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In response to DNA damage, efficient repair is essential for cell
survival and genome integrity. In eukaryotes, the DNA
damage checkpoint is a signalling pathway that coordinates
this response and arrests the cell cycle to provide time for
repair. However, when repair fails or when the damage is not
repairable, cells can eventually bypass the DNA damage
checkpoint and undergo cell division despite persistent
damage, a process called adaptation to DNA damage.
Interestingly, adaptation occurs with a delayed timing
compared with repair and shows a large variation in time, two
properties that may provide a survival advantage at the
population level without interfering with repair. Here, we
explore this idea by mathematically modelling cell survival in
response to DNA damage and focusing on adaptation
parameters. We find that the delayed adaptation timing indeed
maximizes survival, but its heterogeneity is beneficial only in a
fluctuating damage-inducing environment. Finally, we show
that adaptation does not only contribute to survival but also to
genome instability and mutations, which might represent
another criterion for its selection throughout evolution. Overall,
we propose that adaptation can act as a bet-hedging
mechanism for cell survival in response to DNA damage.
1. Introduction
Cells are often faced with damage to their DNA resulting from
either external or endogenous sources. In response, eukaryotes
are equipped with sophisticated mechanisms to deal with the
damage, collectively termed the DNA damage response (DDR)
[1]. Double-strand breaks (DSBs) are particularly cytotoxic and
have been used as a model to dissect the DDR, notably in the
yeast Saccharomomyces cerevisiae. Following a DSB, the early
steps of the DDR lead to the recruitment of the protein kinases
Tel1 and Mec1 to the damage, which initiate the DNA damage
checkpoint signalling pathway. A major function of the
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checkpoint, executed by the effector kinases Rad53 and Chk1, is to arrest the cell cycle at the G2/M
phase, preventing cell division while the damage is present. The DDR also induces the activation of
appropriate repair pathways, mainly non-homologous end-joining (NHEJ) and homologous
recombination (HR), depending on the phase of the cell cycle and the existence of sequences
homologous to the break site. In specific contexts, other repair mechanisms can be used by the cell.
The different repair pathways have different kinetics, with break-induced replication (BIR), a
mechanism that heals one-ended breaks by copying a template chromosome arm to its extremity,
possibly being one of the slowest (typically approx. 5 h) [2]. BIR is also much less frequently used by
the cell and most of the repair for a DSB is therefore done within 5 h after damage. If the DSB is
correctly repaired, cells recover normal cell cycle progression with an intact genome. Defective repair
can lead to mutations and genome rearrangement in the progeny.

However, appropriate repair pathways might not always be available and the DDR might, instead of
repair, steer the cell towards other cell fates such as cell death or adaptation. Here, adaptation to DNA
damage is defined as the process of allowing cell cycle progression and cell division despite the initial
checkpoint activation and persistent damage [3–5]. During adaptation, the effector branch of the
checkpoint is inactivated, releasing the cell from arrest. While the detailed molecular mechanisms of
adaptation are not completely sorted out, it is established that adaptation is an active mechanism that
can be genetically manipulated and can occur in most unrepaired cells in certain experimental
settings, with a very variable timing ranging from 5 to 15 h [6].

It is speculated that adaptation might be a last resort mechanism for cell survival when all repair
options or attempts are exhausted. Adaptation might then allow one of the two daughter cells to
survive in case of asymmetric segregation of the damage or by activating alternative repair pathways
available at another phase of the cell cycle [7,8]. Consistently, the survival of irradiated HR-deficient
cells, which are unable to repair, is decreased in a strain with an adaptation-deficient allele of the Polo
kinase CDC5, cdc5-ad [9]. However, cell division with an unrepaired DSB leads to improper
chromosome segregation [10]. More generally, adaptation is associated with elevated chromosomal
instability [9,11]. Interestingly, in an experiment where telomere deprotection, which is detected by the
cell as an unrepairable damage, can be controlled by temperature using a thermosensitive mutant
(cdc13-1), returning the cells to permissive temperature after a period of time at restrictive temperature
is associated with better cell survival when adaptation is prevented [12]. This result suggests that
commitment to adaptation entails a high mortality rate associated with chromosome missegregation.
In other words, in a favourable environment when repair is possible, cells that do not adapt or have
not yet adapted survive better.

