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Abstract
Reanalysis of inconclusive exome/genome sequencing data increases the diagnosis yield of patients with rare diseases.
However, the cost and efforts required for reanalysis prevent its routine implementation in research and clinical
environments. The Solve-RD project aims to reveal the molecular causes underlying undiagnosed rare diseases. One of the
goals is to implement innovative approaches to reanalyse the exomes and genomes from thousands of well-studied
undiagnosed cases. The raw genomic data is submitted to Solve-RD through the RD-Connect Genome-Phenome Analysis
Platform (GPAP) together with standardised phenotypic and pedigree data. We have developed a programmatic workflow to
reanalyse genome-phenome data. It uses the RD-Connect GPAP’s Application Programming Interface (API) and relies on
the big-data technologies upon which the system is built. We have applied the workflow to prioritise rare known pathogenic
variants from 4411 undiagnosed cases. The queries returned an average of 1.45 variants per case, which first were evaluated
in bulk by a panel of disease experts and afterwards specifically by the submitter of each case. A total of 120 index cases
(21.2% of prioritised cases, 2.7% of all exome/genome-negative samples) have already been solved, with others being under
investigation. The implementation of solutions as the one described here provide the technical framework to enable periodic
case-level data re-evaluation in clinical settings, as recommended by the American College of Medical Genetics.

Introduction

According to some estimations, around 350 million people
worldwide may suffer from one of at least 7000 existing
rare diseases (RDs) [1]. As 80% of RDs are thought to have
a genetic origin [2, 3], the identification and characterisation

of the molecular basis underlying these disorders is
crucial for the establishment of a specific diagnosis and the
subsequent identification of an optimal therapeutic
approach.

The next generation sequencing (NGS) era has enabled
cost-effective sequencing of RD patients’ exome or gen-
ome, bringing these approaches into diagnostics [4]. How-
ever, the identification and interpretation of disease-causing
variants remains challenging. Indeed, the reported diag-
nostic yield for exome sequencing of RD patients with
suspected monogenic disorders is around 20–60% depend-
ing on the type of disorder [5–7]. Undiagnosed cases can be
re-approached by generating new genetic data using other
techniques with more sensitivity than NGS for certain types
of variants (e.g. arrays for large deletions or duplications) or
re-sequencing the samples using other library strategies and
sequencing protocols (e.g. whole genome sequencing, deep
exon sequencing, a different exon capture kit, etc.).

Members of the Solve-RD SNV-indel working group, Solve-RD
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Nevertheless, a negative result from NGS does not mean
that the disease aetiology lies outside of the data already
produced. In some cases, the variant is missed due to the
bioinformatics analysis or incomplete phenotypic or family
information. In other cases, the variant is not pinpointed
because, at the time, the impact cannot be adequately
assessed and/or the gene has not been yet associated with a
certain function. However, technical developments and
scientific understanding are constantly expanding, with new
gene-disease associations increasing at an average rate of
250 per year (based on OMIM) and 9200 variant–disease
associations being curated each year (based on HGMD) [8].
As a result, periodic data reanalysis and/or re-evaluation
increases the diagnostic yield up to 10–12% [9–11], and the
American College of Medical Genomics (ACMG) recom-
mends variant-level re-evaluation and case-level reanalysis
every 2 years [12].

While the scientific community extensively agrees on the
benefits of periodic data reanalysis for RD patients, frequent
re-evaluation of exomes/genomes is challenging in practice.
The time-consuming effort required to identify the clinical
record and re-assess segregated and unstructured genome-
phenome data, together with the non-scalability of current
solutions to reanalyse exponentially-growing datasets over
time, preclude its implementation in research and clinical
practice. Indeed, most clinical centres still do not include
any re-evaluation approach in their routinely workflow as
the benefit of identifying a new diagnosis is hardly unba-
lanced compared with the cost and efforts required for
reanalysis. Therefore, innovative bioinformatics solutions
are crucial to overcome some of these issues and facilitate
iterative re-evaluation processes [11].

