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Abstract

Background and Objectives

To conduct a genetic and molecular functional study of a family with members affected of
hereditary spastic paraplegia (HSP) of unknown origin and carrying a novel pathogenic
vaccinia-related kinase 1 (VRK1) variant.

Methods

Whole-exome sequencing was performed in 2 patients, and their parents diagnosed with HSP.
The novel VRKI1 variant was detected by whole-exome sequencing, molecularly modeled and
biochemically characterized in kinase assays. Functionally, we studied the role of this VRK1
variant in DNA damage response and its effect on the assembly of Cajal bodies (CBs).

Results

We have identified a very rare homozygous variant VRK1-D263G with a neurologic phenotype
associated with HSP and moderate intellectual disability. The molecular modeling of this VRK1
variant protein predicted an alteration in the folding of a loop that interferes with the access to
the kinase catalytic site. The VRK1-D263G variant is kinase inactive and does not phosphor-
ylate histones H2AX and H3, transcription factors activating transcription factor 2 and p$3,
coilin needed for assembly of CBs, and pS3 binding protein 1, a DNA repair protein. Func-
tionally, this VRK1 variant protein impairs CB formation and the DNA damage response.

Discussion

This report expands the neurologic spectrum of neuromotor syndromes associated with a new
and rare VRKI variant, representing a novel pathogenic participant in complicated HSP and
demonstrates that CBs and the DNA damage response are impaired in these patients.
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Glossary

53BP1 = pS3 binding protein 1; ALS = amyotrophic lateral sclerosis; ATF2 = activating transcription factor 2; CB = Cajal body;
CMT = Charcot-Marie-Tooth; HA = hemagglutinin; HSP = hereditary spastic paraplegia; MD = molecular dynamics;
mVRKI1 = murine VRKI1; PCHI = pontocerebellar hypoplasia; PDB = Protein Data Bank; SMA = spinal muscular atrophy;
SMN = survival of motorneuron; VRK1 = vaccinia-related kinase 1; WES = whole-exome sequencing.

Human voluntary movements are under control of the py-
ramidal motor system. Motor neuropathies are a heteroge-
neous group of motor neuron diseases that share some
common characteristics, but differ in their clinical pre-
sentation and severity. Among these diseases are Charcot-
Marie-Tooth (CMT), spinal muscular atrophy (SMA),
amyotrophic lateral sclerosis (ALS), and hereditary spastic
paraplegia (HSP). These diseases have a genetic origin, but
the genes implicated are heterogeneous. Patients with HSP,
also known as Strumpell-Lorrain syndrome, present lower
limb spasticity, muscle weakness, and neurogenic bladder.
However, patients may also present additional neurologic
and non-neurologic symptoms.' Patients with HSP share
axon degeneration, mainly in the thoracic and distal spinal
cord, and a reduced affectation of the cervical cord, implying
affectations of both motor neurons with different degrees of
severity.2 HSP has a low frequency, between 3 and 10/
100,000 depending on the population, and has been asso-
ciated with mutations or gene variants in at least 73 different

1,3
genes.”’

Recently a novel gene, vaccinia-related kinase 1 (VRKI), has
been associated with motor neuron diseases that present a
significant heterogeneity. They include several of the clinical
phenotypes associated with motor neurons, including
SMA,*® ALS,” and Charcot-Marie Tooth.*’ Functionally,
the VRKI gene is implicated in the regulation of cell
proliferation,'®"" transcription,">'* autophagy,"® chromatin
compaction,'®'” DNA damage responses,'®'® Cajal body
(CB) stability and assembly,”*** and neuronal migration.>®
Most of the known VRKI mutants are very uncommon
variants in the population, which are recessive, and their
neurologic phenotype is only detected in either homozygous
or compound heterozygous individuals. However, the
pathogenic role of VRKI variants in neurologic diseases is
not yet understood, but it may represent either a specific
subtype of these diseases or alternatively a pathogenic
mechanism common to all of them. In this work, we have
studied a case of complicated HSP that expands the neuro-
logic phenotypes associated with VRKI mutations in motor
neuron diseases.

Methods

Standard Protocol Approvals, Registrations,
and Patient Consents

Informed consent forms were signed by participating indi-
viduals, and all procedures performed in studies involving
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human participants were in accordance with the ethical
standards of the Ethical Board of the La Pitié-Salpétriére
Hospital (Paris, France) and adhere to the ethical standards
laid down in the 1964 Declaration of Helsinki and its later
amendments. The CARE reporting guidelines were used.