The separation of timing between repair and adaptation naturally creates a hierarchy of cell fate
decisions, repair being attempted first and leading to better survival and less genome instability.
Because the exhaustion of repair options is not a single deterministic event, it is also attractive to
speculate that the timing heterogeneity of adaptation might represent a bet-hedging mechanism to
maximize overall survival. Bet-hedging can be defined as the maximization of long-term fitness in an
unpredictable environment at the cost of a suboptimal fitness in any given environment, for an
isogenic population [13,14]. This can be achieved either by a single suboptimal but not completely
maladaptive phenotype or by a diversity of phenotypes that spreads the risk [13]. The unpredictable
fluctuation of the environment, which can prevent or on the contrary facilitate repair, is a crucial
factor to take into account in this bet-hedging hypothesis for adaptation. For example, cells that are
subjected to constant DNA damage from X-ray irradiation might not efficiently repair if the repair
capacity is overloaded. If the source of damage persists for a long time, adaptation might represent a
chance for the population to survive despite a high mortality rate. However, if irradiation suddenly
stops, cell survival at the population level might be increased if some cells have not yet committed to
adaptation because they would then be able to repair. A heterogeneous adaptation timing might
therefore be an optimal cell survival strategy.

In this work, we investigate the consequences of adaptation timing and heterogeneity in the survival
of a population of isogenic yeast cells subjected to DNA damage, for which adaptation is best
characterized. We ask if known properties of adaptation, namely slow kinetics and variable timing,
represent a selective advantage and in which contexts. To do so, we use a stochastic compartment
model of damaged cells evolving over time. We then develop a continuous version of the model
based on ordinary differential equations and reproducing the overall properties of the stochastic
model. Our modelling and numerical simulations suggest that correct adaptation timing is important
for maximal cell survival and that adaptation heterogeneity might be explained as a bet-hedging
survival strategy in fluctuating environments.
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Figure 1. (a) Diagram of the Markovian process controlling the cellular states. (b) Probabilities of adaptation (blue) and repair
(orange) depending on the time elapsed since the initial damage occurred, with αm = 0.5, σ = 0.5, μa = 1 and βm = 0.5,
p = 3, μb = 3.886.
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2. Results
2.1. Mathematical model

2.1.1. Stochastic model

To investigate the survival of a population of damaged cells, we first build a stochastic model that mimics
the changes of individual cell states over discrete time. A step of this discrete time is chosen to be
equivalent to the duration of a normal yeast cell cycle in optimal growth conditions (approx. 1.5–2 h).
In this model, we consider an initial population of N0 cells in which DNA damage is induced only
once at time 0 and which activates the DNA damage checkpoint. The cells are therefore arrested and
face three main cell fates: recovery after repair, adaptation or cell death (figure 1a). In turn, adapted
cells can continue to adapt, undergo repair or cell death. The fact that adapted cells can repair a
damage that was not repaired in the previous cell cycle reflects the idea that alternative repair
pathways might be activated at other phases of the cell cycle [7,8]. We fix repair and cell death
probabilities and ask how adaptation can impact overall cell survival. We then monitor the number of
repaired cells and their descendants, collectively called healthy cells, since they are essential for long-
term survival of the population. The main output measurement of our simulations is the time it takes
for the environment to be entirely filled of healthy cells, i.e. the number of steps it takes to have Nmax

healthy cells in the population, which we call saturation time TS. The maximum number of healthy
cells constraint Nmax >N0 is chosen both for computational purpose and to focus on the survival
pattern at early times and not on long-term growth. Throughout the work, plots related to repair are
colour-coded in orange and those related to adaptation in blue.

We take into account the following mechanisms (figure 1a):

— at each discrete step, damaged cells have a probability γ1 of dying;
— depending on the number n of steps since the damage, damaged cells adapt with a probability β(n)

and repair their DNA with a probability α(n);
— at each step, adapted cells die with probability γad and repair their DNA with probability δ;
— at each step, repaired cells die with probability γr;
— at the end of each step, the adapted and repaired cells divide within the limit of the carrying capacity

of the environment. If there is not enough space to double both adapted and repaired populations,
we fill the environment proportionally.

