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Abstract: Detecting human motion and predicting human intentions by analyzing body signals
are challenging but fundamental steps for the implementation of applications presenting human–
robot interaction in different contexts, such as robotic rehabilitation in clinical environments, or
collaborative robots in industrial fields. Machine learning techniques (MLT) can face the limit of
small data amounts, typical of this kind of applications. This paper studies the illustrative case of the
reaching movement in 10 healthy subjects and 21 post-stroke patients, comparing the performance of
linear discriminant analysis (LDA) and random forest (RF) in: (i) predicting the subject’s intention of
moving towards a specific direction among a set of possible choices, (ii) detecting if the subject is
moving according to a healthy or pathological pattern, and in the case of discriminating the damage
location (left or right hemisphere). Data were captured with wearable electromagnetic sensors, and a
sub-section of the acquired signals was required for the analyses. The possibility of detecting with
which arm (left or right hand) the motion was performed, and the sensitivity of the MLT to variations
in the length of the signal sub-section were also evaluated. LDA and RF prediction accuracies were
compared: Accuracy improves when only healthy subjects or longer signals portions are considered
up to 11% and at least 10%, respectively. RF reveals better estimation performance both as intention
predictor (on average 59.91% versus the 62.19% of LDA), and health condition detector (over 90% in
all the tests).

Keywords: human intention prediction; wearable sensors; machine learning; reaching movement

1. Introduction

Detecting and predicting human intentions by collecting and analyzing body signals
are among the main goals in human–robot interaction [1]. These challenging tasks and
their relevance in daily-living applications are gaining importance, for instance due to
the spreading of collaborative robots (cobots) for human–robot cooperation. An accurate
and real-time interpretation of the motion intention could ease the achieving of effective
human–machine coordination strategies [2] for interactive robotic interfaces or diagnostic
systems [3].

For a non-invasive detection of body signals several kinds of sensors can be adopted,
such as accelerometers [4], electroencephalography (EEG) [3], or surface electromyography
(sEMG) [2,5,6]. In the last years, investigations on the suitability of wearable sensors
for the pattern recognition of human movements have been widely conducted [2,3,7],
also evaluating the effect of the sensors positioning on the acquired data [8,9]. Wearable
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sensors assure non-invasive analyses and are compliant to full integration with pre-existing
systems or commercially available devices [1]. In addition, they allow assessing body
signals or motion properties (such as acceleration and velocity) to reconstruct an observed
movement [10], overcoming potential inter- and intra-subjects anatomical variability that
could affect the measurement quality [11].

Since movements are subject-dependent, and body signals are sensitive to lack of
repeatability [2], the complexity of the human intention prediction task even increases
in specific scenarios, such as the clinical environment, where the pathological subject
can behave according to peculiar or unpredictable motion patterns. Within this context,
laboratory-based optical systems for the movement analysis are widely adopted for period-
ical monitoring and assessment of the stroke condition during rehabilitation [12], since they
enable the measurement of multiple bio-signals, recognized as useful in both detecting
pathological symptoms and improving the rehabilitation healing rate [13]. A thorough
knowledge of the expected natural behavior and motion patterns in the healthy subject
becomes therefore fundamental to perform a correct assessment of the subject condition.

Among all the possible movements affecting the activities of daily living, the reaching
task undoubtedly plays a crucial role [14], given the importance of its functional aim [15].

Since a defined movement can be performed according to many different strate-
gies [7,16], the use of predictive models and machine learning algorithms is particularly
suitable to analyze the signals with the purpose of predicting the human movement inten-
tion [2]. Developing effective working methodologies for the processing of body signals
becomes therefore necessary, and machine learning techniques (MLT) can face the limit of
small data amounts, typical of this kind of applications.

Literature provides several examples of MLT applied to human movement analysis; for
instance, in 2014 Romaszewski et al. applied Linear Discriminant Analysis (LDA), Support
Vector Machine and k Nearest Neighbor algorithms to identify natural hand gestures [17].
In 2015, Li et al. discriminated eight different movements of the upper limb exploiting the
Random Forest (RF) algorithm for the analysis of optoelectronic data [18], whereas in 2020,
Robertson et al. applied the quadratic discriminant analysis to data acquired with a Kinect
camera (© Microsoft Corporation, Redmond, WA, USA) to discriminate between healthy
subjects and patients affected by Cerebellar Ataxia [19].

