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Abstract: The viability of Variable Renewable Energy (VRE)-investment strategies depends
on the response of dispatchable producers to satisfy the net load. We lack a simple research
tool with sufficient complexity to represent major phenomena associated with the response of
dispatchable producers to the integration of high shares of VRE and their impact on system costs.
We develop a minimization of the system cost allowing one to quantify and decompose the
system value of VRE depending on an aggregate dispatchable production. Defining the variable
cost of the dispatchable generation as quadratic with a coefficient depending on macroeconomic
factors such as the cost of greenhouse gas emissions leads to the simplest version of the model.
In the absence of curtailment, and for particular parameter values, this version is equivalent
to a mean-variance problem. We apply this model to France with solar and wind capacities
distributed over the administrative regions of metropolitan France. In this case, ignoring the
wholesale price effect and variability has a relatively small impact on optimal investments,
but leads to largely underestimating the system total cost and overestimating the system
marginal cost.

Keywords: renewable energy; variability; energy mix; system cost; mean-variance

1. Introduction

Climate and energy action plans around the world set targets on the integration
of large shares of Variable Renewable Energies (VREs), including wind and photo-
voltaic (PV) power (see, for instance, the 2030 Climate and Energy Framework of
the European Union). Yet, increasing the penetration of VREs in electricity systems
poses major challenges [1] and calls for the development of modeling tools to evaluate
the technical feasibility and the economic viability of these objectives, as reviewed
by Ringkjob et al. [2].

First among these challenges is the variable nature of VREs. They depend on
meteorological conditions and thus pose challenges on the electricity system’s ade-
quacy when conventional capacities are reduced Cretì and Fontini [3] (the system
adequacy refers to the power system’s ability to meet the demand in the long-term,
Chapter 22). Apart from scarcity periods, VRE generation can be abundant during
other periods, which requires other generation technologies to reduce their output
to avoid VRE curtailment. The combination of these impacts is referred to as utiliza-
tion effect [4]. Furthermore, if markets respond as expected in the face of surplus
supply, wholesale prices can be expected to fall (the so-called wholesale price effect).
In addition, if VRE generation has to be curtailed at times of abundance, this will
contribute to increased costs for the overall power system. This is referred to as the
curtailment effect. The predictability of the VRE production is also limited and thus
induces additional balancing needs. Moreover, VREs are location-specific, meaning
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that their production is not evenly distributed and that they cannot be transported
like a fuel. Even though there is a large variability in the size of VRE projects, solar
and wind energy harvesting is necessarily geographically dispersed. It is important to
recognize that the development of VRE systems results from and produces a number of
interactions between a number of actors such as citizens, electricity networks, markets,
and ecosystems [5]. In this study, we do not address the political and social aspects
of energy transformations. Instead, we concentrate on the integration of VRE to an
existing interconnected system.

VREs deployment results in benefits and costs not only to the power system, but
also to the wider economy and society. It is thus important to capture these costs
and benefits appropriately. More specifically, while VREs have low marginal costs
of generation, the above-mentioned characteristics induce system costs including
adequacy costs, grid-related costs, and balancing costs [4]. A number of factors impact
these costs: (i) the locational and temporal agreement between VRE generation and
electricity demand, (ii) the distribution of VREs technologies and their penetration, (iii)
the flexibility of the generation portfolio and the power system, and (iv) the capacity
of the system to adapt to higher levels of VRE penetration over time. Yet, approaches
based on Levelized Costs of Electricity (LCoEs) [3] (see Chapter 25.3, for a definition)
alone do not account for these costs, as they depend on the rest of the electricity system.
In particular, the LCoE does not take unavoidable correlations between the wholesale
price of electricity and the VRE generation into account [6].

As reviewed in IEA [4] and Sijm [7], there are two main ways to take the effects
of when, where and how VRE is generated into account in the economic assessment of
a VRE technology: evaluating integration costs [8–12] or evaluating the System Total
Cost (STC) [13–15]. For VREs, one can define the integration cost as the additional cost
of adapting to higher VRE shares. These costs are calculated using modeling based on
different scenarios. The technology for which the integration costs are to be calculated
is included in a first scenario. In another scenario, the technology is excluded or
included at a lower level of penetration. Using a number of techniques, the costs
are computed for both scenarios and the difference is attributed to the technology in
question. Yet, no standard recipe exists on which costs to include and on how to define
the scenarios. This is a serious limit to the integration cost methodology [8]. In order to
capture all relevant benefits and costs, another approach is to evaluate the STC of the
entire power system. In this way, the system total or marginal value can be calculated
to assess the impact of VREs integration on the STC [4]. The net benefit to the residual
system, i.e., avoided costs minus increased costs, is given by the value of adding VRE
generation. A positive value of additional VRE generation motivates further increasing
the VRE penetration. From an economic perspective, any factor that contributes to
reduce the VRE value constitutes an integration challenge. One major advantage of
this methodology compared to the using integration costs is that it does not rely on a
specific benchmark technology or on the segmentation of costs into different categories
which are not clearly separated. In practice, however, sophisticated software are
needed for both approaches in order to estimate the operation and investment costs
of the power system. For instance, the family of EOLES models minimize the STC
while satisfying energy demand of an energy system by optimizing investment and
operation [16].

In order to go beyond VRE investment strategies based on the LCoE alone while
avoiding having to model the rest of the power system, a number of authors have re-
lied on the application of Markowitz’ mean-variance portfolio theory [17] to electricity
systems. In these studies, a variance term is introduced in addition to the average VRE
Capacity Factors (CFs) and fixed costs, which measures the variability of the total VRE
production. This type of approach has the advantage to leave space for decision mak-
ers to find a trade-off between maximizing the expected renewable energy penetration
or value and minimizing some risk measure which depends on the application. An
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overview of applications of mean-variance analysis to energy planning is provided
by Brazilian and Roques [18] focusing on fossil fuel prices. There, investments are
protected from price volatility by minimizing the financial risk. Mean-variance op-
timization based on levelized generation costs is used by Beltran [19] to derive the
optimal VREs distribution in Mexico. In other works, the risk serves as a proxy for
the reliability of the electricity system as VREs are introduced. For instance, weaker
correlations between sites and sources can be leveraged to reduce the variance of
the renewable energy production. This is the approach followed by Roques et al. [20]
to optimize the distribution of wind power among five European countries. Their
findings suggest that the European mix can be improved depending on the cost of
variability. Using mean-variance analysis based on simulated daily-mean CFs on
a 9 km grid, Thomaidis et al. [21] evaluate repowering actions based on solar and
wind power in the southern Iberian Peninsula. The full Spanish wind mix is assessed
by Santos-Alamillos et al. [22] using mean-variance optimization with ten years of
simulated hourly wind CFs. Recently, Tantet et al. [23] apply mean-variance analysis
to the study of the optimal recommissioning of VRE capacities in Italy using time
series of both load and VRE CFs estimated from climate data. Bouramdane et al. [24]
and Maimó-Far et al. [25] follow a similar approach to compare two different solar
technologies in Morocco depending on the weight put on variability, and to analyze
the role of the predictability of the photovoltaic (PV) production in Spain, respectively.

While mean-variance analysis is one of the simplest approaches to the problem of
long-term investment in VRE accounting for the variability of the renewable energy
generation, it lacks a rational to take an objective decision on the weight to put to
the variance compared to the mean. Moreover, while the heuristic to maximize the
mean penetration while limiting the variance seems sound, it is difficult to understand
why one formulation of these terms should be favored to alternatives. In this article,
we instead show how a particular form of mean-variance problem arises from an
economic problem.

To focus on the investment in regional VRE capacities, the objective of this paper
is to design a minimal long-term investment model taking into account the cost of the
hourly conventional generation required to ensure the electricity system’s adequacy.
Thus, we do not expect the model to be appropriate for operational studies. Rather,
we require the program to be sufficient to conduct research works or pedagogical
exercises aiming at revealing new or known effects stemming from the integration
of large shares of VRE capacities in an electricity system, such as the wholesale price
and utilization effects. This does not mean that the model could not be upgraded to
include more realistic features to study more sophisticated effects stemming from the
integration of VRE, but we leave such developments for future works.

By “minimal”, we mean that we aim at reducing the modeling of the conventional
system to its bare minimum, while accounting for the fact that the integration of VREs
impacts the cost of ensuring the system’s adequacy and that the marginal costs of
peak conventional producers are larger than that of base producers. This second
condition is particularly important as it is responsible for a non-trivial response of
the pool of dispatchable producers to the variability of the VRE generation. To do so,
our fundamental assumption is that the conventional producers are fully dispatchable
and that we can approximate the total variable costs of the dispatchable producers
by a convex function of the aggregate dispatchable generation only. This allows us
to represent adequacy costs in a simple way, while neglecting grid-related, balancing,
and flexibility costs. In addition, to concentrate on the integration of VRE capacities,
we assume that the mix of dispatchable producers has a constant total capacity that
is prescribed. This assumption is not fundamental and could be adjusted. Moreover,
because we focus on the role of the variability of the renewable energy resource in
the VRE value and adequacy costs, we only deal with the central-planning problem
and leave the distributed market problem for future works. This leads to a two-stage
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quadratic recourse program in which the regional VRE capacities and the hourly
dispatchable generation are optimized.

We give particular attention to a version of the problem for which quadratic
dispatch variable costs are prescribed. This version is indeed the simplest version
of the problem respecting the convexity condition of the dispatch variable costs.
Moreover, this version is also interesting because it can be related to a particular
mean-variance problem, as we show.

We also ask what are the adequacy costs arising from the variability of the re-
newable energy production in France depending on the dispatch variable costs and
investigate the role of geographical and technological diversification. This question is
interesting in itself and allows us to show how a numerical estimation of the model
optimal solutions can be performed using a sample-average approximation. For this
first case study, we assume that the load and the VRE CFs are stationary. While this
assumption is questioned by expected changes in load patterns associated with the
French climate-action plan [26] and with climate change [27], it does not prevent the
identification of the wholesale price effect and of the emergence of adequacy costs
depending on the VRE penetration.