Mathematically speaking, the aforementioned process is Markovian for a suitable choice of (infinite)
states space. Moreover, each individual cell evolves through an infinite states space Markov chain, or
more simply through a finite states space time-varying Markov chain.

We assume the probability of repairing at the nth step to be given by a Gaussian centred on μa > 0 and
of variance σ > 0 (figure 1b),

aðnÞ ¼ am e�ðn�maÞ2=s2
:

The parameter αm represents the maximum value of the probability of repair.
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Adaptation probability at the nth step after damage is represented by a logistic curve, consistent with
experimental data [6], parametrized the following way (figure 1b):

bðnÞ ¼ bm

1þ e�pðn�mbÞ ,

with coefficients μb, p, βm. The parameter p represents the slope of the curve: the larger p is, the faster
adaptation goes from a low to a high probability with increasing steps. The parameter βm represents
the maximum value of the probability of adaptation. Lastly, the central value μb of the logistic curve
represents the moment cells adapt with half the maximum probability.

Note that α and β are not probability densities, but probabilities computed at every step with the
given formula; in particular, their sum over all integers n > 0 is not 1.

In order to perform numerical simulations of this model, we fix some of the parameters:

— population parameters: N0 = 20 000, Nmax = 100 000;
— death probability parameters: γ1 = 0.1, γad = 0.35, γr = 0;
— transition adapted ! repaired: δ = 0.02;
— parameters for α: αm = 0.5, σ = 0.5, μa = 1;
— parameters for β: βm = 0.5, p = 3.

The significant death rate of damaged cells will naturally tend to favour faster cellular responses to
maximize survival. The high death rate for adapted cells reflects the risk for a cell to segregate
damaged chromosomes. The death rate of repaired cells is considered negligible.

This stochastic model provides a direct representation of the biological events occurring in the
population of cells over time, which is easy to interpret. For instance, it allows us to find the value of
μb that maximizes survival (i.e. minimizes TS) and compare it with the known timing of adaptation
(see §2.2 and figures therein). However, to reach conclusive results, the large number of simulations
required for robust averages are computationally intensive. We therefore develop a continuous model
representing the natural derivation and recapitulating the average behaviour of the stochastic model.
2.1.2. Continuous model

The continuous model is built upon a set of ordinary differential equations, which allows for fast
numerical simulation of the average behaviour of the system.

For a given time t > 0, we denote D(t) the quantity of damaged cells, A(t) the quantity of adapted cells
and R(t) the quantity of repaired cells.

In order to build a continuous model, we use the natural interpolation of the stochastic model.

— The reproduction part is replaced with logistic growth terms

AðtÞ 1� AðtÞ þ RðtÞ þDðtÞ
Nmax

� �

and

RðtÞ 1� AðtÞ þ RðtÞ þDðtÞ
Nmax

� �
:

— In the continuous time between two steps, we use the natural continuous interpolations for α(t) and
β(t),

aðtÞ ¼ am e�ðt�maÞ2=s2

and

bðtÞ ¼ bm

1þ e�pðt�mbÞ :

— The continuous transitions are written according to the classic equivalence between finite states space
Markov chains and linear differential equations.
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Figure 2. (a) Mean saturation time TS as a function of μb in the stochastic model, for p = 3. The means are taken over 10 000
simulations for each point. (b) Adaptation probability for the optimal μb (blue) found in (a) and fixed repair probability (orange).
(c) Saturation time TS as a function of the value of μb for the deterministic model, for p = 3. (d ) Adaptation probability for the
optimal μb (blue) found in (c) and fixed repair probability (orange).
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In short, the model writes

d
dt

DðtÞ
AðtÞ
RðtÞ

0
B@

1
CA ¼

�g1 � bðtÞ � aðtÞ 0 0

bðtÞ �gad � d 0

aðtÞ d �gr

0
B@

1
CA

DðtÞ
AðtÞ
RðtÞ

0
B@

1
CAþ

0

AðtÞð1� AðtÞþRðtÞþDðtÞ
Nmax

Þ
RðtÞð1� AðtÞþRðtÞþDðtÞ

Nmax
Þ

0
B@

1
CA:

Unless otherwise specified, we use the following values in the numerical experiments, which are the
same as for the stochastic model:

— population parameters: N0 = 20 000, Nmax = 100 000;
— death probability parameters: γ1 = 0.1, γad = 0.35, γr = 0;
— transition adapted ! repaired: δ = 0.02;
— parameters for α: αm = 0.5, σ = 0.5, μa = 1;
— parameters for β: βm = 0.5, p = 3.

