].

In this paper we present, derive and simulate a novel version of the Keller-Segel
model of chemotaxis on embedded multiscale geometries, whereby a one-dimensional
network is embedded in a three-dimensional bulk domain.
In biology, chemotaxis refers to the ability of cells, bacteria or other organisms to
orient their movement in response to gradients of chemical signals present in the
environment. Chemotaxis is known to play a fundamental role in many biological
processes, such as bacterial self-organization, wound healing, cancer growth and
metastasis formation [25, 45, 50]. Mathematically, chemosensitive movement of bi-
ological populations can be described by the well-known Keller-Segel model [26, 27],
a system of coupled partial di↵erential equations describing the chemotaxis-driven
self-organization of unicellular organisms orchestrated by the means of chemical sig-
nals emitted by the organisms themselves. The Keller-Segel system has attracted
great attention thanks to its ability to faithfully reproduce chemotactic movement
and numerous versions have been proposed. In fact, other than the original contin-
uum population-based version, di↵erent scales of details can be considered, i.e., mi-
croscopic individual-based and mesoscopic descriptions [9, 24, 34, 37]. Recently, the
Keller-Segel system has been investigated numerically and analytically on network-
shaped domains [6, 7, 8] which intrinsically incorporate multidimensional e↵ects as
they allow to enrich plain one-dimensional dynamics with multidimensional features.
Furthermore, in [31, 32] the authors consider coupled multidimensional bulk-surface
(i.e., 3D-2D) versions of the system. We refer the interested reader to the surveys [4,
35] for a complete overview of the multiscale versions of the Keller-Segel model and
its numerous variants.
In this work, we apply the topological model reduction technique to derive a cou-
pled 3D-1D formulation of the Keller-Segel model on embedded multiscale geome-
tries, whereby a chemosensitive cellular population is constrained to move along
a one-dimensional network embedded in a three-dimensional domain in which are
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expressed the chemical signals that influence cellular migration. Compared to pre-
vious results, the novelty of the present paper is to incorporate for the first time
embedded multiscale features by considering one-dimensional network-shaped do-
mains embedded in a three-dimensional bulk domain, therefore with a dimensional
gap greater than 1.

The ultimate goal of our study stems from the willing to employ an embedded
multiscale Keller-Segel-type system to model the invasion of potentially metastatic
cancer cells in the extracellular matrix (ECM), the highly organized structure of
fibers, proteins and other macromolecules that provides the sca↵old for cellular
migration. In fact, biological evidences highlight that invasive cancer cells are able to
remodel their microenvironment, locally degrade the ECM and exploit the network
of fibers to spread in the surrounding tissue. Therefore, the intrinsic multiscale
character of cancer invasion requires suitable mathematical models that take into
account the dynamics acting on di↵erent scales. The problem of describing cellular
migration and cancer invasion in the ECM has been tackled by several authors
and the need to employ a multiscale approach is evident. Whilst some works have
investigated individual-based models [19, 46] or continuum ones [5, 11, 12, 13],
multiscale and hybrid discrete-continuum approaches seem predominant; see, for
instance, the works of Anderson et al. [2, 3], Chaplain and collaborators [42, 47,
49], Chauvière and Preziosi [14, 15], Loy and Preziosi [30], Painter [36], Rocha et
al. [44] and references therein. Some of the mentioned works explore the importance
of the orientation of matrix fibers on cellular infiltration and incorporate this factor
in the model as a parameter or a variable. However, the multiscale 3D-1D approach
we propose here paves the way towards more realistic models of cancer invasion, as
it allows to investigate how the infiltration of cancer cells in the tissue is influenced
by both the topography of the network of ECM fibers on which they migrate and
the interplay between local and three-dimensional e↵ects.

Here, we consider the dynamics of a cellular population of density u(t, x) that
emits a chemical signal of concentration c(t, x), called chemoattractant, described
by the minimal Keller-Segel model:

8
><

>:

@u

@t
�r · (D1 ru� �uv) = 0, t > 0, x 2 D,

@c

@t
�D2 �c = ↵u ID � � c, t > 0, x 2 ⌦ ⇢ R3

,

(1)

where ⌦ ⇢ R3 is a regular bounded three-dimensional domain, D represents the
domain on which the cellular dynamics takes place and v models the velocity field
of the cellular population, proportional to chemical gradients.
Starting from a fully three-dimensional Keller-Segel system, whereby D ⌘ ⌦ ⇢ R3

and v = rc in System (1), in Section 2 we assume that the cellular population
is restricted to move in a generalized three-dimensional cylinder ⌃ ⇢ R3 entirely
embedded in the bulk domain ⌦, therefore D ⌘ ⌃ ⇢ R3. We refer to this model
as the restricted 3D Keller-Segel model. In Section 3, we let the cylinder ⌃ shrink
to its one-dimensional centerline ⇤ and we apply the topological model reduction
technique [17, 28] to derive the coupled 3D-1D version of System (1), whereby
D ⌘ ⇤ ⇢ R and v is the spatial average of the gradient of the chemoattractant
concentration c. As a consequence, the reduced 3D-1D system features two partial
di↵erential equations with di↵erent dimensions: a one-dimensional equation for u

on the network ⇤ and a three-dimensional equation for c in the bulk domain ⌦.
We numerically solve the coupled 3D-1D Keller-Segel model in Section 4, where we
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also present the finite element scheme employed for the discretization. We consider
three di↵erent one-dimensional manifolds: a segment in Subsection 4.2, a bifur-
cated network in Subsection 4.3 and more complex networks with several branches
in Subsection 4.4.
In Sections 5 and 6 we apply the coupled 3D-1D framework to a model of can-
cer invasion in the tissue. More in details, in Section 5 we briefly summarize the
background notions on cellular invasion in biological tissues and, inspired by the
Keller-Segel-type model presented in [3], we derive a multiscale multidimensional
model of cancer invasion. In this model, cells migrate along the branches of a
one-dimensional network and their movement is influenced by the matrix density
and the chemical signal produced by the cells, both three-dimensional quantities.
In Section 6, we perform numerical experiments of the model on several network
topologies and we discuss the numerical results in light of the biological findings. Fi-
nally, in Section 7, we conclude the paper, present possible numerical advancements
and provide insights on further researches.

2. The restricted 3D Keller-Segel model. In a regular, bounded domain ⌦ ⇢
R3, let u(t, x) be the density of a cellular population at time t > 0 and at position x 2
⌦ and let c(t, x) be the concentration of the chemical signal, called chemoattractant.
We consider the fully three-dimensional Keller-Segel system

8
>>><

>>>:

@u

@t
�r · (D1 ru� �urc) = 0,

@c

@t
�D2 �c = ↵u� � c,

t > 0, x 2 ⌦ ⇢ R3
, (2)

with assigned nonnegative initial conditions

u(0, x) = u0(x) � 0, and c(0, x) = c0(x) � 0, in ⌦.

Moreover, we prescribe no-flux boundary conditions on the boundary @⌦ of ⌦ for
the cellular density

(�D1ru+ �urc) · n⌦ = 0, on @⌦,

and Dirichlet and mixed-Robin boundary conditions for the chemical concentration
c on @⌦DIR and @⌦MIX respectively:

c = cext, on @⌦DIR
,

�D2rc · n⌦ = �c (c� c
?) , on @⌦MIX

,

where n⌦ denotes the outward unit vector normal to @⌦ and where @⌦DIR[@⌦MIX =
@⌦.
The first equation in System (2) describes the evolution in time of cells as the super-
position of two e↵ects: random, unbiased cellular movement modeled according to
the Fickian law of di↵usion with di↵usivity D1 > 0, and chemotactic movement in
the direction of greater concentration of the chemoattractant c, modeled as an ad-
vection term with velocity field �rc and chemotactic sensitivity � > 0. The second
equation describes random di↵usive movement for c, with di↵usion rate D2 > 0,
depletion of the chemoattractant at a rate � > 0 and production by the cells at a
rate ↵ > 0.
In this section, we present the restricted version of the fully three-dimensional
Keller-Segel model (2), whereby we suppose that cells are constrained to move
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in a generalized three-dimensional cylinder embedded in the bulk domain ⌦.
We shall first set up the geometrical configuration of the three and one-dimensional
problems. This will allow us to apply the topological model reduction technique to
derive the reduced 3D-1D Keller-Segel model in the subsequent section.

