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Abstract We consider the energy supercritical defocusing nonlinear
Schrödinger equation

i∂t u +�u − u|u|p−1 = 0

in dimension d ≥ 5. In a suitable range of energy supercritical parameters
(d, p), we prove the existence of C∞ well localized spherically symmetric
initial data such that the corresponding unique strong solution blows up in
finite time.Unlike other known blowupmechanisms, the singularity formation
does not occur by concentration of a soliton or through a self similar solution,
which are unknown in the defocusing case, but via a front mechanism. Blow
up is achieved by compression for the associated hydrodynamical flow which
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in turn produces a highly oscillatory singularity. The front blow up profile is
chosen among the countable family of C∞ spherically symmetric self similar
solutions to the compressible Euler equation whose existence and properties in
a suitable range of parameters are established in the companion paper (Merle
et al. in Preprint (2019)) under a non degeneracy condition which is checked
numerically.

Mathematics Subject Classification 35Q55

1 Introduction

We consider the defocusing nonlinear Schrödinger equation

(NLS)

∣
∣
∣
∣

i∂t u +�u − u|u|p−1 = 0,
u|t=0 = u0,

(t, x) ∈ [0, T∗)× R
d , u(t, x) ∈ C.

(1.1)

in dimension d ≥ 3 for an integer nonlinearity p ∈ 2N∗ + 1 and address the
problem of its global dynamics. We begin by giving a quick introduction to
the problem and its development.

1.1 Cauchy theory and scaling

It is a very classical statement that smooth well localized initial data u0 yield
local in time, unique, smooth, strong solutions. For the global dynamics, two
quantities conserved along the flow (1.1) are of the utmost importance:

mass: M(u) =
∫

Rd
|u(t, x)|2 =

∫

Rd
|u0(x)|2,

energy: E(u) = 1

2

∫

Rd
|∇u(t, x)|2 + 1

p + 1

∫

Rd
|u(t, x)|p+1dx = E(u0).

(1.2)

The scaling symmetry group

uλ(t, x) = λ
2

p−1 u(λ2t, λx), λ > 0

acts on the space of solutions by leaving the critical norm invariant
∫

Rd
|∇scuλ(t, x)|2 =

∫

Rd
|∇scu(t, x)|2 for sc = d

2
− 2

p − 1
.

Accordingly, the problem (1.1) can be classified as energy subcritical, critical
or supercritical depending on whether the critical Sobolev exponent sc lies
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below, equal or above the energy exponent s = 1. This classification also
reflects the (in)/ability for the kinetic term in (1.2) to control the potential one
via the Sobolev embedding H1 ↪→ Lq .

1.2 Classification of the dynamics

We review the main known dynamical results which rely on the scaling clas-
sification.

Energy subcritical case. In the energy subcritical case sc < 1, the pioneer-
ing work of Ginibre–Velo [22] showed that for all u0 ∈ H1, there exists a
unique strong solution u ∈ C0([0, T∗), H1) to (1.1) and identified the blow up
criterion

T∗ < +∞ �⇒ lim
t↑T∗

‖u(t)‖H1 = +∞. (1.3)

Conservation of energy, which is positive definite and thus controls the energy
norm H1, then immediately implies that the solution is global, T∗ = +∞. In
fact, it can be shown in addition that these solutions scatter as t → ±∞, [23].
Energy critical problem. In the energy critical case sc = 1, the criterion (1.3)
fails and the energy density could concentrate. For the datawith a small critical
norm, Strichartz estimates allow one to rule out such a scenario, [10]. The large
data critical problem has been an arena of an intensive and remarkable work
in the last 20 years.

For large spherically symmetric data in dimensions d = 3, 4, the energy
concentrationmechanismwas ruled out byBourgain [7] andGrillakis [25] via a
localized Morawetz estimate. In Bourgain’s work, a new induction on energy
argument led to the statements of both the global existence and scattering.
These results were extended to higher dimensions by Tao [60].

The interactionMorawetz estimate, introduced in [11], led to a breakthrough
on the global existence and scattering for general solutions without symmetry,
first in d = 3, [11], then in d = 4, [55], and d ≥ 5, [65].

Anewapproachwas introduced inKenig–Merle [30] inwhich, if there exists
one global non-scattering solution, then using the concentration compactness
profile decomposition [2,46], one extracts a minimal blow up solution and
proves that up to renormalization, such a minimal element must behave like a
soliton. The existence of such objects is ruled out using the defocusing nature
of the nonlinearity, which is directly related to the non existence of solitons
for defocusing models.

In all of these large data arguments, the a priori bound on the critical norm
provided by the conservation of energy plays a fundamental role. Let us note
that in the energy critical focusing setting, the concentration of the critical
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norm is known to be possible via type II (non self similar) blow up with
soliton profile, see e.g. [34,41,51–54].

Energy supercritical problem. In the energy supercritical range sc > 1, local
in time unique strong solutions can be constructed in the critical Sobolev space
Hsc , [10,32]. Kenig–Merle’s approach, [31,32], gives a blow up criterion

T∗ < +∞ �⇒ lim sup
t↑T∗

‖u(t, ·)‖Hsc = +∞,

but the question of whether this actually happens for any solution remained
completely open.On the other hand, themain difficulty in proving that T∗ = ∞
for all solutions is that there are no a priori bounds at the scaling level of
regularity Hsc .

1.3 Qualitative behavior for supercritical models

The question of global existence or blow up for energy supercritical models
is a fundamental open problem in many nonlinear settings, both focusing and
defocusing. For focusing problems, the existence of finite energy type I (self
similar) blow up solutions is known in various instances, see e.g. [15,19,36,
38], and solitons have been proved to be admissible blow up profiles in certain
type II (non self-similar) blow up regimes in all three settings of heat, wave
and Schrödinger equations, see e.g. [14,28,39,42,49]. There are also several
examples of supercritical problems with positive definite energy (wave maps,
Yang–Mills)which admit smooth self-similar profiles and thus provide explicit
blow up solutions, [5,18,58].

On the other hand, for defocusing problems, soliton-like solutions are known
not to exist and admissible self similar solutions are expected not to exist. For
a simple defocusing model like the scalar nonlinear defocusing heat equation
∂t u = �u − |u|p−1u, a direct application of the maximum principle ensures
that L∞∩H1 data yield uniformly bounded solutions which are global in time
and in fact dissipate. We recall again that for the energy critical problems,
blow up occurs in the focusing case, where solitons exist, and it does not in
the defocusing case where solitons are known not to exist.

This collection of facts led to the belief, as explicitly conjectured by Bour-
gain in [6], that global existence and scattering should hold for the energy
supercritical defocusing Schrödinger and wave equations. Indications of vari-
ous qualitative behaviors supporting different conclusions have been provided
(we give a highly incomplete list) in numerical simulations e.g. [12,50], in
model problems showing blow up e.g. [61,62], in examples of global solu-
tions e.g. [4,33], in logarithmically supercritical problems e.g. [13,59,63],
and in ill-posedness and norm inflation type results e.g. [1,24,35,64].
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The behavior of solutions in other supercritical models such as the ones
arising in fluid and gas dynamics is extremely interesting and not yet well
understood. We will not discuss it here.

1.4 Statement of the result

We assert that in dimensions 5 ≤ d ≤ 9 the defocusing (NLS) model (1.1)
admits finite time type II (non self similar) blow up solutions arising from
C∞ well localized initial data. The singularity formation is based neither on
soliton concentration nor self similar profiles, but on a new front scenario
producing a highly oscillatory blow up profile: the leading order dynamics,
after renormalization, is given by a type I (self-similar) singularity formation
for the compressible Euler equation. The first step of our analysis is to construct
C∞ self-similar solutions to the compressible Euler equations in a suitable
range of parameters, which is done in full details in the companion paper [43].
The proof of existence of those solutions involves a non vanishing condition
for an explicit constant

S∞(d, �) �= 0, � = 4

p − 1
, (1.4)

which is checked numerically in the range of (p, d) considered in [43].
The main result of this paper is the following.

Theorem 1.1 (Existence of energy supercritical type II defocusing blow up)
Let

(d, p) ∈ {(5, 9), (6, 5), (8, 3), (9, 3)}, (1.5)

and let the critical blow up speed be

r∗(d, �) = �+ d

�+√
d
, � = 4

p − 1
. (1.6)

Assume that (1.4) holds for the range (1.5) as is checked numerically1 in [43].
Then there exists a discrete sequence of blow up speeds (rk)k≥1 with

2 < rk < r∗(d, �), lim
k→+∞ rk = r∗(d, �)

1 According to Lemma 5.4 in [43], S∞ is the limit of a sequence Sk satisfying |Sk − S∞| ≤ C
k

for a constant C > 0. The sequence Sk is defined by iteration, and we use matlab to compute it.
In the range (1.5), it suffices in practice to run the computations until S99 to check that S∞ �= 0
as the sequence Sk is almost constant for k ≥ 62. We refer to “Appendix I” of [43] for more
details.
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such that any k ≥ 1, there exists a finite co-dimensional manifold of smooth
initial data u0 ∈ ∩m≥0Hm(Rd ,C) with spherical symmetry such that the
corresponding solution to (1.1) blows up in finite time 0 < T∗ < +∞ at the
center of symmetry with

‖u(t, ·)‖L∞ = cp,k,d(1+ ot→T∗(1))

(T∗ − t)
1

p−1

(

1+ rk−2
rk

) , cp,r,d > 0. (1.7)

Comments on the result.
1. Hydrodynamical formulation. The heart of the proof of Theorem 1.1 is a
study of (1.1) in its hydrodynamical formulation, i.e. with respect to its phase
and modulus variables. The key to our analysis is the identification of an
underlying compressible Euler dynamics. The latter arises as a leading order
approximation of a “front” like renormalization of the original equation. In this
process, the Laplace term applied to the modulus2 of the solution is treated
perturbatively in the blowup regime.This is one of the key insights of the paper.
The approximate Euler dynamics furnishes us with a self-similar solution,
which requires very special properties and is constructed in the companion
paper [43] andwhich, in turn, acts as a blow up profile for the original equation.
The existence of these blow up profiles is directly related to the restriction on
the parameters (1.5) which we discuss in comment 3 below. Let us recall
that there is a long history of trying to use the hydrodynamical variables in
(NLS) problems and exploit a connection with fluid mechanics, going back
to Madelung’s original formulation of quantummechanics in hydrodynamical
variables, [37]. Geometric optics and the hydrodynamical formulation were
used to address ill-posedness and norm inflation in the defocusing Schrödinger
equations, [1,24] as well as the study of the semiclassical limit [29]. There
is also a recent study of vortex filaments in [3] and its dynamical use of the
Hasimoto transform. The scheme of proof of Theorem 1.1 will directly apply
to produce the first complete description of singularity formation for the three
dimensional compressible Navier–Stokes equation in the companion paper
[44].
2.Blow up profile. The blow up profile of Theorem 1.1 is more easily described
in terms of the hydrodynamical variables:

u(t, x) = ρTot(t, x)e
iφ(t,x). (1.8)

2 But not to the phase!.
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More precisely, we establish the decomposition

∣
∣
∣
∣
∣
∣

ρTot(t, x) = 1

(T∗−t)
1

p−1

(

1+ r−2
r

) (ρP + ρ)(Z),

φ(t, x) = 1

(T∗−t)
r−2
r

(	P +	)(Z),
Z = x

(T∗ − t)
1
r

(1.9)

and prove the local asymptotic stability

lim
t→T∗

‖	‖L∞(Z≤1) + ‖ρ‖L∞(Z≤1) = 0.

Here, the blow up profile (ρP , 	P) is, after a suitable transformation, picked
among the family of spherically symmetric, smooth and decaying as Z →+∞
self-similar solutions to the compressible Euler equations. The interest in self-
similar solutions for the equations of gas dynamics goes back to the pioneering
works of Guderley [26] and Sedov [57] (and references therein) who in partic-
ular considered converging motion of a compressible gas towards the center
of symmetry. However, the rich amount of literature produced since then is
concerned with non-smooth self-similar solutions. This is partly due to the
physical motivations, e.g. interests in solutions modeling implosion or deto-
nation waves, where self-similar rarefaction or compression is followed by a
shock wave (these are self-similar solutions which contain shock discontinu-
ities already present in the data), and, partly due to the fact that, as it turns out,
global solutions with the desired behavior at infinity and at the center of sym-
metry are generically not C∞. This appears to be a fundamental feature of the
self-similar Euler dynamics and, in the language of underlying acoustic geom-
etry, means that generically such solutions are not smooth across the backward
light cone (of the acoustical metric associated to the Euler profile) with the
vertex at the singularity. The key of our analysis is to find those non-generic
C∞ solutions and to discover that this regularity is an essential element in
controlling suitable positivity properties of the associated linearized operator.
This is at the heart of the control of the full blow up. A novel contribution
of the companion paper [43] is the construction of C∞ spherically symmetric
self-similar solutions to the compressible Euler equations with suitable behav-
ior at infinity and at the center of symmetry for discrete values of the blow up
speed parameter r in the vicinity of the limiting blow up speed r∗(d, �) given
by (1.6).
3. Restriction on the parameters. There is nothing specific with the choice of
parameters (1.5), andwe refer toRemark 2.4 for a precise discussion. Twomain
constraints govern the restriction on the parameters. First of all, a fundamental
restriction in order to make the Eulerian regime dominant is the constraint

r∗(d, �) > 2 ⇔ � < �2(d) = d − 2
√
d (1.10)
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which provides a non empty set of nonlinearities iff

�2(d) > 0 ⇔ d ≥ 5.

As a result, the case of dimensions d = 3, 4 is not amenable to our analysis
at this point, and the existence of blow up solutions for d = 3, 4 remains
open. The second restriction concerns the existence of C∞ smooth blow up
profileswith suitable positivity properties of the associated linearized operator,
as addressed in [43], see Sect. 2.2 and Remark 2.4 for detailed statements. In
particular, a non degeneracy condition S∞(d, �) �= 0 for an explicit convergent
series is required.An elementary numerical computation to check the condition
in the range (1.5).
4. Behavior of Sobolev norms. The conservation of mass and energy imply a
uniform H1 bound on the solution. This can also be checked directly on the
leading order representation formulas (1.8), (1.9). For higher Sobolev norms, a
computation, see “Appendix D”, shows that the blow up solutions of Theorem
1.1 break scaling, i.e., we can find

1 < σ < sc = d

2
− 2

p − 1

such that

lim
t→T∗

‖u(t)‖Hσ = +∞,

and the critical Sobolev norm ‖u(t, ·)‖Hsc blows up polynomially.
5. Stability of blow up. The blow up profiles of Theorem 1.1 have a finite
number of instability directions. Local asymptotic stability in the interior of
the backward light (acoustic) cone from the singularity relies on an abstract
spectral argument for compact perturbations of maximal accretive opera-
tors. Related arguments have been used in the literature for the study of
self-similar solutions both in focusing and defocusing regimes, for example
[8,16,21,45,47] for parabolic and [19] for hyperbolic problems. The key to
the control of the nonlinear flow in the exterior of the light cone is the propa-
gation of certainweighted scale invariant norms. This generalizes a Lyapunov
functional based approach developed in [42]. Counting the precise number of
instability directions is an independent problem, disconnected to the nonlinear
analysis of the blow up. A natural conjecture is that the number of unstable
directions goes to infinity as rk → r∗(d, �).
6. Non spherically symmetric perturbations. We expect that our analysis can
be extended to prove the finite codimensional stability of singular dynamics to
all perturbations, without the restriction to spherical symmetry. This remains
to be done.
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7. Oscillatory behavior. The constructed solutions are smooth at the blow up
time away from x = 0:

∀R > 0, lim
t→T∗

u(t, x) = u∗(x) in Hk(|x | > R), k ∈ N. (1.11)

As in the cases for blow up problems in the focusing setting, see e.g. [40], the
profile outside the blow up point has a universal behavior when approaching
the singularity

u∗(x) = cP(1+ o|x |→0(1))
e
i

c	
|x |r−2

|x | 2(r−1)
p−1

, cP �= 0. (1.12)

What is unusual, and together with potential non-genericity perhaps respon-
sible for difficulties in numerical detection of the blow up phenomena, is
the highly oscillatory behavior. This appears to be a deep consequence of the
structure of the self-similar solution to the compressible Euler equation and the
coupling of phase and modulus variable in the blow up regime, generating an
anomalous Euler scaling. The heart of our analysis is to show that after pass-
ing to the suitable renormalized variables provided by the front, the highly
oscillatory behavior (1.12) becomes regular near the singularity and can be
controlled with the monotonicity estimates of energy type, without appealing
to Fourier analysis.
8. On the role of the defocusing nonlinearity. The existence of self similar
solutions to the energy supercritical (NLS) decaying at infinity is expected to
hold in the focusing case, like for the heat equation [15]. In the defocusing
case, such solutions are easily ruled out for the heat equation using the maxi-
mum principle, and their non existence is an open problem for the defocusing
NLS, we refer to [33] for further discussion in the case of the wave equation.
A fundamental observation is that in a suitable range of parameters, the semi-
classical Euler limit provides admissible approximate blow up profiles for the
defocusing NLS. The fact that our range of parameters is energy supercritical
can be seen directly on the constraint (1.10):

r∗(d, �) > 2 ⇔ 4

p − 1
= � < d − 2

√
d

⇔ p > 1+ 4

d − 2
√
d

> pc = 1+ 4

d − 2
.

In other words, the existence of suitable blow up profiles given by Euler (r <

r∗(d, �)) combinedwith the constraint that the Euler regime dominates (r > 2)
forces an energy supercritical range of parameters.
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The paper is organized as follows. In Sect. 2, we present the “front” renor-
malization of the flow which makes the Euler dynamics dominant, and recall
all necessary facts about the corresponding self similar profile built in [43].
Theorem 1.1 reduces to building a global in time non vanishing solution to
the renormalized flow (2.25) written in hydrodynamical variables. In Sect. 2.4
we detail the strategy of the proof. In Sect. 3, we introduce the functional
setting related to maximal accretivity (modulo a compact perturbation) of the
corresponding linear operator which leads to a statement of exponential decay
in a neighborhood of the light cone for the space of solutions (modulo an a
priori control of a finite dimensional manifold corresponding to the unstable
directions.) In Sect. 4, we describe our set of initial data and the set of bootstrap
assumptions which govern the analysis. In Sects. 5, 6, 7, we close the control
of weighted Sobolev norms and the associated pointwise bounds. In Sect. 8,
we close the exponential decay of low Sobolev norms by relying on spectral
estimates and finite speed of propagation arguments.

Notations

The bracket

〈r〉 =
√

1+ r2.