Note that with these values, the slope of the curve β at its centre μb is

b0ðmbÞ ¼
pbm

4
¼ p

8
:

For this reason, we say by abuse of notation that p describes the slope of the adaptation curve.
2.2. Optimal adaptation timing in response to repairable DNA damage
We first ask whether tuning adaptation timing may maximize cell survival, all other parameters being
equal. To do so, we test several values of μb in the stochastic model and for each of these we measure
the average of the saturation times TS it takes for the population to be filled with Nmax healthy cells.
These mean times for the different values of μb are computed by simulating the model 10 000 times
(figure 2a). We find that a minimum for TS is reached for a value of μb close to the tail of the repair
probability (figure 2b).

We then perform a similar simulation using the continuous model. For a given parameter μb, we now
define the saturation time TS as the time it takes for the population to satisfy

jNmax � RðtÞj , 1:
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This criterion means that the environment is saturated at 99.9999% with healthy cells. We obtain a similar
result, with a clear optimal value (figure 2c,d ).

The values obtained with the stochastic and continuous models do not match exactly, because the
latter allows the population to repair and adapt between discrete steps and thus the population grows
slightly faster. Nevertheless, the deterministic model qualitatively recapitulates the stochastic model,
with the major advantage of being computationally efficient. We therefore use the continuous model
for the rest of this work.

The optimal μb found by simulating both models suggests that adapting as early as possible after
repair leads to better survival. To test this idea, we repeat the simulation with different repair
probabilities by varying μa and plotting the optimal μb as a function of μa (figure 6). We find that the
optimal adaptation timing μb is delayed from μa so that cells adapt only after exhaustion of repair
possibilities, thus setting a hierarchy of cell fate decisions.

2.3. Adaptation heterogeneity does not improve cell survival after a single initial
damaging event

We next investigate the contribution of adaptation heterogeneity, represented by the slope p of the
adaptation probability, to cell survival. We set μb to the previously obtained optimal value and
compute the saturation time TS as a function of p (figure 3).

For this choice of μb, we find that the largest tested value of p maximizes cell survival. By contrast, a
heterogeneous adaptation response closer to the experimentally measured one [6] (e.g. p≈ 1–3) gives a
slower population growth after DNA damage (figure 3a).

To explore more exhaustively the effect of adaptation timing and heterogeneity, we plot TS in the
parameter space (μb, p) (figures 4, 7 and 8). We find that for 1.5≤ μb≤ 6, which includes the previously
obtained value, the optimal choice is to maximize p. For μb < 1.5 and μb > 6, a minimum can be found
for p≈ 0.5 (figure 8). These two cases correspond to adaptation overlapping with repair and very late
adaptation, respectively, where heterogeneity slightly compensates for suboptimal μb. Indeed, the
saturation time is much larger for these values of μb than for more realistic ones.

Except for these extreme cases (μb < 1.5 and μb > 6), which do not agree with experimental observations,
our model indicates that adaptation heterogeneity is a suboptimal survival strategy in a context where
damage is induced once at time point 0. We reason that because our model considers that no further
damage is induced in the cells after the initial one, the environment becomes predictable and amenable to
optimal survival strategy with no heterogeneity. By contrast, in a more realistic context, the initial source
of damage might be active for an unpredictable amount of time. In the next section, we explore the idea
that a fluctuating environment might favour a heterogeneous adaptation response.