Solve-RD (http://solve-rd.eu/) aims to reveal the mole-
cular cause underlying undiagnosed RDs [13]. One of the
main goals of the project is to comprehensively reanalyse
more than 19,000 phenotypically well characterised exome/
genome negative datasets from unsolved patients with RDs
submitted by European Reference Networks (ERNs).
Besides the genomic data, the datasets include the pheno-
typic and pedigree information according to the RD-REAL
(Rare Disease - REAnalysis Logistics) minimum informa-
tion recommended for reanalysis [13]. All the existing RD-
REAL datasets and the new ones generated by the project
are being submitted to the RD-Connect Genome-Phenome
Analysis Platform (GPAP, https://platform.rd-connect.eu/)
as an entry point to the Solve-RD project.

The RD-Connect GPAP is an online platform that
facilitates genome-phenome data analysis for RD diagnosis
and gene discovery. Since datasets are submitted by many
clinical researchers and are generated in different clinical
centres and genomic facilities, the data are quite diverse
at the source. To harmonise the information across all
patients and relatives, the GPAP enables submission of

pseudonymised phenotypic and clinical data using ontolo-
gies and standards such as the Human Phenotype Ontology
(HPO) [14], the Orphanet Rare Disease Ontology (ORDO)
[1], and the Online Mendelian Inheritance in Man database
(OMIM) [2]. All the genomic data is processed through the
same standardised pipeline [15] before being annotated and
stored in an Elasticsearch database, which provides low-
latency queries to enable fast access and ensure scalability.

Herein we describe a novel method that enables an auto-
mated, flexible, fast and iterative re-evaluation of thousands of
genomic datasets using a programmatic access to the RD-
Connect GPAP and we illustrate the utility of this procedure
by reanalysing 4411 exome/genome negative index cases from
the Solve-RD project. This approach has enabled the diagnosis
of the first 120 cases within Solve-RD.

Patient and methods

Subjects

This study includes phenotypic and genomic data from
4703 affected individuals (4411 families) and 3690 unaf-
fected relatives submitted to the RD-Connect GPAP as part
of the Solve-RD project (http://solve-rd.eu/) [13] by four
European Reference networks (the European Reference
Networks for Rare Neurological Diseases (ERN-RND),
Neuromuscular Diseases (ERN Euro NMD), Intellectual
Disability and Congenital Malformations (ERN ITHACA)
and Genetic Tumor Risk Syndromes (ERN GENTURIS),
https://ec.europa.eu/health/ern_en), as well as two Undiag-
nosed Disease Programs (UDP Italy and UDP Spain).
Clinical information was collated in a standard format using
the HPO [14] for symptoms and the ORDO [1] for Clinical
disorders. Each patient entry was associated with its cor-
responding submitting group and linked to its correspond-
ing ERN or UDP. The responsibility of checking the data is
suitable for submission to the RD-Connect GPAP and
Solve-RD lies within the data submitter as required by their
Code of Conduct and Data Sharing Policy, respectively. In
some cases, individuals had to be re-consented prior to data
submission. This study adheres to the principles set out in
the Declaration of Helsinki.

Genomic data processing

4551 exome and 201 genome sequencing data (FastQ or
BAM) derived from the 4703 affected individuals included
in the Solve-RD freeze 1 dataset, were processed using the
RD-Connect GPAP standardised analysis pipeline based
upon GATK3.6 best practices and using the GRCh37
human reference, as described in ref. [15]. The resulting
variants, including single nucleotide variants (SNVs), short
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insertions and deletions (InDels) and mtDNA variants
(when captured) were annotated using VEP [16]. In addi-
tion, GnomAD [17], and ClinVar [18] were annotated with
the latest versions available as for January 2020. Each
dataset was associated with its corresponding phenotypic
data and tagged with the name of the submitting ERN or
UDP. Data are available to authorised users for analysis
through the RD-Connect GPAP user interface (https://pla
tform.rd-connect.eu/).