In the next Section 2, we define a problem of investment in regional VRE capacities
and generation dispatch based on a STC minimization simplified by the aggregation
of the dispatchable generation and its costs. The precise mathematical framework
in which we set this problem is described in Appendix A. We give merit-order and
profit conditions for the optimality of solutions, which we prove in Appendix B. We
also give two reduced versions of the problem against which solutions to the original
problem can be compared to assess the impact of ignoring the wholesale price effect
and variability when relying on LCoEs. We then show how to evaluate the VRE
system total and marginal values together with adequacy costs in the model. Finally, a
particular version of the model based on quadratic dispatch variable costs is presented.
In Section 3, we describe a numerical version of the model based on a sample-average
approximation using load and CF time series and configured for an application to
the French electricity system. We analyze the results of this application in Section 4.
After a description of the behavior of the model, we focus on the wholesale price effect
and the role of variability as well as on the system value of VRE and adequacy costs.
In Appendix C, we make sure that this analysis is robust to the sampling of the load
and CF time series. Next, in Section 5, we show how the cost-minimization problem
with quadratic dispatch variable costs relates to a particular version of mean-variance
analysis with an adequate choice of parameters and compare their solutions in the
case of France. We finish by summarizing this study and by discussing the range of
potential applications of the model in Section 6.

2. Optimal Long-Term Investment Problem

A model of optimal long-term investment in VRE capacities taking adequacy costs
associated with the variability of the VRE production into account is developed. It is
based on the minimization of a STC including VRE rental costs and approximations of
non-VRE-generation while treating non-VRE producers as an aggregate (lost load can
be included in the STC using the value of lost load without major difficulties and will
be used in another article).

2.1. Problem Definition
2.1.1. Defining the System Total Cost

Our objective is to define a STC reflecting adequacy costs stemming from the
satisfaction of the load net of the VRE production by existing dispatchable producers.
Approximating the costs by a function of the aggregate dispatchable generation only
allows treating dispatchable producers as a single producer.
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Conventional Mix

It is assumed that there is an initial mix of conventional (non-VRE) electricity
producers which is able to meet an exogenous aggregate load at all hours (the loss-of-
load probability is zero). The load is modeled by a one-year cyclostationary stochastic
process (L(t))t∈T. In other words, its statistics are stationary from one year to the next
but depend on the hour of the year. T0 is the set of T0 = 8760 h in a year (for non-leap
years). For all practical purposes, it is assumed that the load is positive and attains a
global minimum and a global maximum to which the total dispatchable generation
capacity xDi is identified (i.e., there is no load shedding). (The mathematical setting
used here is presented in Appendix A, but the precise mathematical concepts and
the stochasticity of the problem may be left aside for a first reading. In particular, it
is assumed that the probability distribution of the load has a density. Its support is
compact as it is bounded and closed.)

This initial mix is assumed to be fixed: xDi remains unchanged even after the
introduction of renewables. Moreover, these producers can dispatch energy at all times.
They have no start-up, no-load, or ramp costs, and no must-run or minimum up/down-
time requirements [28]. The only constraints are that their aggregate generation,
represented by the non-negative stochastic process (GDi(t))t∈T, should be positive (no
storage) and no larger than their total generation capacity xDi.

In this setting, it is assumed that the distribution of the non-VRE producers results
in an aggregate cost function of the form

CDi(q) = FCDi + VCDi(q) (1)

for some total quantity q to be produced. The non-negative constant FCDi (AC) and
the function VCDi (AC) are the fixed cost and the variable cost of the dispatchable
generation, respectively. (The variable-cost function VCDi is assumed to be non-
negative, strictly convex, and differentiable over the real numbers, so that this is also
true for the total cost function CDi. It is also assumed that it is equal to 0 if q = 0,
with no loss of generality.) This aggregate cost function does not include grid-related
costs associated with the electricity network extension, operation, and management.
Moreover, the fixed cost of the dispatchable generation plays no role in this study
on the optimization of VRE capacities for a prescribed dispatchable capacity. We
anticipate that the introduction of VRE will result in a decrease in the dispatchable
generation leading to a reduction of both the expected variable cost and the expected
revenue for the dispatchable generation.

Introducing VRE

Next, m VRE producers indexed by i in {0, . . . , m − 1} enter the system. For
instance, each VRE producer may be associated to the total production by a given
technology in a given region. Each producer has an exogenous CF given by the non-
negative cyclostationary stochastic process (Hi(t))t∈T (the probability distribution of
Hi(t) is assumed to have a compact support, e.g., between 0 and 1, and to have a
density). The collection of CFs is the multivariate stochastic process (H(t))t∈T. For
a given capacity xi, the VRE producer i generates xi Hi(t, ω) at time t and for some
outcome ω in Ω. With x = (x0, . . . , xm−1), the vector of VRE capacities the total VRE
generation is given by

Qx(t, ω) =
m−1

∑
i=0

xi Hi(t, ω).

It is assumed that only fixed costs are incurred by VRE producers as the sum of
annualized capital costs and fixed Operation and Management (O&M) costs. (O&M
costs of VREs may depend on the number of operating hours. However, cost data
often rely on the assumption that the number of operating hours is constant and O&M
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costs are considered as fixed costs [29].) The cost of the VRE producer i over one hour
at any given time is, with certainty,

Ci(x) = hRCixi = Ci(xi), i ∈ {0, . . . , m− 1},

where hRCi is the hourly rental cost of producer i. The the one-year total VRE cost is

Cx = T0

m−1

∑
i=0

Ci(xi) = T0 hRCTx, (2)

where hRCT is the transpose of the vector of VRE hourly rental costs hRC = (hRC0, . . . ,
hRCm−1). This cost is constant in time and only depends on the vector x of installed
VRE capacities.

Each hour, the conventional producers are assumed to be able to react instanta-
neously to varying loads and to generate at a variable cost VCDi (Equation (1)) that
only depends on the instantaneous total dispatchable generation. Thus, no balancing
is needed for this system to compensate for uncertainties in the short-term prediction
of the CFs and the load.

The one-year STC with VREs is then

STC
(
x, (GDi(t, ω))t∈T0

)
= Cx +

T0−1

∑
t=0

VCDi(GDi(t, ω)) (3)

for some outcome ω ∈ Ω. The aggregate dispatchable generation (GDi(t))t∈T is
a key variable here, as it is through it that the conventional system responds to
the introduction of VRE. This representation of the STC includes adequacy costs
while ignoring grid-related costs and balancing costs. It takes the costs from the
VRE producers and the dispatchable producers into account, and thus allows for the
evaluation of the cost of satisfying the load, as opposed to an analysis based on the
LCoEs only.

2.1.2. System Total Cost Minimization Problem

The optimal distribution x̄ of VRE capacities, fixed in time, is looked for so as to
minimize the expected one-year STC, Equation (3). (Because of the cyclostationarity
of the load and CFs, the expectation of a cost over a year is equal to the expectation
of that cost for subsequent years and does not depend on the initial hour of the year.)
Network constraints are ignored and so are imports and exports. That is, it is assumed
that the network is a copper plate with no transfer limits and closed from neighboring
areas. The corresponding optimization problem is the two-stage quadratic recourse
program [30] (Chapter 2.3):

min
x

E
(
STC(x)

)
s.t. xi ≤ xmax

i , i ∈ {0, . . . , m− 1}
xi ≥ 0, i ∈ {0, . . . , m− 1},

(4)

where the recourse function STC(x, ω) is the optimal value of the second-stage, or
scheduling, problem:

min
(GDi(t,ω))t∈T0

STC
(

x, (GDi(t, ω))t∈T0

)
s.t. GDi(t, ω) + Qx(t, ω) ≥ L(t, ω)

GDi(t, ω) ≤ xDi

GDi(t, ω) ≥ 0.

(5)
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This two-stage problem is referred to as the variable problem. The first stage
is the long-term investment problem and is coupled with the generation scheduling
problem of the second stage, i.e., the short-term problem in economics. We call the first
constraint of the scheduling problem the adequacy constraint. It is this constraint that
ensures that enough dispatchable energy (GDi(t))t∈T is generated to meet the residual
load. The other constraints ensure that the total dispatchable generation remains
positive and does not exceed the total dispatchable capacity. In the applications
considered here, the latter is fixed to the maximum load so that optimal solutions will
not activate this constraint, which we can safely ignore in the following.

The VRE generation is thus allowed to be curtailed at no extra cost. In other words,
one may have Qx(t, ω) > L(t, ω) for some times and outcomes. The VRE capacities are
also constrained in the investment problem (Equation (4)) not to be larger than a given
positive maximum distribution per region and technology, xmax

i , i in {0, . . . , m− 1}.
Here, the VRE capacities are invested in starting from a mix without VRE, but the
model could easily be adapted to an investment in additional VRE capacities.

The VRE capacities are the decision variables of the investment problem. The
dispatchable generation at the different hours of the year are the decision variables of
the scheduling problem. Because the load and the CFs introduce uncertainty in the
scheduling problem, the optimal dispatchable generations are random. In practice,
one can use a sample-average approximation to solve this problem numerically using
time series for the load and the VRE CFs. Theorem 5.4 in Shapiro et al. [30] provides
a pointwise version of the law of large numbers to show the consistency of optimal
solutions and values of two-stage problems such as considered here [31] (Chapter 9).
As discussed in Appendix A, even if the conditions of this theorem would be verified,
one would still need to make sure that low-frequency variability and climate change
on long time scales are sufficiently weak for the sample means to converge to an
acceptable precision for the number of years available in the data. Thus, to support
the robustness of the results of the application presented in Section 4, we prefer to
numerically evaluate the convergence of the solutions with the length of the available
time series in Appendix C.

2.2. Optimal System Marginal Cost and Profits

Necessary conditions that the optimal solutions of the cost-minimization problem
(Equation (4)) must satisfy are now given.

Let the marginal cost, cDi(q) = VC′Di(q), of the dispatchable production be a
strictly increasing function of the generation q ≥ 0. The potential one-year profit per
unit of installed capacity (AC/MW) of the VRE producer i is given by. (We refer to this
quantity as the profit in relationship to the problem of perfect markets even though
the notion of profits is misleading in the centralized problem considered here.)