2.4. The preference for sharp adaptation timing is erased in a fluctuating environment
To represent a fluctuating environment, the initial damage source continues to be present in the
environment for an unpredictable period of time. We implement this scenario in three different
manners (figures 5 and 9):
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Figure 5. (a) Saturation time TS as a function of p in a Gaussian random environment for the moment when the damage source
stops with mean 1.7 and variance 2.25 (see (b)), for μb = 3.886. (b) Adaptation probability for the optimal p (blue) and fixed repair
probability (orange). The dashed curve represents the Gaussian probability density of the random environment. (c) Fraction of cells
(in %) in the final healthy population that are descended from adapted cells as a function of p, in a random (blue, right y-axis) or
stable (red, left y-axis) environment. (d ) Evolution in time of the four cell subpopulations (damaged cells, adapted cells, repaired
cells directly from damaged cells and repaired cells descended from adapted cells), with μb = 3.886 and p = 1, averaged over the
distribution of the random environment.
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— The moment when the source of damage stops follows a normal law; no repair is possible while the
damage process is ongoing; repair resumes once the source of damage stops but with the initially
fixed probability (figure 5b).

— Same as above, but with an exponential law (figure 9b).
— The moment when the source of damage stops follows a uniform law; no repair is possible while the

damage process is ongoing; repair probability is initiated only once the source of damage stops and
its maximum probability fades exponentially over time (figure 9d ).

For each implementation of the fluctuating environment, we set μb = 3.886 and compute TS as a function
of p.
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Strikingly, simulations in all three implementations lead to similar results with TS minimized for
an optimal p≈ 1, which corresponds to a gentle slope in agreement with experimental observations
(figures 5a,b and 9). However, closer examination indicates that TS varies much less as a function of p
than in the context of a stable environment and, therefore, its minimum represents only a minor
improvement in cell survival compared with other values of p. We conclude that a fluctuating
environment erases the preference for a sharp adaptation timing and only slightly select for
adaptation heterogeneity. It is thus not clear whether maximizing cell survival alone might be
sufficient to explain adaptation heterogeneity. In the next section, we ask whether another property of
adaptation—that it induces genome instability—might be promoted by heterogeneity.
/journal/rsos
R.Soc.Open

Sci.8:210460
2.5. Adaptation heterogeneity promotes genetic diversity in response to DNA damage
The saturation time criterion we use in this work aims at measuring the moment when the population
becomes large and healthy enough to be maintained. Therefore, any cell that has eventually repaired
the initial damage is counted, whether it comes from the damaged cells pool or the adapted cells
pool. Given that in a fluctuating environment, adaptation heterogeneity leads to only a minor
improvement in fitness, we wonder whether different values of p lead to different population
structures, i.e. different fractions of healthy cells coming from the adapted pool. Since adaptation
induces mutations and genome rearrangements, the fraction of the population of cells descending
from adapted cells can be viewed as a proxy for the genetic diversity of the surviving population.

In order to have access to the structure of the final population, we divide the repaired compartment of
the model in two parts:

RðtÞ ¼ RdðtÞ þ RaðtÞ,
where Rd(t) describes the amount of cells that directly repaired their DNA or are descended from cells
which did and Ra(t) describes the amount of cells that first underwent adaptation and then repair, or
are descendant of these cells.

We denote

NðtÞ ¼ AðtÞ þ RdðtÞ þ RaðtÞ þDðtÞ,
the total population at time t. The extended model writes

d
dt

DðtÞ
AðtÞ
RdðtÞ
RaðtÞ

0
BBB@

1
CCCA ¼

�g1 � bðtÞ � aðtÞ 0 0 0

bðtÞ �gad � d 0 0

aðtÞ 0 �gr 0

0 d 0 �gr

0
BBB@

1
CCCA

DðtÞ
AðtÞ
RdðtÞ
RaðtÞ

0
BBB@

1
CCCAþ

0

AðtÞ 1� NðtÞ
Nmax

� �

RdðtÞ 1� NðtÞ
Nmax

� �

RaðtÞ 1� NðtÞ
Nmax

� �

0
BBBBBB@

1
CCCCCCA
:

We then compute for each value of the parameter p the saturation time TS as above, and we estimate the
ratio

RaðTSÞ
RdðTSÞ þ RaðTSÞ :