The weighted scalar product for a given measure g:

(u, v)g =
∫

Rd
uvg dx . (1.13)

The integer part of x ∈ R

x ≤ [x] < x + 1, [x] ∈ Z.

The infinitesimal generator of dilations

� = y · ∇.

2 Front renormalization, blow up profile and strategy of the proof

In this section we introduce the hydrodynamical variables to study (1.1) and
the associated renormalization procedure whichmakes the compressible Euler
structure dominant. We collect from [43] the main facts about the existence of
smooth spherically symmetric self-similar solutions to the compressible Euler
equations which will serve as blow up profiles.
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2.1 Hydrodynamical formulation and front renormalization

We begin by establishing a link between the Eq. (1.1) and the compressible
Euler equations. For non vanishing solutions, we write the equivalent hydro-
dynamical formulation in phase and modulus variables:

u(t, x) = √
ρ(t̃, x)eiψ(t̃,x), t̃ = 2t.

Equation (1.1) becomes a system
∣
∣
∣
∣
∣

∂t̃ρ + ρ�ψ + ∇ρ · ∇ψ = 0,

∂t̃ψ + 1
2 |∇ψ |2 + 1

2ρ
p−1
2 = 1

2
�
√
ρ√
ρ

.

This is precisely the compressible Euler (potential flow) equations (the second
equation is the Bernoulli equation) for the density ρ, velocity∇ψ , the classical
pressure

P = p − 1

2(p + 1)
ρ

p+1
2

and the quantum stress tensor

Q = 1

2
�ρ I − 1

2

∇ρ ⊗∇ρ

ρ
,

so that
∣
∣
∣
∣

∂t̃ρ + div (ρ · ∇ψ) = 0,
ρ∂t̃∇ψ + ρ∇ψ · ∇∇ψ +∇P = div Q.

(2.1)

Below, we will show that passing to self-similar variables, the above system
admits an additional front renormalization which damps the quantum stress
term and therefore possesses approximate stationary solutions which, in turn,
are self-similar solutions of the classical Euler equations. For convenience, we
work in slightly different variables (using density squared in place of density,
for instance). The correspondence between the systems derived below and the
compressible Euler equations, along the lines of (2.1), will hold at every step.
The explicit identification of the final approximate system (2.11) with the cor-
responding system representing self-similar solutions of the Euler equations
is done in “Appendix A”.

The standard self-similar renormalization

u(t, x) = 1

λ(t)
2

p−1

v(τ, y)eiγ , y = x

λ
,
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where we freeze the scaling parameter at the self-similar scale

dτ

dt
= 1

λ2
, y = x

λ(t)
, −λτ

λ
= 1

2
,

then (1.1) becomes

i∂τ v +�v − γτ v − i
λτ

λ

(
2

p − 1
v +�v

)

− v|v|p−1 = 0. (2.2)

In the defocusing case, (2.2) has no known decaying type I self similar station-
ary solution, or type II soliton like solutions, [42], but, it turns out, that it admits
approximate front like solutions. Their existence relies on a specific phase and
modulus coupling and anomalous scaling. We introduce the parameters

∣
∣
∣
∣
∣
∣
∣

r = 2
1−e

, 0 < e < 1,
μ = 1

r = 1−e
2

� = 4
p−1

(2.3)

and claim:

Lemma 2.1 (Front renormalization of the self similar flow) Define geometric
parameters

− λτ

λ
= 1

2
,

bτ
b

= −e, γτ = −1

b
,

dτ

dt
= 1

λ2
(2.4)

and introduce the renormalization

u(t, x) = 1

λ(t)
2

p−1

v(τ, y)eiγ , y = x

λ

with the phase and modulus

∣
∣
∣
∣
∣
∣
∣
∣
∣

v = weiφ,
w(τ, y) = 1

(
√
b)

2
p−1

ρTot(τ, Z) ∈ R
∗+,

φ(τ, y) = 1
b	Tot(τ, Z),

Z = |y|√b,

In these variables (1.1) becomes, on [τ0,+∞):
∣
∣
∣
∣
∣
∣
∣

∂τρTot = −ρTot�	Tot − μ�(r−1)
2 ρTot − (2∂Z	Tot + μZ) ∂ZρTot,

ρTot∂τ	Tot = b2�ρTot

−
[

|∇	Tot|2 + μ(r − 2)	Tot − 1+ μ�	Tot + ρ
p−1
Tot

]

ρTot.

(2.5)
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Remark 2.2 Since from (2.4) we have frozen the scaling in its selfsimilar law,
the lifetime of the solution in original variables is T∗ = e−τ0 , see also (4.2).

Proof Starting from (2.2), we define a polar decomposition

v = weiφ

so that

v′ = (w′ + iφ′w)eiφ, v′′ = w′′ − |φ′|2w + 2iφ′w′ + iφ′′w

and

0 = i∂τw +�w +
(

−∂τφ − |∇φ|2 − γτ + λτ

λ
y · ∇φ

)

w

+i

(

�φ − 2

p − 1

λτ

λ

)

w + i

(

2∇φ − λτ

λ
y

)

· ∇w − w|w|p−1.

(2.6)

Separating the real and imaginary parts yields the self-similar equation (2.2):

∣
∣
∣
∣
∣

∂τw = −
(

�φ + 1
p−1

)

w −
(

2 ∂yφ

|y| + 1
2

)

�w,

w∂τφ = �w + (−|∇φ|2 − γτ − 1
2�φ

)

w − w|w|p−1.
(2.7)

We now renormalize according to

w(τ, y) = 1

(
√
b)

2
p−1

ρTot(τ, Z) ∈ R
∗+, φ(τ, y) = 1

b
	Tot(τ, Z) Z = |y|√b

with a fixed choice of parameters in the modulation equations

bτ
b

= −e, γτ = −1

b
, 0 < e < 1

which transforms (2.7) into

∣
∣
∣
∣
∣
∣
∣

∂τρTot = −ρTot�	Tot − e+1
p−1ρTot −

(

2∂Z	Tot + 1−e
2 Z

)

∂ZρTot,

ρTot∂τ	Tot = b2�ρTot

−
[

|∇	Tot|2 + e	Tot − 1+ 1
2 (1− e)�	Tot + ρ

p−1
Tot

]

ρTot.
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We now compute from (2.3):
∣
∣
∣
∣
∣

μ�(r−1)
2 = 2

p−1(1− μ) = 1+e
p−1

μ(r − 2) = 1− (1− e) = e
,

and (2.5) is proved. ��

2.2 Blow up profile and Emden transform

We recall in this section the main results of [43].
Emden transform. A stationary solution (ρP , 	P) to (2.5) in the limiting Eule-
rian regime b = 0 satisfies the profile equation

∣
∣
∣
∣
∣

|∇	P |2 + ρ
p−1
P + μ(r − 2)	P + μ�	P = 1,

�	P + μ�(r−1)
2 + (2∂Z	P + μZ)

∂ZρP
ρP

= 0.
(2.8)

We supplement it with the boundary conditions:
∣
∣
∣
∣

ρP(0) = 1, 	P(0) = 0,
ρP(Z) → 0, 	P(Z) → 1

e
as Z → ∞.

(2.9)

We now show that the system (2.8), (2.9) is equivalent to the corresponding
system of equations describing self-similar solutions of the Euler equations.
We define the Emden variables:

∣
∣
∣
∣
∣
∣
∣

φ = μ
2

√
�, p − 1 = 4

�
,

Q = ρ
p−1
P = 1

M2 ,
1
M = φZσ,

	 ′
P
Z = −μ

2w,

� = logZ , (2.10)

then (2.8) is mapped onto
∣
∣
∣
∣

(w − 1)w′ + �σσ ′ + (w2 − rw + �σ 2) = 0,
σ
�
w′ + (w − 1)σ ′ + σ

[

w
(d
�
+ 1

)− r
] = 0,

(2.11)

or equivalently
∣
∣
∣
∣

a1w′ + b1σ ′ + d1 = 0,
a2w′ + b2σ ′ + d2 = 0

with
∣
∣
∣
∣

a1 = w − 1, b1 = �σ, d1 = w2 − rw + �σ 2,

a2 = σ
�
, b2 = w − 1, d2 = σ

[(

1+ d
�

)

w − r
]

.
(2.12)
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The system (2.11) is exactly the one describing spherically symmetric self-
similar solutions to the compressible Euler equation, [57] (and the references
therein). For an explicit derivation see “Appendix A”. It is analyzed in [43],
following pioneering work of Guderley, Sedov and others.

Let

we = �(r − 1)

d
(2.13)

and the determinants

∣
∣
∣
∣
∣
∣

� = a1b2 − b1a2 = (w − 1)2 − σ 2,

�1 = −b1d2 + b2d1 = w(w − 1)(w − r)− d(w − we)σ
2,

�2 = d2a1 − d1a2 = σ
�

[

(�+ d − 1)w2 − w(�+ d + �r − r)+ �r − �σ 2
]

(2.14)

then

w′ = −�1

�
, σ ′ = −�2

�
,

dw

dσ
= �1

�2
. (2.15)

Solution curves w = w(σ) of the above system can be examined through its
phase portrait in the (σ,w) plane.
Critical points and admissible profile. The shape of the phase portrait depends
crucially on the polynomials �, �1, �2 and the parameters (r, d, �), and we
refer to [43] for a complete description. In particular, three critical points play
a distinguished role in the analysis:

• the P6 unstable point which corresponds to a point at infinity (σ =
+∞, w = we), which in original variables corresponds to the smooth
solution coming out of the origin Z = 0,

• the P4 stable point (σ = 0, w = 0)which corresponds to selfsimilar decay
as Z →+∞,

• the P2 stable point which is a solution to the triple point equation

�(P2) = �1(P2) = �2(P2) = 0. (2.16)

A classical analysis of the phase portrait reveals that in a suitable regime of
parameters, there is a unique solution coming out of P6 with the normalization

ρP(0) = 1, 	P(0) = 0 (2.17)

at Z = 0, which is also C∞ in the vicinity of Z = 0, and it must be attracted
into P2. This solution can be continued beyond P2 by gluing it to a member
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of the 1-parameter family of curves that join P2 to the selfsimilar decay P4 as
Z →+∞.
The above procedure produces a curve which is C∞ everywhere except

at P2 where it generically experiences an unavoidable discontinuity of high
derivatives, except for discrete values of the speed r . The following structural
proposition on the blow up profile is proved in the companion paper [43].

Theorem 2.3 (Existence and asymptotics of a C∞ profile, [43]) Let

(d, p) ∈ {(5, 9), (6, 5), (8, 3), (9, 3)}

and recall (1.6). Then there exists a sequence (rk)k≥1 with

lim
k→∞ rk = r∗(d, �), rk < r∗(d, �) (2.18)

such that for all k ≥ 1, the following holds:

1. Existence of a smooth profile at the origin: the unique radially symmetric
solution to (2.8) with Cauchy data at the origin (2.9) reaches in finite time
Z2 > 0 the point P2.

2. Passing through P2: the solution passes through P2 with C∞ regularity.
3. Large Z asymptotic: the solution admits the asymptotics as Z → +∞:

∣
∣
∣
∣

w(Z) = cw
Zr

(

1+ O
( 1
Zr

))

σ(Z) = cσ
Zr

(

1+ O
( 1
Zr

)) (2.19)

or equivalently

∣
∣
∣
∣
∣

Q(Z) = ρ
p−1
P (Z) = cp−1

P
Z2(r−1)

(

1+ O
( 1
Zr

))

,

	P(Z) = 1
e
+ c	

Zr−2

(

1+ O
( 1
Zr

)) (2.20)

with non zero constants cσ , cP . Similar asymptotics hold for all higher
order derivatives.

4. Non vanishing: there holds

∀Z ≥ 0, ρP > 0.

5. Strict positivity inside the light cone: there exists c = c(d, �, r) > 0 such
that

∀0 ≤ Z ≤ Z2,

∣
∣
∣
∣

(1− w −�w)2 − (σ +�σ)2 > c
1− w −�w − (1−w)(σ+�σ)

σ
> c.

(2.21)

123



On blow up for the energy super critical defocusing NLS

6. Strict positivity outside the light cone:

∃c = cd,�,r > 0, ∀Z ≥ Z2,

∣
∣
∣
∣

(1− w −�w)2 − (σ +�σ)2 > c,
1− w −�w > c.

(2.22)

Remark 2.4 (Restriction on the parameters) The proof of Theorem2.3 requires
the non degeneracy of an explicit series S∞(d, �) �= 0 which is numerically
checked in [43] in the range (1.5). The positivity properties (2.21), (2.22) are
checked analytically in [43] and will be fundamental for the well-posedness
of the linearized flow inside the light cone, and the control of global Sobolev
norms outside the light cone. Let us insist that the restriction on parameters
relies on the intersection of the conditions (1.10), S∞(d, �) �= 0 and (2.21),
(2.22). The range (1.5) is just an examplewhere this holds, but a larger range of
parameters can be directly extracted from [43], and the conclusion of Theorem
1.1 would follow. In particular, since we are working with non vanishing
solutions, the fact that the non linearity is an odd integer can be relaxed as
in [44], hence providing an open range of parameters. Determining the exact
range of validity of parameters for which Theorem 1.1 holds remains open.

Remark 2.5 The strict positivity property (2.21) inside the light cone will play
a distinguished role in the analysis of the linearized of the operator and the
derivation of the spectral gap which is the key to decay, see Proposition 3.10.
Together with the strict positivity (2.22) outside the light cone, it will also
allow us to derive energy bounds at high regularity, see Proposition 7.1.

From now on and for the rest of this paper, we assume (1.5). We observe
from direct check that there holds:

r∗(�) = d + �

�+√
d

> 2 ⇔ � < d − 2
√
d = �2(d).

Recalling (2.3), we may therefore assume from (2.18) that the blow speed
r = rk satisfies

r > 2 ⇔ e = r − 2

r
> 0.

2.3 Linearization of the renormalized flow

We look for u solution to (1.1) and proceed to the decomposition of Lemma
2.1. We are left with finding a global, in self similar time τ ∈ [τ0,+∞),
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solution to (2.5):

∣
∣
∣
∣
∣
∣
∣

∂τρTot = −ρTot�	Tot − μ�(r−1)
2 ρTot − (2∂Z	Tot + μZ) ∂ZρTot,

ρTot∂τ	Tot = b2�ρTot

−
[

|∇	Tot|2 + μ(r − 2)	Tot − 1+ μ�	Tot + ρ
p−1
Tot

]

ρTot.

(2.23)

with non vanishing density ρTot > 0. We define

∣
∣
∣
∣
∣
∣

H2 = μ+ 2
	 ′

P
Z = μ(1− w),

H1 = −
(

�	P + μ�(r−1)
2

)

= H2
�ρP
ρP

= μ�
2 (1− w)

[

1+ �σ
σ

]

.
(2.24)

We linearize

ρTot = ρP + ρ, 	Tot = 	P +	

and compute, using the profile Eq. (2.8), for the first equation:

∂τρ = −(ρP + ρ)�(	P +	)− μ�(r − 1)

2
(ρP + ρ)

−(2∂Z	P + μZ + 2∂Z	)(∂ZρP + ∂Zρ)

= −ρTot�	 − 2∇ρTot · ∇	 + H1ρ − H2�ρ

and for the second one:

ρTot∂τ	 = b2�ρTot − ρTot

{

|∇	P |2 + 2∇	P · ∇	 + |∇	|2 − 1+ μ(r − 2)	P

+μ(r − 2)	 + μ(�	P +�	)

+(ρP + ρ)p−1
}

= b2�ρTot − ρTot {2∇	P · ∇	 + μ�	 + μ(r − 2)	

+|∇	|2 + (ρP + ρ)p−1 − ρ
p−1
P

}

= b2�ρTot − ρTot {H2�	 + μ(r − 2)	

+|∇	|2 + (p − 1)ρ p−2
P ρ + NL(ρ)

}

with

NL(ρ) = (ρP + ρ)p−1 − ρ
p−1
P − (p − 1)ρ p−2

P ρ.
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We arrive at the exact (nonlinear) linearized flow

∣
∣
∣
∣
∣
∣
∣

∂τρ = H1ρ − H2�ρ − ρTot�	 − 2∇ρTot · ∇	,

∂τ	 = b2�ρTot
ρTot

− {H2�	 + μ(r − 2)	 + |∇	|2
+(p − 1)ρ p−2

P ρ + NL(ρ)
}

.

(2.25)

Theorem 1.1 is therefore equivalent to exhibiting a finite co-dimensional man-
ifold of smooth well localized initial data leading to global, in renormalized
τ -time, solutions to (2.25).