2.1. Geometry. Let �(s) = [�1(s),�2(s),�3(s)], be a C
2�regular curve in the

three-dimensional space parametrized by the arc-length s 2 (0, S), S > 0. We as-
sume that

���0(s)
�� = 1 such that the arc-length and the coordinate coincide. We

call [⇠(s),⌫(s), ⇣(s)] the Frenet’s frame related to �, namely the tangent, normal
and binormal unit vectors, respectively.
We define a generalized cylinder ⌃ as the volume obtained by sweeping a two-
dimensional surface (i.e., the cross-section) along �. For each s 2 (0, S) we define
the cross-section through the parametrization D(s) = [x(r, ✓), y(r, ✓)] : (0, R(s)) ⇥
(0,⇥(s)) ! R2 and we assume that D(s) is convex for any s. Let @D(s) :=
[x(R(s), ✓), y(R(s), ✓)] : (0,⇥(s)) ! R2 be the boundary of the cross-section D
and assume it is a piecewise C

2�regular curve. Then, the generalized cylinder ⌃
can be defined as the volume

⌃ = {�(s) + x(r, ✓)⌫(s) + y(r, ✓) ⇣(s), r 2 (0, R(s)), ✓ 2 (0,⇥(s)), s 2 (0, S)},
(3)

of centerline

⇤ = {�(s), s 2 (0, S)} ,
and lateral boundary

� = {�(s) + x(R(s), ✓)⌫(s) + y(R(s), ✓) ⇣(s), ✓ 2 (0,⇥(s)), s 2 (0, S)}.

Moreover, we denote by �0 = {�(0) +D(0)} and �S = {�(S) +D(S)} respectively
the top and bottom boundaries of ⌃. We assume that ⌃ is fully embedded in ⌦,
i.e., the distance between @⌃ and @⌦ is strictly positive. Moreover, we let the
cross-sections D(s) change size but not shape with s.
We can exploit the structure of the generalized cylinder to decompose the integrals
on ⌃ as follows: for a su�ciently regular function w defined on ⌃, we write

Z

⌃
w d! =

Z

⇤

Z

D(s)
w d� ds =

Z

⇤
|D(s)|w ds, (4)

where w(s) : ⇤ ! R denotes the mean value of w on the cross-section D(s) and is
defined as

w(s) :=
1

|D(s)|

Z

D(s)
w d�.

2.2. The Keller-Segel model with restricted cell motility. We now assume
that the cells move preferentially along the generalized cylinder ⌃ defined in (3).
This assumption is motivated by the observation that cells in tissues move by contact
guidance, which means that they have the tendency to follow fibers orientation [36].
To enforce this assumption in the original three-dimensional Keller-Segel model (2),
we let ⇢⌃ be a regular weight function, entirely supported in ⌃, that represents the
probability of a cell to travel away from the centerline ⇤ of the cylinder. Then, we
restrict the motility of cells to the cylinder ⌃ by considering the following equation
for the cellular density:

@u

@t
�r · (� ⇢⌃) = 0, � := D1ru� �urc, in ⌦. (5)
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We now want to prove that the assumption that the cellular flux is confined in the
cylinder ⌃ leads to a restricted 3D Keller-Segel model, in which the cellular density
u is nonvanishing only in ⌃. In other words, we prove that if the initial density u0

is supported in ⌃ then
Z

⌦
u d! ⌘

Z

⌃
u d!, for all t > 0. (6)

In fact, since ⌦ is bounded, we can apply the theorem on the partitions of the unity
to find two functions ⇧⌃ and ⇧?

⌃ that verify

• 0  ⇧⌃, ⇧?
⌃  1,

• ⇧⌃ +⇧?
⌃ = 1,

in ⌦. In particular, ⇧⌃ = 1 and ⇧?
⌃ = 0 in ⌃. Then

Z

⌦

@u

@t
d! =

Z

⌦

@u

@t
⇧⌃ d! +

Z

⌦

@u

@t
⇧?

⌃ d!.

Let us consider first the second term. We use the definition of ⇧?
⌃ and Equation (5)

to discover Z

⌦

@u

@t
⇧?

⌃ d! =

Z

⌦/⌃

@u

@t
⇧?

⌃ d!

=

Z

⌦/⌃
r · (� ⇢⌃)⇧?

⌃ d! ⌘ 0,

since ⇢⌃ is entirely supported in ⌃. As for the first term, we write
Z

⌦

@u

@t
⇧⌃ d! =

Z

⌃

@u

@t
⇧⌃ d! +

Z

⌦/⌃

@u

@t
⇧⌃ d!.

Using again Equation (5) and arguing as before, we infer
R
⌦/⌃

@u
@t ⇧⌃ d! ⌘ 0. Fi-

nally, recalling that ⇧⌃ = 1 in ⌃, we find that
Z

⌦

@u

@t
⇧⌃ d! =

Z

⌃

@u

@t
⇧⌃ d! ⌘

Z

⌃

@u

@t
d!,

which leads to (6) after integration in time and taking into account the assumption
that

R
⌦ u0 d! ⌘

R
⌃ u0 d!.

The above arguments lead to consider the following restricted version of the three-
dimensional Keller-Segel system (2):

8
><

>:

@u

@t
�r · (� ⇢⌃) = 0, t > 0, x 2 ⌃ ⇢ R3

,

@c

@t
�D2 �c = ↵u I⌃ � � c, t > 0, x 2 ⌦ ⇢ R3

,

(7)

where I⌃ denotes the indicator function of ⌃. On the boundary of ⌃, we prescribe
no-flux boundary conditions for u: This might deserve a short motivation: assuming
cells can move only when they are enough to the fiber?

(�D1ru+ �urc) · n⌃ = 0, on @⌃,

where n⌃ is the normal unit vector pointing outward the boundary of the cylinder ⌃.
In the remaining of the paper, we assume that the transversal diameter of ⌃ is much
smaller then the diameter of ⌦, i.e.,

max
s2(0,S)

diam(D(s)) ⌧ diam(⌦).
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When the domain ⌃ consists of many cylinders, such as in the context of the bio-
logical applications mentioned in the introduction, the numerical resolution of the
three-dimensional problem (7) could become very demanding. For this reason, we
let ⌃ shrink to its one-dimensional centerline ⇤ and derive a multiscale multidimen-
sional version of problem (7).

3. The coupled 3D-1D Keller-Segel model. We are now in position to apply
the topological model reduction to the restricted fully three-dimensional Keller-
Segel system (5). We discuss separately the derivation of the equation for the
cellular density u and for the chemoattractant c when the three-dimensional cylinder
⌃ shrinks to its centerline ⇤. We then consider the generalization of the model to
a one-dimensional network with several branches.

3.1. Topological model reduction of the problem on ⌃. Let P be an arbitrary
portion of the generalized cylinder ⌃, delimited by the lateral surface �P and the
two cross-sections D(s1) and D(s2), with 0 < s1 < s2 < S.
Integrating the equation for u on P and applying the divergence theorem we get

Z

P

@u

@t
d! �

Z

P
r · (� ⇢⌃) d! =

Z

P

@u

@t
d! �

Z

@P
(� ⇢⌃) · n⌃ d�.

Thanks to the integral decomposition formula in (4), we simplify the first term as
Z

P

@u

@t
d! =

Z s2

s1

Z

D(s)

@u

@t
d� ds =

d

dt

Z s2

s1

|D(s)|u ds.

As for the second term, we decompose the boundary of P to get
Z

@P
(� ⇢⌃) ·n⌃ d� =

Z

�P

(� ⇢⌃) ·n⌃ d�+

Z

D(s1)
(� ⇢⌃) ·n⌃ d�+

Z

D(s2)
(� ⇢⌃) ·n⌃ d�.

The boundary condition for the cellular flux on @⌃, together with the fundamental
theorem of the integral calculus gives

Z

@P
(� ⇢⌃) · n⌃ d� =

Z

D(s1)
(� ⇢⌃) · n⌃ d� +

Z

D(s2)
(� ⇢⌃) · n⌃ d�

= �
Z

D(s1)

✓
D1

@u

@s
� �urc · �

◆
⇢⌃ d�

+

Z

D(s2)

✓
D1

@u

@s
� �urc · �

◆
⇢⌃ d�

=

Z s2

s1

d

ds

Z

D(s)

✓
D1

@u

@s
� �urc · �

◆
⇢⌃ d� ds.