E
(

T0−1

∑
t=0

λ(t)Hi(t)

)
− T0hRCi.

where λ(t) (AC/MWh), is the (random) Karush-Kuhn-Tucker (KKT) multiplier of the
adequacy constraint in the scheduling problem (Equation (5)) for some time t in T0. It
is the System Marginal Cost (SMC) of electricity, i.e., the cost for the electricity system
of serving one more unit of load [3] (Chapter 8). In a perfectly competitive wholesale
electricity market, it would correspond to the equilibrium price of electricity per unit
of energy [3] (Chapter 10).

To simplify the notations, we denote by 〈X〉 the expectation of the one-year
average E(1/T0 ∑T0−1

t=0 X(t)) of some process X and refer to it simply as the average of
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X. Dividing by the CFs and assuming that the average SMC is positive, the one-year
potential profits can be expressed per MWh produced as

Pi = 〈λ〉νi − LCoEi, (6)

in terms of value factor

νi =
〈λHi〉
〈λ〉〈Hi〉

, (7)

and LCoE (AC/MWh)

LCoEi =
hRCi
〈Hi〉

, (8)

of the VRE producer i. We prove the following result in Appendix B.

Theorem 1. For a given VRE mix x, the dispatchable generation GDi and the SMC λ make
an optimal (primal/dual) solution of the scheduling problem (Equation (5)) only if, for all t
in T0,

when xDi > L(t, ω)−Qx(t, ω) > 0 :{
GDi(t, ω) = L(t, ω)−Qx(t, ω),
λ(t, ω) = cDi(L(t, ω)−Qx(t, ω)),

when L(t, ω)−Qx(t, ω) < 0 :{
GDi(t, ω) = 0,
λ(t, ω) = 0.

(9)

Moreover, if the VRE mix x̄ is an optimal solution of the investment problem (Equation (4)), then

• either the VRE producer i have a negative potential profit and no capacity is installed,
xi = 0, or

• the VRE producer i makes a non-negative profit and capacity is installed, xi > 0. In
this case,

– either its profit is zero and its capacity is not capped, 0 ≤ xi ≤ xmax
i (the bounds

may be reached but the corresponding constraints are inactive), or
– i’s profit is positive (economic rent) and its capacity is maximal, xi = xmax

i .

It follows that, at the optimum, the SMC at time t and for some outcome ω is a
function of the residual load, L(t, ω)−Qx̄(t, ω), only. This is illustrated in Figure 1.

When there is curtailment, the optimal SMC is given by the marginal cost of VRE
production, which is zero here. Otherwise, the SMC is given by the marginal cost of
the dispatchable generation, in agreement with standard merit-order dispatching [3]
(Chapter 8).

2.3. Two Reduced Models Ignoring VRE Variability

Our goal is here to compare optimal solutions of Problem (4) with that from
problems in which VRE variability is ignored. These problems help identify the
contribution from variability to adequacy costs. The first ignores both variability and
the impact of VRE generation on the SMC, while the second captures the effect of the
average VRE generation on the SMC.
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Figure 1. Illustration of the system marginal cost (thick dashed orange line) dependence on
the residual load (thick plain blue line) expressed by Equation (9) for an optimal solution. The
load is represented as an load duration curve. That is, the load values are ranked by decreasing
values and given as a function of the probability that the load exceeds a particular load value.

2.3.1. Decoupled Problem

First, the dispatch variable costs are assumed linear in the dispatchable generation
and the load and VRE CFs are assumed constant and equal to their averages. This
leads to the definition of the decoupled version of the expected STC,

Cx + T0 cDecoupled G0
Di. (10)

The investment and schedule problem then reduces to the linear program

min
x

Cx + T0 cDecoupled G0
Di

s.t. xi ≤ xmax
i , i ∈ {0, . . . , m− 1}

xi ≥ 0, i ∈ {0, . . . , m− 1}
G0

Di + 〈Qx〉 ≥ 〈L〉
G0

Di ≥ 0.

(11)

where cDecoupled = 〈cDi(L)〉 is the average optimal SMC without VRE (i.e., the optimal
SMC for the scheduling problem, Equation (5), with x = 0). We refer to this problem
as the decoupled problem. We take care to note the constant dispatch generation G0

Di

rather than 〈GDi〉. In fact, the optimal value G0
Di of G0

Di is given by the average
residual load (the average residual load could not be 0 for optimal solutions of the
decoupled problem as this would mean that the decoupled SMC would be 0 and the
VRE producers could not make a profit). As a result, for a given VRE mix and in
the presence of curtailment for some realizations of the time-dependent dispatchable
generation, G0

Di is smaller that 〈GDi〉.
Then, the SMC of the decoupled optimal schedule, or the decoupled version of

the SMC, is given by the constant

λ
Decoupled

= cDecoupled. (12)

If cDecoupled is larger than the LCoE of a VRE producer then capacity is installed
up to the corresponding maximum capacity. This optimal solution is akin to that
of a competitive market in which VRE producers are price takers. This problem
thus corresponds to the approach sometimes followed by stakeholders to evaluate
the competitivity of a VRE technology by comparing its LCoE to the actual average
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wholesale price of electricity. Let alone the variability of the VRE production, this
approach is clearly not suited for prospective studies with large VRE penetrations. The
SMC would indeed be significantly affected by the VRE penetration as a manifestation
of the wholesale price effect. However, this problem and the corresponding expected
STC (Equation (10)) are still valuable to compare optimal solutions and costs of the
variable problem (Equation (4)) to a situation in which predictions would be made
only based on statistics without VRE.

2.3.2. Constant Problem: Coupling without Variability

If, instead, one only assumes that the load and VRE CFs are constant in time, one
gets the constant version of the expected STC,

Cx + T0 VCDi

(
G0

Di

)
, (13)

and the investment and scheduling problem (Equation (4)) reduces to

min
x

Cx + T0 VCDi

(
G0

Di

)
s.t. xi ≤ xmax

i , i ∈ {0, . . . , m− 1}
xi ≥ 0, i ∈ {0, . . . , m− 1}
G0

Di + 〈Qx〉 ≥ 〈L〉
G0

Di ≥ 0.

(14)

We refer to this case as the constant problem. There is only one difference with the
decoupled problem (Equation (11)), but a major one indeed. Instead of evaluating the
dispatch variable cost based on an average marginal cost estimated from observations
of the optimal mix without VRE, knowledge of the variable cost function VCDi is used
to evaluate the variable cost assuming that the dispatchable generation is constant.
The drawback is that the variable cost function may not be known, or even exist, in
practice (in fact, estimating this variable cost function for a real system would require
information about the marginal costs of the dispatchable producers or to rely on price
data under assumptions about the electricity market). On the other hand, this approach
preserves the coupling between the VRE production and the SMC responsible for the
wholesale-price effect while still ignoring the effect of the residual load variability.

Optimal solutions to this problem must satisfy Theorem 1 with the time-dependent
and random load and CFs replaced by their averages. As a result, the value factors
(Equation (7)) are all equal to 1 and the profits (Equation (6)) reduce to differences
between the average optimal SMC and the LCoEs. In other words, even though the
optimal SMC depends on the VRE mix, correlations between the VRE CFs and the SMC
are ignored. Moreover, as in the decoupled case, the optimally scheduled dispatchable
generation G0

Di is given by the average residual load. Then, the SMC of the constant
optimal schedule, or the constant version of the SMC, is given by the constant

λ
Constant

= cDi(〈L〉 − 〈Qx〉). (15)

As a result, two technology regions with profits equal to zero must have the same
LCoE. Thus, if all technology regions have different LCoEs, applying Theorem 1 to the
constant problem shows that only one technology region can have a positive capacity
which is smaller than its maximum capacity. The others are either zero (negative
potential profit) or at their maximum capacity (positive profit).

2.4. VRE Value and Adequacy Cost

A precise definition of the VRE value is now given. Following IEA [4], our
approach is based on the quantification of the expected system total value (system
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marginal value) of VRE by comparing the STC (SMC) with and without VRE. The
benefit of this approach is that it does not require reverting to a specific benchmark
technology or segmenting costs into different categories.

2.4.1. System Total Value of VRE

The expected system total value of a VRE mix x is defined as

E(STVx) = E
(
STC(0)

)
−E

(
STC(x)

)
= T0〈VCDi(L)〉 −

[
Cx + T0〈VCDi

(
GDi
)
〉
]
,

where GDi is the optimal schedule of the variable problem given x. The first term is the
expected STC without VRE, while the second and third terms constitute the expected
STC with VRE. As far as optimal solutions x to the variable problem are concerned,
the expected STC is necessarily smaller or equal to the expected STC without VRE, so
that the system total value is non-negative. It is determined by a reduction of the STC
due to the contraction of the dispatch variable cost with the increase in the average
VRE penetration, which is only partly compensated by the VRE fixed cost, and by a
cost associated with the variability of the dispatchable generation.Therefore, we prefer
to define adequacy costs specifically as the contribution from variability rather than as
the opposite to the system total value. Singling out the effect of variability leads us to
the following decomposition of the system total value:

E(STVx) = T0〈VCDi(L)〉 − [Cx + T0VCDi(〈L〉 − 〈Qx〉)]
−Adequacy Cost.