2.4 Strategy of the proof

We now explain the strategy of the proof of Theorem 1.1.
Step 1 Wave equation and propagator estimate. After the change of variables
� = ρP	, we may schematically rewrite the linearized flow (2.25) in the
form

∂τ X = MX + NL(X)− b2
∣
∣
∣
∣

0
�(ρP + ρ)

(2.26)

with

X =
∣
∣
∣
∣

ρ

�
, M =

(

H1 − H2� −�+ H3
−(p − 1)Q − H2� H1 − μ(r − 2)

)

, (2.27)

where Q, H1, H2, H3 are explicit potentials generated by the profile ρP , 	P .
During the first step the b2� term is treated perturbatively. We commute the
equation with the powers of the laplacian �k and obtain for Xk = �k X

∂τ Xk = Mk X + NLk(X). (2.28)

We then show that, provided k is large enough,Mk is a finite rank perturbation
of a maximally dissipative operator with a spectral gap δ > 0. The topology
in which maximal accretivity is established depends on the properties of the
wave equation3 encoded in (2.28) and is based on weighted Sobolev norms
with weights vanishing on the light cone corresponding to the point P2 of the
profile. Indeed, the principal part of the wave equation is roughly of the form

∂2τ ρ − D(Z)∂2Zρ,

3 Reminiscent of the wave equation arising in a linearization of the compressible Euler equa-
tions.
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where the weight D(Z) vanishes on the light cone Z = Z2 corresponding to
the P2 point. The corresponding propagation estimates for the wave equation
produce an priori control of the solution in the interior of the light cone Z < Z2,
modulo an a priori control of a finite number of directions corresponding
to non positive eigenvalues of Mk . An essential structural fact of this step
is the C∞ regularity of the profile. Indeed, we claim that for a generic non
C∞ solution at P2, the number of derivatives required to show accretivity
of the linearized operator is always strictly greater than the regularity of the
profile at P2. As a result such profiles may be completely unstable and are
not amenable to our analysis. The C∞ regularity obtained in [43] is therefore
absolutely fundamental. The analytic properties leading to the maximality of
the linearized operator will be consequences of (2.21), (2.22). We note that
the coercivity constant in (2.21) degenerates as r → r∗, and the number of
derivatives needed for accretivity is inversely proportional to this constant. This
is a manifestation of a quasilinear effect which is new for NLS: the problem
sees a scaling which depends on the chosen self similar profile.
Step 2 Extension slightly beyond the light cone. Exponential decay estimates
provided in the first step yield control in the interior of the light cone Z <

Z2 only. It turns out that the analysis of the first step can be made more
robust and extended4 slightly beyond the light cone, all the way to a spacelike
hypersurface Z = Z2 + a, 0 < a � 1, even though it is complicated by
the dependence of the underlying wave equation on variable coefficients or,
equivalently, on non constancy of the Q(Z) term in (2.27). We can revisit the
first step by producing a new maximal accretivity structure for a norm which
does not generate in the zone Z < Z2 + a, 0 < a � 1. The argument relies
on a new generalized monotonicity formula. The corresponding propagation
estimates recovers exponential decay in the extended zone Z < Z2+ a. Once
decay has been obtained strictly beyond the light cone, a simple finite speed
of propagation argument allows us to propagate decay to any compact set
Z < Z0, Z0 � 1.
Step 3 Loss of derivatives. The decay obtained in step 2 relies on energy
estimates compatible with the wave propagation and the Eulerian structure of
approximation. The full evolution however is that of the Schrödinger equation
and contains the b2� term on the right hand side of (2.26). Such a term leads
to an unavoidable loss of one derivative. However, this loss comes with a b2

smallness in front.We then argue as follows.We pick a large enough regularity
level km = km(r, d) � 2k0, where k0 is the power of the laplacian used for
commutation in step 2, and derive a global Schrödinger like energy identity
on the full flow (2.25). The choice of phase and modulus as basic variables
turns the equation quasilinear and makes this identity rather complicated and

4 Reminiscent of a non-characteristic energy estimate.
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unfamiliar. An essential difficulty, which is deeply related to step 2, is that at
the highest level of derivatives, the non trivial space dependence of the profile
measured by Q(Z) = ρ

p−1
P (Z) in (2.27) produces a coupling term and a non

trivial quadratic form. The condition (2.22) implies that the corresponding
quadratic form is definite positive for km large enough.
Step 4 Closing estimates. As explained above, we work with a linearized
nonlinear equation, i.e., obtained after subtracting off the profile, written in
terms of the phase andmodulus unknowns (	, ρ), in renormalized self-similar
variables (τ, Z), where the singularity corresponds to (τ = ∞, Z = 0), a
special light cone is (τ, Z = Z2) and where in the original variables (t, r) the
region r ≥ 1 corresponds to Z ≥ eμτ .

First, outside the singularity r ≥ 1, we modify the profile by strengthening
its decay to make it rapidly decaying and of finite energy. Relative to the
self-similar variables this modification happens at Z ∼ eμτ , far from the
singularity, and as a result is harmless. Then,we run two sets of estimates. First,
we employ wave propagation like estimates which go initially just slightly
beyond the special light cone and then extend to any compact set in Z . These
estimates are carried out at a sufficiently high level of regularity with ∼ 2k0
derivatives. The number k0 emerges from the linear theory and is determined by
the (conditional) positivity of a certain quadratic form responsible for maximal
accretivity.

Then, we couple these estimates to global Schrödinger like estimates which
take into account previously ignored b2� and take care of global control.
These estimates are carried out at all levels of regularity up to km derivatives
with km � k0. They are carefully designed weighted L2 type estimates. The
weights depend on the number of derivatives k: at first, their strength grows
with k but by the time we reach the highest level of regularity km the weight
function is identically = 1. The latter has to do with a well-known fact that
even for a linear Schrödinger equation, use of weights leads to a derivative
loss (� is not self-adjoint on a weighted L2 space.) Therefore, our highest
derivative norm should correspond to an unweighted L2 estimate. Of course,
this last estimate also sees a positivity condition (2.22) responsible for the
coercivity of an appearing quadratic form.

These global weighted L2 bounds then allow us to prove pointwise bounds
for the solution and its derivatives which, in turn, allow us to control nonlinear
terms. The obtained sets of weighted L∞ bounds on derivatives recover in
particular the non vanishing assumption required of the solution. We should
note that while all the local (in Z ) norms decay exponentially in τ , the global
norms are merely bounded. In the original (t, r) variables this means that the
perturbation decays inside and slightly beyond the backward light cone from
the singular point but does not decay away from the singularity. This is, of
course, entirely consistent with the global conservation of energy for NLS.
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The whole proof proceeds via a bootstrap argument which also involves a
Brouwer type argument to deal with unstable modes, if any, arising in linear
theory of step 1. This is what produces a finite co-dimension manifold of
admissible data.

3 Linear theory slightly beyond the light cone

Our aim in this section is to study the linearized problem (2.25) for the exact
Euler problem b = 0. We in particular aim at setting up the suitable functional
framework in order to apply classical propagator estimates which will yield
exponential decay on compact sets Z � 1modulo the control of a finite number
of unstable directions.

3.1 Growth bounds for dissipative operators

We start this section by recalling classical facts about unbounded operators
and their semigroups. Let (H, 〈·, ·〉) be a hermitian Hilbert space and A be
a closed operator with a dense domain D(A). We recall the definition of the
adjoint operator A∗: let

D(A∗) = {X ∈ H, X̃ ∈ D(A) �→ 〈X, AX̃〉
extends as a bounded functional on H},

then A∗X is given by the Riesz theorem as the unique element of H such that

∀X̃ ∈ D(A), 〈A∗X, X̃〉 = 〈X, AX̃〉. (3.1)

Let σ(A) denote the spectrum of A, i.e., the complement of the resolvent
set. We recall the following classical lemma.

Lemma 3.1 (Properties of maximal dissipative operators, [56] p. 49) Let A
be a maximal dissipative operator on a Hilbert space H with domain D(A),
then:

(i) A is closed;
(ii) A∗ is maximal dissipative;
(iii) σ(A) ⊂ {λ ∈ C, �(λ) ≤ 0};
(iv) ‖(A − λ)−1‖ ≤ |�(λ)|−1 for �(λ) > 0.

We now recall from Hille–Yoshida’s theorem that a maximally dissipative
operator A0 generates a strongly continuous semigroup T0 on H , and so does
A0 + K for any bounded perturbation K . Let us now recall the following
classical properties of strongly continuous semigroup T (t).
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Proposition 3.2 (Growth bound, [20] Cor 2.11, p. 258) Let the growth bound
of the semigroup be defined as

w0 = inf{w ∈ R, ∃Mw such that ∀t ≥ 0, ‖T (t)‖ ≤ Mwe
wt }.

Let wess denote the essential growth bound of the semigroup:

wess = inf{w ∈ R, ∃Mw such that ∀t ≥ 0, ‖T (t)‖ess ≤ Mwe
wt }

with

‖T (t)‖ess = inf
K∈K(H)

‖T (t)− K‖H→H

andK(H) is the ideal of compact operators on H; and let

s(A) = sup{�(λ), λ ∈ σ(A)}.

Then

w0 = max{wess, s(A)}

and

∀w > wess, the set �w(A) := σ(A) ∩ {�(λ) > w} is finite. (3.2)

Moreover, each eigenvalue λ ∈ �w(A) has finite algebraic multiplicity ma
λ:∃kλ ∈ Z such that

ker(A − λI )kλ �= ∅, ∀k ≥ kλ, ker(A − λI )k = ker(A − λI )kλ,

ma
λ := dim ker(A − λI )kλ

Wenote that the subspaces Vw(A) = ∪λ∈�w(A)ker(A−λI )kλ and V⊥
w (A∗) are

invariant for A. In particular, A
(

D(A) ∩ V⊥
w (A∗)

) ⊂ V⊥
w (A∗). The invariance

Vw(A) is immediate. To show that A
(

D(A) ∩ V⊥
w (A∗)

) ⊂ V⊥
w (A∗) we let

X ∈ D(A)∩ V⊥
w (A∗), Y ∈ Vw(A∗) and consider 〈AX, Y 〉. Since Y ∈ D(A∗)

and Vw(A∗) is invariant for A∗,

〈AX, Y 〉 = 〈X, A∗Y 〉 = 0.

We claim the following corollary.
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Lemma 3.3 (Perturbative exponential decay) Let T0 be the strongly contin-
uous semigroup generated by a maximal dissipative operator A0, and T be
the strongly continuous semi group generated by A = A0 + K where K is a
compact operator on H. Then for any δ > 0, the following holds:

(i) the set �δ(A) = σ(A) ∩ {λ ∈ C, �(λ) > δ} is finite, each eigenvalue
λ ∈ �δ(A) has finite algebraicmultiplicity kλ. In particular, the subspace
Vδ(A) is finite dimensional;

(ii) We have �δ(A) = �δ(A∗) and dimVδ(A∗) = dimVδ(A). The direct
sum decomposition

H = Vδ(A)
⊕

V⊥
δ (A∗) (3.3)

is preserved by T (t) and there holds:

∀X ∈ V⊥
δ (A∗), ‖T (t)X‖ ≤ Mδe

δt‖X‖. (3.4)

(iii) The restriction of A to Vδ(A) is given by a direct sum of (mλ×mλ)λ∈�δ(A)
matrices each of which is the Jordan block associated to the eigen-
value λ and the number of Jordan blocks corresponding to λ is equal
to the geometric multiplicity of λ—mg

λ = dimker(A − λI ). In partic-
ular, ma

λ ≤ mg
λkλ. Each block corresponds to an invariant subspace Jλ

and the semigroup T restricted to Jλ is given by the matrix

T (t)|Jλ =

⎛

⎜
⎜
⎝

eλt teλt · · · tmλ−1eλt

0 eλt · · · tmλ−2eλt

· · ·
0 0 · · · eλt

⎞

⎟
⎟
⎠

.

Proof This is a simple consequence of Proposition 3.2.
Step 1 Perturbative bound. First, since A0 is maximally dissipative,

∀t ≥ 0, ‖T0(t)‖ � 1

implies w0(A0) ≤ 0. By Proposition 3.2, s(A0) ≤ 0 and

wess(T0) ≤ 0.

On the other hand, from [20] Prop 2.12 p. 258, compactness of K implies

wess(T ) = wess(T0) ≤ 0.
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Let now λ ∈ σ(A) with �(λ) > 0, then the formula

A − λ = A0 + K − λ = (A0 − λ)(Id + (A0 − λ)−1K )

and invertibility of (A0 − λ) imply that λ belongs to the spectrum of the
Fredholm operator Id+ (A0− λ)−1K . Therefore, λ is an eigenvalue of A. On
the other hand, �(λ) > δ implies �(λ) > δ > 0 ≥ wess(T ), and hence, by
(3.2), there are finitely many eigenvalues with �(λ) > δ. In fact, Proposition
3.2 also directly shows that each some λ is an eigenvalue and implies the rest
of (i).

Since A∗ = A∗0+K ∗ and A∗0 is maximally dissipative from Lemma 3.1, we
can run the same argument as above for A∗. Moreover, σ(A) = σ(A∗) ([56],
Prop. 2.7), (i) is proved.

The argument above, in fact, shows that {λ ∈ C, �(λ) > δ} ∩ {λ ∈ σ(A)}
is finite, since for every �(λ) > 0 and λ ∈ σ(A), λ is an eigenvalue of A.
Step 2 The first statement of (ii) is standard. We already explained that the
subspaces Vδ(A) and D(A)∩ V⊥

δ (A∗) are invariant for A. To prove the direct
decomposition we recall that the subspace Vδ(A) is the image of H under the
spectral projection Pδ(A) associated to the set �δ(A):

Pδ(A) = 1

2π i

∫

�

dλ

λI − A
,

where � is an arbitrary contour containing the set �δ(A). There is a direct
decomposition

H = ImPδ(A)
⊕

ker Pδ(A).

On the other hand, the adjoint

P∗
δ (A) =

1

2π i

∫

�

dλ

λI − A∗
= Pδ(A

∗)

is the spectral projection of A∗ associated to the set �δ(A). The result is now
immediate.
Step 3 Semigroups generated by restriction and conclusion. Let V = Vδ(A),
U = V⊥

δ (A∗) and P denote the projection on V⊥
δ (A∗) in the direct decom-

position (3.3). Let Ã denote the restriction of A to U with the domain
D( Ã) = U ∩ D(A). By invariance

∀X ∈ U ∩ D(A), ÃX = AX.
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Let T̃ be the semigroup on U generated by Ã = A. Then for all X ∈
D(A) ∩U , T̃ (t)X ∈ C1([0,+∞), D( Ã)) is the unique strong solution to the
ode

dX (t)

dt
= AX (t), X (0) = X.

This implies that T̃ (t)X = T (t)X for all X ∈ D(A) ∩ U and thus for all
X ∈ U by continuity of the semigroup. By Proposition 3.2 the growth bound
of T̃ satisfies

w0(T̃ ) ≤ max{wess(T̃ ), s( Ã)}.

We first argue that

wess(T̃ ) ≤ 0.

To prove that we note that we already established that wess(T ) ≤ 0. We then
fix ε > 0 and, for any t ≥ 0 choose a compact operator K (t) ∈ K(H) on H
such that

log‖T (t)− K (t)‖H→H < εt + logM

for some constant M which may depend on ε. The restriction K̃ (t) = PK (t)
of K (t) to U is a compact operator on U . Then, for any t ≥ 0

log‖T̃ (t)− K̃ (t)‖U→U = log‖P(T (t)− K (t))‖U→U

≤ log{CP‖T (t)− K (t)‖H→H }
< logCP + logM + εt,

whereCP denotes the normof the projector P . The desired conclusion follows.
To show that s( Ã) ≤ δ we assume that λ ∈ σ( Ã) with �(λ) > δ, then λ

is an eigenvalue of Ã and, by invariance of U , λ is an eigenvalue of A with a
non-trivial eigenvector ψ ∈ U . However, by construction, all such ψ belong
to the subspace V = Vδ(A), contradiction. Hence s( Ã) ≤ δ and Proposition
3.2 yields (3.4).

Finally, part (iii) is completely standard. ��
We will use Lemma 3.3 in the following form.

Lemma 3.4 (Exponential decay modulo finitely many instabilities) Let δ > 0
and let T0 be the strongly continuous semigroup generated by a maximal
dissipative operator A0, and T be the strongly continuous semigroupgenerated
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by A = A0 − δ + K where K is a compact operator on H. Let the (possibly
empty) finite set

� = {λ ∈ C, �(λ) ≥ 0} ∩ {λ is an eigenvalue of A} = (λi )1≤i≤N

and let

H = U
⊕

V,

whereU and V are invariant subspaces for A and V is the image of the spectral
projection of A associated to the set �. Then there exist C, δg > 0 such that

∀X ∈ U, ‖T (t)X‖ ≤ Ce−
δg
2 t‖X‖. (3.5)

Proof We apply Lemma 3.3 to Ã = A+ δ = A0+ K with generates the semi
group T̃ . Hence the set

�δ
4
( Ã) =

{

λ ∈ C, �(λ) >
δ

4

}

∩ {λ is an eigenvalue of Ã}

is finite. Moreover

AX = λX ⇔ ÃX = (λ+ δ)X

and hence

� ⊂ �δ
4
.

Let

H = Uδ

⊕

Vδ

be the invariant decomposition of Ã (and of A) associated to the set �δ
4
.

Clearly, Uδ ⊂ U and

U = Uδ

⊕

Oδ,

where Oδ is the image of the spectral projection of A associated with the set
�δ

4
\�. By Lemma 3.3,

∀X ∈ Uδ, ‖T̃ (t)X‖ ≤ Mδe
δ
4 t‖X‖,
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which implies

∀X ∈ Uδ, ‖T (t)X‖ = e−δt‖T̃ (t)X‖ ≤ Mδe
− 3δ

4 t‖X‖. (3.6)

Let now X ∈ U . SinceUδ is invariant by T and (3.6) yields exponential decay
on Uδ , we assume X ∈ Oδ . Oδ is an invariant subspace of A generated by the
eigenvalues λ with the property that −3

4δ ≤ �(λ) < 0. Let δg > 0 be defined
as

−δg := sup

{

�(λ) : −3

4
δ ≤ �(λ) < 0

}

From part (iii) of Lemma 3.3,

‖T (t)X‖Oδ ≤ C sup
�(λ)<0

eλt tmλ−1‖X‖ ≤ C− δg
2 t‖X‖.

This concludes the proof of Lemma 3.4. ��
Our final result in this section is to set up a Brouwer type argument for the
evolution of unstable modes.

Lemma 3.5 Let A, δg as in Lemma 3.4 with the decomposition

H = U
⊕

V

into stable and unstable subspaces Fix a sufficiently large t0 > 0 (dependent
on A). Let F(t, x) such that, ∀t ≥ t0, F(t, x) ∈ V , depends continuously on
x and

‖F(t, x)‖ ≤ e−
2δg
3 t

be given. Let x(t) denote the solution to the ode

∣
∣
∣
∣

dx
dt = Ax + F(t, x),
x(t0) = x0 ∈ V .

Then, for any x0 in the ball

‖x0‖ ≤ e−
3δg
5 t0,

we have

‖x(t)‖ ≤ e−
δg
2 t , t0 ≤ t ≤ t0 + � (3.7)

123



On blow up for the energy super critical defocusing NLS

for some large constant � (which only depends on A and t0.) Moreover, there
exists x∗ ∈ V in the same ball as a above such that ∀t ≥ t0 the solution x(t)
with initial data x(t0) = x∗ obeys

‖x(t)‖ ≤ e−
3δg
5 t .

Proof According to Lemma 3.3 the subspace V can be further decomposed
into invariant subspaces on which A is represented by Jordan blocks. We may
therefore assume that V is irreducible and corresponds to a Jordan block of A
of length mλ associated with an eigenvalue λ with �(λ) ≥ 0 and restrict A to
V . We decompose A as

A = λI + N ,

where N has the property that Nmλ−1 = 0, and

etN =

⎛

⎜
⎜
⎝

1 t · · · tmλ−1

0 1 · · · tmλ−2

· · ·
0 0 · · · 1

⎞

⎟
⎟
⎠

.