Data Availability

The VRKI mutation is available in ClinVar with the ID (ac-
cession number: SCV001478444). Because of their sensitive
nature, genomic data sets generated in this study are available
from the corresponding author on request, given that the
request is not in conflict with French General Data Protection
Regulations.

Genome Aggregation Database (gnomAD), gnomad.broad-
institute.org/.

Polymorphism Phenotyping v2 (PolyPhen2), genetics.bwh.
harvard.edu/pph2/.

Whole-Exome Sequencing

Whole-exome sequencing (WES) was performed in the
family trio (patients and both parents) for diagnostic pur-
poses due to the unknown origin of the disease. Library
preparation, sequencing was performed according to the
manufacturer protocol (Roche Technologies). Exons were
captured using the SeqCap EZ MedExome kit (Roche
Technologies), and the sequence was generated on a NextSeq
500 instrument (Illumina Inc). For data analysis, raw reads
were mapped to the human reference genome GRCh37 using
the Burrow-Wheeler aligner (v0.717). The resulting binary
alignment/map files were further processed by genome
analysis tool kit haplotypecaller (v3.8). The variant call format
files were then annotated on Snpeff version 4.3T.** Only
coding nonsynonymous and splicing variants were consid-
ered. Variant prioritization was conducted thanks to the
transmission mode (de novo, autosomal recessive, and X
linked) and the frequency of the variants in the gnomAD
database 16. The variant identified was confirmed by Sanger
sequencing using the following primers: forward: 5'-GCTA-
GAAGTTAATTGGGAGGTAAGC-3'; and reverse: 5'-
TGTGCTACATCCTAAATATGCTTAC-3'. Polymorphism
Phenotyping v2 (PolyPhen2), genetics.bwh.harvard.edu/pph2/.

Molecular Dynamics Simulation of

Human VRK1-D263G

The 3D structure of the human VRKI wild-type protein
(UniprotKB id: Q99986) was obtained from the Protein Data
Bank (PDB id: 2LAV). The conformer no. 16 (of the 20
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NMR conformers included in the PDB file) was selected for
further processing. The model for VRK1-G263 variant was
generated using the wild-type structure as template and
standard homology modeling methods. Structures for the
wild-type and variant proteins were subjected to 200 ns of
unrestrained molecular dynamics (MD) simulation, essen-
tially as previously described.” The full modeling and MD
methods are described in eMethods, links.lww.com/NXG/
A468.

VRK1 Gene, Plasmids, and Mutagenesis

Human VRKI was expressed from mammalian expression
vector, pCEFL-hemagglutinin (HA)-VRK1,%® and bacterial
expression plasmid-glutathione S-transferase expression-4T-
VRK1.>>*%?® The D263G mutation was introduced in these
plasmids with the GeneArt Site-Directed Mutagenesis System
(Invitrogen-Thermo Fisher). The primers to generate human
VRK1-D263G were forward (5'-CTTCCTTGG
GAGGGTAATTTGAA-3') and reverse (5'-ATCTTT-
CAAATTACCCTCCCAAG-3'). The human D263G muta-
tion was also introduced in murine VRK1 (mVRK1) cDNA
and cloned in pCEFL-Myc-mVRKI1 to generate pCEFL-Myc-
mVRK1-D263G plasmid for use in transfection experiments.
The primers used to generate the mVRK1-D263G were for-
ward (§'-CTTCCTTGGGAAGGTAACTTGAAA-3') and
reverse (S'-ATCTTTCAAGTTACCTTCCCAAGG-3').
This mutation was also introduced in mVRKI to generate a
lentiviral expression construct, plasmids pLenti-C-HA-IRES-
BSD-mVRK1-D263G that was used for the generation of
stable cells lines expressing the murine gene for use in rescue
experiments. Control plasmids expressing murine kinase-
active (pLenti-C-HA-IRES-BSD-mVRK1) and kinase-dead
(K179E) (pLenti-C-HA-IRES-BSD-mVRK-K179E) have al-
ready been reported.*** Full methods and plasmids coding
used for some substrates are described in eMethods, links.
Iww.com/NXG/A468.