Similarly to (4), we now define the weighted mean value – with weight ⇢⌃ – for a
general regular function w as

w⌃(s) :=
1

|D(s)|

Z

D(s)
w ⇢⌃ d�.

As a consequence, we get
Z

@P
(� ⇢⌃) · n⌃ d� =

Z s2

s1

d

ds

"
|D(s)|

✓
D1

@u

@s
� �urc · �

◆

⌃

#
ds.

We now suppose that u is uniform on each cross-section, i.e.,

u(t, s, r, ✓) = U(t, s).
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As a consequence, U = U and, recalling that all parameters are constants, we obtain
✓
D1

@u

@s
� �urc · �

◆

⌃

= D1 ⇢
@U

@s
� �U vc · �,

where ⇢ := 1
|D(s)|

R
D(s) ⇢⌃ d� and vc := (rc)⌃.

Thanks to the generality of P, the problem on ⌃ can be reduced to the problem on
its centerline ⇤. Hence, we get

|D(s)|@U
@t

� @

@s

✓
|D(s)|D1 ⇢

@U

@s
� |D(s)|�U vc · �

◆
= 0, on ⇤, (8)

complemented with the following conditions on the boundary of ⇤:

�|D(s)|D1 ⇢
@U

@s
+ |D(s)|�U vc · � = 0, for s = 0, S.

Finally, we consider the variational formulation of the reduced one-dimensional
problem (8). After multiplying Equation (8) by a test function  2 H

1(⇤) and
integration by parts, we get

✓
@U

@t
, 

◆

⇤,|D(s)|
+

✓
D1 ⇢

@U

@s
� �U vc · �,

@ 

@s

◆

⇤,|D(s)|
= 0, (9)

where we used the short-hand notation

(f, g)⇤,|D(s)| :=

Z

⇤
|D(s)| f(s) g(s) ds.

3.2. Topological model reduction of the problem on ⌦. Let ' 2 H
1
@⌦DIR(⌦).

Multiplying the second equation in (7) by ' and integrating by parts yields
Z

⌦

@c

@t
' d! +

Z

⌦
D2rcr' d!+

Z

@⌦MIX

�c c'd� +

Z

⌦
� c' d!

=

Z

@⌦MIX

�c c
?
' d� +

Z

⌦
↵u' I⌃ d!.

The last integral can be simplified applying the topological model reduction. In
order to achieve this, we write the solution u and the test function ' as the sum of
their average on D(s) and some perturbation:

u = u+ ˜̃u, ' = '+ ˜̃',

where we suppose that ˜̃u and ˜̃' have zero-average on each cross-section D(s).
Thanks to this assumption, we get

Z

⌦
↵u' I⌃ d! =

Z

⇤
↵

Z

D(s)
(u+ ˜̃u) ('+ ˜̃') d� ds

=

Z

⇤
↵

Z

D(s)
u v d� ds+

Z

⇤
↵

Z

D(s)

˜̃u ˜̃' d� ds.

Assuming that the product of the perturbations is small, namely that
Z

D(s)

˜̃u ˜̃' d� ⇡ 0,

and recalling that u = U = U we get
Z

⌦
↵u' I⌃ d! =

Z

⇤
↵|D(s)|U ' ds.
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As a consequence, the variational formulation for the problem on ⌦ becomes
✓
@c

@t
,'

◆

⌦

+ (D2rc,r')⌦ + (�c c,')@⌦MIX + (� c,')⌦

= (�c c
?
,')@⌦MIX +

�
↵U,'

�
⇤,|D(s)| ,

(10)

for all ' 2 H
1
@⌦DIR(⌦), where as in the previous subsection we have introduced the

short-hand notations

(f, g)� :=

Z

�
f g d!, with � 2

�
⌦, @⌦MIX

 
. (11)

3.3. Extension of the model to a network. We now discuss the extension of
the coupled 3D-1D Keller-Segel model (9)–(10) to the case where ⇤ is a network.
We define the network as a set of branches

�i(s) = [�i1(s),�
i
2(s),�

i
3(s)], s 2 (0, Si), i = 1, . . . , N, N 2 N,

that are C
2�regular three-dimensional curves connected by the vertexes j 2 J .

We call Kj the set of the indexes i of the branches �i(s) that are connected to the
vertex j 2 J . We decompose Kj into two subsets: K�

j , the set of indexes of the

branches originating in j, and K+
j , the set of indexes of the branches that end in

the vertex j. Finally, we define B as the set of indexes of dead-end branches, that
can similarly be split up into the subsets B� and B+. Generalizing the geometrical
setting presented in Section 2, we can define ⌃ as the union of the generalized
cylinders obtained by sweeping the two-dimensional cross-sections D(s), s 2 (0, Si),
along �i. The centerlines of ⌃ are now the one-dimensional sets

⇤i = {�i(s), s 2 (0, Si)}, i = 1, . . . , N,

of lengths Si.
The topological model reduction technique presented for the single-branch case can
also be applied to the network setting branch by branch. For i = 1, . . . , N , we set

Ui := U

���
⇤i

,

and we formulate the coupled 3D-1D Keller-Segel model on the network ⇤ = [N
i=1⇤i

as follows:
8
>><

>>:

|D(s)|@Ui

@t
� @

@s

✓
|D(s)|D1 ⇢

@Ui

@s
� |D(s)|�Ui vc · �i

◆
= 0, on ⇤i,

@c

@t
�D2 �c = ↵U �⇤ � � c, in ⌦.

(12a)

(12b)

In addition to the boundary conditions on @⇤ and @⌦

|D(s)|
✓
�D1 ⇢

@Ui

@s
+ �Ui vc · �i

◆ ���
s=0

= 0, 8i 2 B�
,

|D(s)|
✓
�D1 ⇢

@Ui

@s
+ �Ui vc · �i

◆ ���
s=Si

= 0, 8i 2 B+
,

c = cext, on @⌦DIR
,

�D2rc · n⌦ = �c (c� c
?) , on @⌦MIX

,

(13)
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we also prescribe Neumann-Kirchho↵ conditions to ensure flux conservation at each
vertex of the network that is not dead-end: for j 2 J we impose

X

i2K�
j

|D(s)|
✓
�D1 ⇢

@Ui

@s
+ �Ui vc · �i

◆ ���
s=0

=
X

i2K+
j

|D(s)|
✓
�D1 ⇢

@Ui

@s
+ �Ui vc · �i

◆ ���
s=Si

.

(14)

3.4. Variational formulation. To write the variational formulation of the cou-
pled 3D-1D Keller-Segel model, we define the Sobolev space H

1(⇤) as the space
of continuous functions V : ⇤ ! R, such that their restrictions Vi to ⇤i is in
H

1(⇤i), [28]. Thus, for U,  2 H
1(⇤) we multiply the density equation in (12) by

 and integrate by parts to get

NX

i=1

"✓
@Ui

@t
, i

◆

⇤i,|D(s)|
+

✓
D1 ⇢

@Ui

@s
� �Ui vc · �i,

@ i

@s

◆

⇤i,|D(s)|

#

=
NX

i=1

|D(s)|
✓
�D1 ⇢

@Ui

@s
+ �Ui vc · �i

◆
 i

���
s=0

�
NX

i=1

|D(s)|
✓
�D1 ⇢

@Ui

@s
+ �Ui vc · �i

◆
 i

���
s=Si

.

Using the fact that  is continuous on ⇤, we can factorize the test functions. More-
over, the no-flux boundary conditions on the dead-end branches B (13) and the
flux-continuity Neumann-Kirchho↵ conditions (14) at the junctions make the right-
hand side vanish. Thus, the variational formulation of the problem (12) is

✓
@U

@t
, 

◆

⇤,|D(s)|
+

✓
D1 ⇢

@U

@s
� �U vc · �,

@ 

@s

◆

⇤,|D(s)|
= 0, (15a)

coupled with

✓
@c

@t
,'

◆

⌦

+ (D2rc,r')⌦ + (�c c,')@⌦MIX + (� c,')⌦

= (�c c
?
,')@⌦MIX +

�
↵U,'

�
⇤,|D(s)| ,

(15b)

for all  2 H
1(⇤) and ' 2 H

1
@⌦DIR(⌦).