Programmatic access to genome-phenome datasets

Annotated genomic data is indexed in a non-relational Elas-
ticSearch database engine (https://github.com/elastic/elasticsea
rch, GitHub - elastic/elasticsearch) connected to a Hadoop
environment (Apache Software Foundation, https://hadoop.
apache.org). Phenotypic data is stored in a local phenotypic
database. Both genomic and phenotypic data are made com-
putationally accessible through Application Programming
Interface (API) endpoints, allowing automated queries through
an in-house python package. To ensure secure and GDPR
(General Data Protection Regulation) compliant data access
for authorised users, the python package integrates a keycloak
user authentication and permission management (github.com/
keycloak/keycloak, GitHub - keycloak).

The GPAP’s API enables programmatic and flexible data
analysis by (i) applying any type of filtering parameters
according to the GPAP variants annotation (e.g. population
frequencies, protein impact and in silico predictors), (ii)
integrating standardised phenotypic information from each
index case to create unique on-the-fly gene list for each of
the experiments, (iii) filtering by specific gene lists
according to the type of disorder (curated by ERNs, remote
access to PanelApp from Genomics England or genes from
any local or public database of interest), (iv) restraining the
query filtering by homozygous regions in consanguineous
cases or by specific regions of interest (e.g. regulatory
regions) and (v) include segregation analysis based on the
suspected inheritance and data from patient relatives intro-
duced in the system.

Variant filtering parameters

Variant filtering using the RD-Connect GPAP’s program-
matic access described above was applied to identify can-
didate disease-causing SNVs and, InDels using the
following parameters: [1] rare variants (observed popula-
tion allele frequency <0.01 according to gnomAD and
<0.02 according to the RD-Connect GPAP internal fre-
quency), [2] specific gene list provided by the corre-
sponding ERNs (euro-NMD, RND, ITHACA and
GENTURIS) and [3] variant annotated as pathogenic or
likely pathogenic for a specific disorder in ClinVar (v.13-

01-2020). Apart from standard annotations (VEP), the
resulting output file (one per ERN) was annotated with
pseudonymised IDs, patient standardised phenotypic
information (by extracting the corresponding HPOs and
ORDO information entered in the system), candidate gene-
disease associations (according to OMIM) [2], con-
sanguinity reported and experimentally inferred (according
to ref. [19]), gene constrain scores (pLI and o/e according
to gnomAD v.2.1.1), ACMG computationally predicted
clinical significance and criterias (using InterVar) [20] and
when relevant, specific disease pathogenicity databases
such as the VKGL database (https://www.vkgl.nl/nl/dia
gnostiek/vkgl-datashare-database) and the gene4denovo
database [21]. The overall approach was designed by the
Solve-RD SNV-indel working group from the Data Ana-
lysis Task Force (DATF) in collaboration with the corre-
sponding disease expert groups [13] (Fig. 1).

Variant prioritisation and data interpretation

Candidate variants from each case passing the filtering criteria
are included in a single table to facilitate distribution across
the Solve-RD network for evaluation and provision of feed-
back. The table is in MS Excel and has the same, or very
similar, structure as the one provided by other Solve-RD
DATF Working Groups for other type of genomic analyses.
Solve-RD has organised ERNs clinical expertise in four
dedicated Data Interpretation Task Forces (DITFs), one for
each of the core ERNs. Results from the programmatic rea-
nalysis performed were sent to the corresponding DITF
members, a group of dedicated disease experts from the
project who prioritised variants for further clinical assessment
by data submitters (Fig. 1). Variant interpretation was then
carried out in accordance with the criteria set by the ACMG
guidelines [22] and the posterior ClinGen Sequence Variant
Interpretation recommendations (https://www.clinicalgenome.
org/working-groups/sequence-variant-interpretation/). The
final feedback of variant pathogenicity for a specific clinical
condition was determined by integrating patient assessment,
variant evaluation and segregation, suspected inheritance, and
clinical fit. Concerning family data available for segregation
analyses, 28% of cases were submitted as trios (80% of them
from ITHACA families), 68% were submitted as singletons
(62% of them from RND) and 4% were from other family
structures (Table 1).