The claim (3.7) follows from the growth on the Jordan block:

‖x(t)‖ =
∥
∥
∥
∥
e(t−t0)Ax0 +

∫ t

t0
e(t−τ)AF(τ, x)dτ

∥
∥
∥
∥

≤ C�mλ−1e�(λ)�e−
3δgt0
5 +

∫ t

t0
C |τ − t0|mλ−1e�(λ)(t−τ)e−

2
3 δgτdτ

≤ C�mλ−1e�(λ)�e−
3δgt0
5

and hence the size of constant � is determined from the inequality

C�mλ−1e�(λ)�e−
3δgt0
5 ≤ e−

δ
2 (t0+�),

a sufficient condition being

� ≤ t0
2

[
δg

10�(λ)+ 5δg

]

,

which can be made arbitrarily large by a choice of t0.
We now define a new variable

Y (t) = e−t N e
19δg
30 t x(t).
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Since N and A commute,

dY

dt
=
(

λ+ 19δg
30

)

Y + F̃(t, Y ), Y (t0) = y,

where F̃(t, Y ) = e−t N e
19δg
30 t F(t, x) and

‖F̃(t, Y )‖ � e−
δg
31 t .

Since t0 was chosen to be sufficiently large, we can assume that ∀t ≥ t0

‖F̃(t, Y )‖ � εe−
δg
60 t

and ε < �(λ) + 19δg
60 . We now run a standard Brouwer type argument for Y .

For any y such that ‖y‖ ≤ 1 we define the exit time t∗ to be the first time such
that ‖Y (t∗)‖ = 1. If for some y, t∗ = ∞, we are done. Otherwise, assume
that for all ‖y‖ ≤ 1, t∗ < ∞ and define the map� : B → S as�(y) = Y (t∗)
mapping the unit ball to the unit sphere. Note that� is the identity map on the
boundary of B. To prove continuity of � we compute

d‖Y‖2
dt

(t∗) = 2�(λ)+ 19δg
15

+ 2�〈F̃(t∗, Y (t∗)), Y (t∗)〉 ≥ 19δg
30

> 0.

This is the outgoing condition which implies continuity. The Brouwer argu-
ment applies and shows that such � can not exist. We now reinterpret the
result in terms of x . We have shown existence of the data x∗ such that the
corresponding solution x(t) has the property that ∀t ≥ t0,

‖e−t N x(t)‖ ≤ e−
19δg
30 t .

Now e−t N is an invertible operator with the inverse given by etN and its norm
bounded byCtmλ−1. The result follows immediately.We note that the resulting

solution x(t) has initial data x(t0) in the ball ‖x(t0)‖ ≤ e−
3δg
5 t0 . ��

3.2 Linearized equations

Recall the exact linearized flow (2.25) which we rewrite:
∣
∣
∣
∣
∣
∣
∣

∂τρ = H1ρ − H2�ρ − ρP�	 − 2∇ρP · ∇	 − ρ�	 − 2∇ρ · ∇	

∂τ	 = b2�ρTot
ρTot

−
{

H2�	 + μ(r − 2)	 + (p − 1)ρ p−2
P ρ

+|∇	|2 + NL(ρ)
}

.

123



On blow up for the energy super critical defocusing NLS

Our aim for the remainder of the section is to find a Hilbert space in which
the linearized operator is accretive modulo a compact perturbation in order to
apply the general results of the previous section.

We introduce the new unknown

� = ρP	 (3.8)

and obtain equivalently using (2.24):

∣
∣
∣
∣

∂τρ = H1ρ − H2�ρ −��+ H3�+ Gρ,

∂τ� = −(p − 1)Qρ − H2��+ (H1 − μ(r − 2))�+ G�
(3.9)

with

Q = ρ
p−1
P , H3 = �ρP

ρP
(3.10)

and the nonlinear terms:
∣
∣
∣
∣
∣

Gρ = −ρ�	 − 2∇ρ · ∇	,

G� = −ρP(|∇	|2 + NL(ρ))+ b2ρP
ρTot

�ρTot.
(3.11)

We transform (3.9) into a wave equation for � and compute:

∂2τ � = −(p − 1)Q(H1ρ − H2�ρ −��+ H3�+ Gρ)+ ∂τG�

−H2�∂τ�+ (H1 − μ(r − 2))∂τ�

= −(p − 1)Q(−��+ H3�)− H2�∂τ�+ (H1 − μ(r − 2))∂τ�

+(p − 1)Q(−H1+H2�)

{
1

(p − 1)Q
[−∂τ�− H2��

+(H1 − μ(r − 2))�+ G�]} + ∂τG� − (p − 1)QGρ

= (p − 1)Q��− H2
2�

2�− 2H2�∂τ�+ A1��+ A2∂τ�+ A3�

+∂τG� −
(

H1 + H2
�Q

Q

)

G� + H2�G� − (p − 1)QGρ

with
∣
∣
∣
∣
∣
∣
∣

A1 = H2H1 − H2�H2 + H2(H1 − μ(r − 2))+ H2
2

�Q
Q ,

A2 = 2H1 − μ(r − 2)+ H2
�Q
Q ,

A3 = −(H1 − e)H1 + H2�H1 − H2(H1 − μ(r − 2))�Q
Q − (p − 1)QH3.

In this section we focus on deriving decay estimates for (3.9).
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Remark 3.6 (Null coordinates and red shift)We note that the principal symbol
of the above wave equation is given by the second order operator

�Q := ∂2τ − ((p − 1)Q − H2
2 Z

2)∂2Z + 2H2Z∂Z∂τ .

In the variables of Emden transform this can be written equivalently as

�Q = ∂2τ − μ2 [σ 2 − (1− w)2
]

∂2� + 2μ(1− w)∂�∂τ .

The two principal null direction associated with the above equation are

L = ∂τ + μ [(1− w)− σ ] ∂�, L = ∂τ + μ [(1− w)+ σ ] ∂�

so that

�Q = LL.

We observe that at P2, we have L = ∂τ and the surface Z = Z2 is a null
line (cone, if we view from the point of view of the higher dimensional space
where a point (τ, Z) is in fact a (d − 1)-dimensional sphere). Moreover, the
associated acoustical metric is

gQ = μ2�dτ 2 − 2μ(1− w)dτd� + d�2, � = (1− w)2 − σ 2

for which ∂τ is a Killing field (generator of translation symmetry). Therefore,
Z = Z2 is a Killing horizon (generated by a null Killing field.) We can make
it even more precise by transforming the metric gQ into a slightly different
form by defining the coordinate s:

s = μτ − f (�), f ′ = 1− w

�

so that

gQ = �(ds)2 − σ 2

�
d�2

and then the coordinate x∗:

x∗ =
∫

σ

�
d�

so that

gQ = � d(s + x∗) d(s − x∗)
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and s+x∗ and s−x∗ are the null coordinates of gQ . TheKilling horizon Z = Z2

corresponds to x∗ = −∞ and � ∼ eCx∗ for some positive constant C . In this
form, near Z2 themetric gQ resembles the 1+1-quotient Schwarzschildmetric
near the black hole horizon. Note that the region Z > Z2 corresponds to the
interior of a black hole in a sense that the null geodesics of the acoustical
metric never leave that region.

The associated surface gravity κ which can be computed according to

κ = ∂x∗�

2�
|P2 = ∂x�

2σ
|P2 = −w′(1− w)− σ ′σ

σ
|P2

= (−w′ − σ ′)|P2 = 1− w −�w − (1− w)F

σ
|P2 > 0.

This is precisely the positivity condition (2.21) (at P2). The positivity of surface
gravity implies the presence of the red shift effect along Z = Z2 both as an
optical phenomenon for the acoustical metric gQ and also as an indicator
of local monotonicity estimates for solutions of the wave equation �Qϕ =
0, [17]. Near Z2, the null characteristics spread out and the monotonicity
estimates can be captured with the energy estimates based on a multiplier
transversal to the set Z = Z2, while the standard energy estimates based on
the multiplier ∂τ would be degenerate. The complication in the analysis below
is the presence of lower order terms in the wave equation as well as the need
for global in space estimates.

3.3 The linearized operator

The degeneracy of wave operator �Q is a feature of the chosen coordinate
system and, specifically, of the fact that ∂τ is tangent to the set Z = Z2. We
can remedy this by adding to ∂τ a small amount of �-derivative near Z2. The
precise technical implementation is as follows.

Pick a small enough parameter

0 < a � 1

and consider the new variable

T = ∂τ�+ aH2��, (3.12)

then

∂τT = ∂2τ �+ aH2�∂τ� = ∂2τ �+ aH2�(T − aH2��)

= ∂2τ �+ aH2�T − a2H2�H2��− a2H2
2�

2�,
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which yields the (T,�) equation

∂τ� = T − aH2��

and

∂τT = (p − 1)Q��− H2
2�

2�− 2H2�(T − aH2��)

+A1��+ A2(T − aH2��)+ A3�

+aH2�T − a2H2�H2��− a2H2
2�

2�+ GT

= (p − 1)Q��− (1− a)2H2
2�

2�

+ Ã2��+ A3�− (2− a)H2�T + A2T + GT

with

GT = ∂τG� −
(

H1 + H2
�Q

Q

)

G� + H2�G� − (p − 1)QGρ (3.13)

and

Ã2 = A1 + (2a − a2)H2�H2 − aA2H2.

We rewrite these equations in vectorial form

∂τ X = MX + G, X =
∣
∣
∣
∣

�

T
, G =

∣
∣
∣
∣

0
GT

(3.14)

with

M =
( −aH2� 1
(p − 1)Q�−(1− a)2H2

2�
2 + Ã2�+ A3 −(2− a)H2�+A2

)

.

(3.15)

3.4 Shifted measure

The fine structure of the operator (3.15) involves the understanding of the
associated light cone.
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Lemma 3.7 (Shifted measure) Let5

Da = (1− a)2(w − 1)2 − σ 2 (3.16)

then for 0 < a < a∗ small enough, there exists a C1 map a �→ Za with

Za=0 = Z2,
∂Za

∂a
> 0

such that
∣
∣
∣
∣
∣
∣

Da(Za) = 0,
−Da(Z) > 0 on 0 ≤ Z < Za,

limZ→0 Z2(−Da) > 0.
(3.17)

Proof of Lemma 3.7 We recall the notations of the Emden transform:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x = logZ ,

μ = 1−e
2 ,

F = σ +�σ,

(p − 1)Q = μ2Z2σ 2,
�Q
Q = 2+ 2�σ

σ
= 2(σ+�σ)

σ
,

(p − 1)∂Z Q = (p − 1)�Q
Q

Q
Z = 2μ2Zσ 2

(

1+ �σ
σ

)

= 2μ2Zσ(σ +�σ),

H2 = 1−e
2 + 2 ∂Z	P

Z = μ(1− w),

H1 = H2
�ρP
ρP

= H2
p−1

�Q
Q = 2μ(σ+�σ)(1−w)

(p−1)σ ,

D = (w − 1)2 − σ 2.

(3.18)

Step 1 Values of derivatives at P2. Let

� = (w − 1)2 − σ 2.

Let the variables

w = w2 +W, σ = σ2 +�,

5 Note that Da is directly connected to the highest (second) order term inM. Indeed, we have

(p − 1)Q∂2Z − (1− a)2H2
2 Z

2∂2Z = μ2Z2σ 2∂2Z − (1− a)2μ2(1− w)2Z2∂2Z = −μ2Z2Da∂
2
Z .
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then near P2:

W = c−� + O(�2).

Let
∣
∣
∣
∣
∣
∣
∣
∣

c1 = ∂W�1(P2),
c2 = ∂W�2(P2),
c3 = ∂��1(P2),
c4 = ∂��2(P2) = −2σ 2

2 .

(3.19)

Then, in our range of parameters,

c1 < 0, c2 < 0, c3 < 0, c4 < 0, (3.20)

and we have
∣
∣
∣
∣
∣
∣

c2c− + c4 = λ+,
c2c+ + c4 = λ−,
c± = c1c±+c3

c2c±+c4
,

(3.21)

which imply

c1c− + c3 = c−(c2c− + c4) = c−λ+

as well as

− 1 < c− < 0 < c+, λ− < λ+ < 0, (3.22)

see Lemmas 2.8 and 2.9 in [43].
We compute
∣
∣
∣
∣
∣
∣
∣
∣

�1 = c1W + c3� + O(W 2 +�2) = (c1c− + c3)� + O(�2),

�2 = c2W + c4� + O(W 2 +�2) = (c2c− + c4)� + O(�2),

� = (1− w2 −W )2 − (σ2 +�)2 = (σ2 −W )2 − (σ2 +�)2

= −2σ2(c− + 1)� + O(�2)

This yields
∣
∣
∣
∣
∣

dw
dx = −�1

�
= − c1c−+c3+O(�)

−2σ2(1+c−)+O(�)
= |c−||λ+|

2σ2(1+c−)
+ O(�),

dσ
dx = −�2

�
= − c2c−+c4+O(�)

−2σ2(1+c−)+O(�)
= − |λ+|

2σ2(1+c−)
+ O(�),

(3.23)

and hence

Z2
d�

dZ
(Z2) = d�

dx
(P2) = −2(1− w2)

dw

dx
(P2)− 2σ2

dσ

dx
(P2)
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= −2σ2
|c−||λ+|

2σ2(1+ c−)
− 2σ2

[

− |λ+|
2σ2(1+ c−)

]

= |λ+|
1+ c−

(1− |c−|)
= |λ+| > 0 (3.24)

Step 2 Computation of Za . Let D0(Z) = �(Z), we have D′
0(Z2) > 0 from

(3.24) and hence by the implicit function theorem applied to the function
F(a, Z) = Da(Z) at (a, Z) = (0, Z2) where D0(Z2) = 0, we infer for all a
small enough the existence of a locally unique solution Za to

Da(Za) = 0. (3.25)

Furthermore, Za is C1 in a neighborhood of a = 0 and its derivative is given
by

∂Za

∂a |a=0
= −

(
∂Da(Z)

∂a
∂Da(Z)

∂Z

)

a=0, Z=Z2

= 2σ 2
2

D′
0(Z2)

> 0.

Thus
∂Za

∂a |a=0
> 0, Za > Z2 for 0 < a � 1, D′

a(Za) > 0. (3.26)

We now observe

Da(Z) = ((1− a)(1− w)+ σ)((1− a)(1− w)− σ)

so that Da(Z) is of the sign of (1 − a)(1 − w) − σ since w < 1 and σ > 0.
Now from (3.23):

d

dx

(

(1− a)(1− w)− σ
)

= −(1− a)
|c−||λ+|

2σ2(1+ c−)
+ |λ+|

2σ2(1+ c−)

= |λ+|
2σ2(1+ c−)

[1− (1− a)|c−|] > 0.

Thus, (1− a)(1−w)− σ is increasing on (0, Za] and vanishes at Z = Za so
that

Da(Z) < 0 on(0, Za).

Moreover, we have in view of the behavior of σ and w as Z → 0+, see
Lemma 3.1 in [43],

lim
Z→0+

Z2(−Da(Z)) = lim
Z→0+

Z2σ 2 = 1 > 0.
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This concludes the proof of (3.17). ��

3.5 Commuting with derivatives

We define

Tk = �kT, �k = �k�.

Lemma 3.8 (Commuting with derivatives) Let k ∈ N. There exists a smooth
measure6 g defined for Z ∈ [0, Za] such that the following holds. Let the
elliptic operator

Lg�k = μ2

gZd−1 ∂Z

(

Zd−1Z2g(−Da)∂Z�k

)

,

then there holds

�k(MX) = Mk

∣
∣
∣
∣

�k
Tk

+ M̃k X (3.27)

with

Mk

∣
∣
∣
∣

�k
Tk

=
∣
∣
∣
∣

−aH2��k − 2ak(H2 +�H2)�k + Tk
Lg�k − (2− a)H2�Tk − 2k(2− a)(H2 +�H2)Tk + A2Tk,

where M̃k satisfies the following pointwise bound

|M̃k X | �k

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2k−1
∑

j=0

|∂ j
Z�|,

2k
∑

j=0

|∂ j
Z�| +

2k−1
∑

j=0

|∂ j
Z T |.

(3.28)

Moreover, g > 0 in [0, Za) and admits the asymptotics:
∣
∣
∣
∣

g(Z) = 1+ O(Z2) as Z → 0,
g(Z) = ca,d,r,�(Za − Z)cg [1+ O(Z − Za)] as Z ↑ Za,

(3.29)

with ca,d,r,� > 0 and

cg > 0 (3.30)

6 g is the density of themeasure gZd−1dZ with respect to which the operatorLg is selfadjoint.
By a slight abuse of terminology, we call g a measure.
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On blow up for the energy super critical defocusing NLS

for all k ≥ k1 large enough and 0 < a < a∗ small enough. Finally, note that
g and cg depend on k.

Proof This is a direct computation.
Step 1 Proof of (3.27), (3.28). We recall (C.1):

[�k, V ]�− 2k∇V · ∇�k−1� =
∑

|α|+|β|=2k,|β|≤2k−2

ck,α,β∂
αV ∂β�,

which together with the commutator formulas

∣
∣
∣
∣
∣
∣

[�k,�] = 2k�k, [∂Z ,�] = ∂Z ,

�2 = Z2�− (d − 2)�,

∂Z� = �2

Z = Z�− (d − 2)∂Z

(3.31)

yields

�k(V��) = V�k(��)+ 2k∇V · ∇�k−1��

+
∑

|α|+|β|=2k,|β|≤2k−2

ck,α,β∂
αV ∂β��.

and

2k∇V · ∇�k−1�� = 2k∂ZV ∂Z

[

��k−1�+ 2(k − 1)�k−1

]

= 2k∂ZV
[

(Z�− (d − 2)∂Z )�k−1 + 2(k − 1)∂Z�k−1
]

= 2k�V�k + 2k(2k − 2− d + 2)∂ZV ∂Z�k−1

from which for 0 ≤ Z ≤ Za:

�k(V��) = V (2k +�)�k + 2k�V�k + Ok,a

⎛

⎝

2k−1
∑

j=0

|∂ j
Z�|

⎞

⎠ .

We then use

[�k,�2] = �k�2 −�2�k = [�k,�]�+��k�−�(−[�k,�] +�k�)

= 2k�k�+ 2k��k = 4k2�k + 4k��k

to compute similarly:

�k(V�2�) = V�k(�2�)+ 2k∇V · ∇�k−1�2�
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+
∑

|α|+|β|=2k,|β|≤2k−2

ck,α,β∂
αV ∂β��

= V
[

�2�k + 4k2�k + 4k��k
]

+2k∂ZV ∂Z�
k−1�2�+ O

⎛

⎝

2k
∑

j=0

|∂ j
Z�|

⎞

⎠

and

∂Z�
k−1�2� = ∂Z

[

�2�k−1 + 4(k − 1)2�k−1 + 4(k − 1)��k−1
]

= ∂Z (Z
2�k − (d − 2)��k−1)+ O

⎛

⎝

2k
∑

j=0

|∂ j
Z�|

⎞

⎠

= Z��k + O

⎛

⎝

2k
∑

j=0

|∂ j
Z�|

⎞

⎠

and hence

�k(V�2�) = V
[

�2�k + 4k2�k + 4k��k
]

+2k�V��k + O

⎛

⎝

2k
∑

j=0

|∂ j
Z�|

⎞

⎠ .