(16)

The second term is now the constant version (Equation (14)) of the STC and is
supplemented by a third term representing adequacy costs. The latter is decomposed
in a positive contribution from the deviation of the average dispatch variable cost
applied to the residual load and in a negative contribution from curtailment:

Adequacy Cost = T0[〈VCDi(L−Qx)〉 −VCDi(〈L〉 − 〈Qx〉)]
−Curtailment Effect,

(17)

where the curtailment effect is defined as

Curtailment Effect = T0
[
〈VCDi(L−Qx)〉 − 〈VCDi

(
GDi
)
〉
]
. (18)

2.4.2. System Marginal Value of VRE

The average system marginal value of a VRE mix x is defined here as

〈SMVx〉 = 〈λ0〉 − 〈λ〉

= λ
Decoupled − [〈λ〉 − LCoEx]− LCoEx,

where the first term 〈λ0〉 is the average SMC without VRE which also corresponds to
the decoupled version of the SMC. The second and third terms constitute the average
SMC with VRE. The third term is the aggregate LCoE of the VRE mix x, defined by

LCoEx =
hRCTx
〈Qx〉

=
Cx

T0〈Qx〉
. (19)

The second is the deviation of the SMC with VRE from the LCoE. Applying
the definition of VRE marginal profits (Equation (6)), we find that this deviation is
explained by two factors. First, some VRE marginal profits may be positive due to
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the marginal VRE rents stemming from the maximum VRE-capacity constraints. The
marginal VRE rent is given by

MRx =
m−1

∑
i=0

Pixi =
1
T0

ξTx
〈Qx〉

, (20)

where the second equality expresses the marginal rent in terms of multipliers, ξ,
associated with the maximum VRE-capacity constraints of the variable problem
(Appendix B). Second, the aggregate VRE value factor may deviate from 1. The
aggregate VRE value factor is defined by

νx =
〈λQx〉
〈λ〉〈Qx〉

. (21)

Thus, the expected system marginal value of x decomposes as

〈SMVx〉 = λ
Decoupled − 〈λ〉(1− νx)

−MRx

− LCoEx.

(22)

As far as optimal solutions x̄ to the variable problem are concerned, the average
SMC is necessarily smaller or equal to the average SMC without VRE, so that the
system total value of VRE is necessarily non-negative. The decrease of the marginal
cost with the average VRE penetration thanks to the wholesale price effect is, how-
ever, modulated by deviations of the value factor from one associated with the in-
creased variability of the dispatchable generation, and reduced by the LCoE and
marginal rents.

Finally, the correspondence between the decompositions of the system total and
marginal values of VRE (Equations (16) and (22)) is only partial. Both the adequacy
costs and the complement of the aggregate value factor would vanish in the absence
of variability and curtailment. In addition, the total VRE cost and aggregate LCoE
may be associated. However, the dispatch variable cost of the average residual and
the marginal rents have different origins.

2.5. With Quadratic Dispatch Costs

In the following, it is assumed that the variable cost of the aggregate dispatchable
generation is quadratic:

VCDi(q) = αq2, q ∈ [0, xDi], (23)

where α is a positive coefficient that we call the dispatch variable cost coefficient. In
other words, the marginal cost cDi(q) is linear and equal to 2αq. This is a minimal
configuration capturing the increase of the marginal cost with the addition of produc-
tion from more expensive plants as the load increases. In practice, α depends on the
dispatchable mix, fuel costs, carbon prices, etc. It may vary with time. In this study,
we focus on the sensitivity of optimal mixes and the STC to dispatch variable costs by
controlling α arbitrarily and leave a detailed investigation of the relationship between
this parameter and the structure of the underlying mix of dispatchable producers for
future works.

In this case, the first term in the adequacy cost (Equation (17)) is simply given by
the of the total variance (over the hours of the year and over the noise) of the residual
load multiplied by α and the period. This fact greatly simplifies the interpretation
of the effect of the residual-load variability on the system adequacy and helps draw
links with mean-variance approaches, as discussed in Section 5. Moreover, assuming
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that the average VRE penetration is smaller than 100 %, the variable, constant, and
decoupled versions of the SMC are given by

〈λ〉 = 2α〈GDi〉
λConstant = 2α(〈L〉 − 〈Qx〉)

λDecoupled = 2α〈L〉.

In the absence of curtailment, thanks to the linearity of the dispatch marginal
cost, the constant version (Equation (15)) of the SMC is equal to its variable version
(Equation (9)), for a given value of α. However, the larger the average amount of
energy curtailed, the smaller the constant version compared to the variable version.
In addition to this curtailment effect, the corresponding profits differ by the value
factors which may deviate from 1 only in the variable case. On the other hand, the
decoupled version (Equation (12)) of the SMC is always larger than or equal to the
other versions because it ignores the wholesale price effect. As a result, the potential
profits are always larger for the decoupled version than for the constant version.

3. The Case of France

We ask what are the adequacy costs arising from the variability of the renewable-
energy production in France depending on the dispatch variable costs and investigate
the role of geographical and technological diversification [32] (for an overview of
renewable energies in France in 2020). Empirical data are used to apply the cost
minimization problems described in the previous Section 2 to the French electricity
system. More specifically, the optimization problem with quadratic dispatch costs
(Section 2.5) is applied to the case of onshore wind and PV energy in metropolitan
France. Each pair of VRE technology and administrative region is associated to a VRE
producer in the model. The domain, the national load, the regional CFs per technology
and the rental costs need first to be defined.

3.1. Domain

The domain is divided in the 12 administrative regions of metropolitan France
(to define the geometry of the regions, shapefiles from https://www.data.gouv.fr,
accessed on 1 June 2021 are used), as shown in Figure 2. This gives 12× 2 = 24 VRE
producers for the two VRE technologies considered here.

Figure 2. Assignment of the MERRA-2 climate-data grid points to the 12 regions of metropoli-
tan France.

3.2. Load and CF Time Series

Following Tantet et al. [23], regional VRE CF time series from 2010 to 2019
(10 y) are estimated at an hourly sampling from the climate data provided by the
MERRA-2 reanalysis. This is done per grid point of the climate data, with each

https://www.data.gouv.fr
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grid point being associated to a region, as illustrated in Figure 2. The result is aver-
aged per region and adjusted using a Ridge linear regression with cross-validation
to CF data from 2014 to 2019 (6 y) provided by the French transmission system op-
erator, RTE (https://opendata.reseaux-energies.fr/explore/dataset/fc-tc-regionaux-
mensuels-eolien-solaire/information/?disjunctive.region, accessed on 1 June 2021).
The averages of the regional CFs (〈Hi〉) are represented in Figure 3a,b.

Similarly, the thermosensitive demand model developed by Tantet et al. [23] is used to es-
timate national demand time series computed from the MERRA-2 temperature data and fitted
against the demand data from RTE (https://opendata.reseaux-energies.fr/explore/dataset/
eco2mix-regional-cons-def/information/?disjunctive.libelle_region&disjunctive.nature, ac-
cessed on 1 June 2021). These estimations are perfomed using the e4clim modeling
platform [33] introduced by Tantet et al. [23].

3.3. Rental Costs

The yearly rental costs for onshore wind and PV (T0hRCi) are computed by
summing the annualized capital costs (annuity) and the fixed O&M costs. They are
given in Table 1. The annualized capital cost, (Annuity)i, for some technology i, is
computed according to [16].

(Annuity)i =
ρ(Overnight Cost)i(ρτc + 1)

1− (1 + ρ)−(Lifetime)i
, (24)

where τc is a construction time fixed to 1 y and ρ is a discount rate fixed to 4.5 %, as rec-
ommended by the French government for use in public socio-economic analyses [34].
This choice of a discount rate value defined for socioeconomic evaluations of public
investments has two motivations. First, we aim at keeping the cost definition as
simple as possible by selecting a single discount rate for the VRE sector, ignoring the
specificities of individual projects. Second, considering the large investments in VRE
capacities considered here, we set this work in the framework of a long-term socioeco-
nomic strategy, whereby investment choices by decentralized actors are guided by the
public power. We thus prefer to rely on a discount rate that takes systemic risk into
account rather than to rely on a discount rate coming from energy markets ignoring
several externalities.

Table 1. Costs and lifetimes used to compute the yearly rental costs for the variable renewable
energy technologies (data from Tsiropoulos et al. [29]).

Units Onshore Wind Photovoltaic

Overnight Cost AC/kWe 1.13× 103 423
Lifetime y 25 25
Annuity AC/kWe/y 81.2 30.7

Fixed O&M Cost AC/kWe/y 34.5 9.20

Yearly Rental Cost AC/kWe/y 116 39.9

https://opendata.reseaux-energies.fr/explore/dataset/fc-tc-regionaux-mensuels-eolien-solaire/information/?disjunctive.region
https://opendata.reseaux-energies.fr/explore/dataset/fc-tc-regionaux-mensuels-eolien-solaire/information/?disjunctive.region
https://opendata.reseaux-energies.fr/explore/dataset/eco2mix-regional-cons-def/information/?disjunctive.libelle_region&disjunctive.nature
https://opendata.reseaux-energies.fr/explore/dataset/eco2mix-regional-cons-def/information/?disjunctive.libelle_region&disjunctive.nature
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(a) Wind average CF (b) PV average CF

(c) Wind LCoE (d) PV LCoE

(e) Wind maximum capacity (f) V maximum capacity

Figure 3. Regional distributions of the (top) average capacity factors, (middle) levelized costs of electricity (Equation (8)),
and (bottom) maximum capacities, for onshore wind (left) and photovoltaic (right).

3.4. Levelized Costs of Electricity

The VRE LCoEs (LCoEi) is computed applying Equation (8) using the rental costs
from Table 1 and the average CFs represented in Figure 3a,b. The resulting LCoEs are
represented in Figure 3c,d.
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3.5. Maximum Dispatchable and VRE Capacities

The total dispatchable capacity (xDi) is fixed to the maximum over the period of
the one-hour load, which is about 107 GW, so that the load can always be met by the
dispatchable generation alone. (The following information is not used here, but helps
put the abstract results from this study in perspective with the actual electricity system.
In 2018, the installed capacities per technology were 19 GW for fossil thermal, 26 GW
for hydropower and 63 GW for nuclear, while other renewable sources were totaling
about 3 GW. Nuclear, fossil thermal and hydropower capacities were thus totaling
about 107 GW. However, there was a net export of 60 TWh corresponding to a capacity
at full CF of 60.2× 103/8760 = 6.87 GW.) The data is taken from https://opendata.
reseaux-energies.fr/explore/dataset/parc-prod-par-filiere/information/ (accessed
on 1 June 2021) and https://opendata.reseaux-energies.fr/explore/dataset/imports-
exports-commerciaux/information/ (accessed on 1 June 2021). The maximum regional
VRE capacities (xmax

i ) are taken from ADEME [35] and are represented in Figure 3e,f.
These values are for industrial-scale onshore wind and PV installations. They exclude
rooftop residential PV.