Furthermore, deep learning (DL) techniques have been applied to the study of gait
data through recurrent neural networks (RNN), deep neural networks (DNN), or dedicated
DL approaches [20]. In particular, after detecting the motion through electromyography
signals [21] or wearable sensors [22,23], DL techniques have been applied to analyze
peculiar movement features. In 2016, Illias et al. [24] also applied the NN model to
discriminate the gait patterns between healthy children and children affected by autism.
In the human–robot interaction (HRI) field, Liu et al. [25] have applied DL techniques
combined with data acquired through 3D body skeletons, 2D RGB images, and optical
flows, to identify humans’ intention and build a framework of human–robot interaction.
A similar application was also developed in 2019 by Li et al. [26]. In the clinical field,
DL techniques have also been applied to detect and study hand movement pattern and
its changes, and to determine possible disease. Several researchers have measured this
phenomenon using computer vision techniques, such as gesture recognition, analyzing
the signal of optical markers placed on the hand joints [27]. Other researchers apply DL
algorithms to measure hand parameters detected with a vision system [28,29].

Focusing on the analysis of the reaching movement in both healthy subjects and
post-stroke patients, this study aimed to compare the performance of LDA and RF MLT
in: (i) predicting subjects intention of moving towards a target or a specific direction
(intention prediction), and (ii) detecting if the subject is behaving according to a healthy or
a pathological pattern, and if the possible damage affected the right of left hemisphere
(health condition detection). Analyzed data were captured with wearable electromagnetic
sensors, and only a first section of the acquired signals was exploited for the prediction and
detection processes. Further analyses investigate the possibility of detecting with which
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arm (left or right hand) the motion is performed by the subject, and the sensitivity of the
evaluated MLT to variations in the length of the evaluated signal section.

Compared to previous works in scientific literature, this paper presents novelty aspects
in the methodological approach. In particular:

(i). The same dataset is exploited performing different set of analyses, to assess suitability
and performance of two MLT with respect to different purposes;

(ii). The performance of LDA and RF are compared for the specific analysis of the
reaching movement;

(iii). With particular reference to the previous work of Archetti et al. [30], the analysis of
a dataset which also includes data collected from post-stroke patients on one side
allowed a more robust evaluation of the performance of LDA and RF as intention
predictors, and on the other side enabled the implementation of a new level of analysis,
evaluating the performance of LDA and RF as health condition detectors.

2. Materials and Methods

An experimental campaign was designed, and the study was approved by CPP Ile
de France 8 ethical committee of Hôpital Am-449 broise Paré (ID RCB 2009–A00028-49,
19 June 2009). The study was conducted in accordance with the guidelines of the 448
Declaration of Helsinki.

2.1. Participants

For the experimental campaign, a convenience sample of 31 subjects was recruited:
ten healthy subjects (6 females; mean age: 51 years, range [29;71] years; 1 left-handed) as
control group, and 21 patients who experienced a first ischemic or hemorrhagic stroke
with cortical and/or subcortical lesions. Among them, three subjects were left-handed and
18 right-handed (9 females; mean age: 48 years, range [20;71] years).

For the pathological subjects, tests were performed at least 3 months post botulinum
toxin injection to assure the absence of lingering effects of the toxin on the human body.
Exclusion criteria were: (i) patients with shoulder pain, (ii) previous shoulder pathologies,
(iii) multiple or bilateral cerebral lesions, (iv) acute algoneurodystrophy, (v) cerebellar
involvement or comprehension deficit, and (vi) range of motion of the upper limbs that does
not allow the reaching movement. Within the subset of pathological subjects, ten patients
presented a right hemisphere damage (RHD), and the remaining 11 a left hemisphere
damage (LHD).

Inclusion criteria for the control group were: (i) age over 18 years old, (ii) no previous
or current orthopedic or neurological pathology of the upper arm.

