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ABSTRACT 
 

Cancer patients are particularly susceptible to the development of severe Covid-19, prompting us to investigate 
the serum metabolome of 204 cancer patients enrolled in the ONCOVID trial. We previously described that the 
immunosuppressive tryptophan/kynurenine metabolite anthranilic acid correlates with poor prognosis in non-
cancer patients. In cancer patients, we observed an elevation of anthranilic acid at baseline (without Covid-19 
diagnosis) and no further increase with mild or severe Covid-19. We found that, in cancer patients, Covid-19 
severity was associated with the depletion of two bacterial metabolites, indole-3-proprionate and 3-
phenylproprionate, that both positively correlated with the levels of several inflammatory cytokines. Most 
importantly, we observed that the levels of acetylated polyamines (in particular N1-acetylspermidine, N1,N8-
diacetylspermidine and N1,N12-diacetylspermine), alone or in aggregate, were elevated in severe Covid-19 
cancer patients requiring hospitalization as compared to uninfected cancer patients or cancer patients with 
mild Covid-19. N1-acetylspermidine and N1,N8-diacetylspermidine were also increased in patients exhibiting 
prolonged viral shedding (>40 days). An abundant literature indicates that such acetylated polyamines increase 
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INTRODUCTION 
 

Coronavirus disease-19 (Covid-19) has challenged and 

transiently overwhelmed the health care system of all 

Western countries. Infection by severe acute respiratory 

syndrome coronavirus-2 (SARS-CoV-2), the causative 

agent of Covid-19 is usually asymptomatic or pauci-

symptomatic in healthy individuals [1, 2]. However, old 

age and age-related diseases are risk factors that 

predispose to a more severe disease course requiring 

hospitalization, respiratory assistance with oxygen 

(“moderate” Covid-19) or even intubation (“severe” 

Covid-19), often with long-term sequelae or a fatal 

outcome [3, 4]. Cancer is one of the established risk 

factors for severe Covid-19 [5], which may be related to 

the facts that (i) malignant disease mostly develops in 

aged individuals, often in the context of other 

comorbidities [6–8] (ii) cancer manifests preferentially in 

the context of failing immunosurveillance and mediates 

local and systemic immunosuppressive effects during 

tumor progression [9, 10]; and (iii) antineoplastic 

therapies, in particular combination chemotherapies, have 

debilitating, pro-inflammatory, immunosuppressive and 

senescence-accelerating side effects [11, 12].  

 

Multiple studies have attempted to identify biomarkers 

that distinguish patients likely to develop mild versus 
severe Covid-19 [1, 2, 13]. Obviously, such biomarkers 

are linked to deficient anti-SARS-CoV-2 immune 

responses (such as severe lymphopenia or, more 

specifically, inefficient type-1 interferon responses due to 

inherent immune defects or the production of auto-

antibodies that neutralize type-1 interferons) [14–16] or 

excessive inflammatory responses (that often manifest at 

the levels of granulocytes, monocytes and their products) 

[17, 18]. The search of predictive biomarkers has been 

involving advanced technologies including high-

dimensional cytometry [17], single-cell transcriptomics 

[19] and proteomics [20]. An additional unbiased strategy 

for defining circulating factors useful for risk 

stratification is mass spectrometric metabolomics, a 

technique that requires a minimum of initial sample 

preparation (snap freezing of serum or heparin serum and 

its storage at -80° C), is entirely automatable and yields 

accurate information on hundreds of known metabolites 

(i.e. a combination of chromatographic retention times 

and masses that allow for the bona fide identification of 

the corresponding chemical compound) as well as 

thousands of unknown metabolites [21–32].  

Here, we used mass spectrometric metabolomics to 

identify biomarkers of Covid-19 severity in cancer 

patients recovered at the Gustave Roussy Cancer Campus, 

which comprises the largest cancer-specific research 

hospital in Europe. We identified a series of metabolites 

that correlate with disease severity in cancer patients.  

 

RESULTS 
 

Study design and metadata 

 

We determined the metabolome of serum samples from 

204 cancer patients enrolled in the ONCOVID  

trial (https://clinicaltrials.gov/ct2/show/NCT04341207). 

Patients were divided into “controls” (no diagnosis of 

Covid-19, no signs of respiratory infection) and two 

categories of PCR-confirmed Covid-19 patients with 

“mild disease” (with ambulatory treatment) or 

“moderate/severe disease” (requiring hospitalization 

and respiratory assistance). Indeed, the number of 

patients with severe Covid-19 (requiring intubation and 

mechanical ventilation) was too low to be analyzed as a 

separate group. Importantly, the duration of viral 

shedding (short-term shedding: <40 days, long-term 

shedding: >40 days) was variable among Covid-19 

infected cancer patients, yet tended to be shorter in mild 

than in moderate/severe cases (Figure 1) as already 

observed by Goubet et al. [33]. The clinical 

characteristics of both cohorts are summarized in Table 

1. Serum samples from both cohorts were subjected to 

mass spectrometric metabolomics, yielding high-quality 

information on 239 identified metabolites (Figure 1 and 

Supplementary Table 1). Moreover, the cohort yielded 

4276 non-identified mass spectrometric peaks 

(Supplementary Figure 1 and Supplementary Table 2).  