3.6. Solver

The optimization problems are solved using the Pyomo [36,37] interface to the
Ipopt algorithm [38]. For a given value of α, a numerical approximation of the optimal
solution is found in a few minutes on a computer with an Intel Core i7 processor of the
8th generation (8 cores) and with 32 Gb of random access memory. This optimization
module is integrated to the new version of the E4CLIM modeling platform [33]. The
problem is solved independently for different values of α ranging from 1.0× 10−6 to
6.0× 10−3 with a step of 1.0× 10−4AC/MWh2. The robustness to sampling is tested in
Appendix C by comparing numerical results obtained from load and CF time series
of increasing duration estimated from the MERRA-2 data. The choice of using only
10 years of data is found to lead to differences of only a few percents compared to
using 5, 15, or 20 years and does not affect the conclusions of this study.

4. Results

Before discussing the role of variability in the model, the variable problem optimal
solutions are first analyzed.

4.1. Variable-Problem Behavior
4.1.1. Average Penetration

The average VRE penetrations for numerical approximations of the optimal
solutions to the variable problem (Equation (4)) are represented by the blue line in
Figure 4a, as a function of α. To ease the interpretation of the figure, however, α in
abscissa is replaced by the STC without VRE, i.e., the expected dispatch variable
cost E(STC(0)) = T0〈αL2〉 for the French national load. The penetration increases
quickly with the variable cost of the dispatchable generation, but stabilizes around
84 %. This increase is expected from the fact that the VRE cost (which is not affected
by α) decreases relatively to the dispatch variable cost. A direct consequence is the
decrease in the utilization of the dispatchable production.

https://opendata.reseaux-energies.fr/explore/dataset/parc-prod-par-filiere/information/
https://opendata.reseaux-energies.fr/explore/dataset/parc-prod-par-filiere/information/
https://opendata.reseaux-energies.fr/explore/dataset/imports-exports-commerciaux/information/
https://opendata.reseaux-energies.fr/explore/dataset/imports-exports-commerciaux/information/
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(a) (b)

Figure 4. (a) Average penetration (Equation (26)) versus the expected system total cost without variable renewable energy,
E(STC(0)) = T0〈αL2〉, for numerical approximations of the optimal solutions to the variable problem (Equation (4))
(blue), the constant problem (Equation (14)) (orange), and the decoupled problem (Equation (11)) (green). The black dots
indicate—here and in the following plots—the values of these metrics for selected values of the expected system total cost
without variable renewable energy, i.e., 10, 30, 50, 100 and 150 GAC/y. (b) Corresponding fraction of energy curtailed.

4.1.2. System Costs and Wholesale Price Effect

The average SMC and the expected STC for optimal solutions of the variable
problem are represented by the blue line in Figure 5a,b, respectively. Overall, the STC
and the SMC with VRE increase with the dispatch variable cost. However, this growth
is not linear but is instead mitigated by the introduction of VRE capacities, as further
discussed in Section 4.3.

4.1.3. Curtailment

Next, one can see from Figure 4b that for penetrations larger than approximately
10 %, curtailment of the VRE production occurs. The fraction of energy curtailed
quickly increases with the penetration. One can observe from the Residual Load Dura-
tion Curve (RLDC), represented in Figure 6, that both the amount of energy curtailed
at individual hours and the frequency at which curtailment occurs increase with α. At
large penetrations, the maximum amount of energy curtailed is actually comparable
to the maximum load. Thus, the absence of storage, demand-side management or
additional dispatchable renewable capacities—together with the high variability of the
total VRE generation when restricted to France—results in large amounts of renewable
energy being curtailed even at moderate penetrations.
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(a) (b)

Figure 5. (a) Variable version of the expected system total cost (Equation (3)) for optimal solutions to the variable problem
(blue), the constant problem (orange), and the decoupled problem (green). (b) Variable version of the average system
marginal cost (Equation (9)) for optimal solutions to the variable problem (blue), the constant problem (orange), and the
decoupled problem (green).

Figure 6. Load duration curve (black) and residual load duration curves (colors) for the optimal
solutions of the variable problem at selected values of the expected system total cost without
variable renewable energy. The dashed line represents the total installed dispatchable capacity, xDi.

4.1.4. VRE Regional Capacities and Profits

A more detailed picture of the optimal solutions emerges from the regional
distributions of the optimal VRE capacities represented in Figure 7. In addition,
Figure 8 helps relate the installed capacities to the profits and value factors of the
corresponding VRE producers. One can observe that, as α is increased, VRE profits
and capacities tend to increase although the increase in the average SMC (Figure 5b) is
partially compensated by the decrease in the value factors.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Cont.
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(g) (h)

(i) (j)

Figure 7. Regional distribution of the optimal wind (left) and photovoltaic (right) capacities for the variable problem
at selected values of the expected system total cost without variable renewable energy. Regions in which no capacity is
installed for a given technology are hatched by gray crosses. Regions in which the maximum capacity (Figure 3e,f) is
installed are hatched by gray dots. (a,b) E(STC(0)) = 10 GAC/y; (c,d) E(STC(0)) = 30 GAC/y; (e,f) E(STC(0)) = 50 GAC/y;
(g,h) E(STC(0)) = 100 GAC/y; (i,j) E(STC(0)) = 150 GAC/y.

More specifically, one can see that PV capacities in the south and in the east are
first installed (Figure 7a,b). In these regions, PV is installed up to maximum capacity so
that no two technology regions have positive capacities smaller than their maximum
capacity. This behavior is consistent with an economic analysis based on the LCoE
and accounting for the impact of the VRE generation on the SMC, as encoded in the
constant problem. One can see from Figure 3c,d that the LCoE is indeed smaller for PV
than wind (due to the smaller rental cost of PV, see Table 1), and for PV in the south
and in the east compared to other regions (due to the higher average CFs in these
regions, see Figure 3b). In fact, for such low values of the expected STC without VRE,
the PV value factors for the variable problem are all close to one (Figure 8d), so that
the PV profits are indeed maximal for these regions (Figure 8b). The profits for these
regions are in fact positive, which indicates that an economic rent is generated because
of the capacity limits in these regions.
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(a) Wind profit (b) PV profit

(c) Wind value factor (d) PV value factor

Figure 8. Regional distributions of (top) potential profits (Equation (6)) and (bottom) value factors (Equation (7)) of wind
(left) and photovoltaic (right) for the optimal solution of the variable problem. Low absolute values of the profits are in
gray, but values that are exactly zero (up to numerical accuracy) are in white.

For higher expected STC withtout VRE values (Figure 7c–j) wind capacities are
installed in addition to more PV capacity. In Figure 7c,e, one can see that two wind
regions are positive without reaching their maximum capacity. This shows that optimal
solutions deviate from the constant problem and that correlations between technology
regions play an important role (see Section 2.3). This is confirmed by the fact that
the wind profits for these regions remain zero around the corresponding values of
the expected STC without VRE (Figure 8a). This indicates that the increase in the
SMC with α is exactly compensated by the decrease in the wind value factors of these
regions (Figure 8c).

4.1.5. Economic Rent at High Penetrations

For an expected STC without VRE of 150 GAC/y, all technology regions have
reached their maximum capacity (Figure 7j). This explains why the optimal solu-
tions remain constant for values of the expected STC without VRE larger than about
140 GAC/y. The maximum capacity constraints prevent installing more VRE capacities
even though this would further reduce the STC. As a result, the average penetration
cannot be larger than about 84 %. This results in positive VRE profits (Figure 8a,b) due
to economic rents, as discussed in Section 4.3.

4.2. Optimizing Ignoring the Wholesale Price Effect and Variability

The impact of the residual load variability on optimal mixes depending on α is
now investigated.

First, optimal solutions for the variable, constant, and decoupled problems are
compared. Their properties are respectively represented by blue, orange, and green
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lines in Figures 4 and 5. For the decoupled problem, VRE penetration increases
sharply with the expected STC without VRE and reaches its maximum value quickly,
as expected from the absence of merit-order effect reducing the SMC. In this case, VRE
capacity for a technology-region is installed up to maximum capacity as soon as the
decoupled SMC (Equation (12)) is larger than the corresponding LCoE (Section 2.3.1).

In all these plots, the constant-problem solutions (in orange) lie between the
decoupled- and the variable-problem solutions. This shows that taking the merit-order
effect into account limits the installation of VRE capacities because the resulting SMC
remains smaller than in the decoupled problem, but that ignoring variability leads to
installing more VRE than otherwise.

Due to the higher penetrations of the decoupled- and constant-problem solutions,
the SMC is smaller than for the variable-problem solutions for intermediate values
of the penetration (Figure 5b). It thus appears that the cost of electricity is cheaper
for optimal mixes ignoring the merit-order effect and/or variability. However, the
drawback is that the resulting expected STC is larger (Figure 5a) so that the decoupled
and constant mixes are sub-optimal when taking VRE rental costs into account. At high
penetrations, these differences are small because the solutions of all three problems
converge to the maximum capacity distributions. For moderate values of the expected
STC without VRE, however, the differences in expected STC between the decoupled-
and variable-problem solutions can be more than twice as high. On the other hand,
the expected STC for constant-problem solutions is only a few percent higher than
for the variable-problem solutions. This shows that the cheaper SMC is more than
compensated by higher expenditures from investing in more VRE capacities, but not
so much so.

Thus, while ignoring the merit-order effect when optimizing investment in VRE
capacities may lead to significant sub-optimality, ignoring variability appears to be
less of an issue in this simple model and for the French configuration analyzed here.

4.3. System Value of VRE and Adequacy Cost

The system total and marginal value of VRE are now analyzed. They are repre-
sented by the red area in Figure 9. They are always positive and both increase sharply
with the expected STC without VRE, which explains the increase in the average VRE
penetration (Figure 4a). This increase is associated with a relative decrease of the
dispatch variable cost of the average residual load (orange area compared to the top
red line in Figure 9a). However, dispatchable generation is still needed, even at large
penetrations, and is responsible for a large fraction of the STC and of the SMC (green
area in Figure 9a,b, respectively). At high penetrations, the adequacy cost actually
dominates the fixed cost of VRE, and the marginal cost of variability is larger than
both the LCoE and the marginal rent, even though the latter increases as more VRE
technology-regions reach their maximum capacity.