Recalling the definition of the operator (3.15), we obtain (3.27), (3.28) with

Mk

∣
∣
∣
∣

�k
Tk

=
∣
∣
∣
∣
∣
∣

−aH2��k − 2ak(H2 +�H2)�k + Tk
(p − 1)Q��k − (1− a)2H2

2�
2�k + Ak��k − (2− a)H2�Tk

−2k(2− a)(H2 +�H2)Tk + A2Tk

and

Ak = 2k(p − 1)
∂Z Q

Z
− (1− a)24kH2 [H2 +�H2]+ Ã2.

Step 2 Equation for the measure. We compute using (3.18), (3.16):

(p − 1)Q��k − (1− a)2H2
2�

2�k

= μ2Z2σ 2
(

∂2Z�k + d − 1

Z
∂Z�k

)

−μ2(1− w)2(1− a)2
(

Z2∂2Z�k +��k
)
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= μ2 {−Z2Da∂
2
Z�k + Z∂Z�k

[

(d − 1)σ 2 − (1− a)2(1− w)2
]}

and, using F = σ +�σ ,

Ak = 2k(p − 1)
∂Z Q

Z
− (1− a)24kH2 [H2 +�H2]+ Ã2

= 4kμ2 [σ F − (1− a)2(1− w)+ (1− a)2(1− w)(w +�w)
]+ Ã2

and hence:

(p − 1)Q��k − (1− a)2H2
2�

2�k + Ak��k

= −μ2Z2Da∂
2
Z�k +��k

[

μ2 ((d − 1)σ 2 − (1− a)2(1− w)2
)

+4kμ2 [σ F − (1− a)2(1− w)+ (1− a)2(1− w)(w +�w)
]+ Ã2

]

.

We compute the measure

μ2

gZd−1 ∂Z

(

Zd−1Z2g(−Da)�
′
k

)

= μ2Z2(−Da)∂
2
Z�k − μ2��k

(

(d + 1)Da + g′

g
ZDa + ZD′

a

)

and hence the relation:

−μ2
(

(d + 1)Da + g′

g
ZDa + ZD′

a

)

= μ2 ((d − 1)σ 2 − (1− w)2
)+ 4kμ2 [σ F − (1− a)2(1− w)

+(1− a)2(1− w)(w +�w)
]+ Ã2.

Equivalently:

(−Da)
�g

g
= −G (3.32)

with

G = −(d − 1)σ 2 + (1− w)2 − (d + 1)Da −�Da

+4k
[

(1− a)2(1− w)− σ F − (1− a)2(1− w)(w +�w)
]

− Ã2

μ2 . (3.33)
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Step 3 Asymptotics of the measure. We now solve (3.32). Near the origin, the
normalization (2.17) and (3.18) yield

σ =
√
p − 1

μZ

[

1+ O(Z2)
]

, F = σ +�σ = O(Z), −Da = σ 2 + O(1).

We compute

Ã2

μ2 = O

( |F |
σ

+ |�w| + |a|
)

= O(1)

and hence

G = −(d − 1)σ 2 − (d + 1)(−σ 2)−�(−σ 2)

+O (1+ |a| + σ |F | + |w| + |�w|)
= 2σ F + O(1) = O(1),

which, recalling (3.17), yields:

− G

(−Da)
= O(1)

σ 2 + O(1)
= O(Z2)

and we may therefore choose explicitly:

g = e
∫ Z
0

[

− G
(−Da )

]
dτ
τ .

To compute the behavior near Za , recall from (3.25) (3.26) that we have

Da(Za) = 0, D′
a(Za) > 0.
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We infer in the neighborhood of Z = Za

∂Z g

g
= G

ZDa
= G(Za)

�Da(Za)

1+ O(Z − Za)

Z − Za

=
(

G(Z2)

�D0(Z2)
+ O(|a|)

)
1+ O(Z − Za)

Z − Za
. (3.34)

The fundamental computation is then at P2 using (3.23):

[(1− w)− σ(σ +�σ)− (1− w)(w +�w)]

= (1− w2)(1− w2 −�w)− σ2(σ2 +�σ)

= σ2(σ2 −�w)− σ2(σ2 +�σ) = σ2(−�w −�σ)

= σ2

[

− |c−||λ+|
2σ2(1+ c−)

+ |λ+|
2σ2(1+ c−)

]

= |λ+|
2

> 0.

Hence from (3.33)

G(Z2) = 2k(|λ+| + O(a))+ O(1)

and from (3.24)

G(Z2)

�D0(Z2)
= 2k (|λ+| + O(a))+ O(1)

|λ+| > k

for 0 < a < a∗ small enough and k ≥ k1 large enough. Inserting this into
(3.34) yields (3.29). ��

3.6 Hardy inequality and compactness

We let k ≥ k1 large enough so that (3.30) holds and extend the measure g
by zero for Z ≥ Za . We let χ be a smooth cut off function supported strictly
inside the light cone |Z | < Z2 with

g ≥ 1

2
on Suppχ.

Let

D� = {

� ∈ C∞([0, Za],C) with spherical symmetry
}

be the space of test functions and

〈〈�, �̃〉〉 = −(Lg�k, �̃k)g +
∫

χ��̃gZd−1dZ (3.35)
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be a Hermitian scalar product, where we recall the notation (1.13). We let
H� be the completion of D� for the norm associated to (3.35). We claim the
following compactness subcoercivity estimate:

Lemma 3.9 (Subcoercivity estimate) For 0 < ν < 1:

〈〈�,�〉〉 �
∫ |�k |2

Za − Z
gZd−1dZ

+
2k
∑

m=0

∫

|∂mZ �(Z)|2 g

(Za − Z)1−ν
Zd−1dZ . (3.36)

Furthermore, there exists c > 0 and a sequence μn > 0 with limn→+∞ μn =
+∞ and �n ∈ H�, cn > 0 such that ∀n ≥ 0, ∀� ∈ H�,

〈〈�,�〉〉 ≥ c
∫ |�k |2

Za − Z
gZd−1dZ

+μn

2k
∑

m=0

∫

|∂mZ �(Z)|2 g

(Za − Z)1−ν
Zd−1dZ

−cn

n
∑

i=1

(�,�i )
2
g. (3.37)

Proof This is a classical Hardy and Sobolev based argument with a loss ν. We
provide a proof for the reader’s convenience.
Step 1 Interior estimate. Let Z0 < Za which will be chosen close enough to
Za in step 2. Then, we have

∫ Z0

0

|�k |2
Za − Z

gZd−1dZ +
2k
∑

m=0

∫ Z0

0
|∂mZ �(Z)|2 g

(Za − Z)1−ν
Zd−1dZ

≤ CZ0‖�‖2H2k(0,Z0)

≤ CZ0

[∫ Z0

0
|∂Z�k |2Zd−1dZ +

∫ Z0

0
χ |�(Z)|2Zd−1dZ

]

.

Since−Z2Da and g are smooth and satisfy−Z2Da > 0 and g > 0 on [0, Z0],
we infer
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〈〈�,�〉〉 ≥ cZ0

[∫ Z0

0

|�k |2
Za − Z

gZd−1dZ

+
2k
∑

m=0

∫ Z0

0
|∂mZ �(Z)|2 g

(Za − Z)1−ν
Zd−1dZ

]

for some cZ0 > 0. Thus, to prove (3.36), it remains to consider the region
(Z0, Za). This will be done in steps 2 and 3.
Step 2 Hardy inequality with loss. Let 0 < ν < 1, we claim the lossy Hardy
bound for all � ∈ D�:

2k
∑

m=0

∫ Za

Z0

|∂mZ �(Z)|2 g

(Za − Z)1−ν
Zd−1dZ ≤ cν〈〈�,�〉〉. (3.38)

Indeed, let Z0 = Za − δ with δ > 0 small enough, we estimate by Taylor
expansion for Z0 ≤ Z < Za for 0 ≤ m ≤ 2k:

|∂mZ �(Z)|2 ≤ C

⎡

⎣

2k
∑

j=m

∣
∣
∣∂

j
Z�(Z0)

∣
∣
∣

2 +
(∫ Z

Z0

∣
∣
∣∂

2k+1
Z �(τ)

∣
∣
∣ dτ

)2
⎤

⎦

From Sobolev,

2k
∑

j=m

∣
∣
∣∂

j
Z�(Z0)

∣
∣
∣

2 ≤ CZ0‖�‖2H2k+1(0,Z0)
≤ CZ0〈〈�,�〉〉

and hence

|∂mZ �(Z)|2 ≤ CZ0〈〈�,�〉〉 + C

(∫ Z

Z0

∣
∣
∣∂Z�

k�(τ)

∣
∣
∣ dτ

)2

+C

⎛

⎝

∫ 2k
∑

j=1

|∂ j
Z�|dτ

⎞

⎠

2

≤ CZ0〈〈�,�〉〉 + C

(∫ Z

Z0

|∂Z�k |2(Za − Z)1−νZd−1dZ

)

×
(∫ Z

Z0

dτ

(Za − τ)1−ν

)

+C
2k
∑

j=1

(
∫ Z

Z0

|∂ j
Z�|2

(Za − Z)1−ν
dZ

)(∫ Z

Z0

(Za − τ)1−νdτ

)
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≤ CZ0〈〈�,�〉〉 + Cδν
∫ Z

Z0

|∂Z�k |2(Za − τ)1−νdτ

+Cδ

2k
∑

j=m

(
∫ Z

Z0

|∂ j
Z�|2

(Za − τ)1−ν
dτ

)

,

where we used the fact that 0 < ν < 1 and Za − Z0 = δ. Using again
0 < ν < 1 and Za − Z0 = δ, as well as Fubini and the fact that ∂Z g < 0 on
(Z0, Za) for Z0 close enough to Za so that g is decreasing on (Z0, Za), we
infer

2k
∑

m=0

∫ Za

Z0

|∂mZ �(Z)|2 g

(Za − Z)1−ν
Zd−1dZ

≤ CZ0〈〈�,�〉〉 + Cδν
∫ Za

Z0

g

(Za − Z)1−ν

×
(∫ Z

Z0

|∂Z�k |2(Za − τ)1−νdτ

)

Zd−1dZ

+Cδ

2k
∑

j=0

∫ Za

Z0

g

(Za − Z)1−ν

(
∫ Z

Z0

|∂ j
Z�|2

(Za − τ)1−ν
dτ

)

Zd−1dZ

≤ CZ0〈〈�,�〉〉 + Cδν
∫ Za

Z0

|∂Z�k |2g(τ )(Za − τ)1−ν

×
(∫ Za

τ

dZ

(Za − Z)1−ν

)

τ d−1dτ

+Cδ

2k
∑

j=0

∫ Za

Z0

|∂ j
Z�|2g(τ )

(Za − τ)1−ν

(∫ Za

τ

dZ

(Za − Z)1−ν

)

τ d−1dτ

≤ CZ0〈〈�,�〉〉 + Cδν
∫ Za

Z0

|∂Z�k |2g(τ )(Za − τ)τ d−1dτ

+Cδ

2k
∑

j=0

∫ Za

Z0

|∂ j
Z�|2g(τ )

(Za − τ)1−ν
τ d−1dτ.

Letting δ = δ(ν) small enough and estimating from (3.26)

− (Da)(Z) ≥ c(Za − Z) (3.39)

yields (3.38).
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Step 3 Sharp Hardy. We now claim the sharp Hardy inequality for f ∈ D�:

〈〈�,�〉〉 �
∫ Za

Z0

|�k |2
(Za − Z)

gZd−1dZ . (3.40)

Indeed, recall (3.29), (3.30) near Za:

g(Z) = c(Za − Z)cg [1+ O(Z − Za)] ,

then integrating by parts:

∫ Za

Z0

|�k |2
(Za − Z)

gZd−1dZ �
∫ Za

Z0

|�k |2(Za − Z)cg−1dZ

= − 1

cg
[|�k |2(Za − Z)cg ]ZaZ0

+ 1

cg

∫ Za

Z0

2�k∂Z�k(Za − Z)cgd Z

� |�k |2(Z0)+
(∫

|�k |2(Za − Z)cg−1Zd−1dZ

) 1
2

×
(∫

|∂Z�k |2(Za − Z)cg+1Zd−1dZ

) 1
2

� 〈〈�,�〉〉 +
(∫ Za

Z0

|�k |2
(Za − Z)

gZd−1dZ

) 1
2

×
(∫

|∂Z�k |2g(−Da)Z
d−1dZ

) 1
2

,

where we used (3.39). The bound (3.40) now follows using Hölder. Together
with steps 1 and 2, this concludes the proof of (3.36).
Step 4 Compactness. We now turn to the proof of (3.37) which follows from
a standard compactness argument. Let us consider T ∈ L2

g. Then from (3.36),
the antilinear form

h �→ (T, h)g

is continuous on H�, and hence by Riesz Theorem, there exists a unique
L(T ) ∈ H� such that

∀h ∈ H�, 〈〈L(T ), h〉〉 = (T, h)g, (3.41)
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and the linear map L is bounded from L2
g to H�. For any 0 < δ < Za , we

have in view of (3.36)

‖h‖L2
g
≤ δ

1−ν
2

∥
∥
∥
∥
∥

h

(Za − Z)
1−ν
2

∥
∥
∥
∥
∥
L2
g

+ ‖h‖L2
g(Z≤Za−δ)

� δ
1−ν
2 ‖h‖H�

+ ‖h‖L2
g(Z≤Za−δ).

Relying on the smallness of δ
1−ν
2 for the first term, and Rellich Theorem for

the second one, we easily infer that

H� embeds compactly in L2
g. (3.42)

Since L is bounded from L2
g to H�, we infer that the map

L : L2
g �→ L2

g

is compact. Moreover, if �1 = L(T1), �2 = L(T2):

(L(T1), T2)g = (�1, T2)g = (T2,�1)g = 〈〈LT2,�1〉〉 = 〈〈�1,�2〉〉

and hence interchanging the roles of T1, T2:

(T1, L(T2))g = (L(T2), T1)g = 〈〈�2,�1〉〉 = 〈〈�1,�2〉〉 = (L(T1), T2)g

and L is selfadjoint on L2
g. Since L > 0 from (3.41), we conclude that L

is a diagonalizable with a non increasing sequences of eigenvalues λn > 0,
limn→+∞ λn = 0, and let (�n,i )1≤i≤I (n) be an L2

g orthonormal basis for the
eigenvalue λn . The eigenvalue equation implies �n,i ∈ H�.
Let then

An =
{

� ∈ H�,

∫

|�|2gZd−1dZ = 1, (�,� j,i )g = 0, 1 ≤ i ≤ I ( j),

1 ≤ j ≤ n}

and the minimization problem

In = inf
�∈An

〈〈�,�〉〉,
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then the infimum is attained in view of (3.42) at � ∈ An and, by a standard
Lagrange multiplier argument:

∀h ∈ H�, 〈〈�, h〉〉 =
n
∑

j=1

I ( j)
∑

i=1

αi, j (� j,i , h)g + α(�, h)g.

Letting h = �i, j implies αi, j = 0 and hence from (3.41):

L(�) = 1

α
�,

which together with our orthogonality conditions implies

1

α
≤ λn+1

and hence

In = 〈〈�,�〉〉 = α〈〈L(�),�〉〉 = α(�,�)g = α ≥ 1

λn+1
. (3.43)

Also, for Z0 = Za − δ with δ > 0 small enough, we estimate from (3.38)

2k
∑

m=0

∫ Za

Z0

|∂mZ �(Z)|2 g

(Za − Z)1−ν
Zd−1dZ ≤ cνδ

ν
2 〈〈�,�〉〉.

On the other hand, from Rellich and an elementary compactness argument, for
all Za > 0, δ > 0, ε > 0, k ≥ 1, there exists cZa,δ,ε,k > 0 such that

2k
∑

m=0

∫

Z≤Za−δ

|∂mZ �|2Zd−1dZ ≤ ε

∫

Z≤Za−δ

|∂Z�k�|2Zd−1dZ

+cZa,δ,ε,k

∫

Z≤Za−δ

|�|2Zd−1dZ .

Summing the two inequalities yields for all δ > 0 small and ε smaller still:

2k
∑

m=0

∫ Za

0
|∂mZ �(Z)|2 g

(Za − Z)1−ν
Zd−1dZ

≤ cνδ
ν
2 〈〈�,�〉〉 + c̃Za,δ,k

∫ Za

0
|�|2gZd−1dZ .
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Together with (3.43), this implies for any � satisfying the orthogonality con-
ditions (�,� j,i )g = 0, 1 ≤ i ≤ I ( j), 1 ≤ j ≤ n, and for any δ > 0

2k
∑

m=0

∫ Za

0
|∂mZ �(Z)|2 g

(Za − Z)1−ν
Zd−1dZ ≤

(

cνδ
ν
2 + c̃δ,Za,kλn+1

)

〈〈�,�〉〉,

which yields (3.37). ��

3.7 Accretivity

We now turn to the proof of the accretivity of the operatorM.
Hilbert space. Recall (3.35). We define the space of test functions

D0 = D� ×D�,

and let H2k be the completion of D0 for the scalar product:

〈X, X̃〉 = 〈〈�, �̃〉〉 + (Tk, T̃k)g +
∫

χT T̃ Zd−1dZ , (3.44)

which is a coercive Hermitian form from (3.36).
Unbounded operator. Following (3.15), we define the operator

M =
( −aH2� 1
(p − 1)Q�− (1− a)2H2

2�
2 + Ã2�+ A3 −(2− a)H2�+ A2

)

with domain

D(M) = {X ∈ H2k, MX ∈ H2k} (3.45)

equippedwith the domain norm.We then pick suitable directions (Xi )1≤i≤N ∈
H2k and consider the finite rank projection operator

A =
N
∑

i=1

〈·, Xi 〉Xi .

The aim of this section is to prove the following accretivity property:

Proposition 3.10 (Maximal accretivity/dissipativity) Let

μ, r > 0.
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There exist k∗ � 1 and 0 < c∗, a∗ � 1 such that for all k ≥ k∗, ∀0 < a < a∗
small enough, there exist N = N (k, a) directions (Xi )1≤i≤N ∈ H2k such that
the modified unbounded operator

M̃ = M−A

is dissipative:7

∀X ∈ D(M), �〈−M̃X, X〉 ≥ c∗ak〈X, X〉 (3.46)

and maximal:

∀R > 0, ∀F ∈ H2k, ∃X ∈ D(M) such that (−M̃+ R)X = F.(3.47)

Remark 3.11 We recall that maximal dissipative operators are closed.