Kinase Assays

Kinase assays were performed as previously described.”>*
Briefly, in vitro kinase assays with [32-P]-yATP were per-
formed with glutathione S-transferase-VRK1 wild-type or the
VRK1-D263G variant.”>**

In vitro kinase assays with the histone H3'"*® and H2AX,"”
p53,"%*3% p53 binding protein 1 (53BP1),'*?" activating
transcription factor 2 (ATF2),"? or coilin® as substrates were
previously published. Kinase-dead VRK1 (K179E) was used
as negative control in the assays.**> All plasmids were trans-
fected in BL21 E coli to express and purify the fusion protein
used as substrate in kinase assays. Full methods are in Sup-
plementary eMethods, links.Iww.com/NXG/A468.

Cell Lines, Transfections, and Protein Analysis
All molecular and cellular methods have been reported be-
fore” and are detailed in Supplementary eMethods, links.
Iww.com/NXG/A468. The antibodies used in this work are
described in eTable 1, links.lww.com/NXG/A469.
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Results

Clinical Presentation of the Patients Carrying
the Novel VRK1-D263G Mutation

The 2 cases under study belong to a family from Senegal. The
parents are first cousins and have 6 children, 2 affected women
with a progressive neuromotor disease and 4 healthy
children—although 2 were born prematurely. Noticeably, the
mother had 4 late miscarriages in Senegal, from unknown
causes. Both patients were born in Senegal.

Patient 1 is a 29-year-old woman. Pregnancy and delivery
were reportedly uneventful. She presented with psychomotor
development and started to walk at age 2.5 years. Her gait
became spastic at about age S years, and she developed dys-
arthria in late adolescence. She stopped attending school at
age 10 years.

At examination at age 21 years, she walked without aid, but
her gait was clearly spastic with flessum of the knee. The
Romberg test was negative. She had decreased proximal
muscle strength of her lower limbs (iliopsoas 3/5 and gluteus
medius 4/5) but normal muscle strength of the upper limbs.
She had brisk reflexes of the 4 limbs with bilateral Babinski
sign, nonsustained clonus, and spastic equinus feet. There was
moderate vibration loss at the ankles and mild dysarthria.

Brain MRI detected a minimal cerebellar atrophy. Spine MRI,
nerve conduction studies, CSF standard analyses, EEG, fun-
doscopy, and visual and auditory evoked potentials were all
normal. Neuropsychological testing revealed moderate in-
tellectual disability and dysexecutive functions. Metabolic
tests (plasma folate, B12 and homocysteine, plasma amino
acid and urine organic acid chromatography, plasma very-
long-chain fatty acids, phytanic and pristanic acids, plasma
cholestanol, and 25- and 27-hydroxycholesterol) were normal.
A gene panel for HSP (74 genes) did not identify any patho-
genic variant. Clinical examination has been stable over 8 years.

Patient 2 is a 2S-year-old woman. Pregnancy and delivery
were reportedly uneventful. Information regarding early
milestones was not available. There was a history of epileptic
seizures in infancy, but not documented. The onset of spastic
gate occurred at age 8 years, and the patient developed signs
of a neurogenic bladder in her twenties. At first examination at
age 17 years, she presented with spastic gait with flessum of
the knee, but could walk without aid. The Romberg test was
negative. She had mild decreased proximal muscle strength of
her lower limbs (iliopsoas 4/S and gluteus medius 4/ 5). She
displayed brisk reflexes of the 4 limbs with bilateral Babinski
and Hoftmann signs, nonsustained clonus, and mild spastic
equinus feet. There was mild vibration loss at the ankles.

Brain MRI, nerve conduction studies, EEG, fundoscopy, vi-
sual evoked potentials, and electroretinogram were all normal.
Neuropsychological testing revealed moderate intellectual
disability and dysexecutive functions. Metabolic tests (plasma
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folate, B12 and homocysteine, plasma amino acid and urine
organic acid chromatography, plasma very-long-chain fatty
acids, phytanic and pristanic acids, plasma cholestanol, and
25- and 27-hydroxycholesterol) were normal. A gene panel
for HSP (74 genes) did not identify any pathogenic variant.

Clinical follow-up was remarkable for the occurrence of
mouth ulcers, arthralgia, and Raynaud syndrome and elevated
creatine kinase (between 1,500 and 3,000 U/L). Further
tests revealed myositis, mild pericarditis, polyclonal
hypergammaglobulinemia, and antinuclear antibodies, which
led to the diagnosis of mixed connective tissue. The patient
was treated with hydroxychloroquine with clinical benefit.

