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a b s t r a c t 

Many physiological functions are based on motor rhythmic activities, among them breathing is a vital issue. The 

method presented here, or ‘temporal grid extraction’, aims at characterizing the temporal organization of such 

an activity. Beyond the measurement of the fundamental frequency, defining the successive cycles, some signal 

processing tools are helpful in order to look for the presence of higher frequency components that potentially 

structure these cycles. The method is applied to neurograms recorded from frog brainstem preparations, where 

two cycle types, buccal and lung cycles, may alternate. It relies on: 

• Continues Wavelet Transform (CWT) for time-frequency maps and frequency profiles 
• Crosscorrelation analysis for amplitude maps and amplitude profiles 
• Cycle-by-cycle autocorrelation analysis for autocorrelation maps and autocorrelation profiles 

Using this method, the maps and profiles have revealed that a common high frequency clock drives both buccal 

and lung cycles. 

© 2021 The Author(s). Published by Elsevier B.V. 
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Introduction 

Most of rhythmic motor behaviors are generated by central pattern-generators (CPG) whose 

mechanisms must be investigated in details in order to support the hypotheses implemented in 

computational models ( [3,6] ). Such CPG produce periodic excitatory inputs to motoneurons resulting

in rhythmic muscle contractions. The rhythmic movements correspond to fundamental functions as 

breathing, chewing, suckling, walking, running, flying, swimming, etc... They can occur for short, long 

or permanent periods. Some rhythmic behaviors exhibit several modalities depending on feedback 

sensory inputs. For the locomotor rhythms, short term cycle-by-cycle feedback signals allows a fast 

adaptation to the environmental conditions and for the respiratory rhythms, the CPG is sensitive

to hypercapnia and hypoxia. Moreover, in the case of breathing, longer term modulations occur in

frequency and amplitude to meet the metabolism needs. Such rhythmic activities can be analyzed by

signal processing tools which are adapted to extract specific features from the signals they generate.

For the ventilatory system, the periodic breathing activity was recorded as neurograms from the 

phrenic nerve in mammals (for example in mice [7] or in piglet [1] ). In amphibians, the ventilatory

activity is recorded in brainstem preparations, as neurograms from cranial motor roots. This fictive 

respiratory in vitro activity exhibit patterns corresponding to the respiratory movements recorded 

in vivo ( [15] ). In this paper, we present computational methods used to define several descriptors

characterizing the rhythmic patterns displayed in neurograms recorded from brainstem preparations 

of amphibians ( [8,9] ). The motor activity recorded from cranial motor roots V or VII, shows quasi-

regular low-amplitude bursts associated with gill ventilation in frog tadpoles and identified as buccal 

cycles. In post-metamorphic tadpoles and adult frogs, interspersed with these buccal cycles, there 

are episodic, high amplitude bursts ensuring lung ventilation for gas exchange during air breathing

( [11,14] ). The aims of the signal processing presented here are: (1) to uncover an internal organization

of the rhythmic activities and (2) to characterize rhythm stability and/or variability. These tools allow

comparisons of the effect of different physiological conditions on these rhythm characteristics. We 

analyze these periodic signals in order to characterize them in both the frequency and the temporal

domains in the aim to define key features of the motor cycles these signals are made of. We also

define tools that allow comparison of these key features in order to evaluate the differences between

preparations and/or changes in the recording conditions. 

First step signal processing: filtering, segmenting, labelling 

The data illustrating the methods presented in the next sections correspond to recordings from 

brainstem preparations. The neurograms are recorded at the level of V and VII motor roots, in

two amphibian species, Lithobates catesbaianus and Pelophylax ridibundus , at different developmental 

stages, pre- and post-metamorphic, and in different conditions, as control condition, hypoxia or 

hypercapnia. The methods presented here focus on the signal processing tools only, since all the

details concerning the experimental protocols, the resulting data and the physiological interpretation 

of these data are available in [9] for Pelophylax ridibundus , and in [8] for Lithobates catesbaianus .

All these tools are implemented in Matlab, using standard functions that are mentioned at each

corresponding step of the signal processing. 