2.2. Acquisition Protocol

All testing sessions were performed in the same environmental conditions, i.e., during
the morning and in the controlled environment of the Laboratoire de Neurophysique et
Physiologie at the Hôpital R. Poincaré, Garches (France). During each session, at first a
preliminary trial was carried out to familiarize the subject with the procedure, then the
subject was asked to perform six repetitions of unilateral sitting reaching movement: three
cycles with the left arm, and three with the right arm. As described in Robertson et al. [19]
and Archetti et al. [30], the initial condition consisted in the subject with the hand placed
on a red cross placed on the table plane in line with the shoulder, the forearm in mid-prone,
the elbow flexed to 90◦, and the humerus positioned along the vertical direction. In each
repetition, the subject was asked to touch the target identified by the operator, among a
set of possible pre-defined positions, which depicts combinations of the three directions
left, center, and right, of the two quotes high and low, and of the two distances proximal
and distal. Although the subject was oblivious to it, the target sequence submitted by the
operator was standardized: close-middle (CM), far-internal (FI), high-external (HE), far-
middle (FM), close-external (CE), high-internal (HI), close-internal (CI), far-external (FE),
and high-middle (HM). The subjects were instructed to touch the target with a provided
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pointer and return to the starting position, performing the movement with opened eyes.
No instructions were given on accuracy and speed, other than touching the target at a
comfortable speed.

2.3. Experimental Setup

The subject was seated on a chair adjusted in height to make the table surface at the
navel level. A wide strap assured the subject’s trunk to be fixed to the chairback.

A trained operator instrumented the subject with a wrist splint, provided with a
pointer to simulate an extended index finger, and with four electromagnetic sensors. The
sensors were located on (i) acromion, (ii) upper third of humerus, (iii) wrist dorsum, and (iv)
manubrium. During the acquisitions, an electromagnetic tracking system (Polhemus Space
Fastrak, Colchester, VT, USA) was used: The system provides the position and orientation
of each sensor as timestamped vector triplets (X, Y, Z) and (α, β, γ) respectively, at a
frequency of 30 Hz. The assured root mean square (RMS) static accuracy and resolution of
the system are respectively 0.8 mm and 0.0005 [cm/cm of range] for the position receivers,
and 0.15◦ and 0.025◦ for the orientation receiver.

As schematically depicted in Figure 1, nine targets were located within three planes,
each of them orthogonal to the table surface and passing through one of the following
directions: the parasagittal straight line emanating from the subject’s shoulder for the
middle direction, and the straight lines positively and negatively inclined at 45◦ with
respect to the middle plane, as internal and external directions, respectively.
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Figure 1. Schematic of the experimental setup. Target positions are indicated as: close-middle
(CM), far-internal (FI), high-external (HE), far-middle (FM), close-external (CE), high-internal (HI),
close-internal (CI), far-external (FE), and high-middle (HM).

The distance between target and subject was defined with respect to the length of the
equivalent anatomical upper limb, meant as the distance between the position of the sensor
located at the acromion and the end of the pointer. Two distances were evaluated: (a) close,
corresponding to 65% of the total upper limb length, and (b) far, equal to 90% of the
upper limb length. Considering the quote parameter, the six targets in low configuration
were placed at 70 mm of height from the table level, whereas the three targets in high
configuration were located above the corresponding distal targets, at the same quote of the
acromion from the table surface.

2.4. Data Treatment

Linear position and orientation provided by each sensor were imported and elaborated
in MATLAB (© The MathWorks, Inc., Natick, MA, USA) environment. Data processing was
performed using an Intel® (© Intel Corporation, Santa Clara, CA, USA) Core™ i7-8565U
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processor (1.80 GHz) on a machine running a Windows 10 Home (© Microsoft Corporation,
Redmond, WA, USA) operative system.

The acquired signals were initially trimmed to the actual motion section to define a
dataset of coherent data, comparable among subjects and among trials. To detect starting
and ending points of the reaching movement, the absolute value of the velocity of the hand
was analyzed. The absolute value of the hand position was computed as the vectorial
composition of the signal components along the three directions X, Y, and Z, and the
hand velocity was numerically evaluated according to a custom two-point derivative
approximation [30]. This signal was then filtered to remove noise with a fourth-order zero-
phase low-pass Butterworth filter, according to literature indications [31,32]. For the filter,
a cut-off frequency of 3 Hz was adopted [33]. The subject resting condition was defined as
the mean value of the first and last ten acquired data samples, each of them corresponding
to a time interval of 0.33 s. Starting and ending points of the reaching movement were
automatically detected by a custom-developed code, as the first and last time instant,
respectively, in which the absolute value of the position first derivative exceeds an imposed
threshold. This threshold, initially set to 9 × 10−3 mm/s, was iteratively reduced by
1 × 10−3 mm/s, and the estimation of starting and ending point was updated, until the
variance of the velocity signal from the beginning to the identified starting point, and from
the identified ending point on, were below the threshold itself.