 

Depletion of two bacterial propionate derivatives in 

moderate/severe Covid-19 

 

To identify metabolites the abundance of which increases 

or decreases with disease severity, we generated volcano 

plots that pinpoint variations in the metabolite 

concentration by at least 20% (up or down) with a p-

value ≤0.05 (Figure 2A). Eleven metabolites fulfilled 

these criteria (Figure 2A) and were then subjected to 

random forest classification to identify which among 

them have the best predictive values (Figure 2B). Of 

note, two chemically related compounds, indole-3-

proprionate and 3-phenylproprionate were reduced in 

in the serum from patients with cancer, cardiovascular disease or neurodegeneration, associated with poor  
prognosis. Our present work supports the contention that acetylated polyamines are associated with severe 
Covid-19, both in the general population and in patients with malignant disease. Severe Covid-19 is 
characterized by a specific metabolomic signature suggestive of the overactivation of spermine/spermidine N1-
acetyl transferase-1 (SAT1), which catalyzes the first step of polyamine catabolism.  

https://clinicaltrials.gov/ct2/show/NCT04341207
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Figure 1. Heatmap representing the serum metabolome of each individual cancer patient clustered by clinical severity of Covid-
19. Targeted metabolomic data on 211 serum samples from 204 patients were normalized areas of identified metabolites. Results are listed in 
Supplementary Table 1. 
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Table 1. Clinical characteristics of SARS-CoV-2 patients affected by cancer. 

Cancer patient characteristics 
All  

N=204 

Control 

n=128 

COVID-19 

p 
Mild n=37 

Moderate or 

severe 

n=39 

Age (year) Median (range) 61 (19-89) 60 (19-83) 65 (19-89) 64 (33-83) - 

Gender – no (%) 
Male  84 (41) 54 (42) 12 (32) 18 (46) 

0.44 
Female 120 (59) 74 (58) 25 (68) 21 (54) 

Number of comorbidities –  

no (%) 

0 104 (51) 71 (55) 16 (43) 17 (44) 

0.42 
1 51 (25) 27 (21) 14 (38) 10 (26) 

2 30 (15) 18 (14) 4 (11) 8 (21) 

>3 19 (9) 12 (9) 3 (8) 4 (10) 

Comorbid conditions – no (%) 

COPD 15 (7) 13 (10) 1 (3) 1 (3) 

0.51 

Obesity (BMI ≥ 30) 18 (9) 11 (9) 2 (5) 5 (13) 

Hypertension 66 (32) 37 (29) 15 (41) 14 (36) 

Congestive heart failure 7 (3) 4 (3) 1 (3) 2 (5) 

Diabetes mellitus 22 (11) 11 (9) 5 (14) 6 (15) 

Type of malignancy – no (%) 

Solid tumors 180 (88) 121 (95) 31 (84) 28 (72) 

0.0004 Hematological 

malignancies 
24 (12) 7 (5) 6 (16) 11 (28) 

Cancer spread - no (%) 

Localized 89 (44) 68 (53) 11 (30) 10 (26) 

0.002 Locally advanced 25 (12) 11 (9) 9 (24) 5 (13) 

Metastatic 90 (44) 49 (38) 17 (46) 24 (61) 

ECOG performance status –  

no (%) 

0 108 (53) 81 (63) 21 (57) 6 (15) 

<0.0001 1 52 (25) 33 (26) 6 (16) 13 (33) 

2 or more 44 (22) 14 (11) 10 (27) 20 (51) 

Death – no (%) Yes 45 (22) 27 (21) 5 (14) 13 (33) 0.10 

SVS, Short Viral Shedding; LVS, Long Viral Shedding; no, number; COPD, Chronic Obstructive Pulmonary Disease; Ct, Cycle 
threshold. Statistic tests, Mann-Whitney or Chi-Square. 

 

 
 

Figure 2. Identification of metabolites discriminating cancer patients by clinical severity of SARS-CoV-2. (A) Volcano plot 
comparing mild with moderate/severe Covid-19 patients, classified by chemical classes. X-axis: log2 fold change of metabolites; Y-axis: fold 
change of –log10 P value determined by the Mann–Whitney test. (B) Random forest classification model based on metabolites altered 
(p < 0.05) between mild and moderate/severe Covid-19 cases. The downregulated and upregulated metabolites in mild compared to 
moderate/severe patients are marked in blue and red, respectively. (C) Indole-3-propionic acid and 3-phenylproprionic levels in patients. All 
boxes indicate the interquartile range Q1 to Q3 with Q2 (median levels) in the center. The range of outliers is depicted by whiskers. The black 
bar of the figure indicates the p-value. 
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cancer patients with moderate/severe Covid-19 

compared to cancer patients with mild disease. A prior 

study has shown that critically ill patient with 

pneumonia have low serum levels of 3-

phenylproprionate, a bacterial product that may be 

depleted as a result of antibiotic use [34]. Moreover, it 

is known that indole-3-proprionate is produced by 

Clostridium sporogenes in the human gastrointestinal 

tract [35, 36] and that low indole-3-proprionate serum 

levels reflect a diet poor in fibers [37] and a low 

microbiome diversity [38]. Thus, the depletion of 

indole-3-proprionate and 3-phenylproprionate (Figure 

2C) that was found may indicate a state of intestinal 

dysbiosis. 