In the neurograms, two burst (or cycle) types are present accounting for two different functional

modalities involved in ventilation, the lung bursts and the buccal bursts. The first step is to segment

the signal into cycles, each cycle containing one burst. 

Filtering with RMS and Segmenting the signals into cycles 

Each neurogram is sampled at 20 0 0 Hz, which means, according to Nyquist-Shannon, that it

contains information in the frequency range [0-10 0 0] Hz. As the respiratory frequencies are around

1 Hz, the neurogram is low-pass filtered using a zero-phase moving root mean square (RMS) ( [2] )

with a rectangular window of width W 0 adapted to the fundamental signal frequency, i.e. the buccal
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Fig. 1. Signals S 10 and S 200 built from a neurogram. (A) Neurogram recorded from a post-metamorphic L. catesbaianus tadpole 

and filtered signals S 10 (B) and S 200 (C) at three time scales: 40 s (1), 10 s (2), 3 s (3). In C2 and C3, local minima of S 200 are 

marked by blue vertical small bars indicating the segmentation of the signal into individual cycles. This segmentation is also 

applied to S 10 (B2 and B3). In B3, red stars indicate the maximal amplitude recorded for each cycle. In this example, the small 

burst corresponds to a buccal burst, and the high one corresponds to a lung burst. 
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requency. In the case of the neurograms recorded in L. catesbaianus , W 0 is set at 200 ms producing

 S 200 signal ( Fig. 1 C). The cut-off frequency of this low pass filter is 1.6 Hz which allows low

requency analysis around the fundamental frequency of 1 Hz. In the case of P. ridibundus neurograms,

hose typical fundamental frequency is around 2 Hz, i.e. about twice the fundamental frequency in

. catesbaianus , the value of W 0 is set at 100 ms leading to a S 100 signal (the matlab function used for

his filter process is “filtfilt”). 

This resulting smoothed filtered signal, S 200 or S 100 , where all the high frequency noises haves

een eliminated, allows the segmentation of the signal into individual successive cycles (see Fig. 1 C2

nd C3) by automatic detection of the local minima of this signal (the matlab function used for this

etection process is “findpeaks”). 

This segmentation process defines all the cycles of the neurogram. 

In order to analyze the intra-cycle temporal organization, the previous cycle segmentation is

pplied to a new signal computed by RMS filtering of the neurogram, S 10 signal, using a window

idth set at 10 ms ( Fig. 1 B2). This new filter has a cut-off frequency of 32 Hz. 

abelling the cycles and building separate buccal and lung signals 

Since it is known that, in vivo and in vitro, the lung bursts have higher amplitude than the buccal

nes ( [14,15] ), the maximal amplitude value is recorded ( Fig. 1 B3) for each cycle represented as a

ortion of S 10 signal in order to identify this cycle as buccal or lung. Taking a segmented S 10 signal

omputed from a given neurogram, all the maximal amplitude values are recorded (one maximal

mplitude for each cycle) and are ranked from the smaller to the higher in a monotonic increasing

unction ( Fig. 2 A1). If an abrupt increase appears in this function, it means that there are lung cycles

n this neurogram: the amplitude that corresponds to the inflection point of the abrupt increase

efines the amplitude threshold between buccal and lung bursts. Correspondingly, the amplitude

istribution is bimodal ( Fig. 2 A2). Each cycle can thus be labelled either ‘buccal’ or ‘lung’ depending

n its maximal amplitude when compared to the threshold. 
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Fig. 2. Separation of the buccal and the lung bursts, and building the buccal and lung signals. (A)1, plot of the ranked amplitude 

values of highest peaks for all buccal (blue) and lung (green) bursts; the red horizontal line indicates the threshold which 

separates the buccal and lung amplitudes. (A)2, histogram of the maximal amplitudes of each S 10 burst: it shows that this 

distribution is bimodal corresponding to the two burst populations. The vertical red line separates the buccal burst population 