To normalize data in amplitude, anthropometric quantities were computed for each
subject from the positions of the sensors on hand, arm, and shoulder. In each trial,
the relative distances hand-to-arm, arm-to-shoulder, and shoulder-to-trunk of the sen-
sors were calculated during the subject resting phase. The average values of these nine
quantities for each subject were then computed and adopted as reference values for the
normalization process.

Finally, the second derivative of sensors position was also numerically computed
applying the custom two-point derivative approximation, to simulate data coming from
fictitious accelerometers placed on subjects. The resulting signal was then filtered applying
the same low-pass Butterworth filter previously described (fourth-order zero-phase, cut-off
frequency of 3 Hz).

To identify a feature set for the implementation of the machine learning algorithms
four signals were considered: (i) the linear position computed by the sensors position (SP)
components, (ii) the modulus of the sensors velocity, i.e., the first derivative of SP, (iii) the
modulus of the sensors acceleration, i.e., the second derivative of SP, and (iv) the angular
position computed by the measured Euler angles. For the purpose of the features extraction,
only a section of the overall signal was analyzed as the observation window (OW). Two
different approaches were adopted for the evaluation of the OW size: (i) a subject- and
trial-dependent strategy, based on a custom window which computes the observation time
using the information on the motion length of the specific trial, and (ii) a generalized
approach, based on an average window which exploits the dataset of all the available data,
from all the subjects and trials, to compute a fixed OW.

For the implementation of the machine learning algorithms, the minimum, maximum
and root mean square values of linear and angular position, velocity and acceleration were
evaluated as features from the source signals. For each subject and trial, all the computed
features were rescaled to −0.80, +0.80. The LDA and RF algorithms were applied for the
data treatment, and only data from the sensors placed on hand and arm were used in both
the analyses, since a first set of preliminary evaluations suggested that the data gathered
from the other sensors provided negligible contributes. For both the purposes of intention
prediction and health condition detection, the algorithms were trained using a subset of
randomly selected data. According to the results of a preliminary analysis, the size of
those subsets was selected at 85% and 90% of the analyzed dataset, respectively; those
thresholds in fact proved to allow a reasonable compromise between computation time
and prediction performance according to the expectations of the current purpose. The



Sensors 2021, 21, 5253 6 of 16

remaining data were then exploited for the testing phase. For both the algorithms, training
time and prediction time were also computed.

2.4.1. Intention Prediction

To evaluate the intention prediction, twenty tests were designed, combining different
configurations of data setup parameters, used features, and outputs. As setup parameters,
OW evaluation strategies and lengths were considered. For the features, four conditions
were evaluated, corresponding to features extracted by different source signals: (i) sensor
position (P) and velocity (V), (ii) sensor position, velocity, and Euler angles (E), (iii) sensor
position, and iv) sensor acceleration (A). Table 1 synthesizes the test conditions for each test.
Considering the OW evaluation strategy, the first ten tests applied the average window
method, and the remaining the custom window approach. Focusing on the OW length,
two different cases were evaluated: a size equal to 1/7 and 1/10 of the total time extent of
the actual motion section. For all the tests, the main output was the expected position of
the target that the subject wants to reach; for 16 tests, additional output was the left (L) and
right (R) distinction, meant as with which limb the motion was expected to be performed.

Table 1. Synthesis of the applied conditions in the tests performed for the intention prediction. In the table, source signals
are described as sensor position (SP), sensor velocity (SV), sensor acceleration (SA), and sensor Euler angles (SEA); L/R
indicates the left and right limb distinction.

Data Setup Features Additional
Output

OW Evaluation OW Lengths Source Signal L/R
DistinctionTest Custom Window Average Window 1/7 1/10 SP SV SA SEA

IP1 x x x x x
IP2 x x x x x x
IP3 x x x x
IP4 x x x x
IP5 x x x
IP6 x x x x x
IP7 x x x x x x
IP8 x x x x
IP9 x x x x

IP10 x x x
IP11 x x x x x
IP12 x x x x x x
IP13 x x x x
IP14 x x x x
IP15 x x x
IP16 x x x x x
IP17 x x x x x x
IP18 x x x x
IP19 x x x x
IP20 x x x

Tests were performed on the complete dataset of all the subjects, and compared with
the results provided by the analysis of the subsets of healthy and pathological subjects
only. For the comparison, the prediction accuracy of the LDA algorithm was calculated
as depicted by Nuzzi et al. [34,35]; for the assessment of the RF accuracy, the out-of-bag
(OOB) method was adopted. The results were averaged on 200 consecutive tests.