Results

Programmatic reanalysis workflow

To enable automated and reproducible analysis and reana-
lysis of the Solve-RD data, we have developed a python

Solving patients with rare diseases through programmatic reanalysis of genome-phenome data 1339

https://platform.rd-connect.eu/
https://platform.rd-connect.eu/
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://hadoop.apache.org
https://hadoop.apache.org
https://www.vkgl.nl/nl/diagnostiek/vkgl-datashare-database
https://www.vkgl.nl/nl/diagnostiek/vkgl-datashare-database
https://www.clinicalgenome.org/working-groups/sequence-variant-interpretation/
https://www.clinicalgenome.org/working-groups/sequence-variant-interpretation/


package to execute queries through the RD-Connect API in
a secure manner (Fig. 1). The parameters must be indicated
in a configuration file, allowing a flexible (re)analysis
environment covering very high to very low filtering
stringencies and integrating patient clinical information
through the use of computer readable standards (HPOs,
ORDO, and OMIM) (Fig. 1). Options available for filtering
include all annotations and features integrated in the RD-
Connect GPAP from standard annotations (e.g. internal and
external population allele frequencies) to more advanced
features integrating clinical information to create patient
specific on-the-fly gene lists (e.g. gene lists based on the
HPOs entered for the index case). At the time being, the
approach can detect SNVs and small InDels, including
canonical splicing mutations. Other type of variants such as
copy number variants will be integrated in the GPAP for
filtering in future releases. In the meantime, Solve-RD has a
specific DATF Working Group performing CNV analyses.
Whenever relevant, the CNV variants are combined with
the SNV/InDel results outside of the GPAP.

The queries are executed sequentially on the selected
cases, enabling a scalable and tailored approach. The GPAP
currently contains variants from 12,335 exomes and 638
genomes, distributed across 30 ElasticSearch instances in
12 server nodes (each with 2 octa-cores at 2.60 GHz,
256GB RAM and SSD disks). On these settings, each query
requires 30 s per experiment on average.

The resulting variants are distributed to the respective
DITF for variant prioritisation and interpretation (Fig. 1).
After evaluation, the causative variants are tagged in the
RD-Connect GPAP through the API or the graphical user-
friendly interface. Unsolved cases may enter a new round of
interpretation with a different combination of parameters
and filters. New rounds of analysis are designed in colla-
boration with each of the DITF. Current approaches con-
cern, for example, the identification of homozygous variants
in homozygous stretches greater than 1Mb for con-
sanguineous cases or the identification of variants in known
regulatory regions for specific patient cohorts (e.g. con-
genital myasthenic syndrome). Furthermore, other types of
analyses are being done within Solve-RD, as indicated in
ref. [13].

Application of the programmatic workflow for the
reanalysis of undiagnosed rare disease patients

Bioinformatics reanalysis and the programmatic evaluation
workflow were applied to all affected cases in the Solve-RD
freeze 1 dataset [13]. In total, 4411 undiagnosed cases with
heterogeneous genetic disorders were included: 1472 index
cases referred as Intellectual disability (ERN-ITHACA),
2048 as Rare Neurological Disorder (ERN-RND), 616 as
Neuromuscular Disorders (ERN-euroNMD), and 275 as
Tumor Risk Syndromes (ERN-GENTURIS). Among the