(in blue) from the lung burst population (in green): it corresponds to the red horizontal line in A1. (B) The cycles of S 10 

signal are colored in blue for buccal bursts and in green for lung bursts. For each population, a burst number is attributed 

according to the chronological order. (C) Reconstructed ‘buccal’ signals (left part, S 10 in blue, S 200 superimposed in black) and 

‘lung’ signals (right part, S 10 in green, S 200 superimposed in black) are built by concatenation of all the cycles ranked in their 

chronological order for the two respective populations. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

In order to analyze separately the buccal cycle population and the lung cycle population, once

segmented and labelled, all the buccal bursts are concatenated, ranked in their chronological order, in

order to build the ‘buccal S 10 signal’ (blue in Fig. 2 B). Similarly, the ‘lung S 10 signal’ (green in Fig. 2 B)

is built by concatenation of the lung bursts. Respective S 200 buccal and lung signals are built in the

same way (black in Fig. 2 C). 
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Fig. 3. Computation of a time-frequency CWT map using complex Morlet wavelets and the corresponding mean frequency 

profile. (A) Onto the S 200 buccal signal shown in Fig. 2 C are superimposed three Morlet wavelets (real part) that differ in time 

position t and frequency ν (0.8 Hz in red, 1.2 Hz in yellow and 1.6 Hz in green). (B) Time-frequency map built by convolution 

of the S 200 signal with the conjugate of Morlet Wavelets centered at t, and of frequency ν . After normalization between 0 and 

1, values are coded in colors indicated in the color bar for each point ( t, ν) of this map. Each of the red, yellow and green stars 

indicates the ( t, ν) point of one of the three corresponding wavelets illustrated in A, respectively. A frequency profile (white 

curve) is shown superimposed on the map, which reveals a peak at 0.8 Hz, corresponding to the fundamental frequency of the 

buccal rhythm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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nalysis in frequency domain: continuous Wavelet Transform and frequency profile 

Even in a stable condition, there is an intrinsic variability of this type of physiological recordings, to

hich it is pertinent to apply time–frequency analysis. Such an analysis is applied to a S W 

signal with

ontinuous Wavelet Transform (CWT) ( [1,7,10] ). For W 0 = 100 ms or 200 ms, S W 0 
was first subsampled

t 20 Hz (after applying an anti-aliasing low pass filter eliminating all the frequencies above 10

z), looking for frequencies between 0.1 and 10 Hz, with a complex Morlet wavelet basis function

ncluding five oscillations ( [5] ). The coefficients of each time–frequency amplitude map are computed

or 100 values linearly distributed between 0.1 and 10 Hz, and at a time resolution corresponding to

he sampling at 20 Hz. They are normalized between 0 and 1 by setting the maximal value at 1. Such

 time–frequency map displays the temporal evolution of a signal S 200 dominant frequencies in color

cale ( Fig. 3 B, for frequency domain [0.1 4] Hz). Since a neurogram is recorded in a given condition

baseline, hypercapnia or hypoxia), the CWT map reveals a stable band of the dominant fundamental

requency. Thus it is relevant to compute a profile in low frequency domain for a S 200 signal as the

ean value over time, at each frequency, of the corresponding coefficients of the amplitude map

 Fig. 3 B, white curve). The prominent peak of this profile corresponds to the band of fundamental

requency, i.e the ventilation frequency. In order to allow a comparison between frequency profiles,

ndependently of the signal durations and amplitudes, a normalization is applied to each frequency
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Fig. 4. Examples of frequency profiles. (A) Profiles in low frequency domain from buccal (blue) and lung (green) separated S 200 

signals for a post-metamorphic tadpole of L. catesbaianus . The superimposition of the two profiles, normalized in amplitude, 

shows that both rhythms are characterized by a same dominant frequency. The frequency scale, from 0.1 Hz to 4 Hz, is linear. 