4. Numerical simulations.

4.1. Numerical scheme. Let us consider a quasi-uniform partition T h
⌦ of ⌦ and

an admissible partition T h
⇤ of ⇤ and let V ⌦

h and V
⇤
h be two finite element spaces of

piecewise linear functions defined on T h
⌦ and T h

⇤ respectively.
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We consider the following semi-implicit spatio-temporal discretization of (15a)-
(15b): for k = 0, 1, . . . , NT , find U

k+1
h 2 V

⇤
h and c

k+1
h 2 V

⌦
h such that

8
>>>>>>>>>><

>>>>>>>>>>:

1

�t

�
U

k+1
h , h

�
⇤,|D(s)|

+

 
D1 ⇢

dUh

ds

k+1

� �U
k+1
h vk

c,h · �, d h

ds

!

⇤,|D(s)|

=
1

�t

�
U

k
h , h

�
⇤,|D(s)| ,

1

�t

�
c
k+1
h ,'h

�
⌦
+
�
D2rc

k+1
h ,r'h

�
⌦
+
�
� c

k+1
h ,'h

�
⌦

+
�
�c c

k+1
h ,'h

�
@⌦MIX =

1

�t

�
c
k
h,'h

�
⌦
+ (�c c?h,'h)@⌦MIX +

�
↵U

k
h ,'h

�
⇤,|D(s)| ,

(16)
for all  h 2 V

⇤
h and 'h 2 V

⌦
h . In System (16), we have introduced the discretized

velocity vk
c,h :=

⇣
rc

k
h

⌘

⌃
and, for k = 0, we suppose U

0
h and c

0
h given nonnegative

initial conditions, projections of u0 and c0 on the respective discrete spaces.

Setting N
⇤
h := dimV

⇤
h and N

⌦
h := dimV

⌦
h , we let { h

l }
N⇤

h
l=1 and {'h

l }
N⌦

h
l=1 be two

independent sets of finite elements basis respectively of V ⇤
h and V

⌦
h .

We consider the finite element approximations of the solutions

U
k
h =

N⇤
hX

l=1

U
k
l  

h
l (s), s 2 ⇤,

c
k
h :=

N⌦
hX

l=1

c
k
l '

h
l (x), x 2 ⌦,

and collect their degrees of freedom in the vectors of unknowns

Uk := [Uk
1 , · · · , Uk

N⇤
h
]T , and ck := [ck1 , · · · , ckN⌦

h
]T .

Then, we define the finite element matrices for the problem on ⇤

[M⇤]n,l :=
�
 
h
l , 

h
n

�
⇤,|D(s)| , n, l = 1, . . . , N⇤

h ,

⇥
Ak

⇤

⇤
n,l

:=

✓
D1 ⇢

d h
l

ds
� � 

h
l vk

c,h · �, d 
h
n

ds

◆

⇤,|D(s)|
, n, l = 1, . . . , N⇤

h ,

for the problem on ⌦

[M⌦]n,l :=
�
'
h
l ,'

h
n

�
⌦
, n, l = 1, . . . , N⌦

h ,

[A⌦]n,l :=
�
D2r'h

l ,r'h
n

�
⌦
+
�
� '

h
l ,'

h
n

�
⌦
+
�
�c '

h
l ,'

h
n

�
@⌦MIX , n, l = 1, . . . , N⌦

h ,

[F⌦]n,l :=
�
�c c

?
h,'

h
n

�
@⌦MIX , n = 1, . . . , N⌦

h ,

and the matrix deriving from the coupling of the 3D with the 1D problem

[B]n,l :=
⇣
↵ 

h
l ,'

h
n

⌘

⇤,|D(s)|
, l = 1, . . . , N⇤

h , n = 1, . . . , N⌦
h .

At this point, we can rewrite the variational formulation of the coupled 3D-1D
Keller-Segel model in the following matrix form: for k = 0, 1, 2, . . . , we search for
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Uk+1 2 RN⇤
h and ck+1 2 RN⌦

h such that2

64
1

�t
M⇤ + Ak

⇤ ·

· 1

�t
M⌦ + A⌦

3

75

Uk+1

ck+1

�
=

2

64
1

�t
Uk

1

�t
ck + F⌦ + BUk

3

75 .

Remark 1. For the sake of simplicity, in the following simulations we let the cross-
section be constant along the network, in such a way that |D(s)| ⌘ ⇡R

2, where R

is the radius of the three-dimensional cylinder of the non reduced problem, that we
assume to be the same for all the branches of the network. Moreover, we choose
⇢⌃ ⌘ 1 in ⌃.

The simulations are obtained using the software GetFEM [43]. The code has
been developed starting from the project MANWorks, available on Github (https:
//github.com/stefano-brambilla-853558/MANworks).

4.2. A network with a single branch. As a first numerical test, we solve the
coupled 3D-1D Keller-Segel system (12)-(13)-(14) on a single-branch network ⇤
completely embedded in a unit cubic domain ⌦ = (0, 1)3 (cf. Figure 1). In
this simplified context, the segment – of endpoints [x0, y0, z0] = [0.1, 0.5, 0.5] and
[x1, y1, z1] = [0.9, 0.5, 0.5] – represents the one-dimensional manifold along which
the cellular population can move.

Figure 1. Outline of the unit cubic domain ⌦ (in black) and the em-

bedded single-branch network ⇤ (red line).

We assume that there is an initial nodule of cells on the branch concentrated
around the leftmost endpoint x = 0.1, of density

u0 = e
� |x�0.1|2

0.01 , x 2 [0.1, 0.9], (17)

and that the initial concentration of chemoattractant is increasing with x, namely

c0(x, y, z) = 1� e
� |x|2

0.1 . (18)

We simulate the evolution of System (12) with the following parameters
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Parameter values in Figure 2
Eq. (12a) D1 = 0.01 � = 5
Eq. (12b) D2 = 1 ↵ = 20 � = 0

and with no-flux boundary conditions on the tissue boundary, i.e., with �c ⌘ 0 on
@⌦. We let the di↵usion rate of the chemoattractant be much bigger that the one of
the cellular population, coherently to what has been observed experimentally (see,
e.g., Murray [33]). Moreover, we let the chemotactic sensitivity � be much stronger
than cellular di↵usivity D1 in such a way that the chemotactic aggregation prevails
over cellular di↵usion in the long time.
For this simulation, we employ a uniform mesh of 21 points in each direction for
the discrete three-dimensional domain, while for the one-dimensional segment we
employ a uniform mesh of 200 points. The time step is fixed to �t = 0.01 and the
radius of the original three-dimensional segment is R = 0.05.

(a) t = 0 (b) t = 0.08

(c) t = 0.26 (d) t = 1.2

Figure 2. Evolution of the cellular density U on a single-branch network

and of the corresponding three-dimensional chemoattractant concentra-

tion c at four di↵erent times, t = 0.0, 0.08, 0.26 and 1.2.

Figure 2 shows the evolution in time of the solutions to (12) at four subsequent
times.
The nodule of cells initially elongates due to di↵usion and chemoattraction. As
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expected, cells travel along the segment in the direction of higher concentrations of
the chemoattractant. This process is relatively fast. In fact, all the cells aggregate
near the rightmost endpoint x = 0.9 of the segment in about ten iterations (t ⇡ 0.1).
Once they reach this position in space, the cellular aggregate concentrates into a
single peak (cf. Figure2(c)). At this point, the chemical concentration reaches a
(nearly) uniform state due to the e↵ects of di↵usion. In Figure 3 we display the cellu-
lar density and the chemical concentration along the segment (thus for x 2 [0.1, 0.9]
and y = z = 0.5) at four di↵erent times. In particular, in Figures 3(c)–(d) one
can remark the e↵ects of the production of chemoattractant by the cellular popula-
tion in the equation for c: the quasi-constant chemical concentration is perturbed
around the cellular aggregate. These e↵ects are small, a consequence of the choice
of the radius R and of the chemoattractant production rate ↵. We also remark
that, once it has reached the endpoint x = 0.9, the cellular aggregate slowly travels
back, in the direction of the endpoint x = 0.1, see Figures 3(c)–(d). This e↵ect is
a consequence of the asymmetry of the initial problem.