2.4.2. Health Condition Detection

To detect the health condition of the subject, eight tests were designed investigating
different combinations of data setup parameters, included features, and outputs. The
average window approach was adopted as OW evaluation strategy for all the tests. Two
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combinations of source signals were considered for the features evaluation: (i) sensors
position and velocity, and (ii) sensors position, velocity, and Euler angles.

Table 2 collects the conditions applied in each test. Main output of all the tests was the
detection of a healthy or pathological pattern, and for the latter the further identification of
the damage location, i.e., left or right hemisphere (LHD or RHD, respectively), for a total of
three prediction classes. The additional output of the left (L) and right (R) distinction was
also evaluated in four tests, increasing to six the prediction classes for this kind of tests.

Table 2. Synthesis of the applied conditions in the tests performed for the health condition detection.
For all tests, the average window approach was adopted as OW evaluation strategy. Source signals
are described as sensor position (SP), sensor velocity (SV), sensor acceleration (SA), and sensor Euler
angles (SEA); L/R indicates the left and right limb distinction.

Data Setup Features Additional
Output

OW Lengths Source Signal L/R
DistinctionTest 1/7 1/10 SP SV SA SEA

HD1 x x x
HD2 x x x x
HD3 x x x x
HD4 x x x x x
HD5 x x x
HD6 x x x x
HD7 x x x x
HD8 x x x x x

Tests were performed on the complete dataset of all the subjects and the prediction
accuracy of both the LDA and RF algorithms was evaluated according to Nuzzi et al. [34,35].
For the assessment of the RF algorithm accuracy, the OOB approach was also used. Results
were averaged on 200 consecutive tests.

3. Results

Evaluating the OW according to the average window strategy, an OW length of 1/10
resulted equal to 0.27 s, and reached 0.33 s increasing the sample at 1/7 of the motion.

3.1. Intention Prediction

Table 3 collects mean value and standard deviation (SD) of LDA accuracy and RF
OOB, on 200 tests performed considering the whole dataset of all the acquisitions, and the
subsets of data gathered from healthy subjects and pathological patients. Results of tests
performed without distinction of left and right limb are reported in bold font.

Table 3. Results of the performed tests on the complete dataset and the subsets of data acquired by heathy subjects
and pathological patients. For each data sample, mean and SD of accuracy A and OOB are presented for LDA and RF,
respectively. In bold font the data referring to tests without distinction of left and right limb.

All Population Healthy Subjects Pathological Subjects

LDA RF LDA RF LDA RF

Test Amean ASD OOBmean OOBSD Amean ASD OOBmean OOBSD Amean ASD OOBmean OOBSD

IP1 68.50% 0.028 64.75% 0.0077 81.00% 0.042 72.85% 0.032 64.52% 0.037 60.65% 0.010
IP2 69.89% 0.030 66.51% 0.0090 86.13% 0.036 73.73% 0.015 66.87% 0.031 62.85% 0.011
IP3 60.35% 0.029 55.72% 0.0086 73.11% 0.045 61.78% 0.016 56.59% 0.40 52.18% 0.012
IP4 45.65% 0.027 47.77% 0.0086 58.27% 0.054 59.71% 0.015 41.71% 0.037 42.59% 0.011
IP5 57.47% 0.030 58.26% 0.0078 73.56% 0.047 71.97% 0.013 52.09% 0.034 50.44% 0.010
IP6 79.29% 0.024 76.56% 0.0069 88.97% 0.032 82.92% 0.011 77.55% 0.031 74.97% 0.0087
IP7 82.42% 0.022 79.22% 0.0068 92.80% 0.027 84.60% 0.010 81.01% 0.028 77.81% 0.0084
IP8 75.70% 0.026 71.93% 0.0072 85.45% 0.041 76.58% 0.013 71.57% 0.032 69.32% 0.0097
IP9 50.03% 0.031 50.08% 0.0082 63.84% 0.054 64.48% 0.016 45.02% 0.038 42.56% 0.011
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Table 3. Cont.