Detection of Homozygous VRK1-D263G Variant
To identify the candidate gene that might be implicated in this
phenotype, a diagnostic WES study was performed. The WES
study detected in both patients a homozygous missense variant,
NM_003384.2:c.788A>G Chr14(GRCh37):g.97322545A>G
p-(Asp263Gly). This amino acid change (D263G) has a very
low frequency (3.98e-6) in the human population based on

gnomAD database. The parents are first cousins and asymp-
tomatic heterozygous carriers. This variant was confirmed by
Sanger sequencing (eFigure 1, links.Iww.com/NXG/A466).

Molecular Dynamics Simulation of the
VRK1-D263G Variant

The wild-type and mutant proteins were analyzed using MD
simulation techniques. To study the structural and functional
implications of the missense VRK1 variant D263G, we used
the 3D structure of the human VRKI wild-type protein that
was obtained from the PDB (id: 2LAV). In the case of the
wild-type protein VRK1-D263, quickly after the beginning of
the simulation, the amino acid Asp263 establishes a salt bridge
with the amino acid Arg3 in the N-terminal end of the protein,
which, together with the adjacent LysS residue, forms a pos-
itively charged patch. The contact formed between the neg-
atively charged Asp263 and the positively charged amino acids
of the amino-terminus of the VRKI protein remains stable
along most of the trajectory. The N-term loop is then located
near the active center of the protein, probably regulating its
activity or substrate accessibility in some way (Figure 1, left).

Figure 1 Molecular Effect of the D263G Substitution on the VRK1 Protein

B. VRK1_G263

A. VRK1_wt (D263)

Gly2

C. VRK1_wt (D263) D. VRK1_G263

N-terminal loop

C-terminal loop

Active site

Asp263
Gly263

N-terminal loop

2

Arg3*

el

Lys5 -

Three-dimensional representation of
the protein model showing the ele-
ments of the secondary structure of
VRK1 (A) and VRK1-D263G (B). The N-
terminal region bends and interacts by
Arg3 and Lys5 with D263 in the wild-
type protein. The mutant D263G mu-
tant impairs this interaction with the N-
terminus. (C and D) Three-dimensional
representation of the protein surface
on the secondary structure of VRK1 (C)
and variant VRK1-D263G (D). VRK1 =
vaccinia-related kinase 1.
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The behavior of the VRK1-D263G mutant protein is very
different in the MD simulation. Gly263 does not establish a
stable bond with the amino acids Arg3 or LysS$ in the amino-
terminus end; thus, the VRK1 N-term loop acquires a
completely different structural conformation, which can
alter the regulation of the activity or accessibility of sub-
strates to the active center (Figure 1, right) impairing its
functionality.

The VRK1-D263G Protein Is a Loss-of-Function
Variant
To determine the consequences of this amino acid change in
the VRK1 protein, we performed in vitro kinase activity and
protein stability assays. These VRKI substrates included
3 histones H3'®*® and H2AX,'”"® $3BP1 that is in-
volved in DNA repair,"®*! coilin that is the structural scaf-
fold protein of CBs,***> and ATF2,"* which can affect motor
neuron degeneration®* and axonal transport.>> All these
VRKI1 substrates were phosphorylated by the wild-type
VRKI1, but not by the VRK1-D263G variant nor the kinase-
dead VRK1-K179E (Figure 2), which was used as a negative
control.

In addition, we also tested whether the stability of VRKI-
D263G protein was altered. For this aim, cells were trans-
fected with HA-tagged VRKI1 constructs and treated with
cycloheximide to block translation. A time curve was per-
formed with the wild-type VRKI, the variant VRK1-D263G,
and the kinase-dead VRK1-K179E'**® proteins. The wild-
type and the variant proteins were equally stable, whereas the
kinase-dead VRK1-K179E was unstable (eFigure 2, links.lww.
com/NXG/A467) as predicted.10

VRK1-D263G Loss-of-Function Variant Impairs
the Assembly of CBs

CBs are assembled on coilin,®” which is regulated by its direct
phosphorylation on Ser184 mediated by VRK1.>”** To study
the effect that the VRK1-D263G variant has on the assembly
of CBs, detected by coilin aggregation, we performed recue
experiments in Hela cells in which the endogenous human
VRK1 was depleted and replaced by transfection using plas-
mids expressing either the mVRKI1 or the mVRK1-D263G
variant. In VRK1-depleted, the CBs were lost, but their as-
sembly was only rescued by the wild-type mVRK1, but not by
the mVRK1-D263G loss-of function variant or the kinase-
dead, mVRK1(K179E) (Figure 3). Therefore, we concluded
that in the patients carrying this homozygous variant, the
assembly of CBs is defective.