The average system marginal value (in red, Figure 9b) is given by the difference
between the decoupled and the variable versions of the average SMC. Its increase is
thus a manifestation of the wholesale price effect which is responsible for a reduction
of the SMC only partially compensated by the marginal cost of VRE variability. In
addition, the difference between the constant and the variable versions of the expected
STC (in green, Figure 9a) gives the adequacy cost. At zero VRE penetration, these
adequacy costs are due to the variability of the load only and represent 3.8 % of the
expected STC. They quickly increase with the VRE penetration to reach 58 % of the
expected STC at the smallest value of α at which the maximum penetration is reached.
This confirms that the nonlinearity of the dispatch variable cost function leads to large
adequacy costs that should not be ignored for significant VRE penetrations.



Energies 2021, 14, 5143 23 of 37

(a) (b)

Figure 9. (a) Decomposition of the expected system total cost without Variable Renewable Energy (VRE). The blue and the
orange areas, respectively, represent the VRE fixed cost (Equation (2)) and the variable dispatch cost due to the average
residual load and add up to the constant version of the expected System Total Cost (STC, second term in Equation (16)).
The green area is filled between the constant and the variable versions of the expected STC and represents the adequacy
cost (Equation (17), third term in Equation (16)). Finally, the red area is filled between the variable version of the expected
STC and the expected STC without VRE and thus represents the expected system total value of VRE (Equation (16)).
(b) Decomposition of the average System Marginal Cost (SMC) without VRE. The blue area represents the VRE levelized
cost of electricity (Equation (19), last term in Equation (22)). The orange area represents the value of the VRE marginal rent
(Equation (20), third term in Equation (22)). The green area represents the marginal cost of VRE variability (second term in
Equation (22)). Finally, the red area is filled between the variable version of the average SMC and the average SMC without
VRE and thus represents the average system marginal value of VRE (Equation (22)).

Finally, Figure 10 represents the decomposition of the adequacy costs in a variance
term and a curtailment term, according to Equation (17). It shows that the adequacy
costs would actually be much larger (up to 100 %) if the excess VRE generation had to
be absorbed at the cost of the dispatchable generation instead of being curtailed.

Figure 10. Average variable dispatch cost due to the variance of the residual load with (blue)
and without (orange) the reduction by curtailment.

To conclude, while differences in the resulting costs of the optimal variable,
constant and decoupled mixes may not be so strong when ignoring the wholesale
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price effect and variability in the optimization (Section 4.2), differences in the variable,
constant, and decoupled versions of the expected costs are significant. This means
that planning a budget ignoring adequacy costs and the wholesale price effect leads to
underestimating the STC and overestimating the SMC, respectively.

5. Comparison with Mean-Variance Analyses

In order to relate different optimization approaches to the problem of renewable
energy integration, we now identify a special case of the cost-minimization problem
(Equation (4)) to a particular form of mean-variance analysis.

5.1. Cost Minimization without Curtailment

In the absence of curtailment, the dispatchable generation for the optimal schedule
(Equation (5)) is given by the residual load. The variable problem (Equation (4)) then
turns into a single-stage long-term investment problem with only the VRE-capacity
distribution (x) as decision variable. With quadratic dispatch costs (Equation (23)), the
STC divided by T0 becomes

α〈L−Qx〉2 + αVar(L−Qx) +
m−1

∑
i=0

hRCixi, (25)

where Var(X) = 〈(X(t)− 〈X〉)2〉 is the variance both in time and over samples of
some process X. We refer to it simply as the variance of X. In this case, the STC is
decomposed in an average term, a variance term, and a third term for the VRE rental
cost. The first term is minimized by increasing the VRE penetration

µx =
〈Qx〉
〈L〉 , (26)

to 100%. The variance of the residual should also be controlled. The variance of
the load being fixed, this can be done by adjusting capacities so as to increase the
covariance between the VRE production and the load and/or to limit the variance of
the total VRE production. This is in turn achieved via the diversification of the VRE
mix and by favoring technology regions for which the VRE CFs are more correlated to
the load. In the presence of curtailment, the optimization problem is more difficult
to interpret, in particular because curtailment limits the variance of the dispatchable
generation compared to the variance of the residual load.

5.2. Differences in Formulation with Some Mean-Variance Applications to VRE Systems

Table 2 summarizes the design of some mean-variance analysis problems applied
to the VRE systems [19,21–24].

Table 2. Summary of the defining elements of Markowitz’ original portfolio theory and of some mean-variance analysis
applications to the energy sector.

Reference State Mean of Variance of Total Constraint

Markowitz [17] Relative amount invested Return Return 100 % invested

Beltran [19] Capacity fraction Generation cost Generation cost 100 % installed

Thomaidis et al. [21] Capacity fraction Generation Generation 100 % installed

Santos-Alamillos et al. [22] Capacity fraction Generation Generation 100 % installed + bounds on capacity

Tantet et al. [23] Capacity Generation/load Generation/load Total capacity

Bouramdane et al. [24] Capacity Generation/load Generation/load VRE fixed cost

This study Capacity Squared mean net-load Net load VRE fixed cost
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The formulation of the mean-variance problems in these studies differ from the cost-
minization problem (Equation (4)) and its version ignoring curtailment (Equation (25))
in several aspects:

• No curtailment of the residual load is performed in the mean-variance case.
• VRE rental costs are not included in the objective functions, but the (fractional)

total capacity or rental cost is instead constrained. Apart from Beltran [19], who
use generation costs in the mean and variance terms, and Bouramdane et al. [24],
who use a total rental cost constraint, no economic costs appear in most mean-
variance problems.

• As opposed to the mean-variance problems listed here, the mean of the residual
load is squared in the cost minimization problem (Equation (25)).

• In the mean-variance problems, a coefficient weighs the objective for the variance
with respect to the objective for the mean. In the cost minimization problem, α
instead weighs the mean of the squared residual (mean squared plus variance)
with respect to the VRE rental cost.

5.3. A Formulation of Mean-Variance Analysis Akin to Cost Minimization

To remain close to the cost minimization problem (Equation (25)), one possible
formulation of the cost function of the mean-variance problem takes the form

〈L−Qx〉κ + βVar(L−Qx), (27)

subject to the usual constraint that VRE capacities should be positive and to a constraint
on the VRE rental cost,

m−1

∑
i=0

hRCixi ≤ FCtot,

where FCtot is the bound on the total VRE cost. The positive coefficient β is used to
scalarize the bi-objective mean-variance optimization and controls the weight of the
variance term with respect to the mean term. The exponent κ is usually set to one, but
setting κ to 2 has the advantage of leaving the solutions to the optimization problem
unchanged when scaling the residual load. The corresponding Lagrangian, living
aside the positivity bounds, is

〈L−Qx〉κ + βVar(L−Qx) + γ

(
m−1

∑
i=0

hRCixi − FCtot

)
, (28)

where the non-negative coefficient γ is the KKT multiplier for the VRE rental
cost constraint.

The Lagrangian of Equation (28) and the cost function of Equation (25) are now
compared, keeping in mind that the latter is a valid formulation of the cost function
of the variable problem only in the absence of curtailment. Note first that, given
some values of κ and β, there exists a threshold for FCtot below which the VRE rental
cost constraint of the mean-variance problem is active. Then, for FCtot below this
threshold and for κ = 2 and β = 1, the mean-variance problem is equivalent to the
cost minimization problem. By this we mean that, given FCtot, there is a unique value
of α for which the optimal solution to the mean-variance problem (Equation (27)) is
also a solution to the variable problem (Equation (25)), and vice versa. Beyond this
threshold, the VRE rental cost constraint is inactive and further increasing FCtot has
no effect on the optimal solution of the mean-variance problem.

This result is illustrated in Figure 11a for the case of France studied in Section 3.
The average penetration is represented versus the expected STC without VRE for
numerical approximations of the optimal solutions to the variable problem and to the
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mean-variance problem. Because an optimal solution to the mean-variance problem
does not depend on α, this representation is made possible by assigning to such a
solution the value of the variable cost of the dispatchable generation of the optimal
solution to the variable problem with a VRE rental cost (represented by a thin green line
one the right y-axis) equal to the maximum VRE rental cost defining the mean-variance
problem (FCtot). One can see that, for low values of the variable cost of the dispatchable
generation, the optimal solutions to both problems are relatively close to each other.
Small differences are explained by the presence of curtailment in the variable problem
which is ignored in the mean-variance problem. For values of the variable cost of the
dispatchable generation larger than about 70 GAC/y, however, solutions diverge. This
happens when the VRE rental cost constraint of the mean-variance problem is inactive.
Optimal solutions to this problem are no longer constrained because it is the stronger
increase in the variance of the residual load than in its mean that limits the increase in
VRE capacities. This behavior is limited in the cost-minimization problem because the
effect of curtailment on the cost is taken into account.

In addition, one can see in Figure 11b comparing the average penetration of the
optimal solutions to the mean-variance problem for different values of κ and β that
these solutions are highly sensitive to the choice of the parameters. In conclusion, while
it is possible to define a mean-variance problem that is close to a STC-minimization
problem, solutions to both problems diverge significantly in the presence of curtailment
and if the parameters of the mean-variance problem are not chosen properly.

(a) (b)

Figure 11. (a) Average penetration (Equation (26)) (left y-axis) versus the expected system total cost without Variable
Renewable Energy (VRE) for numerical approximations of the optimal solutions to the variable problem (Equation (4))
(blue) and to the mean-variance problem (Equation (27)) with κ = 2 and β = 1 (orange). The latter is represented by a
plain line when the VRE rental cost constraint is active (when its multiplier is positive) and by a dashed line when it is not.
(b) Average penetration (left y-axis) versus the maximum VRE rental cost for numerical approximations of the optimal
solutions to the the mean-variance problem (Equation (27)) for different values of κ and β (orange). For κ = 1 and 3, the
curves for different values of β overlap.