 

Identification of disease severity-associated 

acetylated polyamine derivatives 

 

Several acetylated polyamine derivatives  

(N1-acetylputrescine, N1-acetylspermidine, N1,N8-

diacetylspermidine and N1,N12-diacetylspermine) were 

overabundant in moderate/severe compared to mild 

Covid-19 (Figures 2A, 3A) when they were analyzed 

individually (Figure 3A). S-adenosylmethionine, a 

metabolite that is connected to polyamine synthesis [39], 

also correlated with Covid-19 severity (Figure 3B) 

echoing a prior report [40]. The random forest 

calculations based on all metabolites that changed 

significantly based on the volcano plot analyses (Figure 

2B) yielded a classification model with an out-of-bag 

(OOB) error rate of 22.35% (Table 2). The boxplot 

representation illustrates that acetylated polyamine 

derivatives tend to be higher in Covid-19 infected patients 

than in controls and that they significantly increase with 

disease severity (Figure 3A, 3B). The ratio of N1-

acetylspermidine over spermidine, as well as the ratio of 

N1,N8-diacetylspermine over spermidine, increased, but 

no such increase was found for the ratios of N1-

acetylputrescine over putrescine and N1,N12-diacetyl-

spermine over spermine (which was actually reduced) 

(Supplementary Figure 2). The sum of all acetylated 

polyamines (N1-acetylputrescine + N1-acetylspermidine 

+ N1,N8-diacetylspermidine + N1,N12-diacetylspermine) 

yielded a lower discriminative p-value than each of them 

alone (Figure 4). Altogether, these results support the idea 

that acetylated polyamine derivatives correlate with 

Covid-19 severity. When the duration of PCR-detectable 

SARS-CoV-2 shedding was used to distinguish short-term 

carriers (<40 days) from long-term-carriers (>40 days), 

the serum levels of N1-acetylspermidine and N8-

acetylspermidine were found to be slightly but 

significantly increased in long-term carriers (Figure 5). 

Thus, failure to eliminate SARS-CoV-2 is associated with 

an increase of selected acetylpolyamines. 

 

 
 

Figure 3. Acetylated polyamine derivatives and associated metabolites in cancer patients with different levels of 
Covid-19 severity. Acetylated polyamine derivatives were identified by targeted metabolomics data ( A). S-adenosylhomocysteine 

and S-adenosylmethionine are shown (B). All data represent the normalized areas of mass spectrometric peaks and were analyzed by 
non-parametric unpaired Wilcoxon test (Mann–Whitney) for each two-group comparison. The black bar of the figure indicates the p-
value. 
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Table 2. Error rate estimates for the Random Forest SARS-CoV-2. 

  Prediction: OOB estimate of error rate: 22.35% 

    Predicted label     

  Label Mild Moderate/severe Class error 

Actual label Mild 16 15 48.39% 

  Moderate/severe 4 50 7.41% 

 

 
 

Figure 4. Aggregate analyses of acetylated polyamine derivatives in cancer patients with different levels of Covid-19 
severity. For each patient, the sum of the normalized peak areas corresponding to N1-acetylputrescin, N1-acetylspermidine, N1,N12-

diacetylspermine and N1,N8-diacetylspermidine were calculated and shown  with black bars indicating p-values. 

 

 
 

Figure 5. Identification of metabolites discriminating cancer patients according to the duration of SARS-CoV-2 shedding. 
Volcano plot comparing Covid-19 patients with short versus long viral shedding (determined by RT-PCT of nasopharyngeal PCRs, the 
threshold between short and long shedding being 40 days), classified by chemical classes. X-axis: log2 fold change of metabolites; Y-axis: fold 
change of –log10 P value determined by the Mann–Whitney test. 
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Correlations between circulating metabolites and 

cytokines 

 

In the final step of data analysis, we established a 

correlation matrix to visualize positive or negative 

associations among significantly altered metabolites and 

cytokines that were measured in the serum from patients 

enrolled (Figure 6). Non-hierarchical clustering revealed 

positive associations among several acetylpolyamines, 

SAM, as well 5-hydroxy-tryptophan and 2 saturated acyl 

carnitines (butyryl-L-carnitine, arachidyl-L-carnitine with 

4 and 20 carbon atoms in the acyl chain, respectively). 