Proof of Proposition 3.10 given R > R∗(k) large enough, we define the space
of test functions

DR :=
{

X = (�, T ), X ∈ C
√
R
2 ([0, Za])× C

√
R
2 ([0, Za])

}

∩
{

X / (−M+ R)X ∈ C∞([0, Za])× C∞([0, Za])
}

. (3.48)

In steps 1–3 below, we prove (3.46) for X ∈ DR so that all integrations by
parts in steps 1–3 are justified, and all boundary terms at Z = Za vanish due
to the vanishing of g at Z = Za . In steps 4 and 5, for any smooth F on [0, Za],
we show existence and uniqueness of a solution X ∈ H2k to (−M+R)X = F
for R > R∗(k) large enough. In step 6, we prove that DR is dense in D(M).
In step 7, we conclude the proof of (3.46) and (3.47).
Step 1 Main integration by parts. Let X ∈ DR for R > R∗(k) large enough.
We aim at proving (3.46) and split the computation in two:

∣
∣
∣
∣
∣
∣

〈X, X̃〉1 = −(Lg�k, �̃k)g + (Tk, T̃k)g,

〈X, X̃〉3 =
∫

χ��̃+
∫

χT T̃ .

In step 1, we consider the principal part. We compute from (3.27):

−�〈MX, X〉1 = �(Lg�
k(MX)�,�k)g −�(�k(MX)T , Tk)g

= −�
{∫

∇ [−aH2��k − 2ak(H2 +�H2)�k + Tk + (M̃k X)�
]

7 Equivalently, −M̃ is accretive.
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·∇�k Z
2(−Da)Z

d−1μ2gdZ
}

−�
{∫

[

Lg�k − (2− a)H2�Tk − 2k(2− a)(H2 +�H2)Tk

+A2Tk + (M̃k X)T
]

TkgZ
d−1dZ

}

= −�
{∫

∇ [−aH2��k − 2ak(H2 +�H2)�k

+(M̃k X)�
] · ∇�k Z

2(−Da)Z
d−1gμ2dZ

}

−�
{∫

[−(2− a)H2�Tk − 2k(2− a)(H2 +�H2)Tk

+A2Tk + (M̃k X)T
]

TkgZ
d−1dZ

}

.

Tk terms. We use

�
(∫

f h�h

)

= −1

2

∫

|h|2 f
(

d + � f

f

)

to compute

−�
{∫

[−(2− a)H2�Tk] TkgZ
d−1dZ

}

= −2− a

2

∫

|Tk |2gH2

(

d + �g

g
+ �H2

H2

)

and hence

−�
{∫

[−(2− a)H2�Tk − 2k(2− a)(H2 +�H2)Tk + A2Tk ] TkgZ
d−1dZ

}

= (2− a)
∫

A5H2|Tk |2gZd−1dZ

with

A5 := −1

2

[

d + �g

g
+ �H2

H2

]

+ 2k

(

1+ �H2

H2

)

− A2

(2− a)H2
. (3.49)

�k terms. We first compute:

−�
{∫

∇ [−2ak(H2 +�H2)�k] · ∇�k Z
2(−Da)Z

d−1gdZ

}

= 2ak
∫

(H2 +�H2)|∇�k |2Z2(−Da)Z
d−1gdZ
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+2ak�
{∫

�k∇(H2 +�H2) · ∇�k Z
2(−Da)Z

d−1gdZ

}

= 2ak
∫

(H2 +�H2)|∇�k |2Z2(−Da)Z
d−1gdZ

−ak
∫

|�k |2∇ · (Z2(−Da)∇(H2 +�H2)g
)

Zd−1dZ .

For the second term:

−�
{∫

∇ [−aH2��k] · ∇�k Z
2(−Da)Z

d−1gdZ

}

= −a�
{∫

∂Z (H2��k)H2��k
Da Zd

H2
gdZ

}

= a

2

∫

|H2��k |2 DaZdg

H2

(
∂Z Da

Da
+ d

Z
− ∂Z H2

H2
+ ∂Z g

g

)

dZ

= −a

2

∫

|∂Z�k |2H2

(
�Da

Da
+ d − �H2

H2
+ �g

g

)

(−Da)gZ
2Zd−1dZ .

We have therefore obtained the formula:

−�〈MX, X〉1 = (2− a)
∫

A5H2|Tk |2g + μ2a

×
∫

|∇�k |2A6Z
2(−Da)Z

d−1gdZ

−μ2ak
∫

|�k |2∇ · (Z2(−Da)∇(H2 +�H2)g
)

Zd−1dZ

−μ2�
{∫

∇(M̃k X)� · ∇�k Z
2(−Da)Z

d−1gdZ

}

−�
{∫

(M̃k X)T TkgZ
d−1dZ

}

(3.50)

where we have defined

A6 = 2k(H2 +�H2)− H2

2

(
�Da

Da
+ d − �H2

H2
+ �g

g

)

.

We now claim the following lower bounds on A5, A6: there exist universal
constants k∗ � 1, 0 < c∗, a∗ � 1 such that for all k ≥ k∗ and 0 < a < a∗,

∀0 ≤ Z ≤ Z1,

∣
∣
∣
∣
∣

A5 ≥ c∗k
Za−Z ,

A6 ≥ c∗k
Za−Z .

(3.51)
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Proof of (3.51). Recall (3.32), (3.33):

−�g

g
= 1

(−Da)

{

− (d − 1)σ 2 + (1− w)2 − (d + 1)Da −�Da

+4k
[

(1− a)2(1− w)− σ F − (1− a)2(1− w)(w +�w)
]− Ã2

μ2

}

= 4k

(−Da)

[

(1− w)− σ F − (1− w)(w +�w)+ O

(

a + 1

k

)]

and hence from (3.49):

A5 = −1

2

[

d + �g

g
+ �H2

H2

]

+ 2k

(

1+ �H2

H2

)

− A2

(2− a)H2

= 2k

(−Da)

[

(1− w)− σ F − (1− w)(w +�w)+ O

(

a + 1

k

)]

+2k

(

1− �w

1− w
+ O

(
1

k

))

= 2k

(−Da)
[(1− w)− σ F − (1− w)(w +�w)

+(−Da)

(

1− �w

1− w

)

+ O

(

a + 1

k

)]

= 2k

(−Da)
[(1− w)− σ F − (1− w)(w +�w)

+(−�)

(

1− �w

1− w

)

+ O

(

a + 1

k

)]

.

We now compute for Z ≤ Z2

(1− w)− σ F − (1− w)(w +�w)+ (−�)

(

1− �w

1− w

)

= (1− w)(1− w −�w)− σ F + (σ 2 − (1− w)2)
1− w −�w

1− w

= σ 2(1− w −�w)

1− w
− σ F = σ 2

1− w

[

1− w −�w − 1− w

σ
F

]

≥ cσ 2
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from the fundamental coercivity bound (2.21), and hence for Z ≤ Za and
a < a∗ small enough:

A5 ≥ kcσ 2

(−Da)
≥ kc∗

Za − Z

for some c∗ independent of k, a. Similarly:

A6 = 2kH2

−Da

{[

1+ �H2

H2
+ O

(
1

k

)]

(−Da)+ (1− w)− σ F − (1− w)(w +�w)+ O

(

a + 1

k

)}

= 2kμ(1− w)

(−Da)
[(1− w)− σ F − (1− w)(w +�w)

+(−�)

(

1− �w

1− w

)

+ O

(

a + 1

k

)]

≥ kc∗

Za − Z

arguing as above. This concludes the proof of (3.51).
Step 2 No derivatives term. We compute

−�〈MX, X〉3 = −�
{∫

χ(MX)��Zd−1dZ

+
∫

χ(MX)T T Zd−1dZ

}

= −�
{∫

χ [−aH2��+ T ]�Zd−1dZ

}

−�
{∫

χ
[

(p − 1)Q��− (1− a)2H2
2�

2�+ Ã2��

+A3�− (2− a)H2�T + A2T ] T
}

= O

(∫

(χ + |�χ |) (|�|2 + |∂Z�|2

+|∂2Z�|2 + |T |2)) .
(3.52)
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Step 3 Accretivity in D0. We compute from (3.52), (3.50):

−�〈MX, X〉 = −�〈MX, X〉1 −�〈MX, X〉3
= (2− a)

∫

A5H2|Tk |2g + μ2a
∫

|∇�k |2A6Z
2(−Da)Z

d−1gdZ

−μ2ak
∫

|�k |2∇ · (Z2(−Da)∇(H2 +�H2)g
)

Zd−1dZ

−μ2�
{∫

∇(M̃k X)� · ∇�k Z
2(−Da)Z

d−1gdZ

}

−�
{∫

(M̃k X)T TkgZ
d−1dZ

}

+O

(∫

(χ + |�χ |) (|�|2 + |∂Z�|2 + |∂2Z�|2 + |T |2)
)

.

We lower bound from (3.51) and the fact that H2 � 1:

(2− a)
∫

A5H2|Tk |2g + μ2a
∫

|∇�k |2A6Z
2(−Da)Z

d−1g dZ

≥ c∗ak
[∫ ( |Tk |2

Za − Z
+ |∇�k |2 Z

2(−Da)

Za − Z

)

gZd−1dZ

]

.

The smoothness and boundedness of the profile together with (3.32), (3.33)
ensure that

∣
∣∇ · [Z2(−Da)∇(H2 +�H2)g

]∣
∣ ≤ Ck

Z2(−Da)g

Za − Z
≤ Ckg

and in view of (3.28),

∣
∣
∣
∣
−�

{∫

∇(M̃k X)� · ∇�k Z
2(−Da)Z

d−1gdZ

}

−�
{∫

(M̃k X)T TkgZ
d−1dZ

}

≤ Ck

(∫

|∇�k |2Z2(−Da)gZ
d−1dZ

) 1
2

⎛

⎝

2k
∑

j=0

∫

|∂ j
Z�|2gZd−1dZ

⎞

⎠

1
2
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+Ck

(∫

|Tk |2gZd−1dZ

) 1
2

⎡

⎢
⎣

⎛

⎝

2k−1
∑

j=0

∫

|∂ j
Z T |2gZd−1dZ

⎞

⎠

1
2

+
⎛

⎝

2k
∑

j=0

∫

|∂ j
Z�|2gZd−1dZ

⎞

⎠

1
2
⎤

⎥
⎦

The collection of above bounds yields:

−�〈MX, X〉 ≥ c∗ak
[∫ |Tk |2

Za − Z
gZd−1dZ

+
∫

|∇�k |2 Z
2(−Da)

Za − Z
gZd−1 dZ

]

−Ck

⎡

⎣

2k
∑

j=0

∫

|∂ j
Z�|2gZd−1dZ +

2k−1
∑

j=0

∫

|∂ j
Z T |2gZd−1dZ

⎤

⎦ .

We conclude using (3.37) with N = N (a, k) large enough and its analogue
for T :

−�〈MX, X〉 ≥ c∗ak〈X, X〉 − Ca,k

N
∑

i=1

(

(�,�i )
2
g + (T,Ti )

2
g

)

.

Therefore,

−�〈(M−A)X, X〉 ≥ c∗ak〈X, X〉 +
N
∑

i=1

(〈X, Xi,1〉2 + 〈X, Xi,2〉2

−Ca,k

[

(�,�i )
2
g + (T,Ti )

2
g

])

.

The linear from

X = (�, T ) �→ √

Ca,k(�,�i )g

from (H2k, 〈·〉) into C is continuous from Cauchy–Schwarz and (3.36), and
hence by Riesz theorem, there exists Xi ∈ H2k such that

∀X ∈ H2k, 〈X, Xi 〉 = (�,�i )g,

and similarly for Ti , and (3.46) follows for X ∈ DR .
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Step 4ODE formulation of maximality. Our goal, in steps 4–6, is to prove that
for all R > 0 large enough,

∀F ∈ C∞([0, Za]), ∃! X ∈ H2k such that (−M+ R)X = F. (3.53)

(3.53) corresponds to solving

∣
∣
∣
∣
∣
∣
∣

− [−aH2�]�− T + R� = F�,

−
{[

(p − 1)Q�− (1− a)2H2
2�

2 + Ã2�+ A3

]

�

−(2− a)H2�T + A2T } + RT = FT .

Solving for T :

T = (aH2�+ R)�− F�, (3.54)

we look for �—solution to the second order elliptic equation:

[

(p − 1)Q�− (1− a)2H2
2�

2 + Ã2�+ A3

]

�
[

− (2− a)H2�+ A2

]

[aH2��+ R�− F�]

= −FT + R (aH2��+ R�− F�)

i.e.

(p − 1)Q��− H2
2�

2�+��
[

Ã2 + aH2A2 − 2RH2

−a(2− a)H2�H2]+ (A3 + RA2 − R2)�

= −FT − RF� +
[

− (2− a)H2�+ A2

]

F�.

Now, we have

(p − 1)Q��− H2
2�

2� =
(

(p − 1)Q − H2
2 Z

2
)

∂2Z�

+
(
(d − 1)(p − 1)Q

Z
− H2

2 Z

)

∂Z�

and hence

(

(p − 1)Q − H2
2 Z

2
)

∂2Z�+
{
(d − 1)(p − 1)Q

Z
− H2

2 Z

+Z
[

Ã2 + aH2A2 − 2RH2 − a(2− a)H2�H2

] }

∂Z�
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+(A3 + RA2 − R2)�

= −FT − RF� +
[

− (2− a)H2�+ A2

]

F�.

Since (p − 1)Q = μ2Z2σ 2, we have

(

(p − 1)Q − H2
2 Z

2
)

∂2Z�+
{
(d − 1)(p − 1)Q

Z
− H2

2 Z

+Z
[

Ã2 + aH2A2 − 2RH2 − a(2− a)H2�H2

] }

∂Z�

=
(

μ2σ 2 − H2
2

)

Z2∂2Z�+
{

(d − 1)μ2Zσ 2 − H2
2 Z

+Z
[

Ã2 + aH2A2 − 2RH2 − a(2− a)H2�H2

] }

∂Z�

= 1

Zd−1�
∂Z

(

Zd−1�
(

μ2σ 2 − H2
2

)

Z2∂Z�
)

with
(
∂Z�

�
+ d − 1

Z

)(

μ2σ 2 − H2
2

)

Z2

+2Z
(

μ2σ 2 − H2
2

)

+
(

2μ2σ∂Zσ − 2H2∂Z H2

)

Z2

= (d − 1)μ2Zσ 2 − H2
2 Z

+Z
[

Ã2 + aH2A2 − 2RH2 − a(2− a)H2�H2

]

,

i.e.

∂Z�

�
= − 2

Z
− 2μ2σ∂Zσ − 2H2∂Z H2

μ2σ 2 − H2
2

−2RH2 − (d − 2)H2
2 − Ã2 − aH2A2 + a(2− a)H2�H2
(

μ2σ 2 − H2
2

)

Z
.

Recalling H2 = μ(1− w) yields

∂Z�

�
= − 2

Z
− ∂Z [σ 2 − (1− w)2]

σ 2 − (1− w)2

−
2(1−w)

μ
R − (d − 2)(1− w)2 − Ã2

μ2 − a(1− w) A2
μ
− a(2− a)(1− w)�w

Z
(

σ 2 − (1− w)2
) .
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We therefore define

�(Z) =

∣
∣
∣
∣
∣
∣
∣
∣

e−F−(Z)

Z2(σ 2 − (1− w)2)
for 0 ≤ Z ≤ Z2,

e−F+(Z)

Z2(σ 2 − (1− w)2)
for Z > Z2.

(3.55)

where8

F−(Z) =
∫ Z

Z2
2

2(1−w)
μ

R − (d − 2)(1− w)2 − Ã2
μ2 − a(1− w) A2

μ
− a(2− a)(1− w)�w

Z ′
(

σ 2 − (1− w)2
) dZ ′ + C−,

F+(Z) =
∫ Z

2Z2

2(1−w)
μ

R − (d − 2)(1− w)2 − Ã2
μ2 − a(1− w) A2

μ
− a(2− a)(1− w)�w

Z ′
(

σ 2 − (1− w)2
) dZ ′ + C+.

In view of the above, we have obtained the elliptic equation:

∣
∣
∣
∣
∣
∣
∣
∣

− 1
Zd−1�

∂Z

(

Zd−1�
(

σ 2 − (1− w)2
)

Z2∂Z�
)

+ 1
μ2 (R

2 − A2R − A3)� = H,

H = 1
μ2

{

FT + RF� +
[

(2− a)H2�− A2

]

F�

}

,

(3.56)

with T recovered by (3.54). As Z → Z2, we have from (3.24):

�(Z) = |λ+|
Z2

(Z − Z2)+ O((Z − Z2)
2)

and hence

Z(σ 2 − (1− w)2) = |λ+|(Z2 − Z) [1+ O(Z − Z2)]

and hence

2(1−w)
μ

R − (d − 2)(1− w)2 − Ã2
μ2 − a(1− w) A2

μ
− a(2− a)(1− w)�w

Z
(

σ 2 − (1− w)2
)

=
2σ2

μ|λ+| R
[

1+ O
( 1
R

)]

(Z2 − Z) [1+ O(Z − Z2)]
.