Fig. 1 Programmatic reanalysis data workflow. Unsolved cases
(RD-REAL datasets= phenotypic and genomic data) are submitted by
Solve-RD members from the 4 core ERNs and the 2 UDPs partici-
pating in the project. Genomic data is processed through a standard
analysis pipeline [15] and integrated with the phenotypic information
in the RD-Connect GPAP. Analysis of the data using the program-
matic approach described in this study is performed by the SNV-indel
working group. The SNV-indel working group is one of the seven
working groups established by the Solve-RD Data Analysis Task
Force (DATF) to massively reanalyse data with different analytical
approaches (e.g. CNV, somatic, meta-analysis, etc.) (http://solve-rd.eu/

the-group/data-analysis-task-force/). The DATF involves data scien-
tists and genomics experts from the project. Resulting candidate var-
iants are submitted to the Data Interpretation Task Force (DITF),
involving expert clinicians and geneticists for prioritisation and final
interpretation. One DITF has been established for each of the core
ERNs participating in the project (http://solve-rd.eu/the-group/data-
interpretation-task-force-ditf/). DITF include or are in contact with
case submitters to enable a final decision for a new patient diagnosis.
Diagnosed cases are automatically updated in the system and the
remaining unsolved cases are susceptible to re-enter a new round of
analysis.
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whole dataset, 55.7% of the cases were males and 44.3%
females.

To minimise the interpretation burden for the DITFs, the
first round of analysis was designed with very stringent
parameters to allow the identification of clear candidates
(”low-hanging fruit”) with known disease causality
(Table 1, Fig. 1). All candidate variants were reported as
“pathogenic” or “likely pathogenic” in ClinVar. Pathogenic
variants are defined (based on the ACMG) as variants that
directly contribute to the development of a disorder in a
specific dosage sensitivity. The latter meaning that some
pathogenic variants may not be fully penetrant or in the case
of recessive or X-linked conditions, a single pathogenic
variant may not be sufficient to cause disease on its own.

Total computational time for this analysis (including
filtering and additional annotation steps for all 4411
experiments) was of 36 h and 45 min. The analysis yielded a
total of 2593 candidates variants in 1785 index cases
(40.4% of total cases, mean of 1.45 per individual)
(Fig. 2A), which were distributed to the DITF. After each
DITF applied additional prioritisation filters, a total of 678
variants from 566 index cases (31.7% of cases with iden-
tified variants; mean of 1.2 variants per individual) were
sent to the referring clinical groups for final interpretation
(Fig. 2A, Supplementary Table 1). Final interpretation was
determined by integrating variant evaluation and patient
phenotypic fit. The approach enabled to identify 124 cau-
sative variants leading to the diagnosis of 120 RD patients
(21.2% of prioritised cases). Among the 124 causative
variants identified (Supplementary Table 1), 68 (54.8%)
were associated with an autosomal dominant disorder, 44
(35.6%) with an autosomal recessive disorder, 10 (8%) were
X-linked, one (0.8%) in mitochondrial DNA and one
(0.8%) was a mosaicism. In addition to the 120 diagnosed
cases, 26 variants from 25 index cases are still under eva-
luation (segregation analysis, clinical re-evaluation, SAN-
GER validation, etc.) by the clinical submitting groups
(Fig. 2A, C). For an additional 87 index cases, 103 het-
erozygous variants in phenotype-related candidate genes
associated with autosomal recessive disorders were identi-
fied. In some of those cases, additional analyses or new data
might identify another variant that could finally diagnose
the case.

We hypothesised that several cases could have remained
undiagnosed when they were originally analysed because
knowledge on a specific gene function or variant impact
might have been lacking at the time. To further investigate
this point, we retrieved, for each of the causative variants,
the date when the corresponding gene was first associated
with a disease and a pathogenic variant for a specific clinical
condition reported in ClinVar (Fig. 2D). In total, 16 (13%)
newly identified causative variants were found in genes
associated with disorders since 2017 (2 years since data wasTa
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sent for reanalysis), 11 (9%) between 2015 and 2016, 39
(31%) between 2010 and 2014 and 60 (47%) before 2010.
Concerning the clinical significance of the variant, 48 (39%)
newly identified causative variants were submitted as
pathogenic for a specific disorder to ClinVar since 2017 (2
years since data was sent for reanalysis), 27 (21%) between
2015 and 2016, 40 (31%) between 2010–2014 and 11 (9%)
before 2010.