Among the acetylated polyamines, N1-acetylputrescine  

correlated with several cytokines in particular, the 

interferons (IFN) IFNα2a and IFNγ, as well as the 

interleukins (IL) IL-2 and IL-10, but no such correlation 

was found for any of the other acetylpolyamines (N1-

acetylspermidine, N1,N8-diacetylspermidine and N1,N12-

diacetylspermine). All immune and inflammation-related 

parameters clustered together, including a positive 

 

 
 

Figure 6. Integration of metabolic with inflammatory markers in serum samples from cancer patients with different levels of 
Covid-19 severity. The correlation heatmap of data was generated by means of Pearson’s method, and clustered using the ward. D2 

method. The red color indicates positive correlations with a FDR<0.05, and the green color marks negative correlations with FDR<0.05. Black 
indicates non-significant (FDR>0.05) associations. *p < 0.05, **p < 0.01, ***p < 0.001. TNFα: tumor necrosis factor alpha. GzB: Granzyme B. 
TNFα on GzB in CD8 is the ratio between soluble TNFα and GzB in CD8+ T cells (by flow cytometry) and IFNγ on GzB in CD8 is the ratio 
between soluble IFNγ GzB in CD8+ T cells (by flow cytometry). 
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association between indole-3-propionate and 3-

phenylpropionate (Figure 6 and Supplementary Figures 

3–6). In particular, the association between 3-

phenylproprionate and circulating tumor necrosis factor-α 

(TNFα) was highly significant (Figure 7A). Moreover, 

this bacterial metabolite exhibited a positive correlation 

with indole−3−propionate (Figure 7B), which in turn 

exhibited a negative correlation with N1-acetyl-

spermidine, N1,N8-diacetylspermidine and N1,N12-

diacetylspermine (Figure 7C–7E). This anticorrelation 

supports the general conclusions of this paper. 

DISCUSSION 
 

Here, we present an unbiased metabolomics-based 

approach to identify circulating metabolites that are 

elevated in severe Covid-19, in the context of cancer. 

Our findings indicate that some bacterial metabolites 

are depleted in severe Covid-19, suggesting the 

presence of intestinal dysbiosis. Whether this dysbiosis 

results from severe SARS-CoV-2 infection, reflects a 

preexisting condition or results from antibiotic 

treatments remains to be determined. 

 

 
 

Figure 7. Correlation among metabolites and inflammatory markers. Correlations of (A) 3−phenylpropionic acid and tumor necrosis 

factor alpha (TNFα), (B) 3−phenylpropionic acid and indole-3-phenylpropionic acid, (C) indol-3-propionic acid and N1-acetylspermidine or (D) 
N1,N8-diacetylspermidine or (E) N1,N12-diacetylspermine. 
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Prior studies performed on general (non-cancer-

specific) patient cohort have revealed a disease severity-

associated increase in the tryptophan metabolite 

kynurenine [24, 28, 30, 41], which is well known for its 

immunosuppressive properties. Indeed, addition of 

epacadostat, an inhibitor of the kynurenine-generating 

enzyme indole 2,3-dioxygenase 1 (IDO1) has been 

shown to suppress the SARS-CoV-2-induced pro-

inflammatory cytokine release ex vivo [31]. 

 

Interestingly, high levels of kynurenine metabolites 

were identified in the murine serum metabolome after 

infection by H1N1 influenza virus infection, 

suggesting that distinct viruses may affect this 

inflammation-relevant metabolic pathway [42]. In our 

work, a general (non-cancer-specific) cohort, we found 

that another immunosuppressive tryptophan derivative, 

anthranilic acid [43, 44], had a poor prognostic value, 

correlating with the maintenance of high interleukin-

10 and -18 levels [45]. In sharp contrast, we did not 

find anthranilic acid to be increased in Covid-19 

patients with cancer, most likely because the levels  

of this immunosuppressive metabolite are already 

increased at baseline, in Covid-19-free cancer patients 

as compared to cancer-free control individuals  

(Figure 8). This suggests that malignant disease is 

associated with an augmentation of circulating 

anthranilic acid concentrations. Indeed, some cancers 

such as HER2-positive and triple-negative mammary 

carcinomas overexpress the enzymes kynurenine 3-

monooxygenase (KMO) and kynureninase (KYNU), 

causing increased production of anthranilic acid [46]. 

Moreover, poor prognosis prostate cancer is associated 

with elevated circulating anthranilic acid levels [47]. 

However, at this point the causes of the elevation of 

anthranilic acid across different cancer types remain 

unclear.  

 

The most important finding of this study concerns the 

Covid-19 severity-associated surge in acetylated 

polyamines found in cancer patients. Increased 

acetylated polyamine levels, in particular mono- and 

diacetyl spermidine and spermine derivatives (such as 

N1-acetylspermidine, N1,N8-diacetylspermidine and 

N1,N12-diacetylspermine), have been found in cancer-

free cohorts of Covid-19 patients to be associated with 

disease severity [40, 45]. Hence, this alteration appears 

to be a general feature of moderate or severe Covid-19 

infection requiring hospitalization, irrespective of the 

presence or absence of neoplasia.  
 