The final fraction of healthy cells descended from adapted cells decreases as a function of p and already
reaches a plateau for p > 3 (figure 5c). In a fluctuating environment, this fraction is 17% for p = 1 (figure 5c,
blue line). Thus, adaptation heterogeneity allows more progeny of adapted cells to be included in the
surviving population, which should translate into a more genetically diverse population. For p = 1, we
compute the evolution over time of all four subpopulations A(t), Rd(t), Ra(t), D(t) averaged over the
distribution of the random environment (figure 5d ). We find that adapted cells behave as a transient
subpopulation that coexists with cells repaired directly from damaged cells, before being partially
repaired themselves. A similar pattern is observed without fluctuating environment (figure 10a, for
p = 1), but then the fraction of repaired cells descended from the adapted pool is much smaller (figure
5c). By contrast, in a context where no direct repair of damaged cells is available, adaptation followed
by alternative repair pathways becomes the sole survival route for the population, which then
recovers very slowly (figure 10b).

Overall, in a fluctuating environment, the results on population survival and structure suggest that
evolution might have selected adaptation heterogeneity both to maximize survival and to promote
genetic diversity.
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3. Discussion
3.1. Optimal adaptation timing leads to a hierarchy of cell fate decisions
The DNA damage response is important to maintain cell survival and genome integrity. A plethora of
repair mechanisms tailored to different types of damage act to fulfil this function. Interestingly,
adaptation to DNA damage is used only after most or all repair attempts are exhausted. How can we
explain this chronological priority of repair over adaptation? One possibility would be that adaptation
is a passive response. The checkpoint could have been selected throughout evolution to robustly arrest
the cell cycle only long enough for repair, after which its signal fades and allows for adaptation.
However, in several adaptation mutants, including cdc5-ad, the checkpoint remains active for as long
as 24 h [4,5,15,16], indicating that the checkpoint is intrinsically capable of maintaining cell cycle arrest
for much longer than 5 h. Besides, the fact that overexpression of Cdc5 accelerates adaptation [6,17]
suggests that it is an active mechanism. Another attractive possibility would posit adaptation as a
process selected by evolution for its impact on cell survival after DNA damage in unicellular
eukaryotes such as S. cerevisiae. Our work explores this scenario by mathematical modelling and
numerical simulations. The conclusions might be applied to other eukaryotic microorganisms in
which adaptation to DNA damage is conserved.

In a model with fixed repair probabilities, we ask whether a particular adaptation timing maximizes
cell survival after DNA damage. We find a timing that agrees very well with experimental observations,
corresponding to adaptation occurring just after most repair options are exhausted. This order of events is
forced by the higher mortality rate of adapted cells compared with repaired cells. The high mortality rate
of adapted cells is consistent with the missegregation of damaged chromosomes and possibly other yet
undescribed mitotic abnormalities during adaptation [9,10]. We therefore suggest that maximizing cell
survival is sufficient to create a hierarchy of cell fate decisions. Consistently, we found that even if
repair timing is artificially changed, the optimal adaptation timing is shifted accordingly so that the
delay between repair and adaptation is maintained.

How adaptation timing is implemented at the molecular level is not yet known. It would be
interesting to decipher whether the average adaptation timing is set at an absolute value
independently of other processes or whether it is actively regulated, for instance, by the DDR.
Supporting the latter possibility, a number of factors involved in adaptation also regulate other aspects
of the DDR, and for instance, the recombination protein Tid1 (also known as Rdh54) is a
phosphorylation target of the DNA damage checkpoint and is important both for a subset of BIR that
does not rely on the recombinase Rad51 and for adaptation [18–20]. Furthermore, repair in tid1Δ cells
appears to be more efficient than in wild-type cells [2]. Thus, Tid1 might act at the crossroad of repair
and adaptation, and regulate their respective timings. Another essential adaptation factor, Cdc5,
potentially interacts with or phosphorylates a number of proteins involved in the DDR and in repair,
including Mus81-Mms4, Sae2, Rad53 and Exo1 [6,17,21–23]. Although we found that the adaptation
mutant cdc5-ad has no defect in homology-dependent repair [11], it was reported to be involved in the
RAD52-independent repair of a dicentric chromosome [24], and it is thus attractive to speculate that
Cdc5’s function in adaptation might be affected by its potential involvement in the DDR.
3.2. Heterogeneity of adaptation timing: a putative bet-hedging strategy
While it is often straightforward to understand that the order of events can affect a biological function, it
can be much more complicated to provide a functional basis for the heterogeneity of a biological process.
Mathematical modelling is a powerful approach to test how heterogeneity affects a particular trait by
artificially modulating heterogeneity, which is often difficult to achieve experimentally.