All Population Healthy Subjects Pathological Subjects

LDA RF LDA RF LDA RF

Test Amean ASD OOBmean OOBSD Amean ASD OOBmean OOBSD Amean ASD OOBmean OOBSD

IP10 62.14% 0.027 61.02% 0.0078 78.82% 0.045 75.70% 0.012 55.17% 0.037 52.38% 0.010
IP11 61.20% 0.029 54.79% 0.0084 78.80% 0.041 68.04% 0.015 55.03% 0.038 48.61% 0.011
IP12 62.29% 0.029 57.68% 0.0086 83.26% 0.042 71.40% 0.015 56.54% 0.036 51.10% 0.011
IP13 52.92% 0.029 48.48% 0.0092 69.56% 0.049 60.05% 0.016 46.96% 0.035 41.90% 0.011
IP14 43.48% 0.028 45.42% 0.0090 59.57% 0.054 60.92% 0.015 37.48% 0.035 38.87% 0.010
IP15 55.11% 0.029 53.69% 0.0082 74.09% 0.048 72.57% 0.013 45.47% 0.036 44.63% 0.010
IP16 69.73% 0.026 65.16% 0.0085 86.80% 0.040 80.27% 0.012 64.28% 0.037 59.12% 0.011
IP17 71.04% 0.027 68.31% 0.0081 90.61% 0.034 82.88% 0.013 66.14% 0.033 61.81% 0.0098
IP18 63.68% 0.026 61.21% 0.0083 81.15% 0.044 73.65% 0.012 58.71% 0.036 54.72% 0.011
IP19 49.75% 0.029 50.56% 0.0089 70.04% 0.048 66.26% 0.014 44.11% 0.036 43.74% 0.011
IP20 61.87% 0.027 61.00% 0.0086 83.59% 0.040 78.17% 0.011 53.92% 0.039 52.22% 0.010

The overall performance comparison of LDA and RF algorithms in the intention
prediction is presented at a glance in Figures 2–4, which depict the results obtained with
the RF algorithm for different OW estimation strategies and lengths respectively, whereas
Figure 5 describes the mean computed accuracy of RF with respect to the evaluated
data subset.
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pathological subjects) with the RF algorithm, with respect to the OW length: blue and red the results
of the testing with 1/7 and 1/10 of the motion time length, respectively.
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Figure 5. Mean OOB accuracy of the intention prediction for the analysis of healthy and pathological
subsets with the RF algorithm: blue and red the results of the testing referring to healthy and
pathological populations, respectively.

The RF algorithm demands an average training time of 1.14 s (range: 0.87–1.88),
which decreases to an average value of 0.078 s (range: 0.035–0.28) for LDA. The prediction
time was computed only for the tests with higher accuracy, i.e., IP1, IP2, IP6, and IP7.
The average prediction time was 31 × 10−4 s (range: 30 × 10−4–33 × 10−4) for RF and
11 × 10−5 s (range: 10 × 10−5–12 × 10−5) for LDA.

3.2. Health Condition Detection

Table 4 depicts mean value and SD of LDA and RF accuracy, and of RF OOB, on
200 tests performed considering the whole dataset of all the acquisitions, composed by
the data gathered from both healthy subjects and pathological patients. Results of tests
performed without distinction of left and right limb are reported in bold font.

Table 4. Results of the performed tests on the complete dataset of data acquired by heathy subjects
and pathological patients. For each data sample, mean and SD of accuracy A are presented for LDA
and RF, and of OOB for RF. In bold font the data referring to tests without distinction of left and
right limb.

LDA RF

Tests Amean ASD OOBmean OOBSD Amean ASD (·10−16)

HD1 65.39% 0.026 93.80% 0.0047 95.83% 4.51
HD2 70.11% 0.029 93.57% 0.005 94.05% 4.51
HD3 74.59% 0.026 97.00% 0.0039 98.21% 3.38
HD4 82.78% 0.023 96.72% 0.0036 97.62% 7.90
HD5 66.63% 0.027 93.40% 0.0051 94.05% 4.51
HD6 69.57% 0.030 93.50% 0.0052 91.07% 2.26
HD7 76.22% 0.025 96.96% 0.0037 99.40% 4.51
HD8 83.03% 0.022 96.86% 0.0033 98.21% 3.39

Figure 6 depicts at a glance the overall performance comparison of LDA and RF
algorithms in the health condition detection. Figure 7 collects some examples of LDA
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confusion matrixes for tests including left and right limb distinction, whereas Figure 8
presents examples of the trend of RF accuracy with respect to the number of trees, for
different tests.
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(in red), (b) HD3 (in blue) and HD4 (in red), (c) HD5 (in blue) and HD6 (in red), and (d) HD7 (in
blue) and HD8 (in red).