(a) t = 0 (b) t = 0.04

(c) t = 0.26 (d) t = 1.2

Figure 3. Initial conditions and subsequent states of the evolution in

time of the cellular density U and of the concentration of the chemoat-

tractant c along the single-branch network, thus for s 2 [0, 0.8] (or,

equivalently, for x 2 [0.1, 0.9]).

4.3. A bifurcated network. We consider now the case where the cellular popu-
lation moves along a bifurcated network symmetric with respect to the line y = 0.5
and embedded in a unit cubic domain ⌦ as in the previous section. Considering
no-flux boundary conditions for c (�c ⌘ 0) on @⌦, we set in (12) the parameter
values summarized in the following table:

Parameter values in Figure 4
Eq. (12a) D1 = 0.01 � = 10
Eq. (12b) D2 = 1 ↵ = 1 � = 0.01
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(a) t = 0 (b) t = 0.04

(c) t = 0.16 (d) t = 1

Figure 4. Evolution in time of the solution of the 3D-1D Keller-Segel

model, on a one-dimensional bifurcated network embedded in a unit

three-dimensional domain, at four di↵erent times of the simulation: t =
0, 0.04, 0.16, 1.

The radius of the non reduced three-dimensional network is constant everywhere in
the three branches of the bifurcation, R = 0.05.

As in the previous section, we center the initial density of cells at the leftmost
endpoint of the bifurcation, setting for x 2 [0.1, 0.9]

u0 = e
� (x�0.1)2

0.01 ,

and create the chemotactic gradient in the direction of increasing values of x by
letting

c0(x, y, z) = 1� e
� |x|2

0.1 .

We discretize ⌦ with a uniform mesh of 21 points in each direction while we choose
a uniform discretization of 100 points for each branch of the network. The time
step is set to �t = 0.01.

We display the time evolution of the solutions in Figure 4, at t = 0, 0.04, 0.16 and 1.
The initial nodule of cells concentrated in x = 0.1 follows the chemical gradient in
the direction of increasing values of x. At the junction, located at x = 0.6, the nod-
ule splits into two equal aggregates. Once the cells have entered the two branches
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as two equal aggregates, since the chemical gradient is weaker, the di↵usive e↵ects
prevail over chemotactic forces, and the cells mainly spread in the two rightmost
branches. We remark that the state showed in Figure 4 at the final time t = 1 is
not a steady state: the cells are slowly di↵using and we expect a uniform final state.

4.4. Networks with multiple branches. Here, we investigate the dynamics of
the solutions of the coupled 3D-1D Keller-Segel system on more complex networks
composed of multiple branches.
We consider first a network of 8 equal branches of radius R = 0.05 that lays on
the plane (x, y) and is symmetric with respect to the lines y = 0.5 and x = 0.5.
We simulate the dynamics of System (12) with the parameter values listed in the
following table:

Parameter values in Figure 5
Eq. (12a) D1 = 0.01 � = 5
Eq. (12b) D2 = 1 ↵ = 1 � = 0.01

and prescribing no-flux boundary conditions for the chemical concentration on @⌦.
We employ a uniform discretization of 31 points in each direction for ⌦ and a uniform
mesh with 21 points in each branch of the network. The time step is �t = 0.01.

Figure 5 shows the evolution in time of the corresponding solutions of the mul-
tiscale Keller-Segel model, at t = 0, 0.04, and 0.3. The small initial nodules of
cells are initially given by (17), concentrated near x = 0.1 on each of the three left
branches of the network. The chemical gradient, of initial density given by (18),
creates an external bias that transports symmetrically the cells on the opposite
branches of the network. The chemoattractant di↵uses and uniformly degrades.
Let us notice that the invasion of the cells in the tissue is not significantly per-
turbed by the presence of the two central branches, transversal with respect to the
direction of the chemical gradient (cf. Figure 5(b)). This is a remarkable di↵erence
with the behavior of the solutions of the system we will simulate in Section 6.

In the second case, inspired by [7], we consider a slightly more complex network,
displayed in Figure 6. Here, we study how a small aggregate of cells, placed at the
leftmost branch of the network, of initial density

u0 = e
� (x�0.1)2+(y�0.9)2

0.025 ,

evolves through a series of multifurcations, guided by a chemical gradient of initial
concentration

c0(x, y, z) = x+ (1� y).

Figure 6 displays the time evolution at six subsequent times of the cellular den-
sity and the corresponding chemoattractant concentration, solutions to the 3D-1D
Keller-Segel model whereby the parameters have been set as follows:

Parameter values in Figure 6
Eq. (12a) D1 = 0.2 � = 17
Eq. (12b) D2 = 0.001 ↵ = 1 � = 0.0

Since we aim at observing the e↵ects of the chemical attraction on the spatial dis-
tribution of cells over time, we choose a much smaller di↵usivity for the chemoat-
tractant, compared to the one of the cellular population, and a relatively strong
chemotactic sensitivity. As displayed in Figure 6, the cells spread through the net-
work by filling most importantly the shortest path, on which the chemical gradients
are stronger. In the long time, all cells aggregate in the rightmost branch of the
network, in a single-peak stationary state.



A COUPLED 3D-1D MULTISCALE KELLER-SEGEL MODEL OF CHEMOTAXIS 17

(a) t = 0 (b) t = 0.04

(c) t = 0.3 (d) t = 0.3

Figure 5. (a)–(c) Time evolution of three initial aggregates of cells on

a symmetric network and the corresponding chemical concentration at

three di↵erent times, t = 0, 0.04, and 0.3. (d) Internal visualization of

the chemoattractant concentration (on a di↵erent scale of values).
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(a) t = 0 (b) t = 0.003

(c) t = 0.007 (d) t = 0.01

(e) t = 0.013 (f) t = 0.016

Figure 6. Evolution of the cellular density and of the chemical concen-

tration, solutions to the multiscale Keller-Segel model, at six di↵erent

times.
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5. A multiscale model of metastatic invasion. Building on the results pre-
sented so far, we propose a multiscale model of migration and invasion of aggressive
cancer cells in the extracellular matrix. In Subsection 5.1 we provide the biological
background on the structure of the extracellular matrix as well as on its relevance
in cellular migration. We highlight that the ability of aggressive cancerous cells
to invade the matrix by exploiting its network of fibers is one of the hallmarks of
metastatic progression. In Subsection 5.2, we consider the model of cancer invasion
in the extracellular matrix proposed by Anderson et al. in [3] and generalize its for-
mulation to the present context of embedded multiscale geometries. We then derive
a coupled 3D-1D model whereby the one-dimensional dynamics of cells is influenced
by two three-dimensional quantities: the density of the extracellular matrix and the
concentration of matrix degradative enzymes produced by the cells themselves.

5.1. Biological background. The extracellular matrix (ECM) is a complex mesh-
work of proteins and other macromolecules that provides the physical architecture
for cellular adhesion and migration. The ECM is composed of two main components:
fibrous proteins (such as collagens, elastins, fibronectins and laminins) and proteo-
glycans that, like an hydrated a gel, fills the extracellular interstitial space [23].
Collagens are the most present proteins in the ECM: they determine the physical
three-dimensional structure of the matrix and support cell adhesion, migration and
chemotaxis, thanks to their ability to assemble into supramolecular structures, such
as fibrils and networks [20, 23].

Figure 7. Schematic representation of the metastatic cascade, adapted

from [20]. Malignant tumor cells escape from the primary tumor site by

breaching the extracellular barriers (such as the basement membrane)

(1), take advantage of the collagen fibrils and networks to invade the

tissue (2) and enter the blood circulation (3).

The topography and sti↵ness of the extracellular matrix plays a fundamental role
in cell migration and metastasis invasion. In fact, in a healthy tissue the ECM is
a relaxed network of fibers and gel-like molecules that dynamically resists to cellu-
lar stresses. However, cancerous cells are able to secrete ECM-modifying enzymes
that alter the matrix structure. In this altered situations, the collagens fibers and
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networks undergo a reorientation and linearization that increases the sti↵ness of
the extracellular matrix [20, 21]. This abnormal restructuring of the collagen fibers
facilitates cancerous invasion into the interstitial tissue and promotes metastases
formation. In fact, the fibers work as “highways” for the invading cells by facilitat-
ing cancer dissemination in the tissue [21]. On the other hand, the ECM meshwork
can constitute a barrier to cellular migration. A hallmark of malignancy in tumors
is the ability of cells to breach the dense extramatricial barriers. In fact, in order to
further invading or invade? the surrounding tissue, malignant tumoral cells secret
matrix-degrading enzymes (MDEs) and create tunnels in the surrounding intersti-
tial tissue to make their way to the blood vessels [21, 36].