However, the functional implications of these findings 

are elusive. Spermidine inhibits SARS-CoV-2 
replication in vitro [48]. Spermidine supplementation is 

known to exert immunostimulatory effects and to 

improve the effects of anticancer chemotherapy and 

immunochemotherapy [39, 49–52]. However, 

acetylated polyamine derivatives have not been 

investigated with respect to their potential immuno-

modulatory effects.  

 

It is important to note that acetylated polyamine 

derivatives have previously been associated with the 

risk of developing hepatocellular carcinoma [53], poor 

prognosis triple-negative breast cancer [54], non-small 

cell lung cancer [55, 56], colorectal cancer [57], 

pancreas carcinoma [58], lethal cardiovascular disease 

[59, 60], Parkinson disease [61] and an elderly-type 

gut microbiota [62]. This contrasts with the 

observations that nutritional uptake of spermidine (and 

spermine but not putrescine) is epidemiologically 

linked to a decrease in the risk of lethal cancer, 

cardiovascular disease and cognitive decline [39, 63] 

and that experimental spermidine supplementation  

has wide oncopreventive, cardioprotective and 

neuroprotective effects in preclinical models [64–68]. 

 

 
 

Figure 8. Anthranilic acid levels in different patient 
cohorts. Barplots demonstrating the anthranilic acid area levels 

for each subject issued from the cancer-free and Covid-19-free 
control cohort (COCHIN Control), previously described by Danlos 
et al., [45], and our dataset of cancer patients without Covid-19 
(ONCOVID controls) and the cancer patients with moderate or 
severe Covid-19 (ONCOVID Moderate/Severe). Error bars show 
standard errors of the mean. 
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It is possible that the elevated levels of mono- and di-

acetyl spermidine reflect a higher spermidine catabolism, 

reducing the bioavailability of endogenous spermidine. 

Indeed, intracellular spermidine and spermine are 

acetylated by spermidine/spermine N1-acetyltransferase-1 

(SAT1) and the resulting acetylated products can be 

either extruded from the cell or oxidized to putrescine 

[39, 63]. Thus, transgenic overexpression of SAT1 or its 

pharmacological activation depletes spermidine and 

spermine but increases the levels of mono- or 

diacetylated spermidine and spermine while limiting 

cellular proliferation and favoring the induction of 

apoptosis [69, 70]. Inhibition of SAT1 reduces acetyl-

coenzyme A consumption in white adipose tissue or the 

liver, thus enhancing lipogenesis, while its activation 

stimulates beige adipocyte biogenesis as well as  

the expression of pro-inflammatory genes [71–73]. 

Transgene-enforced overexpression of SAT1 accelerates 

aging in mice [74] as it enhances carcinogenesis [75, 76], 

while its knockout protects against liver and kidney 

ischemia-reperfusion damage [77], CCL4-induced acute 

liver injury [78], and endotoxin- or cisplatin-induced 

acute kidney injury [79, 80]. Enhanced expression of 

SAT1 is a biomarker of kidney ischemia-reperfusion 

damage [81], poor prognosis prostate cancer [82], and 

radioresistance in brain tumors [83]. Amantadine, a 

clinically approved antiviral drug, is a substrate for SAT1 

and hence can be used to indirectly measure SAT1 

activity by assessing the quantity of urinary 

acetylamantadine. Using this test, patients with breast or 

lung cancer exhibit an enhanced SAT1 activity [84]. Of 

note, SAT1 is upregulated by interferons [85], perhaps 

explaining the shift in polyamine metabolism associated 

with severe Covid-19. On theoretical grounds, the 

depletion of intracellular spermidine resulting from SAT1 

activation may favor SARS-CoV-2 replication [48] and 

enfeeble the antiviral immune response due to the 

depletion of bioavailable spermidine [49, 51, 52, 83, 86]. 

However, the effects of polyamine catabolism on 

infections by respiratory viruses have not yet been 

studied in suitable animal models.  

 

In conclusion, it appears that the severity of Covid-19 

affecting cancer cells is strongly related to the acetylation 

of polyamines, in particular that of spermidine and 

spermine. It will be important to understand the 

mechanisms as well as the functional consequences of 

this over-acetylation detectable in cancer patients.  

 

MATERIALS AND METHODS 
 

Standards and reagents 

 

Acetonitrile (Sigma Aldrich) 

Isopropanol (Sigma Aldrich) 

Methanol (Sigma Aldrich) 

Chloroform (Sigma Aldrich) 

Acetic acid (Sigma Aldrich)  

Formic acid (Sigma Aldrich) 

Methoxyamine hydrochloride (Sigma Aldrich) 

MSTFA - N-Methyl-N-(trimethylsilyl) 

trifluoroacetamide (Sigma Aldrich) 

Pyridine (Sigma Aldrich) 

3 nitrophenylhydrazine (Sigma Aldrich) 

N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (EDC) (Sigma Aldrich) 

Sulfosalicylic acid (Sigma Aldrich) 

 

Study ONCOVID design and participants 

 

Gustave Roussy Cancer Center mentored the 

“ONCOVID” trial and collaborated with the academic 

authors. All patients provided written informed consent. 