(B) Profiles in the low and high frequency domain from buccal S 10 signals in normocapnia (black) and hypercapnia (red) 

of a pre-metamorphic tadpole of P. ridibundus . The superimposition of the two profiles, normalized in integral, shows that 

hypercania decreases the fundamental frequency without changing the high frequency rhythm. The frequency scale, from 1 Hz 

to 100 Hz, is logarithmic. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

profile which consists in setting the value of the maximal amplitude of the profile at 1, i.e. at the

dominant frequency. A similar CWT analysis can be performed on S 10 signals, in frequency domain [1,

100] Hz. In this case, the subsampling of S 10 is performed at 200 Hz, and the time-frequency map is

computed for 100 frequency values distributed between 1 and 100 Hz using a logarithmic grid, and at

a time resolution corresponding to the sampling at 200 Hz. A profile in the low and high frequency

domain is computed from the time-frequency map as previously described. Each profile is normalized 

by setting its integral at 1. Fig. 4 illustrates two examples of the frequency profiles: a profile in the low

frequency domain (A) and a profile in the low and high frequency domain (B). The two profiles in (A),

computed on S 200 buccal and lung L. catesbaianus signals, built from a same neurogram, indicate that a

common fundamental frequency close to 1 Hz characterizes both signals. This common fundamental 

frequency suggests a coupling between the buccal and the lung oscillators, leading to a rhythmic

regularity whatever the type, lung or buccal, of the successive bursts, as shown in figure Fig. 2 B. In

Fig. 4 B, the frequency profiles in the frequency domain [1, 100] Hz, computed on S 10 buccal signals

of P. ridibundus pre-metamorphic tadpoles, exhibit, in both conditions normocapnia and hypercapnia, 

a narrow peak in the low frequency domain, corresponding to the fundamental ventilatory buccal 

rhythm, and a wide peak with a maximum around 25 Hz. This wide peak corresponds to intra-burst

oscillations. There is no hypercapnia effect on the wide peak around 25 Hz, but the fundamental

frequency is shifted from 1.6 Hz to 1.2 Hz ( [9,12,13] ). 

Amplitude maps, amplitude profiles and oscillation profiles 

The aim of this signal processing is to get a temporal alignment of the bursts by crosscorrelation,

in order to detect a potential common time organization of the neuronal activity inside the bursts of

a given neurogram. 
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Fig. 5. Building of an amplitude map and computation of the amplitude profile and of the oscillation profile. (A) a1: a Buccal 

S 10 signal containing 27 bursts. Burst number 5 (in red) is the reference cycle. a2: the amplitude of the reference cycle is 

coded in shades of gray, as indicated by the color bar. (B) b1: Each of the 27 buccal cycles are coded according to their 

amplitude. A preliminary amplitude map is created by stacking vertically all the coded bursts by their chronological order. 

b2: The temporal position of each cycle is determined by the time lag where the crosscorrelation function between the cycle 

and the reference cycle is maximal, in such a way that all the cycles are aligned with the reference cycle. b3: the cycles are 

then ranked according to their maximal amplitude, the smallest amplitudes are placed at the bottom of the map, and the 

largest are placed at the top (the timescale for this map was reduced to 1 s). (C) A mean amplitude profile is computed for 

each corresponding map and shown in c1, c2 and c3. When compared to the mean profile in c1, the amplitude profile of c2 

exhibits high amplitude oscillations. In c3, the computed amplitude profile is shown on a reduced time of 1 s encompassing the 

central part of the signal. A filtered version of the amplitude profile is computed (shown as a dashed black line), and subtracted 

from the profile: the resulting oscillation profile is drawn in thick line. The vertical thin black lines passing through a2 to c3 

indicate the correspondence between the maxima of the reference burst profile, amplitude profile and oscillation profile, and 

the columns of dark points on the amplitude map. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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In a given S 10 signal, a reference cycle is chosen, for instance the cycle that is the most correlated

ith all the other cycles (see Fig. 5 A a1, the red burst; the matlab function used for the computation

f the correlation is “xcorr”). Then we position all the other cycles according to the maximal value

f the crosscorrelation function (sliding dot product) between each cycle and the reference cycle