The architecture and topology of the extracellular matrix plays a relevant role on
the cellular migration and the first phases of metastasis formation. In the following
of this section, we present, study and simulate a coupled 3D-1D version of a Keller-
Segel-type model on networks of the metastatic invasion and migration in the ECM.

5.2. The model. In order to model malignant cancer cell invasion in the ECM and
to study the interactions between the cellular population and the surrounding tissue,
inspired by the model presented in [3], we let u(t, x) be the density of cancer cells,
m(t, x) be the density of the extracellular matrix and c(t, x) be the concentration
of matrix-degrading enzymes (MDEs). In a regular bounded three-dimensional
domain ⌦ representing the tissue, the model proposed in [3] is

8
>>>>>><

>>>>>>:

@u

@t
�r · (D1 cru� �urm) = 0,

@c

@t
�D2 �c = ↵u� � c,

@m

@t
= � cm,

(19a)

(19b)

(19c)

for x 2 ⌦ and t > 0, with nonnegative initial conditions

u(0, x) = u0(x) � 0, c(0, x) = c0(x) � 0, and m(0, x) = m0(x) � 0, in ⌦

and equipped with no-flux boundary conditions for u and c on @⌦

(�D1 cru+ �urm) · n⌦ = 0,

�D2rc · n⌦ = 0.

In System (19), cancer cells move by random, di↵usive movement with di↵usion rate
D1 c, withD1 > 0, thus proportional to the concentration of MDEs: cellular motility
increases in regions of the domain where the concentration of chemical factors is
higher, modeling chemokinesis. Moreover, the random chemokinetic movement is
biased in the direction of higher density of the ECM: cells move up matrix gradients
in order to invade the tissue. Since the macromolecules and proteins that constitute
the ECM are non-di↵usible, this cellular response is called haptotaxis.
The MDEs concentration di↵uses with constant rate D2 > 0, undergoes a natural
decay with rate � > 0 and is produced by cells at a rate ↵ > 0. Finally, we let the
ECM be degraded by the MDEs at a rate  c, with  > 0 constant.

It is straightforward to adapt the topological model order reduction technique de-
tailed in Section 3 to the three-dimensional model (19). In this context, we represent
the extracellular matrix composed of a three-dimensional bulk region ⌦ containing
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proteoglycans and unstructured, degraded collagens in which a one-dimensional net-
work ⇤ of linearized collagen fibrils is embedded. We then let m(t, x) represent the
density of the three-dimensional structure of the ECM and suppose that the cellular
motility is restricted to the network ⇤. We make the assumption that the MDEs
can di↵use in the entire domain ⌦ and only degrade the interstitial region of the
extracellular matrix.
As in Section 3, we consider a one-dimensional network composed of N branches ⇤i

and call Ui := U

���
⇤i

the restrictions of the density u to the i-th branch. The mul-

tiscale 3D-1D version of (19) can be obtained following the methodology described
in Section 3:8
>>>>>>><

>>>>>>>:

|D(s)|@Ui

@t
� @

@s

✓
|D(s)|D1 c⌃

@Ui

@s
� |D(s)|�Ui vm · �i

◆
= 0, on ⇤i,

@c

@t
�D2 �c = ↵U �⇤i � � c, in ⌦,

@m

@t
= � cm, in ⌦,

(20a)

(20b)

(20c)

for t > 0, with vm := (rm)⌃. We assign no-flux and mixed boundary conditions
on @⇤ and @⌦, respectively

|D(s)|
✓
�D1 c⌃

@Ui

@s
+ �Ui vm · �i

◆ ���
s=0

= 0, 8i 2 B�
,

|D(s)|
✓
�D1 c⌃

@Ui

@s
+ �Ui vm · �i

◆ ���
s=Si

= 0, 8i 2 B+
,

c = cext, on @⌦DIR
,

�D2rc · n⌦ = �c (c� c
?) , on @⌦MIX

,

(21)

and Neumann-Kirchho↵ conditions at each vertex of the network that is not dead-
end: for j 2 J

X

i2K�
j

|D(s)|
✓
�D1 c⌃

@Ui

@s
+ �Ui vm · �i

◆ ���
s=0

=
X

i2K+
j

|D(s)|
✓
�D1 c⌃

@Ui

@s
+ �Ui vm · �i

◆ ���
s=Si

.

(22)

We highlight that the ability of cells to degrade locally the matrix through the
action of the MDEs allows them to create small tunnels in the ECM density that
facilitate their migration along the fibers. This process, known in biology as contact
guidance, is particularly relevant in the coupled 3D-1D formulation of the model,
as we will see in Section 6.

On the parameter values. As mentioned in [3] and references therein, from
experimental evidences the cell di↵usivity is estimated to be of order D1 ⇠ 10�10

cm2 s�1 and the haptotactic strength � ⇠ 103 cm2 s�1, while the di↵usion rate of
the chemicals is in the range D2 ⇠ 10�8 � 10�10 cm2 s�1.
In the simulations we will perform, the cross-section of the network is always a
circular section of constant radius R and we will always consider the case where
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R ⌧ 1. Therefore, even when D1 ⇠ D2, the ratio
⇡R

2
D1

D2
⌧ 1 will remain

coherent with biological measurements. However, regarding the advection strength
� – for which biological evidences indicate a value of at least 13 orders of magnitude
greater that D1 – computational limits constrain to lower values of � which, in any
case, will always satisfy �� c⌃ D1.

6. Numerical simulations.

6.1. Numerical scheme. Let us consider the same partitions T h
⌦ of ⌦ and T h

⇤

of ⇤ and the same finite element spaces V
⌦
h and V

⇤
h presented in Section 4. For

the multiscale model (19) we introduce the following semi-implicit spatio-temporal
discretization: for k = 0, 1, . . . , NT , find U

k+1
h 2 V

⇤
h and c

k+1
h , m

k+1
k 2 V

⌦
h such

that8
>>>>>>>>><

>>>>>>>>>:

1
�t

�
U

k+1
h , h

�
⇤,|D(s)| +

 
D1 ⇢ c

k
h⌃

dUh

ds

k+1

� �U
k+1
h vk

m,h · �, d h

ds

!

⇤,|D(s)|
= 1

�t

�
U

k
h , h

�
⇤,|D(s)| ,

1
�t

�
c
k+1
h ,'h

�
⌦
+
�
D2rc

k+1
h ,r'h

�
⌦
+
�
� c

k+1
h ,'h

�
⌦
+
�
�c c

k+1
h ,'h

�
@⌦MIX

= 1
�t

�
c
k
h,'h

�
⌦
+ (�c c?h,'h)@⌦MIX +

�
↵U

k
h ,'h

�
⇤,|D(s)| ,

1
�t

�
m

k+1
h ,'h

�
⌦
+
�
 c

k
h m

k+1
h ,'h

�
⌦
= 1

�t

�
c
k
h,'h

�
⌦
,

(23)
for all  h 2 V

⇤
h and 'h 2 V

⌦
h , with

vk
m,h :=

⇣
rm

k
h

⌘

⌃
.

We let { h
l }

N⇤
h

l=1 and {'h
l }

N⌦
h

l=1 be two independent finite elements basis of V ⇤
h and

V
⌦
h , respectively, and write

U
k
h =

N⇤
hX

l=1

U
k
l  

h
l (s), s 2 ⇤,

c
k
h :=

N⌦
hX

l=1

c
k
l '

h
l (x), m

k
h :=

N⌦
hX

l=1

m
k
l '

h
l (x), x 2 ⌦.