This clinical trial was conducted in accordance with the 

principles of the Declaration of Helsinki. Protocol 

approval was obtained from an independent ethics 

committee (ethics protocol number EudraCT No: 2020-

001250-21). The protocol is available with the full text 

of this article at https://clinicaltrials.gov/ct2/show/ 

NCT04341207. 

 

Blood samples were drawn from patients enrolled in 

ONCOVID at Gustave Roussy Cancer Campus 

(Villejuif, France). Whole human peripheral blood was 

collected into sterile vacutainer tubes. Serum were 

collected after centrifugation at 600 × g for 10 min at 

room temperature and transferred to −80° C freezer to 

await analysis. Serum samples were used to perform 

metabolomic approaches and monitor the concentrations 

of soluble factors. Fixed whole blood were used for 

spectral flow cytometry. For details, please referred from 

previously described by Goubet et al. [33]. 

 

Evaluation of SARS-CoV-2 RNA shedding 

 

The duration of viral shedding was defined as the 

number of days from the first positive to the first 

negative RT-qPCR, after longitudinal monitoring. In 

order to prevent an overvaluation of this duration, we 

considered in this analysis only patients with an interval 

below 40 days between the last positive RT-qPCR and 

the first negative RT-qPCR. Six patients had one 

negative RT-qPCR followed by positive RT-qPCR. We 

extend the duration to the second negative RT-qPCR for 

3 patients with a cycle threshold below 35 for the gene 

coding replication-transcription complex and within 6 

days after the first negative result [33].  

 

Sample preparation serum (dry tubes) 

 

A volume of 50 µL of serum were mixed with 500 µL a 

cold solvent mixture with ISTD (MeOH/Water, 9/1, -

https://clinicaltrials.gov/ct2/show/NCT04341207
https://clinicaltrials.gov/ct2/show/NCT04341207
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20° C), into 1.5 mL microtubes, vortexed and 

centrifuged (10 min at 15000 g, 4° C) to obtain protein 

precipitation. Then upper phase of supernatant was split 

in three parts: 150 µL were used for GC-MS experiment 

in injection vial, 40 µL were used for the SCFA (Short 

Chain Fatty Acids) UHPLC-MS method, and 150 µL 

were used for others UHPLC-MS experimentations as 

described [45]. Extracted biological samples were 

pooled in quality controls samples, used for data 

correction during the data treatment.  

 

Widely-targeted analysis of intracellular metabolites 

gas chromatography (GC) coupled to a triple 

quadrupole (QQQ) mass spectrometer 

 

GC-MS/MS method was performed on a 7890B gas 

chromatography (Agilent Technologies, Waldbronn, 

Germany) coupled to a triple quadrupole 7000C 

(Agilent Technologies, Waldbronn, Germany) equipped 

with a High sensitivity electronic impact source (EI) 

operating in positive mode [45]. The scan mode used 

was the MRM for biological samples. Peak detection 

and integration of analytes were performed using the 

Agilent Mass Hunter quantitative software (B.07.01), 

exported as tables and processed with R software 

(version 4.0.3) and the GRMeta package (Github/ 

kroemerlab). 

 

Targeted analysis of bile acids by ion pairing high 

performance liquid chromatography (HPLC) 

coupled to a QTRAP 6500+ mass spectrometer 

 

Targeted analysis was performed on a RRLC 1260 

system (Agilent Technologies, Waldbronn, Germany) 

coupled to a QTRAP 6500+ (Sciex) equipped with an 

electrospray source operating in negative mode. The 

source conditions were: ion spray source temperature at 

450° C, curtain (CUR) gas pressure at 25 psi, gas 1 

(GS1) pressure at 30 psi and gas 2 (GS2) pressure at  

70 psi.  

 

2.5 μL of sample were injected on a Column Poroshell 

120 EC-C8 (100 mm x 2.1 mm particle size 2.7 µm) 

from Agilent technologies, protected by a guard column 

XDB-C18 (5 mm × 2.1 mm particle size 1.8 μm) and 

heated at 40° C in a Pelletier oven.  

 

Gradient mobile phase consisted of water with 0.2% of 

formic acid (A) and acetonitrile/isopropanol (1/1; v/v) 

(B) freshly made. Flow rate was set to 0.3 mL/min, and 

gradient as follow: initial condition was 70% phase A 

and 30% phase B, maintained during 1.5 min. 

Molecules were then eluted using a gradient from 30% 
to 60% phase B over 9 min. Column was washed using 

98% mobile phase B for 2 minutes and equilibrated 

using 30% mobile phase B for 2 min. After each 

injection, needle was washed twice with isopropanol 

and thrice with water. The autosampler was kept at  

4° C. 