6. Summary and Discussion

We develop a simple model of VRE integration at high penetrations that

• considers both the problem of long-term investment in VRE capacities and the
optimal schedule of the dispatchable generation to satisfy an increasingly variable
net load;

• minimizes the STC in order to include adequacy costs and estimate the system
value of VRE; and

• avoids modeling the full system of dispatchable units by treating them as a
fully-dispatchable aggregate.
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This last point is a strong approximation, but provides a minimal model of optimal
VRE investment allowing one to estimate and decompose the VRE system value by
capturing the average effect of VRE integration on the wholesale price as well the
impact of VRE variability.

Assuming that the dispatch variable costs are quadratic leads to the simplest
version of the model. We show that this version is identical to a mean-variance
problem, but that the absence of curtailment and the proper choice of parameters are
critical for this to be the case.

We apply this version to the case of France over the 2010–2020 period with
limited PV and wind capacities distributed over the twelve administrative regions of
metropolitan France. Larger dispatch variable costs obviously lead to higher optimal
VRE penetration cost but with significant amounts of energy being curtailed and with
the limitation imposed by maximal VRE capacities. We show that while ignoring the
wholesale price effect and variability has a relatively small impact on the optimal
investment, differences in the expected VRE value are significant. This means that
planning a budget ignoring adequacy costs and the wholesale price effect leads to
underestimating the STC and overestimating the SMC, respectively.

A key advantage of this model is that the numerical estimation of its optimal
solutions using a sample-average approximation is relatively fast and that optimal
solutions can quickly be tracked depending on the parameterization of the dispatch
variable cost in response, for instance, to a carbon price. In addition, the system
total and marginal values of VRE can easily be computed. This makes the model
presented here useful to study the impact of the integration of high shares of VREs
in an electricity system. This comes of course at the price of a crude modeling of
the conventional mix which does not make this model appropriate for operational
studies, even if some flexibility cost parameterizations and reserve constraints could
be added to approximate flexibility and balancing costs. In addition, other renewable
sources or storage technologies could be integrated, together with network constraints
to include grid-related costs. Yet, we expect that, past a certain degree of sophisti-
cation of the model that could be required to reply to some research questions, the
advantages brought by the minimal modeling of the conventional producers will not
be sufficient to counterbalance the loss of accuracy resulting from the aggregation of
the conventional producers. In this case, a model explicitly representing all producers
like EOLES [39] may be more appropriate.
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Nomenclature
The following abbreviations are used in this manuscript:

Ω Sample space
T0 Set of hours in a year
ω Noise outcome
i VRE producer index
q Energy generated or load
t Time index
T0 Number of hours in a year
m Number of VRE producers
xDi Total dispatchable generation capacity
x Vector of VRE capacities
xi Capacity of VRE producer i
xmax

i Maximum capacity that VRE producer i can install
H(t) Vector of VRE capacity factors at time t

G0
Di

Constant aggregate dispatchable generation in the decoupled and
constant problems

GDi(t) Aggregate dispatchable generation at time t
L(t) Load at time t
Qx(t) Aggregate VRE generation at time t
λConstant Constant version of SMC
λDecoupled Decoupled version of SMC
λ(t) Variable version of SMC at time t
Hi(t) Capacity factor of VRE producer i at time t
FCDi Aggregate dispatch fixed cost
FCtot Maximum total VRE cost in mean-variance problem
hRC Vector of VRE hourly rental costs
hRCi Hourly rental cost of VRE producer i
LCoEi LCoE of VRE producer i
LCoEx LCoE of VRE mix x
cDecoupled Average optimal SMC without VRE
cDi Aggregate dispatch variable cost
µx Mean penetration of VRE mix x
νi Value factor of VRE producer i
νx Value factor of VRE mix x
Pi Potential profit per unit of energy of VRE producer i
SMVx System marginal value of VRE mix x
STC System total cost
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STVx System total value of VRE mix x
CDi Aggregate dispatch total cost
Ci Total cost of VRE producer i
Cx Aggregate total cost of VRE mix x
VCDi Aggregate dispatch variable cost
MRx Marginal rent of VRE mix x
β Weight of residual-load variance in mean-variance problem
α Dispatch variable-cost coefficient in quadratic dispatch variable costs

γ KKT multipler for the VRE rental-cost constraint in mean-variance problem
κ Exponent of average residual load in mean-variance problem

Appendix A. Mathematical Framework

Here, we describe our mathematical framework. In particular, one of our aims is
to show that Monte Carlo methods such as the sample-average approximation [30]
(Chapter 5), [31] (Chapter 9) can be applied to the optimization problem dealt with in
Section 2.

Appendix A.1. Stochastic Processes

Even if we assume that the energy system considered is able to adapt to perturba-
tions instantaneously, we cannot expect future loads and CFs to be known for certain.
This is why we consider that the load, the CFs, and the variables that depend on them
are stochastic processes. The family (X(t))t∈T, where T ⊂ Z+, of R-valued random
variables X(t) all defined on a probability space (Ω,F ,P) is called a stochastic process.

Appendix A.2. Cyclostationary

In addition, the processes are indexed by a discrete time where each time repre-
sents an hour of the year. We can then hope that some sort of stationarity holds so that
expectations may be estimated from past data. However, the presence of the daily and
annual cycles associated with climate variability or socio-economic behavior prevents
us to assume standard stationarity and instead leads us to assume that the processes
are cyclostationary with a period of a year. In other words, statistics only depend on
the phase within the annual cycle.

The stochastic process X is second-order cyclostationary in the wide sense with
period T0 > 0 if [40]

E(X(t + T0)) = E(X(t))
Cov(X(t + T0 + τ), X(t)) = Cov(X(t + τ), X(t))

for all t and τ in T and where the second moments must be finite for all t.
For each t in T, XT0

t (y) = X(t + yT0), y in Z+, defines a stochastic process. The
latter is wide-sense stationary, in the sense that

E
(

XT0
t (y)

)
= E

(
XT0

t (0)
)
= m(t)

Cov
(

XT0
t (y + τ), XT0

t (y)
)
= Cov(X(τ), X(0))

for all y, τ in Z+, and where the second moments must be finite for all y.
The yearly average (1/T0)∑t0+T0−1

t=t0
X(t), on the other hand, defines a stochastic

process indexed by t0 in T. It is also wide-sense stationary, so that expectations of such
yearly averages do not depend on the phase at which the average is started.

Appendix A.3. Convergence of Sample Means of Yearly Averages

We now use the stationarity of yearly averages to estimate expectations with
sample means over several years of data.
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In this study, we assume that there exists a sequence (θτ)τ∈Z+ with ∑∞
τ=0 θτ < ∞

such that

Cov
(

XT0
t (τ), XT0

t (0)
)
≤ θτ (A1)

for all t in T. Then [41] (Theorem 11.1.12), the weak law of large number holds:

1
N

N−1

∑
y=0

XT0
t (y)→ m(t) in probability as N → ∞.

In particular, noting that 1
N ∑t0+NT0−1

t=t0
X(t) = (1/T0)∑t0+T0−1

t=t0
(1/N)∑N−1

y=0 XT0
t (y)

for any initial times t0 in T, and with M = (1/T0)∑t0+T0−1
t=t0

m(t) =

E((1/T0)∑t0+T0−1
t=t0

XT0
t ),

1
N

t0+NT0−1

∑
t=t0

X(t)→M in probability as N → ∞.

Thus, the expectation of a sum over one period can be estimated from the sample
mean times the number of time steps in that period.

Appendix A.4. One-Cycle Distribution Function and Load Duration Curve

Optimal dispatching depends on the probability of occurrence of loads in a year.
Here we clarify the definition of these probabilities.

For some time spell t, the probability P(X(t) ≤ x) defines the cumulative dis-
tribution function of X(t). Because of the cyclostationarity of the stochastic process
(X(t))t∈T, this probability depends on the phase t mod T0. The sum of these proba-
bilities over one period is, however, independent of time. We define the one-period
distribution FT0

X by

FT0
X (x) =

1
T0

T0−1

∑
t=0

P(X(t) ≤ x) = E
[

1
T0

T0−1

∑
t=0

1(−∞,x](X(t))

]
. (A2)

It corresponds to the expected frequency at which X exceeds x over one period.
By the weak law of large numbers, for all x in R,

1
NT0

NT0−1

∑
t=0

1(−∞,x](X(t))→ FT0
X (x) in probability as N → ∞. (A3)

The left-hand side of (Equation (A3)) thus gives an estimate of the one-period
distribution which can be used to estimate the LDC.

In particular, for some load (or residual load) (L(t))t∈T0 over a period of a year, the
LDC is defined as the left continuous inverse of the complementary one-year distribution:

LDC(p) =
(

1− FT0
L

)−1
(p) = inf

{
q : 1− FT0

L (q) ≥ p
}

, 0 ≤ p ≤ 1. (A4)

We also define pL(q) = LDC−1(q) = 1− FT0
L (q) = (1/T0)∑T0−1

t=0 P(L(t) > q), the
probability that the load exceeds q. Thus, p′L(q) = −(FT0

L )′ (In this article, we assume
that all probability distributions are absolutely continuous so that their densities are
well defined.). The expectation of some function f of the load summed over a year is
given by

E
(

T0−1

∑
t=0

f (L(t))

)
=

T0−1

∑
t=0

∫
Ω

f (L(t, ω)) dP(ω) = −T0

∫
R

f (q)dFT0
L (q) = −T0

∫
R

f (q)p′L(q)dq. (A5)
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Applying the estimate (Equation (A3)) to the one-year distribution of the load,
we get the following estimate of LDC(p) from an N-year long sample path ordered by
decreasing values: {

L([pNT0 − 1]) for 0 < p ≤ 1,
L(0) p = 0,

where [p] is the integer part of p.

Appendix A.5. Validity of the Mathematical Assumptions

We thus make two assumptions: that the stochastic processes are cyclostationary
and that correlations decay fast (Equation (A1)). To which extent can we expect the
energy systems we deal with to satisfy these assumptions?