 [4] ). In a first step, the amplitude vectors representing the S 10 cycles are padded with zeros in

rder to get an identical length for all these vectors. In a second step, a symmetric matrix of

rosscorrelation coefficients is computed, whose generic term of indices i and j is the maximal value

f the crosscorrelation function between the amplitude vectors of cycle i and cycle j. The reference

ycle is then the cycle whose mean correlation with all the other cycles is the highest: it can be

onsidered as the cycle the most representative of all the cycles. At a third step, the time lag, which

orresponds to the maximum of the crosscorrelation function between a cycle and the reference cycle,

efines the time position of this cycle relatively to the reference cycle when building the amplitude

atrix. In ( Fig. 5 A a2), a cycle amplitude is coded in gray scale. In ( Fig. 5 B b1) all the cycles are

tacked building an amplitude map. When the cycles are horizontally positioned according to their

ime lag, the bursts are aligned ( Fig. 5 B b2). The cycles can then be ranked in the vertical stack

ccording to their maximal amplitude ( Fig. 5 B b3). This representation of the cycles is the amplitude

ap. Another sorting rule can be chosen for the vertical ranking of the bursts in the amplitude map,

or instance using the crosscorrelation between each cycle with the reference cycle. 
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Fig. 6. Amplitude maps and amplitude profiles in P. ridibundus tadpole preparations. (A): illustrations from a pre-metamorphic 

tadpole. (A)1 portion of 3 seconds of neurogram in normocapnia (in black) with the S 10 signal superimposed (in red). (A)2 

Normalized amplitude map built with stacked aligned S 10 cycles in normocapnia, sorted from bottom to top by decreasing 

values of their crosscorrelation coefficient (blue line on the right side) with the reference cycle (in red). The amplitude profile 

(in black) corresponds to the mean value of all the stacked cycles. (A)3 Same figure as in A2 for the same tadpole preparation, 

but in hypercapnia. (B) the three figures show the illustrations of the same analysis as in A for a post-metamorphic tadpole. 

The gray scale of the amplitude maps is shown with the color bar. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amplitude and oscillation profiles 

The last step consists in representing all the buccal bursts (or lung bursts) of a S 10 signal, by

a typical oscillatory pattern, i.e. an amplitude profile to which the low frequency component is

eliminated. An amplitude profile is computed as the mean value of an amplitude map ( Fig. 5 C).

Once a reference cycle is chosen, this amplitude profile is the same whatever the vertical sorting

rule that defines the amplitude map ( Fig. 5 C c2 and c3). A filtered version of an amplitude profile

(black dashed line in Fig. 5 C c3) is computed using a zero-phase, amplitude maintaining Savitzky-

Golay filter with a polynomial function of degree 3 and a moving window of 201 points (i.e. 0.1

sec; the “sgolayfilt” function of matlab is used for this filtering process). The filtered profile is then 

subtracted from the amplitude profile, resulting in an oscillation profile (thick line in Fig. 5 C c3) that

exhibits the high frequency components only. Each high amplitude peak of this profile corresponds 

to ‘columns’ of black points in the corresponding amplitude map (i.e. high amplitude peaks of the

cycles). In Fig. 6 , 2 and 3, the amplitude maps are built using the crosscorrelation order, i.e. the cycles

are stacked and ranked according to the decreasing crosscorrelation value with the reference cycle 

from bottom to top, as indicated by the plots of these values beside each map. The analysis illustrated

in Fig. 6 allows to exhibit the shape modifications induced on the amplitude profile by metamorphosis

and by hypercapnia in P. ridibundus tadpoles. Metamorphosis reduces both the buccal burst duration 

in each cycle and the number of oscillations inside each burst. In normocapnia, the burst shape in

post-metamorphic tadpoles is more stable than in pre-metamorphic tadpoles, as shown by higher 

values of the crosscorrelation coefficients between the cycles and their respective reference cycles (see 

the blue curves in Fig. 6 , 2, A and B). At both stages, hypercapnia induces oscillations that are more

marked than in normocapnia. The common feature of these profiles is the presence of oscillations that

reveals a temporal grid. This grid structures the neuronal activity inside each burst at a frequency of

about 25 Hz, i.e. in the range of the high frequency peak observed in Fig. 4 A. 
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Fig. 7. Intra- and inter-crosscorrelation between oscillation profiles. (A) Oscillation profiles computed from six neurograms 

recorded in pre-metamorphic L. catesbaianus tadpole preparations in normocapnia. (B) Intra-individual crosscorrelation 

coefficients for each of the six neurograms, in value and in color scale. The developmental stage of each tadpole is indicated: 