8 The choice of the lower limits Z2
2 and 2Z2 in the definition of F± is arbitrary but dictate the

choice of the constantsC± in such a way as to ensure that limZ↑Z2 F−(Z)−limZ↓Z2 F+(Z) =
0. The additional degree of freedom in the choice of C± is used to fix an overall normalization
of � .
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Since the profile passes through P2 in a C∞ way, we obtain the development
of the measure at P2: for any M ≥ 1,

�(Z) = |Z2 − Z |c�
[

1+
M
∑

m=0

dσ,m,R(Z2 − Z)m + OM

(

|Z2 − Z |M+1)

]

,

(3.57)

where

c� = 2σ2
μ|λ+| R

[

1+ O

(
1

R

)]

≥ c∗R > 0 (3.58)

for R > R∗ large enough. Note that the above choice of C± is made to fix the
normalization constant in front of |Z2 − Z |c� to be equal to 1.
Step 5 Solving (3.56). We analyze the singularity of (3.56) at P2 using a
change of variables.
0 ≤ Z < Z2. We let

�(Z) = 	(Y ), Y = h(Z), h(Z) =
∫ Z

Z2
2

dZ ′

Z ′d−1� Z ′2(σ 2 − (1− w)2)
,

which maps (3.56) onto:

∣
∣
∣
∣
∣

−∂2Y	 + 1
μ2 (R

2 − A2R − A3)Z2d� 2(σ 2 − (1− w)2)	 = H̃ ,

H̃ = Z2d� 2(σ 2 − (1− w)2)H.
(3.59)

From (3.57),

Y = h(Z) =
∫ Z

Z2
2

dz

zd−1� z2(σ 2 − (1− w)2)

=
∫ Z

Z2
2

dz

zd−1z|λ+|(Z2 − z)(Z2 − z)c�
[

1+∑M
m=0 dσ,m,R(Z2 − z)m + OM

(

|Z2 − z|M+1)
]

= C

R�
[1+ �(Z)], (3.60)

where from (3.58) constant C > 0 is independent of R and, choosing M =√
R,

�(Z) =
√
R

∑

m=1

d̃σ,m,R(Z2 − Z)m + O
(

(Z2 − Z)
√
R+1

)

(3.61)
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with similar estimates for derivatives. Hence the potential term in (3.59) can
be expanded in Y and estimated as Y →+∞ for R large enough:

1

μ2 (R
2 − A2R − A3)Z

2d� 2(σ 2 − (1− w)2)

= CR

Y 2+cR

⎡

⎣1+
√
R

∑

j=1

˜̃d j

Y jcR
+ O

(
1

Y cR(
√
R+1)

)
⎤

⎦ (3.62)

for some universal constants ˜̃d j ,

CR = C + O

(
1

R

)

, 0 < cR = 1

c�
� 1

R

where C > 0 is independent of R. Therefore, by an elementary fixed point
argument, (3.59) with H̃ = 0 admits a basis of solutions	−

1 and	−
2 with the

following behavior as Y →+∞
∣
∣
∣
∣
∣
∣

	−
1 = 1+∑

√
R

j=1
c j,1
Y jcR

+ O
(

1
Y (

√
R+1)cR

)

	−
2 = Y

[

1+∑
√
R

j=1
c j,2
Y jcR

+ O
(

1
Y (

√
R+1)cR

)] (3.63)

with similar estimates for derivatives. The sequences (c j,1) j=1,2 are uniquely
determined inductively from (3.59) with H̃ = 0 using the expansion of the
potential (3.62).
Z2 < Z ≤ Za . To the right of P2, we let

�(Z) = 	(Y ), Y = h(Z), h(Z) =
∫ Z

2Z2

dz

zd−1� z2(σ 2 − (1− w)2)
+ C̃+,

which sends9 Y → +∞ as Z ↓ Z2. We construct a similar basis of homoge-
nous solutions 	+

1 and 	+
2 as Y →+∞ with asymptotics given by

	+
1 = 1+

√
R

∑

j=1

c j,1
Y jcR

+ O

(
1

Y (1+√R)cR

)

,

	+
2 = Y

⎡

⎣1+
√
R

∑

j=1

c j,2
Y jcR

+ O

(
1

Y (1+√R)cR

)
⎤

⎦

9 We add constant C̃+ to match the asymptotic expansion of Y in terms of (Z2 − Z). In
principle, it is unnecessary as it influences the terms of order R and higher while we only need
the universality of the expansion up to the order

√
R.
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with the sequences c j,1, c j,2 the same as in (3.63).
Basis of fundamental solutions. The function �1(Z) = 	−

1 (Y ) for Z < Z2

and �1(Z) = 	+
1 (Y ) for Z > Z2,obtained by gluing 	±

1 (Y ) belongs to

C
√
R([0, Za]) and is a solution to the homogeneous Eq. (3.59). Let now

�rad(Z) be the radial solution to the homogeneous problem associated to
(3.56) with �rad(0) = 1. Then the wronskian is given by

W = ∂Z�1�rad − ∂Z�rad�1 = W0

Zd−1� Z2(σ 2 − (1− w)2)
,

where W0 is a constant. We claim W0 �= 0. Indeed, otherwise �rad is propor-
tionate to �1 and hence is C

√
R on [0, Za]. In particular, if Trad is given by

(3.54) with F� = 0, then Xrad = (�rad, Trad) satisfies

(−M+ R)Xrad = 0 on (0, Za).

Since Xrad is C
√
R−1[[0, Z2]), we may apply the analysis in steps 1–4 for

R > R∗(k) large enough and (3.46) holds for Xrad, i.e.

0 = �〈(−M+ R)Xrad , Xrad〉
= �〈(−M+A)Xrad , Xrad〉 − �〈AXrad , Xrad〉 + R‖Xrad‖2H2k

≥ R‖Xrad‖2H2k
− 〈AXrad , Xrad〉

so that for R > R∗(k) sufficiently large

R

2
‖Xrad‖2H2k

≤ 0

and hence Xrad = 0 a contradiction. This concludes the proof of W0 �= 0.
Inner solution of the inhomogeneous problem. (�rad,�1) is then a basis for the
homogeneous problem corresponding to (3.56). As a consequence, the only

solution to (3.56) which is o((Z2 − Z)
− 1

cR ) at Z = Z2 is given by10

�(Z) = −�1(Z)

∫ Z

0

H(τ )�rad(τ )

W (τ )
dτ −�rad(Z)

∫ Z2

Z

H(τ )�1(τ )

W (τ )
dτ.

10 Note that�rad (Z) ∼ (Z2− Z)
− 1

cR as Z → Z2 in view of the behavior of	2 as Y → +∞.
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For a smooth H , � is smooth on [0, Z2) and we study its regularity at Z2. In
Y variables we obtain for some Y0 large enough:

	(Y ) = cY0,H	−
1 (Y )−	−

1 (Y )

∫ Y

Y0
H̃(τ )	−

2 (τ )dτ

−	−
2 (Y )

∫ +∞

Y
H̃(τ )	−

1 (τ )dτ. (3.64)

We have from (3.57), (3.60):

(RY )cR = 1

Z2 − Z

⎛

⎝

√
R

∑

m=0

βm(Z2 − Z)m + O(|Z2 − Z |
√
R+1)

⎞

⎠ ,

and hence

Z2 − Z =
√
R

∑

m=1

ym
YmcR

+ O

(
1

Y (
√
R+1)cR

)

with similar estimates for derivatives. In particular, a smooth function H(Z)

yields expansion for H̃(Z):

H̃ = (Z2 − Z)1+2c−1
R

⎛

⎝

√
R

∑

m=0

hm(Z2 − Z)m + O
(

(Z2 − Z)
√
R+1

)

⎞

⎠

=
√
R

∑

m=1

qm
Y 2+mcR

+ O

(
1

Y 2+(
√
R+1)cR

)

.

Conversely, an expansion of the form

G =
√
R−1
∑

m=0

bm
YmcR

+ O

(
1

Y
√
RcR

)

defines aC
√
R functionG(Z) at Z = Z2. Plugging in the asymptotic expansion

for 	−
1 , 	−

2 and H̃ in (3.64) yields
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	(Y ) = cY0,H

⎛

⎝

√
R

∑

m=0

cm,1

YmcR
+ O

(
1

Y (
√
R+1)cR

)
⎞

⎠

−
⎛

⎝

√
R

∑

m=0

cm,1

YmcR
+ O

(
1

Y (
√
R+1)cR

)
⎞

⎠

×
∫ Y

Y0

⎛

⎝

√
R

∑

m=0

cm,2

τmcR
+ O

(
1

Y (
√
R+1)cR

)
⎞

⎠

×
⎛

⎝

√
R

∑

j=1

q j

τ 1+ jcR
+ O

(
1

τ 1+(
√
R+1)cR

)
⎞

⎠ dτ

−
⎛

⎝

√
R

∑

m=0

cm,2

YmcR
Y + O

(
1

Y (
√
R+1)cR

)
⎞

⎠

∫ ∞

Y

⎛

⎝

√
R

∑

m=0

cm,1

τmcR
+ O

(
log(τ )

τ (
√
R+1)cR

)
⎞

⎠

×
⎛

⎝

√
R

∑

j=1

q j

τ 2+ jcR
+ O

(
1

τ 2+(
√
R+1)cR

)
⎞

⎠ dτ

=
√
R−1
∑

m=0

bm
YmcR

+ O

(
1

Y
√
RcR

)

.

We therefore have proved that for H ∈ C∞([0, Z2]), there exists a unique

solution � to (3.56) on [0, Z2] which is o((Z2 − Z)
− 1

cR ) at Z = Z2. Fur-
thermore, this solution is smooth on [0, Z2), and is C

√
R at Z = Z2 where it

admits an asymptotic expansion

�(Z) =
√
R−1
∑

j=0

c j,�(Z2 − Z) j + O
(

(Z2 − Z)
√
R
)

. (3.65)

Outer solution of the inhomogeneous problem. We argue similarly, consider-
ing the basis �1(Z) and �+

rad(Z) with �+
rad(Za) = 1, for Z2 < Z ≤ Za

and construct � solution to (3.56) on [Z2, Za] which is smooth on (Z2, Za],
o((Z2 − Z)

− 1
cR ) at Z = Z2 and C

√
R at Z = Z2. Furthermore, � admits at
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Z = Z2 the following asymptotic expansion analogous to (3.65)

�(Z) =
√
R−1
∑

j=0

c̃ j,�(Z2 − Z) j + O
(

(Z2 − Z)
√
R
)

.

The asymptotic expansion is uniquely determined from the Eq. (3.56) and the
first coefficient c̃0,�.We now recall that the function�1 belongs toC

√
R[0, Za]

and �1(Z2) = 1. By adding �1 to the above expansion, we obtain another
solution in which we can force the condition

c̃0,� = c0,�

with c0,� appearing in (3.65). As a result, the asymptotic expansions of the
inner and outer solutions are matched to order

√
R, so that the constructed

solution is C
√
R at Z2. Finally, we have shown that given any smooth function

H on [0, Za], there exists a unique solution � to (3.56) on [0, Za] which is

o((Z2− Z)
− 1

cR ) at Z = Z2. Furthermore, this solution is smooth for Z �= Z2

and C
√
R at Z = Z2. In particular, with T recovered by (3.54) and smooth for

Z �= Z2 and C
√
R−1 at Z = Z2, we have that (�, T ) ∈ H2k for R > R(k)

large enough. Also, since (�, T ) with � ∼ (Z2 − Z)
− 1

cR near Z = Z2 does
not belong to H2k ,11 we have now proved that, in fact, there exists a unique
solution X = (�, T ) to (−M+ R)X = F on [0, Za] inH2k , which concludes
the proof of (3.53).
Step 6 Density of DR . We now prove that DR given by (3.48) is dense in
D(M). Indeed, if X ∈ D(M), then X ∈ H2k and MX ∈ H2k so that there
exists a sequence (Yn)n∈N ∈ C∞([0, Za],C2) with

lim
n→+∞ Yn → (−M+ R)X in H2k .

From step 5, for each integer n, there exist a unique Zn ∈ DR solution to

(−M+ R)Zn = Yn, Zn ∈ H2k,

and hence

(−M+ R)Zn → (−M+ R)X in H2k .

11 Recall that (cR)
−1 � R � 1.
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Thus, to conclude, it remains to check that Zn converges to X in H2k . To this
end, since Zn ∈ DR , (3.46) holds for Zn − Zq and thus:

�〈Yn − Yq , Zn − Zq〉 = �〈(−M+ R)(Zn − Zq), Zn − Zq〉
= �〈(−M+A)(Zn − Zq), Zn − Zq〉 − �〈A(Zn − Zq), Zn − Zq〉
+R‖Zn − Zq‖2H2k

≥ R‖Zn − Zq‖2H2k
−�〈A(Zn − Zq), Zn − Zq〉

so that, sinceA is a bounded operator, we infer for R sufficiently large

R

2
‖Zn − Zq‖H2k ≤ ‖Yn − Yq‖H2k .

In view of the convergence of (Yn) in H2k , we deduce that Zn is a Cauchy
sequence in H2k and hence converges, i.e.

lim
n→+∞ Zn → Z in H2k, Z ∈ H2k .

Since (−M+ R)Zn converges to (−M+ R)X in H2k , we infer

(−M+ R)(Z − X) = 0 in D′(0, Za), Z − X ∈ H2k .

The uniqueness statement in (3.53) applied for F = 0 yields Z = X . Thus
Zn → X and (−M+R)Zn → (−M+R)X inH2k . Finally, we have obtained
a sequence Zn ∈ DR such that Zn → X in D(M), and hence DR is dense in
D(M) as claimed.
Step 7 Maximal accretivity. We have proved in steps 1 to 3 that (3.46) holds
for X ∈ DR , i.e.

∀X ∈ DR, �〈(−M+A)X, X〉 ≥ c∗ak〈X, X〉.
Since DR is dense in D(M), in view of step 6, we have

∀X ∈ D(M), �〈(−M+A)X, X〉 ≥ c∗ak〈X, X〉,
which concludes the proof of the accretivity property (3.46).
We now claim:

∀F ∈ H2k, ∃X ∈ D(M) such that (−M+ R)X = F. (3.66)

Indeed, since F ∈ H2k , by density, there exists

lim
n→+∞ Fn → F in H2k, Fn ∈ C∞([0, Za]).
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Since Fn ∈ C∞([0, Za]), by (3.53), there exists Xn ∈ H2k—solution to

(−M+ R)Xn = Fn.

Using (3.46) and arguing as in step 6, we have for R sufficiently large

R

2
‖Xn − Xq‖H2k ≤ ‖Fn − Fq‖H2k .

In view of the convergence of (Fn) in H2k , we deduce that Xn is a Cauchy
sequence in H2k and hence converges, i.e.

lim
n→+∞ Xn → X in H2k, X ∈ H2k .

On the other hand, since (−M+ R)Xn = Fn converges to F inH2k , we infer

(−M+ R)X = F, X ∈ D(M),

which concludes the proof of (3.66).
Finally, (3.46) and a classical and elementary argument12 ensures that the
maximality property (3.47) is implied by

∃R > 0, ∀F ∈ H2k, ∃X ∈ D(M) such that (−M̃+ R)X = F.

Indeed, let R > 0 large enough and F ∈ H2k . SinceA is a bounded operator,
for R large enough, from (3.66) and (3.46),

�〈F, X〉 = �〈(−M+ R)X, X〉 = �〈(−M̃−A+ R)X, X〉 ≥ R

2
‖X‖2

H2k
.

Therefore, for any F ∈ H2k , solution X to (3.66) is unique. Therefore,
(−M+ R)−1 is well defined on H2k with the bound

‖(−M+ R)−1‖L(H2k ,H2k) � 1

R
.

Hence

−M̃+ R = −M+A+ R = (−M+ R)
[

Id + (−M+ R)−1A
]

is invertible on H2k for R large enough, which yields (3.47). This concludes
the proof of Proposition 3.10. ��
12 More precisely, one can easily prove that the set of R in (0,+∞) such that a solution X
exists is both closed and open. Hence, it suffices to prove that it is non empty.
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4 Set up and the bootstrap

In this section we describe a set of smooth well localized initial data which
lead to the conclusions of Theorem 1.1. The heart of the proof is a bootstrap
argument coupled to the classical Brouwer topological argument of Lemma
3.5 to avoid finitely many unstable directions of the corresponding linear flow.
Since our analysis relies essentially on the phase-modulus decomposition of
solutions of the Schrödinger equation, our chosen data needs to give rise to
nowhere vanishing solutions to (1.1) (at least for a sufficiently small time as
in Proposition 4.1 of [9]).

4.1 Renormalized variables

Let u(t, x) ∈ C([0, T∗),∩k≥0Hk) be a solution to (1.1) such that u(t, x) does
not vanish at any (t, x) ∈ [0, T∗) × R

d . This will be a consequence of our
choice of initial data and suitable bootstrap assumptions. We introduce for
such a solution the decomposition of Lemma 2.1

u(t, x) = 1

(λ
√
b)

2
p−1

w(τ, y)eiγ , w(τ, y) = ρTot(τ, Z)ei
	Tot
b (4.1)

with the renormalized space and times

∣
∣
∣
∣
∣
∣

Z = y
√
b = Z∗x, Z∗ = eμτ ,

λ(τ) = e− τ
2 , b(τ ) = e−eτ , γτ = − 1

b = −eeτ ,
τ = −log(T∗ − t), τ0 = −log(T∗).

(4.2)

Here, 0 < e < 1 is the fixed front speed such that

r = 2

1− e
> 2.

Up to a constant the phase can more explicitly be written in the form

γ (τ) = − 1

eb
. (4.3)

Our claim is that given

τ0 = −log(T∗)

large enough, we can construct a finite co-dimensional manifold of smooth
well localized initial data u0 such that the corresponding solution to the renor-
malized flow (2.23) is global in renormalized time τ ∈ [τ0,+∞), bounded in a
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suitable topology and nowhere vanishing. Upon unfolding (4.1), this produces
a solution to (1.1) blowing up at T∗ in the regime described by Theorem 1.1.

4.2 Stabilization and regularization of the profile outside the singularity

The spherically symmetric profile solution (ρP , 	P) has an intrinsic slow
decay as Z → +∞

ρP(Z) = cP

Z
2(r−1)
p−1

(

1+ O

(
1

Zr

))

,

which needs to be regularized in order to produce finite energy non vanishing
initial data.
1. Stabilization of the profile. Recall the asymptotics (2.20) and the choice of
parameters (4.3), (4.2) which yield

λ2(r−2) = br , r = 2

1− e
, μ = 1− e

2
.

For Z =
√
b

λ
x � 1, i.e., outside the singularity:

uP(t, x) = eiγ (τ)

(λ
√
b)

2
p−1

ρP(Z)ei
	P
b

= cPe−
i
eb

(λ
√
b)

2
p−1

(√
b

λ
x
) 2(r−1)

p−1

e

i

⎡

⎢
⎣

1
eb+ c	

b

(√
b

λ
x

)r−2

⎤

⎥
⎦ (

1+ O

(
1

〈Z〉r
))

= cP

x
2(r−1)
p−1

e
i c	
xr−2

[

1+O
(

1
Zr

)] [

1+ O

(
1

Zr

)]

. (4.4)

We see that far away from the singularity the profile uP is stationary. It is
precisely this property that will allow us to dampen the tail of the profile
below and construct solutions arising from rapidly decaying (in particular,
finite energy) initial data.
2. Dampening of the tail. We dampen the tail outside the singularity x ≥ 1,
i.e., Z ≥ Z∗ as follows. Let

RP(t, x) = 1

(λ
√
b)

2
p−1

ρP(Z), x = Ze−μτ , (4.5)
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then the asympotics (4.4) imply the existence of a limiting profile for x ≥ 1:

RP(t, x) = cP

x
2(r−1)
p−1

(

1+ O(e−μrτ )
)

We then pick once and for all a large integer nP � 1 and define a smooth non
decreasing connectionK(x)

K(x) =
∣
∣
∣
∣

0 for |x | ≤ 5,
nP − 2(r−1)

p−1 for |x | ≥ 10
(4.6)

for some large enough universal constant

nP = nP(d) � 1.