Among the 26 homozygous causative variants (Supple-
mentary Table 2), 15 were identified in experimentally
determined consanguineous probands according to ref. [19],
being 13 of them within a homozygous stretch of more than
1Mb (Supplementary Table 2). In order to discard possible
false homozygous calls due to a hypothetic heterozygous
deletion of the region covering the causative variant in non-
consanguineous probands, we cross-checked CNV results
provided by the Solve-RD DATF. No deletions in the
region of interest were detected.

Discussion

Constant improvement of bioinformatics methods and
advances in genomic understanding to identify and interpret
variants highlight the need to periodically re-evaluate
unsolved exome/genome cases as stressed by the ACMG
[12]. However, to date, the benefit of identifying a new

diagnosis in clinical environments is hardly unbalanced
compared with the efforts required for re-evaluation. In this
study, we present a rapid, scalable and cost-effective
approach to programmatically (re)analyse thousands of
structured genome-phenome RD-REAL datasets from
undiagnosed cases collated as part of the Solve-RD project
[13].

We have set up a programmatic system based on a
python package to query structured genome-phenome data
from the RD-Connect GPAP through its dedicated API.
Only sample IDs and filtering parameters need to be defined
in the system before attempting a new (re)analysis. Then,
the fully automated approach enables to intelligently and
flexibly filter genomic data based on clinical, familial,
biological and genomic quality information in a rapid (30 s
per experiment on average) and massive way (currently
>4400 samples tested). The big-data technologies upon
which the RD-Connect GPAP is built enable systems to
grow by adding more resources as needed. The described
approach will allow for the (re)analysis of all the 19,000
exome/genome datasets that Solve-RD aims to collect and
the new data it is producing [13].

Despite the use of cutting-edge technologies, and that
experts are able to re-evaluate hundreds of cases with the
key information at sight, clinical interpretation remains a
manual process. In order to facilitate and reduce inter-
pretation efforts, the programmatic output is provided in a

Fig. 2 Results of reanalysis of undiagnosed RD cases to identify
known disease-causing variants. A Filtration, prioritisation and
interpretation workflow (numbers refer to index cases). B Number of
variants per case submitted to DITFs for prioritisation and resulting
number of variants submitted for interpretation. C Variants

interpretation results from prioritised cases per type of disorder
(numbers refer to variants). D Number of causative variants identified
according to the year the corresponding gene (grey) or variant (yellow)
was first described in the literature as disease-causing (according to
OMIM) or pathogenic (according to ClinVar).
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meaningful way, integrating relevant genomic, biological
and clinical information for referring clinicians and clinical
scientists to perform this final step. Results can be enriched
with additional annotations and can also include the link to
the specific query in the RD-Connect GPAP, enabling the
users to explore the variant within a graphical user-
interface. We tested the approach with the 4411 affected
cases from the first Solve-RD data freeze. All those cases
were well characterised and had an exome/genome that had
been thoroughly analysed without success. Only the first
“low-hanging fruit” filtering approach for rare known
pathogenic variants (according to ClinVar) in known
disease-causing genes already allowed us to solve 120
undiagnosed index cases (21.2% of prioritised cases). The
approach included the use of dedicated ERN associated
gene lists to focus on diseases under investigation and
limiting the risks of secondary findings. Heterozygous
potential candidate variants for autosomal recessive dis-
orders were also identified in 15.3% of the prioritised cases.