VI, X and XII. (C) Inter-individual crosscorrelation coefficients for pairs of the six oscillation profiles (Note that the diagonal 

contains the coefficients for the crosscorrelation of each oscillation profile with itself, all these six values are 1). The color scale 

is indicated by the color bar. 
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omparisons between oscillation profiles 

A spectral analysis by Fast Fourier Transform (FFT) of the oscillation profiles illustrated in Fig. 7 A

xhibits a same frequency range (18-28 Hz) for the dominant frequencies of each of them (using “fft”

unction of matlab), explaining the apparent similarity between these profiles computed on buccal S 10

ignals of six different L. catesbaianus pre-metamorphic preparations. A careful comparison of these

rofiles using a crosscorrelation study shows that each oscillation profile has its own specific features.

n order to evaluate how much a single oscillation profile is representative of the whole buccal burst

opulation of a given neurogram, two oscillation profiles are computed from two distinct sets of the

ame number (half the total number) of buccal bursts randomly selected in the corresponding S 10

ignal. Each cycle of the S 10 signal belongs either to one set or to the other set, but both profiles

re based on the same reference cycle. The crosscorrelation coefficient, i.e. the maximal value of

he crosscorrelation function obtained from these two oscillation profiles, is computed: it indicates

he similarity degree between these two oscillation profiles. This crosscorrelation coefficient is called

ntra-individual crosscorrelation coefficient. Fig. 7 B illustrates the result of this computation for the

ix S 10 signals of pre-metamorphic L. catesbaianus tadpole preparations in normocapnia. The mean

ntra-individual crosscorrelation coefficient is 0.79. In order to evaluate the specificity of an oscillation

rofile for a given preparation, it is possible to compute an inter-individual crosscorrelation coefficient

etween two oscillation profiles from two respective S 10 signals. Each profile is now computed on the

asis of all the buccal cycles of the corresponding signal. The matrix of such coefficients between all

he pairs of the six oscillation profiles represented in Fig. 7 A, is illustrated in Fig. 7 C in color scale.

he mean inter-individual crosscorrelation coefficient between two distinct pairs is 0.31, i.e. far lower

han the mean intra-individual crosscorrelation coefficient. In the same way, in order to evaluate the

imilarity between the lung oscillation profile and the buccal oscillation profile for a given recording

hat exhibits both buccal and lung activities, we define the lung-buccal crosscorrelation coefficient.

ach oscillation profile is computed using a common buccal reference cycle, from respective buccal

r lung S 10 signal built as described in section 2.2 . Such pairs of superimposed buccal-lung profiles

buccal in blue, lung in green), centered and normalized in amplitude, are shown in Fig. 8 for

. catesbaianus post-metamorphic tadpoles and adult frogs, in control conditions and in hypoxia.

or each of the 8 pairs of oscillation profiles, the buccal and lung profiles exhibit between 6 and
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Fig. 8. Superimposition of buccal and lung oscillation profiles in L. catesbaianus . (A) Superimposition of buccal (blue) and lung 

(green) normalized profiles for recordings in control condition, for two post-metamorphic tadpoles (Post 1, Post 2) and two 

adult frogs (Adult 1 and Adult 2). (B) Superimposition of the profiles in hypoxia condition. The black bar corresponds to 1.5 s 

for the four post-metamorphic tadpole graphics, and to 1 s for the four adult graphics. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11 dominant peaks temporally coincident, suggesting a common time grid. The crosscorrelation 

coefficient value (in the range of 0.67-0.89) computed for each buccal-lung profile pair underlines 

the high degree of similarity between these two profiles, thus it confirms the presence of a common

time grid on which both buccal and lung cycles are temporally organized. 