 

Collision gas was nitrogen. Scan mode used was the 

MRM for biological samples. Peak detection and 

integration of the analytes were performed using the 

Sciex MultiQuant quantitative software (Version 3.0.3), 

exported as tables and processed with R software 

(version 4.0.3) and the GRMeta package (Github/ 

kroemerlab). 

 

Targeted analysis of polyamines by ion pairing 

ultra-high performance liquid chromatography 

(UHPLC) coupled to a triple quadrupole (QQQ) 

mass spectrometer 

 

Targeted analysis was performed on a UHPLC 1290 

system (Agilent Technologies, Waldbronn, Germany) 

coupled to a Triple Quadrupole 6470 (Agilent 

Technologies) equipped with an electrospray source 

operating in positive mode. The gas temperature was set 

to 350° C with a gas flow of 12 l/min. The capillary 

voltage was set to 2.5 kV. 

 

10 μL of sample were injected on a Column Kinetex 

C18 (150 mm x 2.1 mm particle size 2.6 µm) from 

Phenomenex, protected by a guard column C18 (5 mm 

× 2.1 mm) and heated at 40° C in a Pelletier oven. 

 

The gradient mobile phase consisted of water with 0.1 

% of Heptafluorobutyric acid (HFBA, Sigma-Aldrich) 

(A) and acetonitrile with 0.1 % of HFBA (B) freshly 

made. The flow rate was set to 0.2 ml/min, and gradient 

as follow: initial condition was 95% phase A and 5% 

phase B. Molecules were then eluted using a gradient 

from 5% to 40% phase B over 10 min. The column was 

washed using 90% mobile phase B for 2.5 minutes and 

equilibrated using 5% mobile phase B for 4 min. The 

autosampler was kept at 4° C.  

 

The collision gas was nitrogen. The scan mode used 

was the MRM for biological samples. Peak detection 

and integration of analytes were performed using the 

Agilent Mass Hunter quantitative software (B.07.01), 

exported as tables and processed with R software 

(version 4.0.3) and the GRMeta package (Github/ 

kroemerlab). 

 

Targeted analysis of Short Chain Fatty Acid by 

ultra-high performance liquid chromatography 

(UHPLC) coupled to a Triple Quadrupole (QQQ) 

mass spectrometer 

 

Targeted analysis was performed on a UHPLC 1290 

system (Agilent Technologies, Waldbronn, Germany) 
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coupled to a Triple Quadrupole 6470 (Agilent 

Technologies) equipped with an electrospray source 

operating in negative mode. The gas temperature was 

set to 300° C with a gas flow of 12 l/min. The capillary 

voltage was set to 5000 kV. 

 

10 μL of sample were injected on a Column Zorbax 

Eclipse XBD C18 (100 mm x 2.1 mm particle size 1.8 

µm) from Agilent technologies, protected by a guard 

column XDB-C18 (5 mm × 2.1 mm particle size 1.8 

μm) and heated at 50° C by a Pelletier oven.  

 

Gradient mobile phase consisted of water with 0.01% of 

formic acid (A) and acetonitrile with 0.01% of formic 

acid (B). Flow rate was set to 0.4 mL/min, and gradient 

as follow: initial condition was 80% phase A and 20% 

phase B, maintained during 6 min. Molecules were then 

eluted using a gradient from 20% to 45% phase B over 

7 min. Column was washed using 95% mobile phase B 

for 5 minutes and equilibrated using 20% mobile phase 

B for 4 min. Autosampler was kept at 4° C. 

 

The collision gas was nitrogen. The scan mode used 

was the MRM for biological samples. Peak detection 

and integration of analytes were performed using the 

Agilent Mass Hunter quantitative software (B.07.01), 

exported as tables and processed with R software 

(version 4.0.3) and the GRMeta package (Github/ 

kroemerlab). 

 

Pseudo-targeted analysis of metabolites by ultra-

high performance liquid chromatography (UHPLC) 

coupled to a Q-Exactive mass spectrometer. 

Reversed phase acetonitrile method 

 

The profiling experiment was performed with a Dionex 

Ultimate 3000 UHPLC system (Thermo Scientific) 

coupled to a Q-Exactive (Thermo Scientific) equipped 

with an electrospray source operating in both positive 

and negative mode and full scan mode from 100 to 1200 

m/z. The Q-Exactive parameters were: sheath gas flow 

rate 55 au, auxiliary gas flow rate 15 au, spray voltage 

3.3 kV, capillary temperature 300° C, S-Lens RF level 

55 V. The mass spectrometer was calibrated with 

sodium acetate solution dedicated to low mass 

calibration. 

 

10 μL of sample were injected on a SB-Aq column (100 

mm × 2.1 mm particle size 1.8 μm) from Agilent 

Technologies, protected by a guard column XDB-C18 

(5 mm × 2.1 mm particle size 1.8 μm) and heated at  

40° C in a Pelletier oven. The gradient mobile phase 

consists of water with 0.2% of acetic acid (A) and 
acetonitrile (B). The flow rate was set to 0.3 mL/min. 

Initial condition is 98% phase A and 2% phase B. 