Defining the vectors containing the degrees of freedom of the unknowns

Uk := [Uk
1 , · · · , Uk

N⇤
h
]T , ck := [ck1 , · · · , ckN⌦

h
]T , and mk := [mk

1 , · · · ,mk
N⌦

h
]T ,

we can rewrite the variational formulation of the coupled 3D-1D Keller-Segel model
in the following matrix form: for k = 0, 1, 2, . . . , we search for Uk+1 2 RN⇤

h and
ck+1

, mk+1 2 RN⌦
h such that

2

4
1
�tM⇤ + Ak

⇤ · ·
· 1

�tM⌦ + A⌦ ·
· · 1

�tM⌦ + Dk
⌦

3

5

2

4
Uk+1

ck+1

mk+1

3

5 =

2

4
1
�tU

k

1
�tc

k + F⌦ + BUk

1
�tm

k

3

5 .

where
⇥
Ak

⇤

⇤
n,l
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✓
D1 ⇢ c

k
h⌃

d h
l

ds
� � 

h
l vk

m,h · �, d 
h
n

ds

◆

⇤,|D(s)|
, n, l = 1, . . . , N⇤

h ,

⇥
Dk

⌦

⇤
n,l

:=
�
 c

k
h '

h
l ,'

h
n

�
⌦
, n, l = 1, . . . , N⌦

h ,
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and the remaining matrices have been defined in Section 4.

6.2. A network with a single branch. We solve numerically the multiscale
model (20) on a single-branch network ⇤ embedded in a unit cubic domain ⌦,
as showed in Figure 1 in Section 4. The original three-dimensional cylinder has a
constant radius R = 0.05.
We simulate System (20) with the following values of the parameters:

Parameter values in Figure 9
Eq. (20a) D1 = 0.01 � = 0.5
Eq. (20b) D2 = 0.001 ↵ = 10 � = 0
Eq. (20c)  = 0.5

and we assign no-flux boundary conditions on @⌦ for the MDEs concentration c.
Following [3], we set the initial densities and concentrations to

u0(x) = e
� (x�0.1)2

0.01 , on ⇤,

c0(x, y, z) = 0.5, in ⌦,

m0(x, y, z) = 1� 1

2
e
� |x|2

0.01 , in ⌦.

We employ a uniform grid of 21 points in each direction for ⌦ and a uniform
discretization of 200 points for the single-branch network ⇤. The time-step is fixed,
�t = 0.01.
Figures 8 and 9 display the time evolution of the cellular density U , of the ECM
density m and of the MDEs concentration c. In Figure 8, U and m are plotted on
the one-dimensional segment (thus for x 2 [0.1, 0.9]) while in Figure 9 U is plotted
on the one-dimensional branch and m and c in the corresponding three-dimensional
domain at di↵erent times of the evolution.

The initial nodule of cells invades and degrades the matrix in the form of an asym-
metric pulse that, as expected, travels in the direction of higher density of the ECM,
thus for increasing values of x. The matrix slowly degrades under the local e↵ects
of the degrading enzymes. At about the time t ⇡ 0.24 (cf. Figure 8(c)), a small ag-
gregate of cells detaches from the main peak, guided by the non-monotonicity in the
ECM density. Compared to the corresponding simulation performed in Section 4,
this is a novel e↵ect, consequence of the local matrix degradation. In the long time,
most of the cells reach the rightmost endpoint of the segment, at x = 0.9, while
the extracellular matrix degrades up to complete depletion. Notice that the way
in which the ECM degrades depends not only on the rate of production of MDEs,
the parameter ↵, and on the degradation rate , but also on the di↵usion rate of
the MDEs. In fact, for bigger values of D2, the matrix degrades more uniformly in
the three-dimensional domain ⌦. For this simulation, D2 is chosen small compared
to D1 in order to enhance the locality of matrix degradation. This e↵ect can be
seen clearly in Figure 8(f). Notice that D2 � ⇡R

2
D1 remains true, as discussed

previously. We also remark that in a single-branch network, the ability of invasion
of the cellular population is not significantly a↵ected by the choice of D2.
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(a) t = 0 (b) t = 0.12

(c) t = 0.24 (d) t = 1.2

Figure 8. Time evolution of the cellular density U (blue line) and

the corresponding ECM density m (red line) on the one-dimensional

single-branch network, for x 2 [0.1, 0.9] and at four di↵erent times

t = 0, 0.12, 0.24, 1.2.
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(a) t = 0 (b) t = 0

(c) t = 0.12 (d) t = 0.76

(e) t = 1.2 (f) t = 1.2

Figure 9. Solutions of the multiscale Keller-Segel-type model (20) in

the single-branch test case at three di↵erent times. The evolution of the

cellular density U on the one-dimensional segment is displayed together

with the density of the extracellular matrix m (left panels) and with the

MDEs concentration c (right panels).
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Influences of network topology and multidimensionality on invasion. Next,
we investigate how the topology of the network or the three-dimensional spatial ef-
fects modify the invasive abilities of an initial nodule of cells along the single-branch
network.

(a) t = 0.6 (b) t = 1.2

(c) t = 0.48 (d) t = 1.12

Figure 10. The time evolution of the cellular density U and the density

of the extracellular matrix m for two di↵erent networks. The invasion is

slowed down ((a)–(b)) or sped up ((c)–(d)) compared to the simulation

in Figure 9.

Considering the same initial conditions, values of the parameters of the model
and numerical setting, we first slightly modify the topology of the network by adding
a small branch of length 0.1 to the main segment. This alteration creates a junction
at the node x = 0.5. The corresponding solutions are displayed in Figure 10(a)–(b)
at two di↵erent times.
The initial dynamics remains the same until the aggregate of cells reaches the junc-
tion: there, some cells leave the main aggregate and fill the small transversal branch
(cf. Figure 10(a)). As a result, the aggregate reaches the rightmost endpoint of the
main segment later: the invasion is slowed down. In fact, at time t = 1.2, the peak
has not yet reached the endpoint x = 0.9, see Figure 10(b). This behavior is easily
explained: since some of the cells have escaped from the main segment to fill the
smallest one, the term that accounts for production of MDEs in the equation for c
becomes weaker. As a consequence, the degradation of the matrix is less e↵ective.
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As a second case, we investigate how the multidimensionality of the model af-
fects the dynamics of the solutions. To this end, we add a small branch of length
0.4, parallel to the main segment and at a constant distance of 0.2 from it. The
corresponding dynamics is displayed in Figures 10(c)–(d). This alteration speeds
up the invasion of the initial nodule of cells: the rightmost endpoint is reached at
the time t ⇡ 1.12, about 8 iterations before compared to the simulation displayed
in Figure 9. In fact, in this case, the cells on the smallest branch contribute to the
degradation of the matrix, aiding the invasion of the tissue.

6.3. Networks with multiple branches. Let us consider the unit cubic three-
dimensional domain for the tissue ⌦ and study the one-dimensional dynamics on
more complex networks.

We first consider the evolution of two small nodules of cells, of initial density

u0(x) = e
� (x�0.1)2

0.01 , for x < 0.2,

an extracellular matrix of initial density (cf. Figure 11)

m0(x, y, z) = 1� 1

2
e
� x2

0.1 ,

and a small concentration of MDEs constant in all the domain, namely c0 ⌘ 0.1 in
⌦.

Figure 11. Initial density m0 of the extracellular matrix for x 2 [0, 1].

System (20) is solved by setting

Parameter values in Figure 12
Eq. (20a) D1 = 0.01 � = 0.5
Eq. (20b) D2 = 0.25 ↵ = 10 � = 0
Eq. (20c)  = 0.5

with no-flux boundary conditions on @⌦ and a constant radius R = 0.025.
The corresponding evolution in time of the solutions is displayed in Figure 12.
In this simulation, the discretization of the three-dimensional domain is uniform,
with 21 points in each direction, while we employ 50 points for each branch of the
network. The time step is �t = 0.01.