Here, we show that, in the defined context of a predictable environment with no prolonged source
of damage, adaptation heterogeneity does not improve cell survival at the population level compared
with a sharp adaptation timing. However, the ‘repairability’ of a damage is not always predictable.
Indeed, activation of specific repair mechanisms depends upon many parameters, some of which
possibly being stochastic or at least variable. The source of damage might also overload the repair
machinery of the cell for an unpredictable amount of time. At the same time, adaptation is not the
preferred outcome because of its associated mortality and genome instability, at least if repair is still
possible. Therefore, to account for such an unpredictability, a risk-spreading strategy might increase
long-term survival by increasing the timing heterogeneity of adaptation. We test this idea by
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implementing different types of randomly changing environments that prolong the initial damaging
phase. In each case, as predicted and in contrast to the context of a predictable environment, we
find that a heterogeneous adaptation response maximizes cell survival. Closer examination of the
saturation time values indicates that rather than strongly favouring heterogeneity, an unpredictable
fluctuating environment actually erases the previously found preference for a sharp adaptation timing.

The phenotypic heterogeneity of adaptation timing can be the result of a bet-hedging strategy [25] as
we propose or due to other modes of response, such as a sense-and-response strategy [26] whereby the
damaged cell would monitor and evaluate its own repair ability and undergo adaptation if repair is
deemed unfeasible or unsuccessful. While the examples of Tid1 and Cdc5 show that cross-talks might
exist between repair and adaptation, the sense-and-response scenario to explain heterogeneity has
been rejected by experiments in yeast where the cell population has no functional repair pathway
available to begin with and still follows a delayed and heterogeneous adaptation timing [4,5,9].
Adaptation heterogeneity is therefore a built-in property, aimed at generating diversity independently
of the repair status or the environment, rather than the result of a responsive strategy.

Overall, the heterogeneity of adaptation to DNA damage fits several criteria defining bet-hedging
[13,14]: it is an intrinsic genetically encoded property observed at the level of the isogenic population
and it is suboptimal in a constant environment but maximizes survival in unpredictable damaging
environments. Further validation of this hypothesis might involve testing experimentally if yeast
strains with different levels of adaptation heterogeneity (e.g. natural variants or engineered mutants)
would show altered fitness in constant versus fluctuating environments.

In addition to a slight advantage for cell survival provided by a heterogeneous adaptation timing in a
fluctuating environment, our results suggest that other factors might contribute to the selection of
adaptation heterogeneity. Interestingly, we find that, for roughly equally fit populations, higher levels
of adaptation heterogeneity lead to a greater fraction of the surviving population descended from
adapted cells and having repaired their damage afterwards. We thus propose that adaptation
heterogeneity allows adapted cells to contribute more to the genetic make-up of the surviving
population in the wild. Starting from isogenic cells, adaptation-induced mutations and genome
rearrangements generate genetic diversity. In conclusion, our model suggests that adaptation
heterogeneity might have been selected both as a survival strategy and also as a driver of genetic
diversity in populations subjected to unpredictable DNA damage.

Data accessibility. All codes used in this work are available at: https://github.com/pierreabelroux/Roux_Salort_Xu_
2021/blob/main/code_RSX.py.
Authors’ contributions. P.R. and D.S. built the mathematical models, with inputs from Z.X. P.R. performed the
computations and simulations. P.R. and Z.X. drafted the manuscript. D.S. and Z.X. supervised the work. All
authors revised the manuscript.
Competing interests. We declare we have no competing interests.
Funding. This work was supported by Ville de Paris (Programme Émergence(s)).
Appendix A
See figures 6–10.
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