Autocorrelogram maps and profiles 

In order to evaluate the duty cycle shape stability/variability cycle by cycle, an S 10 signal is

analyzed using the autocorrelation tool. Fig. 9 illustrates how this tool is applied to recordings from

P. ridibundus tadpoles before and after metamorphosis, in control condition and in hypercapnia. The 

S 10 signal is segmented in successive pairs of two consecutive cycles, the last cycle of each pair is the

first cycle of the next pair (red rectangle in Fig. 9 A). An autocorrelation function, or autocorrelogram,

is computed for each pair. All these autocorrelograms are color coded ( Fig. 9 B) and stacked to build

an autocorrelogram map as shown in Fig. 9 C and D. Such autocorrelogram maps exhibit the changes

occurring with the stage (compare pre-metamorphic and post-metamorphic maps in Fig. 9 C and D,

left and right columns respectively) and with the condition (normocapnia in Fig. 9 C and hypercapnia

in D). Note that, for the pre-metamorphic tadpole, the color contrast is stronger in hypercapnia

than in normocapnia, corresponding to a more stable duty cycle shape. It is the opposite for the

post-metamorphic tadpole, where the color contrast is stronger, i.e. the shape stability is higher

in normocapnia than in hypercapnia. From each autocorrelogram map, an autocorrelogram profile 

is computed as the mean value of all the lines of the map. The maximal possible value of the

amplitude of the second peak of an autocorrelogram profile (black and red arrows in Fig. 9 E) is

0.5, which corresponds to a signal where all the cycles are identical. By comparing the value of the

amplitude of this second peak with 0.5, we evaluate the cycle feature stability: the closer to 0.5

the higher the stability. In Fig. 9 E, the superimposition of the autocorrelogram profiles summarizes

the condition effects on the cycle feature stability: for the pre-metamorphic tadpole, this stability is

higher in hypercapnia than in normocapnia, while the situation is reverse for the post-metamorphic 

tadpole. In Fig. 9 F, the distributions of the second peak amplitude measured on each autocorrelogram

show the differences between the two conditions: for the pre-metamorphic tadpole, the mean value 

of the distribution is 0 . 1 ± 0 . 05 in normocapnia and 0 . 26 ± 0 . 04 in hypercapnia, and for the post-
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Fig. 9. Autocorrelogram maps and profiles. Illustration for a pre-metamorphic (left column) and a post-metamorphic (right 

column) P. ridibundus tadpole recordings. (A) Successive pairs of two consecutive cycles of a S 10 signal; the red rectangle 

indicates the cycle that is common to both pairs. (B) Autocorrelogram functions coded in amplitude (black lines) and in 

colors, corresponding to each of the two pairs illustrated in (A) respectively. (C) Autocorrelogram maps built by stacking the 

autocorrelograms of the successive pairs of each complete S 10 signal recorded in normocapnia. (D) idem in hypercapnia. (E) 

Autocorrelogram profiles in black for normocapnia and in red for hypercapnia, corresponding to the autocorrelogram maps 

shown in (C) and (D) respectively. (F) Distributions of the amplitudes of the second peak indicated by the arrows (black for 

normocapnia and red for hypercapnia), as measured on each line of the corresponding autocorrelogram maps ((C) and (D) 

respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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etamorphic, the mean value of the distribution is 0 . 34 ± 0 . 1 in normocapnia and 0 . 15 ± 0 . 09 in

ypercapnia. These mean values confirm the previous observations about the duty cycle stability. 

onclusion 

The frequency, amplitude, oscillation and autocorrelation profiles presented here, computed

sing time-frequency and crosscorrelation tools, are applied for neurograms recorded in amphibian

rainstem preparations. These signal representations allow quantification of the short term and long-

erm stability/variability of rhythmic motor activities and of their similarity/dissimilarity. Numerous

seudo-periodic physiological signals can be represented using such profiles, for instance the

ammalian breathing and locomotion. 
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