The two initial aggregates of cells travel in the direction of increasing values
of x, guided by larger densities of the matrix. Initially, the invasion is quick and
the transversal branches (i.e., the branches that are orthogonal to the direction of
increasing gradients of m) do not seem to interfere with the invasion. However,
when the cells enter the part of the domain where the gradient of m is nearly zero
for the choice of m0 (cf. Figure 11) and for the e↵ects of di↵usion and boundary
conditions, at x = 0.6 (see Figure 12(d)), the cellular invasion slows down and stops
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(a) t = 0 (b) t = 0.12

(c) t = 0.2 (d) t = 0.36

(e) t = 1.2 (f) t = 1.6

Figure 12. Evolution in time of the cellular density U and the corre-

sponding density of the ECM m, solutions of the multiscale Keller-Segel-

type model (20), at six subsequent times of the simulations.

at t = 1.2. This is a consequence of the presence of the transversal branches, as can
be remarked by comparing Figures 12(e)-(f) with the dynamics of the solutions to
the same system on two parallel branches displayed in Figures 13(a)-(b).
The invasion is also influenced by the choice of the radius. In fact, for values of R
bigger than 0.025 on the one hand the degradation of the matrix would be more
e↵ective, leading to more invasive dynamics but, on the other hand, the loss of mass
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in the transversal branches would be higher, leading to smaller aggregates for which
the invasion would be more di�cult.
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(a) t = 1.2 (b) t = 1.6

Figure 13. Evolution in time of the cellular density U and the corre-

sponding density of the ECM m, solutions of the multiscale Keller-Segel-

type model (20). The invasion is more e↵ective without the presence of

transversal branches, compared to the solutions displayed in Figure 12.

Influence of fibers orientation on cellular invasion. Invasive cancer cells are
able to remodel the meshwork of collagen fibers that constitute the extracellular
matrix. In particular, from biological evidences it comes to light that sti↵er ma-
trices (whereby the collagen fibers have been linearized by the enzymes secreted
by the cancerous cells and are mostly oriented in the direction of blood vessels)
facilitate cellular invasion. We now employ the multidimensional Keller-Segel-type
system (20) to qualitatively reproduce di↵erences in the invasive abilities of can-
cerous cells depending on the topology of the network, and in particular on the
orientation of its branches.

Let us consider the following set of parameters in System (20)

Parameter values in Figures 14
Eq. (20a) D1 = 0.01 � = 0.5
Eq. (20b) D2 = 0.01 ↵ = 10 � = 0
Eq. (20c)  = 0.5

with R = 0.025 and no-flux boundary conditions on the boundary @⌦ of the unit
cubic domain ⌦. We study the evolution in time of three small nodules of cells
on three equal parallel branches ⇤1, ⇤2, ⇤3 that lie on the plane z = 0.5, for x 2
[0.1, 0.9] and of three di↵erent ordinates y1 = 0.48, y2 = 0.5, y3 = 0.52, respectively.
The initial cellular density on these branches is

u0 = e
� (x�0.1)2

0.01 , on ⇤1, ⇤2, ⇤3,

and we take the following initial distributions for the matrix m0 and the chemical
c0:

m0(x, y, z) = 1� 1

2
e
� x2

0.01 , c0(x, y, z) ⌘ 0.1, in ⌦.

We then consider two slightly di↵erent configurations of the network, let us call
them N1 and N2. In both cases, to the three parallel branches ⇤1, ⇤2 and ⇤3, we
add 12 branches of di↵erent lengths and orientations on which the initial cellular
density is constant and equal to u0 = 0.2. The di↵erence between N1 and N2
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lies in the fact that in N2 most of the branches are oriented in the direction of
increasing vales of x, thus of increasing values of ECM density. The total length of
the branches of N1 and N2 remains unaltered. Therefore, the two configurations
have the same cellular mass.

We compare the evolution in time of the three initial aggregates on ⇤1, ⇤2 and ⇤3

in Figures 14 and 15 in the three-dimensional domain and on the line x 2 [0.1, 0.9],
respectively, for three subsequent times. The di↵erence between the two networks
N1 and N2 is small (only the orientation of 4 branches was modified), and so is
the di↵erence between the corresponding solutions. Nevertheless, it is evident from
Figure 15 how for the network N2, in which more branches are oriented in the
direction of increasing values of x, the invasion of cells is deeper. This can be
noticed most importantly in the final times t = 0.92, 1.46. This di↵erence is greater
for the cells on the branch ⇤3, since a bigger aggregate has advanced on the branch
at the final time of the simulation (cf. Figures 15(e) and (f), blue line). A di↵erence
can be noticed also for the cells on the branch ⇤1 (cf. Figures 15(e) and (f), red
line): most of the cells have reached the rightmost endpoint of the branch at time
t = 1.46.



32 F. BUBBA, D. CERRONI, P. CIARLETTA, B. PERTHAME AND P. ZUNINO

(a) t = 0.0 (b) t = 0.0

(c) t = 0.84 (d) t = 0.84

(e) t = 1.46 (f) t = 1.46

Figure 14. Comparison of the evolution in time of the cellular den-

sity U for the network N1 (left panels) and N2 (right panels) at three

subsequent times of the simulations.
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(a) t = 0.36 (b) t = 0.36

(c) t = 0.92 (d) t = 0.92

(e) t = 1.46 (f) t = 1.46

Figure 15. Comparison of the evolution in time of the cellular density

U on the three parallel branches ⇤1 (red line), ⇤2 (green line) and ⇤3

(blue line) for the networks N1 (left panels) and N2 (right panels).
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7. Discussion and future work. Multiscale mathematical models and the re-
lated numerical methods have been intensively studied in the context of biomedical
applications. In most cases, the di↵erent scales are either treated via separate mod-
els, e.g., by deriving PDE-based models from individual-based ones [19, 37, 24, 34],
or by integrating di↵erent approaches, i.e., individual-based and PDE-based, as
in [42, 44, 47, 49].
In this work we have presented a novel advancement in the study of chemotaxis
models by representing the multiscale features as embedded geometries of di↵erent
dimensions, namely one-dimensional network-shaped manifolds embedded in three-
dimensional domains. More in details, we have generalized the topological model
reduction technique [17, 28] to chemotaxis models, deriving a coupled 3D-1D version
of the Keller-Segel system whereby the chemosensitive population moves along the
one-dimensional network following three-dimensional signals. Moreover, we have in-
vestigated the dynamics of the solutions via several numerical experiments involving
networks of di↵erent structures: a single-segment, a bifurcation and networks with
several branches and multifurcations.

The multiscale Keller-Segel model presented here, to the best of our knowledge,
improves previous results. In fact, on the one hand, previous works study chemo-
taxis models where both the cellular population and the chemical concentration
evolve on one-dimensional networks [8, 7, 6] and, hence, multidimensionality is not
integrated in the model. On the other hand, Mackenzie and collaborators [32, 31]
have considered coupled multidimensional bulk-surface models of chemotaxis. How-
ever, in their work the multidimensionality gap is only 1 (i.e., 3D for the bulk and
2D for the surface) and the intriguing dynamics arising from network-shaped do-
mains are not included.
Additionally, we have proposed the coupled 3D-1D Keller-Segel system as a model
of invasion of potentially metastatic cancer cells in the extracellular matrix, repre-
sented as a three-dimensional domain containing a structured network of fibers. In
this context, cells move along the one-dimensional network towards regions where
the ECM is more dense (haptotaxis) and emit a three-dimensional di↵usible en-
zyme that degrades the matrix. We investigate how both the topography of the
fibers and the multidimensional coupling influence the invasive potentiality of cells.
In particular, we find that a network in which the fibers are oriented in the same
direction facilitates cellular invasion, confirming biological evidences.
We believe that our results open the way towards more realistic models of cancer
invasion in tissues. However, numerous improvements can be considered. From
a modeling point of view, we aim at implementing much more realistic networks
of ECM fibers, such as those presented in [46, 14], to improve results on the cru-
cial role of fibers orientation in the invasion of cells. From a numerical point of
view, more robust numerical schemes should be considered. In fact, the finite ele-
ment method employed in this paper does not preserve exactly steady states and
the mass of solutions. Moreover, it does not allow to consider parameter values
in realistic ranges. Limiting ourselves to finite elements methods, schemes based
on discontinuous Galerkin discretization [51, 22, 29] or on scalar auxiliary variable
techniques [39] could be more reliable.
It is also worth noticing that the modeling framework presented in this work can be
adapted to take into account several other applications whereby multiscale features
naturally arise, for instance wound healing, tissue-engineering, and neurodegenera-
tive diseases, such as Alzheimer.
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The coupled 3D-1D systems proposed here might also deserve deeper theoretical
understanding. For instance energy dissipation is a remarkable of the standard
Keller-Segel system, which lead to elaborate dissipative numerical schemes, see [1]
and the references therein. This leads to understand how our reduction procedure
behaves with respect to energy properties. Finite time blow-up is another theoreti-
cal feature of the Keller-Segel system which has been widely studied in 2D and 3D,
see the recent paper [48], and rises questions in the coupled formalism.
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