Molecules were then eluted using a gradient from 2% to 

95% phase B in 22 min. The column was washed using 

95% mobile phase B for 2 minutes and equilibrated 

using 2% mobile phase B for 4 min.  

 

The autosampler was kept at 4° C.  

 

Peak detection and integration were performed using 

the Thermo Xcalibur quantitative software (3.1.), 

exported as tables and processed with R software 

(version 4.0.3) and the GRMeta package (Github/ 

kroemerlab). 

 

In parallel, raw data files obtained by the pseudo-

targeted analysis described above were used to perform 

unbiased profiling analyses using the Thermo 

Scientific™ Compound Discoverer™ small molecule 

identification software (version 3.1). 

 

Data analysis using Compound Discoverer™ 

 

After sample injection and data acquisition, raw data 

files were processed with Compound Discoverer 

software following a customized node-based workflow 

for identifying unknown compounds in metabolomics.  

 

First, spectra selection and retention time alignment 

were performed, followed by removal of background 

noise and baseline correction. Next, the processing 

workflow found chromatographic peaks for unknown 

compounds (molecular weight, MW, x retention time, 

RT) extracting all relevant spectral and chromato-

graphic information, to predict the elemental 

composition of the unknowns. The possible identity of 

the unknown compounds was then searched against 

selected MS databases, such as ChemSpider (from MS1 

scans by using MW or predicted composition when 

available), mZcloud (MS/MS spectral library), built-in 

databases (custom, local libraries), and Metabolika or 

KEGG databases (metabolic pathway search). 

Annotations are assigned to the detected compounds, to 

rank putative database results. Finally, the software 

performed statistical analysis using a multivariate 

method approach, e. g. PCA (unsupervised), and data 

visualization, e.g. volcano plots.  

 

Compounds found to be statistically different between 

groups, were checked, and all data was exported to R 

software (version 4.0.3) for data representation. 

 

Random forest calculation 

 

Targeted data used for random forest calculation were 

areas corrected by means of quality controls, log2 
transformed, and centered on the mean of the control 

samples (AreaCorrLog2Cen datasheet of the raw data, 

Supplementary Table 1).  
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We oriented this calculation on the severity levels of the 

patient, and focused on the differences of mild versus 

moderated + severe patients. Data were submitted to a 

Kruskal-Wallis test, and metabolites were selected 

according to fold changes and p-values. Mild versus 

moderate/severe. The two groups had a similar weight 

in the random forest calculation. 
 

Cytokine measurements 
 

Serum samples and cytokines measurements were 

prepared according the Goubet et al., method [33]. In 

this study, only these cytokines considered are, IFN-γ, 

IL-10, IL-16, IL-1β, IL-2, IL-4, IL-6, TNF-α and 

Calprotectin and IFN-α2a.  
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Heatmap representing the serum metabolome of each individual cancer patients clustered by 
clinical severity of Covid-19. Untargeted metabolomic data on 211 serum samples from 204 patients were normalized area of non-
identified mass spectrometric peaks. Results are listed in Supplementary Table 2. 
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Supplementary Figure 2. Ratios of acetylated over non-acetylated polyamines in cancer patients with different levels of 
Covid-19 severity. The ratios were calculated as Log2Cen of the areas of mass spectrometric peaks of N1-acetylputrescin (NAcPut) over 
putrescine (Put), N1-acetylspermidine (N1AcSpd) or N1,N8-diacetylspermidine (DiAcSpd) over spermidine (Spd), or N1,N12-diacetylspermine 
(DiAcSpm) over spermine (Spm). Black bars indicate p-values. 
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Supplementary Figure 3. Correlation of 3−phenylpropionic acid with immune parameters. Levels of 3−phenylpropionic acid was 

plotted against the concentrations of (A) interferon-α2a (IFNα2a), (B) interleukin-4 (IL-4), (C) Interleukin-1β (IL-1β), and (D) tumor necrosis 
factor alpha (TNFα), (E) N1-acetylspermidine, (F) N1,N8-diacetylspermidine and (G) N1,N12-diacetylspermine. 
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Supplementary Figure 4. Correlation of indole-3-propionic acid with immune parameters. Levels of indole-3-propionic acid was 

plotted against the concentrations of (A) interleukin-2 (IL-2), (B) interleukin-10 (IL-10), (C) tumor necrosis factor alpha (TNFα). 
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Supplementary Figure 5. Correlation of N−acetylputrescine with immune parameters. Levels of N−acetylputrescine were plotted 
against the concentration of (A) interferon-α2a (IFNα2a), (B) interleukin-2 (IL-2), (C) interferon-γ (IFNγ) and (D) interleukin-10 (IL-10). 

 

 
 

Supplementary Figure 6. Correlation of 5−Hydroxy−DL−tryptophan with interleukin-1β (IL-1β) levels. Levels of 
5−Hydroxy−DL−tryptophan were plotted against the concentration of Interleukin-1β (IL-1β). 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. Targeted metabolomics. 

 

Supplementary Table 2. Untargeted metabolomics. 

 