VRK1-D263G Loss-of-Function Variant Impairs
the Formation of 53BP1 Foci in Response to
DNA Damage

VRKI1 regulates the response to DNA damage, and its de-
pletion impairs the assembly of S3BP1 foci induced by ion-
izing radiation or doxorubicin.'®'® Therefore, we studied the
effect of the VRK1-D263G variant on the response to DNA
damage induced by doxorubicin. For this aim, we generated
stable cell lines in AS549 cells that express the mVRKI, the
variant (mVRK1-D263G), and the kinase-dead protein
(mVRK1-K179E) as control. In these stable cells lines, the
human endogenous VRK1 was depleted with 2 different
siRNA and followed by treatment with doxorubicin to induce
DNA damage, which was detected by formation of 53BP1
foci. In control cells or in the cells in which the wild-type
mVRKI was used, the murine gene rescued the formation of

Figure 2 Kinase Assay of the VRK1-D263G Loss-of-Function Variant With Different Substrates
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In all assays, a control was included with a kinase-dead vaccinia-related kinase 1-K179E protein and the indicated substrate. (A) Histone H3. (B) Histone H2AX.
(C) TP53. (D) p53 binding protein 1. (E) Coilin. (F) Activating transcription factor 2.
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Figure 3 Effect of VRK1-D263G Loss-of-Function Variant on the Formation of CBs

mVRK1

Coilin mVRK1 Coilin DAPI

Vector-HA

mVRK1-HA

siControl

mVRK1-
[D263G]-HA

MVRK1-
[K179E]-HA

Vector-HA

mVRK1-HA

siVRK1-02
mVRK1-

[D263G]-HA

mVRK1-
[K179E]-HA

7
5 3

ns
100_ ns *k*k **k*
- 1
80
= B Vector-HA
X
< MVRK1-HA
S 60 B MVRK1- D263G-HA
g MVRK1- K179E-HA
2 40
()
(W)
20} g
0 A .
siControl siVRK1-02
Cell
number: 100 120 110 100 90 110 120 120
\alI ¥ %
S &
ANEPC) o
oo ¥ o0
DI R Y DF st
B 8
L & & AQ* RN
o & & & o & & & kDba
VRK] [ " - - - s0
MVRKT-HA [ e e s o ]

B-actinr‘_‘-—-—o.——n—-ﬂ_ 37

siControl siVRK1-02

Endogenous human VRK1 was depleted in Hela cells followed by transfection with plasmids expressing murine wild-type mVRK1, mVRK1-D263G, or kinase-
dead mVRK1-K179E. In cells expressing the transfected murine construct, tagged with the HA epitope, the presence of CBs was determined. CBs were
detected by immunofluorescence. The quantification of cells with CBs is shown in the graph. ns: not significant. ***p <0.001. The human and murine proteins
were detected by immunoblot. CBs = Cajal bodies, mVRK1 = murine VRK1, VRK1 = vaccinia-related kinase 1.

S3BP1 foci (Figure 4, left). However, the mutant mVRK1-
D263G, after depletion of the endogenous human VRK1, was
unable to rescue 53BP1 foci formation in response to doxo-
rubicin (Figure 4, right) and behaved like the kinase-dead
mVRK1(K179E). These results indicated that the VRKI-
D263G mutant is unable to respond to DNA damage.

Discussion

We have identified and functionally validated a novel patho-
genic homozygous variant in the VRK1I gene, associated with a
novel phenotype comprising HSP and intellectual disability.
Functionally, the role of VRK1 variants has to be interpreted

Neurology: Genetics | Volume 7, Number 5 | October 2021

in the context of the protein complexes in which the VRK1
protein is integrated and in which some of its components are
regulated by this kinase. Particularly, if these interacting or
phosphorylation targets are also proteins already known to be
implicated in neurologic phenotypes. In this context, the
regulation of coilin, the scaffold of CBs, by VRK1 might be a
common central mechanisms. Among the components of
CBs are survival of motorneuron (SMN) associated with
SMA,*® ataxin associated with motor coordination alter-
ations,* and some aminoacyl-tRNA synthetase, such as glycyl
tRNA synthetase which is associated with some forms of
CMT.*® The heterogeneity of the phenotypes can be a con-
sequence of the VRKI variant itself and its effect on the dif-
ferent protein complexes in which it participates. This