Average training time for the RF algorithm was 1.56 s (range: 0.24–0.32), which
decreased to an average value of 0.057 s (range: 0.031–0.072) for LDA. The average pre-
diction time was 11 × 10−2 s (range 9 × 10−2–13 × 10−2) for RF and 9 × 10−3 s (range
6 × 10−3–11 × 10−3) for LDA.

4. Discussion

From a methodological perspective, the assessment of the observation window (OW)
according to the custom window strategy should be preferred to the average window
approach, because it grants a personalized solution which is flexible to subject- and trial-
dependent peculiarities. Besides, the average window strategy offers a more robust ap-
proach, grounding on a dataset that, if properly populated, can provide probabilistically
significant values and statistically sound indications for the OW definition. Nevertheless,
in practical applications the time length of a naturally performed movement is typically an
unknown quantity, since it cannot be foresight before the actual execution of the movement
itself. According to these considerations, the average window approach results particularly
suitable for integrations in systems requiring real-time dynamics, such as human–robot
collaborations in working environment, whereas the custom window strategy better suits
those applications demanding for high accuracy and results customization over timing,
such as diagnostic evaluations in clinical environment.

The dualism of this issue reflects in the dual approach adopted for the analysis of the
reaching task and of the current dataset. In fact, the prediction of the subject’s intention of
moving towards a target among a set of possible choices can be easily contextualized in the
industrial daily practice. For instance, in assembly operations a cobot could ease the task
execution by foreseeing the worker’s intention of performing an action and approaching or
moving the necessary components consequently. The health condition detection on the
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contrary could support the physician in discriminating the potential pathologies that afflict
the subject or in quantitatively assessing the state of the rehabilitation process.

Comparing the overall performances of linear discriminant analysis (LDA) and ran-
dom forest (RF) algorithms (see Figures 2 and 6), LDA allows slightly better results to
be reached for the intention prediction. Considering the whole dataset, the accuracy of
RF was 79.22% at best (test IP_7), compared to 82.42% for LDA, whereas the average
accuracy results were 59.91% for RF and 62.19% for LDA. On the contrary, RF proved to be
particularly suitable for health condition detection, allowing accuracies of over 90% in all
the tests.

Focusing on the contribution of the OW evaluation strategy in the performance of
LDA and RF as intention predictors, the results collected in Table 3 emphasize that tests
performed adopting the custom window method, an OW of 1/7, and considering the
whole dataset of healthy and pathological subjects obtained better results, as Figures 3–5
depict at a glance. This behavior can be expected if considering that a fixed OW does not
allow compensating for possible intra-subjects or -trials velocity variations, and cannot
assure the achievement of a minimum amount of travelled space within the analyzed
portion of signal. This aspect can be particularly relevant for the analysis of pathological
subjects, since their affected movements often induce a slower motion. As a consequence,
a feature based on time hinders the potentiality of the method, whereas features based on
spatial criteria could in this sense provide more information. Coherently, tests performed
with longer portions of signals, i.e., 1/7 of the actual motion length, provide better results.
Although the wider the window, the better the obtained result, a proper maximum length
limit should be imposed for the OW length definition, since the primary aim of the analysis
is a prediction of the motion evolution, whereas too wide OWs would translate into a
classification of the movements instead.

In the health condition detection, LDA results less sensitive to variations in the OW
length. As Table 4 describes, differences between the mean accuracies (around 1%) are
comparable with the SD value.

According to these considerations, relevant differences in the performance of both LDA
and RF can be detected when comparing tests evaluating the complete dataset and tests
performed on the subsets of pathological and healthy subjects. For example, RF algorithm
presents differences close to 4% and 11% with the two subsets, respectively. The difference
with the subset of pathological subjects decreases for tests that use only acceleration as
features. The LDA algorithm, as reported in Table 3, presented similar results.

Also considering the performance of the applied MLT as intention predictors with
respect to the evaluated features, the OW length had a decisive influence on the final
accuracy of both LDA and RF algorithms in tests using features extracted from Euler
angles, sensor position, and velocity: The accuracy improved at least 10% in tests with
OW length set at 1/7. The improvement decreased at about 5% (SD close to 1%) when
acceleration-related features were included. This behavior could be partially justified if
considering that acceleration signals are not measured but computed by double numerical
derivation, and this process introduces noise in the signal, influencing the performance. As
Figure 2 depicts, the tests including acceleration-related features (IP4, IP5, IP9, IP10, IP14,
IP15, IP19, IP20) presented lower accuracies than the ones without their contribution; better
results were obtained when the number of classes was lower, i.e., when the distinction
between right and left limb performing the reaching was neglected.