The overall positive results obtained from the prioritised
variants of this “low-hanging fruit” reanalysis approach can
be attributed to several factors. The original exome/genome
data reanalysed in this study were sequenced by different
centers at different times. This means that the original
analyses (including mapping, variant calling, annotation
and filtering) were performed with a variety of different
tools and databases, likely using different versions and
parameters. In addition, the human genome reference used
might have been different even if with small changes (e.g.
with or without viral and/or decoy sequences). Therefore,
the pipeline used in Solve-RD will be in almost all cases
somewhat different than the one used in the original ana-
lysis, which might have had an effect in unveiling pre-
viously undetected variants (e.g ref. [23]). Furthermore,
scientific knowledge improves with time, enabling to
identify previously undetected associations. In our study,
13% of the newly identified causative variants were in
genes not associated with disease in the 2 years prior to
reanalysis (described since 2017) and 39% were variants not
reported as (likely) pathogenic for similar clinical mani-
festations at that time. If we assume reanalysis was not
performed in the previous 4 years prior to submission, these
values increase up to 22% for new disease-causing genes
and 60% for newly reported pathogenic variants (e.g. ref.
[24] and ref. [25]). Finally, standardised clinical information
using HPO, ORDO and OMIM combined with different
filtering approaches helped prioritise causative variants in
atypical phenotypes (e.g. ref. [25]). This result is aligned
with previous studies in the RD-Connect GPAP on a cohort
of patients with rare neuromuscular disorders reporting the
importance of deep and accurate phenotyping for variant
prioritisation [26]. For cases remaining undiagnosed, it
might be useful to keep updating the patient phenotypic

descriptions with new observations, as this might help
identify additional candidate pathogenic variants for the
disease and increase specificity of the filtering step, thus
lowering the time necessary for variant re-evaluation. In this
sense, the RD-Connect GPAP facilitates updating the
patient records through its phenotypic module. Remarkably,
the interpretation of several causative variants identified
in complex genes or regions was possible thanks to the
multidisciplinary team of RD experts involved (e.g.
ref. [24]).

This first “low-hanging fruit” automated approach man-
aged to solve 2.7% of all clinically heterogeneous undiag-
nosed and previously negative-exome/genome cases in <37
h of computational time. The flexibility of the system
described herein is now being applied to additional strategic
reanalyses, varying parameters stringencies and contribut-
ing to increase the diagnostic yield. New approaches will
focus on the identification of mtDNA variants using specific
variant callers [27] or the inclusion of additional clinical
resources such as HGMD [8] or Varsome [28]. Indeed, the
GPAP already provides direct links to those clinical data-
bases to facilitate variant interpretation and another re-
evaluation approach relying on the HGMD database is
planned for filtering by (likely) pathogenic variants based
on the data available by the user’s license. Several other
Solve-RD working groups, focused on the identification of
other types of variants or analysis strategies (e.g. copy
number variants, repeat expansions or de novo analyses)
and/or integrating new –omics generated within the project
(e.g. RNA-seq, long read WGS) are joining efforts to
unravel additional molecular causes underlying RDs [13].

In comparison and similarly to other iterative reanalysis
strategies [10, 29], our approach has three main advantages
and time-saving points for clinicians and clinical scientists.
First, experts do not need to re-annotate and filter manually
with different strategies thousands of cases. Second, they
only need to re-evaluate the cases for which at least one
candidate variants has been proposed (40.4% of cases in our
study). Third, the output file contains all the cases with
candidate variants identified and includes key information
for their preliminary evaluation.

This method could be adapted to any diagnostic (re)
analysis workflow and extended to the whole RD-Connect
dataset (currently >13,000 samples) or any subset of inter-
est. Data can be periodically re-evaluated with no additional
cost and according to any predefined period of time (e.g.
every 6 months or once a year) or after relevant method
improvements or database updates. This strategy reduces
reanalysis costs and experts’ time-consuming efforts while
offering a solution to three out of the four key elements to
reinterpret genetic data recently raised by ref. [30]: data
storage and re-access, initiation of routine reinterpretation
and reinterpretation with novel information.
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In summary, we have developed a scalable, cost-
effective programmatic approach to drastically decrease
turnaround time and effort for periodic data reanalysis. We
have illustrated the usefulness of the system by revealing
the molecular bases of 120 previously undiagnosed patients
with RDs within Solve-RD. This methodology can be
implemented systematically in a clinical diagnostic setting
for periodic case-level data re-evaluation, as recommended
by the ACMG [12].
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