Neurology.org/NG
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Figure 4 The VRK1-D263G Loss-of-Function Mutant Does Not Rescue 53BP1 Foci Induced by DNA Damage
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Human stable A549 cell lines expressing murine VRK1 (wt, D263G or K179E) were depleted of the endogenous human VRK1 with two different siRNA. Cells
were treated with doxorubicin to induce 53BP1 foci. The immunofluorescence images show the 53BP1 foci. The graphs show the mean number, confidence
intervals, and percentiles of 53BP1 foci per cell. The immunoblots show the expression of the different VRK1 proteins in these cells. ***p <0.001. 53BP1 = p53
binding protein 1; ns = not significant; VRK1 = vaccinia-related kinase 1.
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heterogeneity can also be modulated by the presence of var-
iants in other proteins that participate in these complexes.
Some of them can be related to the alteration in CB functions.
The loss of coilin can alter its interactions, and functions, with
SMN involved in SMA, valosin containing protein implicated
in ALS, or proteins such as glycyl tRNA synthetase involved
in some forms of CMT.

The VRK1-D263G variant causes a loss of CB assembly, an
effect shared with most of the known VRKI pathogenic var-
iants.”” Residual CBs in coilin knock-out mice fail to recruit
small nuclear ribonucleoprotein and SMN,*" with which
coilin forms a bridge.** A recent study has shown that the
compound heterozygous VRKI (R291I, W254L) mutations
alter CBs formation in motor neurons.”’ Furthermore, the
VRK1 (R358X) mutant alters neuronal migration that is
amyloid-beta precursor protein 1 dependent.*®

Another pathogenic factor is represented by alterations in
DNA damage response (DDR) genes that are associated with
several neurologic and neurodevelopmental phenotypes.**
HSP paraplegia is caused by pathogenic variants in numerous
genes, mainly associated with pathways involved in lipid
metabolism, endosomal trafficking, and mitochondrial regu-
lation.** Only 1 gene (APSZ1/. SPG48)* has been associated
with DNA repair.*® This protein is very abundant in nuclei
and affects the motor neuron,” but it is normal in these in
these patients. An important component of the phenotype
can be due to the role of the VRK1 variant in DDR?' as it
occurs with most of the VRKI variants identified in patients
with motor neuron diseases.”®** Among the proteins impli-
cated in DDR, 4 are direct phosphorylation targets of VRKI.
VRKI1 regulates H2AX," Nijmegen breakage syndrome 1
(nibrin),36 53BP1,'® pS?),l3’ls and 53BP1."**! These proteins
are not phosphorylated by the variant VRK1-D263G, and
therefore, DDR response is defective, as shown by the lack of
53BP1 foci formation in response to DNA damage.

An alternative implication of VRK1 might be a consequence of
the loss of ATF2 activation, a transcription factor involved in
neurodegeneration and neurogenesis,47 which regulates neu-
ronal survival®® by playing a protective role.*’ Pathogenically,
ATF2 also can have a role on axonopathies.50 In a murine
model, the loss of ATF2 causes motor neuron degeneration.34

The heterogeneity of the neurologic phenotype among dif-
ferent patients suggests that it may have 2 different pathogenic
components. One is the heterogeneity of the VRK1 variant, or
mutation, that although the protein complexes in which
VRKI participates is affected, the effect might vary depending
on specific protein interactions or levels. Furthermore, this
clinical heterogeneity is likely to be determined by the com-
bination with variants in other genes in the patients, which
have not been identified. In this context, homozygous variant
VRK1-R358X has different clinical phenotypes. In 1 family,
the patient had SMA and pontocerebellar hypoplasia
(PCH1),* whereas in an unrelated family, the patient bore

Neurology: Genetics | Volume 7, Number 5 | October 2021

muscular atrophy and progressive hypotonia with decreased
deep tendon reflexes, severe nonprogressive microcephaly,
but normal intellectual development and no PCH1.>* The
clinical heterogeneity among patients with homozygous or
compound heterozygous VRKI1 variants suggests that the
observed neuromotor phenotype has to be modulated by
variants in other genes that cooperate with VRK1 and which
have not been identified.

In conclusion, our study has identified an additional neuro-
motor phenotype, HSP, associated with a new VRKI patho-
genic variant. VRKI pathogenic variants cause several motor
neuron diseases such as SMA, CMT, HSP, and ALS, with a
variable clinical phenotype, both in type and severity. This
clinical heterogeneity of VRKI neuromotor phenotypes is
likely to be determined by its cooperation with other genes.
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