For both LDA and RF, the addition of features computed with data derived from the
sensors of shoulder and trunk does not significantly affect the obtained accuracy. In fact,
the primary role of the trunk sensor was to validate the hypothesis that the elastic band
used to fix the trunk to the chair worked as effective constraint, preventing the subject
from unintentional movements. For the shoulder sensor instead, the introduced variation
of performances considering the additional features (around 1%) was comparable with
the SD amplitude and cannot be distinguished from to the results variability due to the
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random extraction of samples for the creation of the training and testing datasets. Despite
this, the computational burden increased.

The set of included features also affected the results of the health condition detection.
As Table 4 describes, better results were achieved including the Euler angle-related features,
i.e., tests HD3, HD4, HD7, and HD8. The best results were obtained with RF in test
HD3 (see Figure 6), in which features extracted from Euler angles were included and
a wider OW was considered (OOB accuracy of 97.00% SD 0.0039, and AVG accuracy
of 98.21% SD 3.38 × 10−16). For the LDA algorithm, the accuracy ranged from 65% of
HD1, presenting 3 classes (healthy, LHD, RHD), to 83% of HD8, which reached 6 classes
discriminating also between the left and right limb. As the confusion matrixes in Figure 7
depict, regardless of the inclusion of additional classes, the algorithm still preserved its
discrimination performance.

Finally, the time factor should be analyzed. Focusing on the training phase, the
average time required to train the RF algorithm was considerably higher than LDA in both
intention prediction (3.94 and 0.09 s, respectively) and health condition detection (1.5 and
0.05 s, respectively). Nevertheless, the training time for RF was related to the number of
trees in the forest, and higher accuracies could be achieved with wider forest. Besides, the
improvement in the accuracy tended to reduce as the number of trees increases, i.e., the
accuracy profile converges toward an asymptotic condition; a set of preliminary analyses
identified in 40 and 20 trees acceptable limits for the intention prediction and health
condition detection, respectively (see Figure 8). For the testing phase, the LDA algorithm
revealed shorter times than RF, for both intention prediction and health condition detection;
the mean values of estimation time were 3.42 × 10−4 and 4.65 × 10−3 s for LDA and RF,
respectively, in prediction, and decreased to 3.62 × 10−5 for LDA and 6.67 × 10−4 s for RF,
in detection.

Although the analyzed dataset included a remarkable amount of data, further acqui-
sition campaigns could improve the quality of the results. For instance, the data sample
could be enlarged by subjects’ age and pathological conditions (such as similar elapsed
time from the stroke event), allowing for stratified analyses, or improved in quality, e.g.,
better balancing the presence of right- and left-handed subjects, allowing for functional
comparisons. Besides, further data acquisition campaigns could focus on the experimental
setup, for instance including new sensors. Adding accelerometers and/or IMU inertial
sensors would assure to gather actual acceleration data, allowing an experimental compari-
son with the results of the tests carried out with the acceleration features. Finally, to better
understand the goodness of the models, further data analyses could also estimate indexes
useful for the identification of type II errors, such as F1-score or G-index.

5. Conclusions

In this paper the human reaching movement has been analyzed comparing the per-
formance of linear discriminant analysis (LDA) and random forest (RF) in: (i) predicting
the subject’s intention of moving toward a specific direction or target (intention prediction),
and (ii) discriminating if the subject is performing the reaching according to a healthy or
pathological pattern, and in this case, the damage location (health condition detection). An
experimental campaign of 31 subjects was designed and performed, and data acquired
with wearable electromagnetic sensors were analyzed with LDA and RF machine learning
techniques (MLT). Several tests with different configurations of observation window (OW)
evaluation strategies and length, features, and data subsets were carried out.

According to the results obtained evaluating the current dataset, intention prediction is
more sensitive than health condition detection to variations in the OW length. In conclusion,
although both the MLT demonstrated a good accuracy, LDA revealed better results in terms
of accuracy, training time, and prediction time for the intention prediction, whereas RF
proved to be particularly suitable for health condition detection.
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