Expectations are defined for independent and identically distributed random
variables. This noise must thus represent factors affecting the energy systems that are
sufficiently fast to be considered uncorrelated. On the other hand, the climate system,
which is one of the main drivers of the load and the VRE generation, varies on a
continuous range of time scales [42–44] and is perturbed by non-stationary forcing [45]
such as the anthropogenic forcing. Therefore, the climate forcing cannot be treated as
noise and cannot be considered stationary with respect to the probability distribution
of the noise. Instead, to extend the law of large numbers to this case, we can view
the yearly-averages of climate variables and other socio-economic factors as Markov
processes with sufficient stability or mixing properties for some convergence to a
stationary distribution to hold (e.g., Stachurski [41] and Chekroun et al. [46] for the
case of stochastic differential equations, and Tantet et al. [47] for an application to the
stochastic Hopf bifurcation).

Still, we need to assume that low-frequency variability and change on long time
scales are sufficiently weak for the sample means to converge to an acceptable precision
for the number of years available in the data.

Appendix B. Proof of Theorem 1

The two-stage optimization problem (Equations (4) and (5)) is equivalent to

min
x∈Rm

cTx +Q(x)

s.t. x− xmax ≤ 0

− x ≤ 0,

(A6)

where Q(x) is the expectation of the optimal value of the second-stage problem:

min
y(ω)

q(y(ω), ω)

s.t. − h(ω) + T(ω)x + Wy(ω) ≤ 0.
(A7)

The cost q(y(ω), ω) is given by ∑T0−1
t=0 qt(yt(ω), ω), with qt(yt(ω), ω) =

VCDi(GDi(t, ω)), t in T0. The second-stage decision, objective-coefficients and right-
hand side vectors are, respectively,

y(ω) =

 GDi(0, ω)
...

GDi(T0 − 1, ω)

 c = T0 hRC h =

 h0(ω)
...

hT0−1(ω)

,
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and the matrices T and W are given by the block matrices

T(ω) =

 T0(ω)
...

TT0−1(ω)

 W =

W0 0
. . .

0 WT0−1

.

For each hour of the year t in T0, these elements are defined by the corresponding
instantaneous versions:

ht(ω) =

−L(t, ω)
xDi
0


and

Tt(ω) = −

H0(t, ω) · · · Hm−1(t, ω)
0 · · · 0
0 · · · 0

 Wt =

−1
1
−1

.

We note first that all cost functions and constraints are convex and differentiable,
with the constraints being affine and the cost functions being the sum of the function
VCDi which is convex and differentiable by assumption. Moreover, for all x in the
effective domain of Q (The effective domain of Q is the set of x such that Q(x) is
finite.), it is possible to find a strictly feasible solution y for the second-stage problem
(Equation (A7)) (Slater condition) (For some x in Rm, we say that y(ω), ω ∈ Ω, is a
strictly feasible solution of Problem (A7) if, for almost all ω in Ω, −h(ω) + T(ω)x +
Wy(ω) < 0, [y(ω)]1::2 − xDi < 0, −y(ω) < 0. Slater’s condition ensures that there is
no gap between the optimal values of the primal and dual second-stage problems.).
Whatever the residual load [−ht(ω) + Tt(ω)x]0 and at any time t, the dispatchable
generation can indeed be chosen positive, with the dispatchable generation strictly
smaller than the total dispatch capacity assumed strictly larger than the load. It follows
from Corollaries 36 and 37 in Birge and Louveaux [31, Chapter 3] thatQ is convex and
that its effective domain is convex and closed. Moreover, the first-stage constraints are
convex so the first-stage problem (Equation (A6)) is convex.

Next, a necessary and sufficient condition for a solution of Problems (A6) and (A7)
to be optimal is provided by Theorem 40 in Birge and Louveaux [31] (Chapter 3). The
latter can be seen as a generalization of the Karush–Kuhn–Tucker (KKT) conditions to
the first-stage problem, based on solutions to the second-stage problem. It involves
the sub-differential set ∂Q(x) of Q at x. The theorem ensures that a solution x̄ in
the interior of the feasible set (i.e., in the feasible set since it is closed due to the
bounds on x) and in the interior of the domain of Q (i.e., in the domain of Q since it is
closed) is optimal if and only if there exists ξ̄i ≥ 0, i in {0, . . . , m− 1}, and ζ̄i ≥ 0, i in
{0, . . . , m− 1}, such that (complementary slackness)

(x− xmax)T ξ̄ = 0

xT ζ̄ = 0,
(A8)

and (stationarity)

0 ∈ c + ∂Q(x̄) + ξ̄ − ζ̄,

where ξ̄ = (ξ̄0, . . . , ξ̄m−1) are the multipliers associated with the maximum VRE-
capacity constraints and ζ̄ = (ζ̄0, . . . , ζ̄m−1) are the multipliers associated with the
non-negative capacity constraints. If in addition there exists an optimal solution
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π̄(ω), ω ∈ Ω, to the dual of the second-stage problem (Equation (A7)) at x̄ which is
almost-surely unique then, by Corollary 2.23 in Shapiro et al. [30], Q is differentiable
and equal to E(TT π̄). The stationarity condition then becomes

c +E
(

TT π̄
)
+ ξ̄ − ζ̄ = 0. (A9)

We can thus look for an optimal solution for the second-stage primal and dual
problems for all feasible VRE capacities and for all possible outcomes, verify whether
it is almost surely unique, and apply Equations (A8) and (A9) to derive necessary and
sufficient conditions on the VRE capacities.

To solve the second-stage problem (Equation (A7)) and its dual, we note that the
former can be decomposed into T0 independent programs with decision variable yt(ω):

min
yt(ω)

qt(yt(ω), ω)

s.t. − ht(ω) + Tt(ω)x + Wtyt(ω) ≤ 0.
(A10)

The convexity and the Slater constraint qualification of the second-stage problem
also hold for these subproblems. The Karush-Kuhn-Tucker (KKT) conditions are thus
necessary and sufficient [48] (Chapter 5.5). That is, ȳt(ω) is an optimal solution of
Problem (A10) if and only if,

Primal feasibility : Dual feasibility :

L(t, ω) ≤ Qx(t, ω) + GDi(t, ω) λ(t, ω) ≥ 0

GDi(t, ω) ≤ xDi γ(t, ω) ≥ 0

GDi(t, ω) ≥ 0 ηGDi(t, ω) ≥ 0

Stationarity :

cDi(GDi(t, ω))− λ(t, ω) + γ(t, ω) = ηGDi(t, ω)

Complementary slackness :

λ(t, ω)(L(t, ω)−Qx(t, ω)− GDi(t, ω)) = 0

γ(t, ω)(GDi(t, ω)− xDi) = 0

ηGDi(t, ω)GDi(t, ω) = 0,

(A11)

where (λ(t, ω), γ(t, ω), ηGDi(t, ω)) = πt(ω) is the dual solution. We apply these
conditions to decreasing levels of residual load and find the following.

• For xDi > L(t, ω)−Qx(t, ω) > 0, it is necessary and sufficient that

GDi(t, ω) = L(t, ω)−Qx(t, ω) λ(t, ω) = cDi(L(t, ω)−Qx(t, ω))

γ(t, ω) = 0 ηGDi(t, ω) = 0.

• For L(t, ω)−Qx(t, ω) < 0, it is necessary and sufficient that

GDi(t, ω) = 0 λ(t, ω) = 0

γ(t, ω) = 0 ηGDi(t, ω) = cDi(0).

Thus, all three events yield unique primal and dual solutions for which merit-order
dispatching holds. However, the remaining events {ω ∈ Ω | L(t, ω)−Qx(t, ω) = xDi}
and {ω ∈ Ω | L(t, ω)−Qx(t, ω) = 0}, while leading to unique primal solutions, do
not have unique dual solutions because only 3 linearly independent equations are
available for the four dual variables. Yet, because of the absolute continuity of the
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residual load L(t)−Qx(t) (as a linear combination of an absolutely-continuous load
and of absolutely-continuous CFs) the probability of occurrence of these two events
is zero so that the solution to the dual problem is in fact almost-surely unique. For
some feasible x and almost any ω in Ω, we have thus found an optimal solution
pair (ȳt(ω), π̄t(ω)) for Equation (A10) that we can cast into an almost surely unique
optimal solution pair (ȳ(ω), π̄(ω)) for the second-stage problem (Equation (A7)).

We then use this second-stage solution in the KKT condition (A8) and (A9). We
get that a feasible x̄ is an optimal solution if and only if there exists ξ̄ ≥ 0 and ζ̄ ≥ 0
such that

(xi − xmax
i )ξ̄i = 0

xi ζ̄i = 0

T0hRCi −E
(

T0−1

∑
t=0

λ̄(t)Hi(t)

)
+ ξ̄i − ζ̄i = 0.

(A12)

We distinguish three cases depending on the expected one-year profit Pi =
〈λ〉νi − LCoEi.

• Positive profit Pi > 0:

then ξ̄i > 0, ζ̄i = 0 and the ith VRE capacity x̄i is equal to its maximum capacity
xmax

i . The dual variable ξ̄i corresponds to an economic rent that adds to the revenue
from electricity generation.

• Negative profit Pi < 0:

then ζ̄i > 0, ξ̄i = 0 and the ith VRE capacity is zero.

• Zero profit Pi = 0:

then ξ̄i = ζ̄i = 0 and the installed capacity 0 ≤ x̄i ≤ xmax
i is that for which the

profit is indeed zero.

Appendix C. Robustness to Sampling of French-Case Results

In Figure A1, we test the convergence of the numerical results of Section 3 by
comparing some properties of the numerical optimal solutions of the variable problem
(Equation (4)) using time series over periods of increasing lengths. We can see that,
apart from the one-year period, the represented properties differ by a few percents
only for all periods. Thus, the choice of a period of 10 y rather than a longer period
does not appear to affect the conclusions of this study.
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Figure A1. Average penetration (top left), fraction of energy curtailed (top right), expected system total cost (bottom left),
and average system marginal cost (bottom right) for optimal solutions to the variable problem versus the expected system
total cost without variable renewable energy using time series starting in 2019, 2015, 2010, 2005, or 2000 and finishing
in 2020.
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