We then define the dampened tail profile in original variables

RD(t, x) = RP(t, x)e
− ∫ x

0
K(x ′)
x ′ dx ′

=
∣
∣
∣
∣

RP(t, x) for |x | ≤ 5,
cP
xnP

[

1+ O
(

e−μrτ )
)]

for |x | ≥ 10
, (4.7)

and hence in renormalized variables:
∣
∣
∣
∣
∣

ρD(τ, Z) = (λ
√
b)

2
p−1 RD(t, x),

x = Z
Z∗ , Z∗ = eμτ .

(4.8)

Let

ζ(x) = e−
∫ x
0

K(x ′)
x ′ dx ′

,

we have the equivalent representation:

ρD(Z) = (λ
√
b)

2
p−1 RD(τ, x) = (λ

√
b)

2
p−1 RP(t, x)ζ(x)

= ζ

(
Z

Z∗

)

ρP(Z) (4.9)

Note that by construction for j ∈ N
∗:

− Z j∂
j
ZρD

ρD
=
∣
∣
∣
∣
∣
∣

(−1) j−1
(
2(r−1)
p−1

) j + O
(

1
〈Z〉r

)

for Z ≤ 5Z∗,

(−1) j−1n j
P + O

(
1

〈Z〉r
)

for Z ≥ 10Z∗ (4.10)
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and
∣
∣
∣
∣
∣

Z j∂ jρD

ρD

∣
∣
∣
∣
∣
L∞

� 1.

The obtained dampened profile for Z ≥ Z∗ will be denoted

(ρD, 	P), QD = ρ
p−1
D .

4.3 Initial data

We now describe explicitly an open set of initial data which will be considered
as perturbations of the profile (ρD, 	P) in a suitable topology. The conclusions
of Theorem 1.1 will hold for a finite co-dimension set of such data.

We pick universal constants 0 < a � 1, Z0 � 1 which will be adjusted
along the proof and depend only on (d, �). We define two levels of regularity

d

2
� k0 � km,

where km denotes the maximum level of regularity required for the solution
and k0 is the level of regularity required for the linear spectral theory on the
compact set [0, Za].
0. Variables and notations for derivatives. We define the variables

∣
∣
∣
∣
∣
∣

ρTot = ρP + ρ = ρD + ρ̃,

	Tot = 	P +	,

� = ρP	,

(4.11)

and specify the data in the (ρ̃, 	) variables.Wewill use the following notations
for derivatives. Given k ∈ N, we note

∂k = (∂k1 , . . . , ∂
k
d ), f (k) := ∂k f

the vector of k-th derivatives in each direction. The notation ∂kZ f is the k-th
radial derivative. We let

ρ̃k = �k ρ̃, 	k = �k	.

Given a multiindex α = (α1, . . . , αd) ∈ N
d , we note

∂α = ∂
α1
1 · · · ∂αd

d , |α| = α1 + · · · + αd .
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1. Initializing the Brouwer argument. We define the variables adapted to the
spectral analysis according to (3.8), (3.12):

∣
∣
∣
∣

� = ρP	,

T = ∂τ�+ aH2��,
X =

∣
∣
∣
∣

T
�

(4.12)

and recall the scalar product (3.44). For 0 < cg, a � 1 small enough, we
choose k0 � 1 such that Proposition 3.10 applies in the Hilbert space H2k0
with the spectral gap

∀X ∈ D(M), �〈(−M+A)X, X〉 ≥ cg〈X, X〉. (4.13)

Hence

M = (M−A+ cg)− cg +A

and we may apply Lemma 3.4:

�0 = {λ ∈ C, �(λ) ≥ 0} ∩ {λ is an eigenvalue of M}
= (λi )1≤i≤N (4.14)

is a finite set corresponding to unstable eigenvalues, V is an associated (unsta-
ble) finite dimensional invariant set,U is the complementary (stable) invariant
set

H2k0 = U
⊕

V (4.15)

and P is the associated projection on V . We denote by N the nilpotent part of
the matrix, which consists of a finite collection of Jordan blocks, representing
M on V:

M|V = N+ diag. (4.16)

Note that N commutes with M|V . Then there exist C, δg > 0 such that (3.5)
holds:

∀X ∈ U, ‖eτMX‖H2k0
≤ Ce−

δg
2 τ‖X‖H2k0

, ∀τ ≥ τ0.

We now choose the data at τ0 such that (its restriction to [0, Za], where the
projection P and the space H2k0 are defined, satisfies)

‖(I − P)X (τ0)‖H2k0
≤ e−

δg
2 τ0, ‖PX (τ0)‖H2k0

≤ e−
3δg
5 τ0 .
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2. Bounds on local low Sobolev norms. Let 0 ≤ m ≤ 2k0 and

ν0 = −2(r − 1)

p − 1
+ δg

2μ
, (4.17)

let the weight function

χν0,m = 1

〈Z〉d−2(r−1)+2(ν0−m)
ζ

(
Z

Z∗

)

, ζ(Z) =
∣
∣
∣
∣

1 for Z ≤ 2,
0 for Z ≥ 3.

(4.18)

Then

2k0∑

m=0

∫

(p − 1)Q(∂mρ(τ0))
2χν0,m + |∇∂m�(τ0)|2χν0,m ≤ e−δgτ0 .(4.19)

4. Pointwise assumptions. We assume the following interior pointwise bounds

∀0 ≤ k ≤ km + 1,
∥
∥
∥
∥
∥

〈Z〉k∂kZ ρ̃(τ0)
ρD

∥
∥
∥
∥
∥
L∞(Z≤Z∗)

+ ‖〈Z〉r−2〈Z〉k∂kZ	(τ0)‖L∞(Z≤Z∗)

≤ bc00 (4.20)

for some small enough universal constant c0, and the exterior bounds:

∀0 ≤ k ≤ km + 1,
∥
∥
∥
∥
∥

Zk+1∂kZ ρ̃(τ0)

ρD

∥
∥
∥
∥
∥
L∞(Z≥Z∗)

+ ‖Zk+1∂kZ	(τ0)‖L∞(Z≥Z∗)
b0

≤ bC0
0 (4.21)

for some large enough universal C0(d, r, p). Note in particular that (4.20),
(4.21) ensure for 0 < b0 < b∗0 � 1 small enough:

∥
∥
∥
∥

ρ̃(τ0)

ρD

∥
∥
∥
∥
L∞

≤ δ0 � 1 (4.22)

and hence the data does not vanish.
5. Global rough bound for large Sobolev norms. We consider the global
Sobolev norm
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‖ρ̃, 	‖2km
:=

km∑

j=0

∑

|α|= j

∫
b2|∇∂αρ̃|2 + (p − 1)ρ p−2

D ρTot(∂
αρ̃)2 + ρ2

Tot|∇∂α	|2
〈Z〉2(km− j)

,

(4.23)

then we require:

‖ρ̃(τ0),	(τ0)‖km ≤ 1

2
. (4.24)

The bound above is actually implied by the pointwise assumptions.

Remark 4.1 Note that we may without loss of generality assume u0 ∈
∩k≥0Hk .

4.4 Bootstrap bounds

Wemake the following bootstrap assumptions on themaximal interval [τ0, τ ∗).
0.Non vanishing and hydrodynamical variables.From standardCauchy theory
and the smoothness of the nonlinearity since p ∈ 2N∗ + 1, the smooth data
u0 ∈ ∩k≥0Hk generates a unique local solution u ∈ C([0, T∗),∩k≥0Hk) with
the blow up criterion

T∗ < +∞⇒ lim
t→T∗

‖u(t, ·)‖Hkc = +∞ (4.25)

for some large enough kc(d, p). To ensure non vanishing, we first note
that since inf |x |≤10 |u0(x)| > 0, the continuity of u in time ensures
inf |x |≤10 |u(t, x)| > 0 for t ∈ [0, T∗], T∗ > 0 small enough. For |x | ≥ 10, we
estimate from the flow

∣
∣rnP |u(t, x)| − rnP |u0|

∣
∣ ≤

∫ t

0
rnP

∣
∣�u − u|u|p−1

∣
∣ dt

and hence from our choice of initial data, the non vanishing of u(t, x) follows
on a time interval where

T∗
∥
∥rnP (|�u| + |u|p)∥∥L∞([0,T∗),|x |≥10) ≤ δ (4.26)

for some sufficiently small universal constant 0 < δ � 1. Using spherical
symmetry we can replace the above by
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T∗
(

‖〈x〉nP+1− d
2+ε�u‖L∞([0,T∗);H1)

+‖r2εu‖p−1
L∞([0,T∗),|x |≥10)‖〈x〉nP+1− d

2−εu‖L∞([0,T∗);H1)

)

≤ δ

for an arbitrarily small ε > 0. Our initial data u0 belongs to the space

∩k≥0Hk ∩ ‖〈x〉nP+1− d
2−εu‖L2 ∩ ‖〈x〉nP+3− d

2−ε�u‖L2 .

Existence of the desired time interval [0, T∗) now follows from a local well-
posedness for NLS in weighted Sobolev spaces which is (essentially) in [27].

We may therefore introduce the hydrodynamical variables (4.1) on such
a small enough time interval and will bootstrap the smallness bound which
ensures non vanishing:

∥
∥
∥
∥

ρ̃

ρTot

∥
∥
∥
∥
L∞

≤ δ (4.27)

for some sufficiently small 0 < δ = δ(km) � 1.
1. Global weighted Sobolev norms. Pick a small enough universal constant
0 < ν̃ < ν̃∗(km) � 1, we define

∣
∣
∣
∣
∣
∣
∣

ν = ν̃ − 2(r−1)
p−1 ,

σν = ν + d
2 − (r − 1),

m0 = 4km
9 + 1

(4.28)

and let the continuous function:

σ(m) =
∣
∣
∣
∣

σν − m for 0 ≤ m ≤ m0,

−α(km − m) for m0 ≤ m ≤ km
(4.29)

with the continuity requirement at m0:

α(km − m0) = m0 − σν, α = m0 − σν

km − m0
= 4

5
+ O

(
1

km

)

. (4.30)

In particular, α < 1. We note that for all 1 ≤ m ≤ km

σ(m − 1) ≥ σ(m)− α. (4.31)

We also define the function

σ̃ (k) =
∣
∣
∣
∣
∣

nP − 2(r−1)
p−1 − (r − 2)+ 2ν̃ for 0 ≤ k ≤ 2km

3 + 1,

β(km − k) for 2km
3 + 1 ≤ k ≤ km,
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≤ nP − 2(r − 1)

p − 1
− (r − 2)+ 2ν̃, (4.32)

where β is computed through the continuity requirement at 2km
3 :

km
3

β = nP − 2(r − 1)

p − 1
− (r − 2)+ 2ν̃ ⇔ β = 3

nP − 2(r−1)
p−1 − (r − 2)+ 2ν̃

km
.

We will choose nP � km , e.g. nP = km
30 , so that in particular,

β <
1

10
, α + β ≤ 1.

We also note that

σ̃ (m − 1) ≤ σ̃ (m)+ β.

We then define the weighted Sobolev norm:

∣
∣
∣
∣
∣
∣
∣

‖ρ̃, 	‖2m,σ (m) =
∑m

k=0

∫

χm,k,σ (m)
[

b2|∇ρ̃(k)|2 + (p − 1)ρ p−2
D ρTot(ρ̃

(k))2 + ρ2
Tot|∇	(k)|2

]

χm,k,σ (m)(Z) = 1
〈Z〉2(m−k+σ(m)) ξm

( Z
Z∗
)

,

, (4.33)

where the function

ξm(x) =
∣
∣
∣
∣

1 for x ≤ 1
x2σ̃ (m) for x > 1

We assume the bootstrap bound:

‖ρ̃, 	‖2m,σ (m) ≤ 1, 0 ≤ m ≤ km − 1. (4.34)

Remark 4.2 (Equivalence of norms) It is easy to see that the norm (4.33) is
equivalent

‖ρ̃, 	‖2m,σ (m) ≈
m
∑

k=0

∑

|α|=k

∫

χm,k,σ (m)

[

b2|∇∇αρ̃|2 + ρ
p−1
D |∇αρ̃|2 + ρ2

D|∇∇α	|2
]

(4.35)
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and for even m

‖ρ̃, 	‖2m,σ (m) ≈
m
2∑

k=0

∫

χm,2k,σ (m)

[

b2|∇ρ̃k |2 + ρ
p−1
D |ρ̃k |2 + ρ2

D|∇	k |2
]

. (4.36)

Let us briefly sketch the proof. First,wenote that theweight functionχm,k,σ can
be replaced by a smooth function χ̃m,k,σ with similar properties. In particular,

∣
∣∇αχ̃m,k,σ

∣
∣ ≤ Cα,m,k,σ

χ̃m,k,σ

〈Z〉α . (4.37)

The functions ρ2
Dχ̃m,k,σ and ρ

p−1
D χ̃m,k,σ also obey the property above. We

now consider the case m = 2, let χ̂ be a weight function obeying (4.37) and
observe that

∫

χ̂ |∂1∂2 f |2 =
∫

χ̂∂21 f ∂22 f −
∫

∂1χ̂∂2 f ∂1∂2 f +
∫

∂2χ̂∂2 f ∂
2
1 f.

Therefore,
∫

χ̂ |∂1∂2 f |2 �
∫

χ̂ (|∂21 f |2 + |∂22 f |2)+
∫

χ̂

〈Z〉2 (|∂1 f |
2 + |∂2 f |2).

Using this for f = ∇ρ̃, ρ̃,∇	 and with any mixed derivative in place of
∂1∂2 immediately confirms the equivalence of the norms (4.33) and (4.35) for
m = 2. The equivalence for higher derivatives can be proved by induction.
The equivalence with (4.36) follows from a similar Bochner type identity

d
∑

i, j=1

∫

χ̂ |∂i∂ j f |2 =
∫

χ̂ |� f |2 −
d
∑

i, j=1

∫

∂i χ̂∂ j f ∂i∂ j f

+
d
∑

i, j=1

∫

∂ j χ̂∂ j f ∂i∂i f

implying

d
∑

i, j=1

∫

χ̂ |∂i∂ j f |2 �
∫

χ̂ |� f |2 +
∫

χ̂

〈Z〉2 |∇ f |2

�
∫

χ̂ |� f |2 +
∫

χ̂

〈Z〉4 | f |
2.
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This gives the equivalence of (4.33) and (4.36) for m = 2. Once again, higher
norms follow by induction.

Finally, note that the above norm equivalences are even independent of the
assumption of spherical symmetry on ρ̃, 	.

2. Global control of the highest Sobolev norm:

‖ρ̃, 	‖2km = ‖ρ̃, 	‖2km ,σ (m) ≤ 1. (4.38)

3. Local decay of low Sobolev norms: for any 0 ≤ k ≤ 2k0, any 1 ≤Ẑ ≤ Z∗
and universal constant C = C(k0):

‖(ρ̃, 	)‖Hk(Z≤Ẑ)
≤ ẐCe−

3δg
8 τ . (4.39)

4. Pointwise bounds:
∣
∣
∣
∣
∣
∣

∀0 ≤ k ≤ 2km
3 , ‖ Zn(k)∂kZ ρ̃

ρD
‖L∞ ≤ 1,

∀1 ≤ k ≤ 2km
3 , ‖Zn(k)〈Z〉r−2∂kZ	‖L∞(Z≤Z∗) + ‖Zn(k)∂kZ	‖L∞(Z≥Z∗)

b ≤ 1
(4.40)

with

n(k) =
∣
∣
∣
∣

k for k ≤ 4km
9 ,

km
4 for 4km

9 < k ≤ 2km
3 .

(4.41)

Remark 4.3 Since b = e−μ(r−2)τ , (4.20) and (4.21) imply that the initial data
verify the bootstrap inequalities (4.34), (4.38), (4.40) with the bound e−cτ0 for
some small universal constant c.

The heart of the proof of Theorem 1.1 is the following:

Proposition 4.4 (Bootstrap) Let τ ∗ be the maximal time with property that
(see (4.16) for the definition of N)

‖e−τN
PX (τ )‖H2k0

<e−
19δg
30 τ (4.42)

for all τ ∈ [τ0, τ ∗) and that the bounds (4.26), (4.34), (4.38), (4.39), (4.40),
(4.27) hold on [τ0, τ ∗) with δ−1, τ0 large enough. Then the following holds:
1. Exit criterion. The bounds (4.26), (4.34), (4.38), (4.39), (4.40), (4.27) can
be strictly improved13 on [τ0, τ ∗). Consequently, either τ ∗ = +∞ or, if τ ∗ <

13 More precisely, the same bounds hold with the corresponding constants on the right-hand
side being replaced by 1/2 of their values.
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+∞, then

‖e−τ∗N
PX (τ ∗)‖H2k0

e
19δg
30 τ∗ = 1. (4.43)

2. Linear evolution. The right hand side G of the equation for X (τ )

∂τ X = MX + G

satisfies

‖G(τ )‖H2k0
≤ e−

2δg
3 τ , ∀τ ∈ [τ0, τ ∗]. (4.44)

Wewill show in Sect. 8.3 that Proposition 4.4 immediately implies Theorem
1.1.

Remark 4.5 We note that the assumption (4.42) implies that

‖PX (τ )‖H2k0
≤ e−

δg
2 τ , ∀τ ∈ [τ0, τ ∗). (4.45)

We will prove the bootstrap Proposition 4.4 under the weaker assumption
(4.45). Specifically, we will define [τ0, τ ∗) to be the maximal time interval on
which (4.45) holds and will show that both the bounds (4.26), (4.34), (4.38),
(4.39), (4.40), (4.27) can be improved and that G satisfies (4.44).

We now focus on the proof of Proposition 4.4 and work on a time interval
[τ0, τ ∗), τ0 < τ ∗ ≤ +∞ on which (4.26), (4.34), (4.38), (4.39), (4.40), (4.27)
and (4.45) hold.

5 Control of high Sobolev norms

We first turn to the global in space control of high Sobolev norms. This is
an essential step to control the b dependence of the flow and the dissipative
structure which can neither be treated by spectral analysis nor perturbatively.

We claim an improvement of the bound (4.34), controlling all but the highest
weighted Sobolev norm.

Proposition 5.1 There exists a universal constant c∗km > 0 such that for all
0 ≤ m ≤ km − 1

‖ρ̃, 	‖m,σ (m) ≤ e−c∗km τ
. (5.1)

The rest of this section is devoted to the proof of Proposition 5.1. Let us
outline the main steps:
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(1) First, we derive a general weighted energy identity, see (5.10), which
will be used several times in the paper, and which respects the quasilin-
ear structure of the problem. It is important that the b2� term that was
neglected in the Euler approximation of the flow produces a positive term
in (5.10).

(2) Second,we show that thanks to our choice ofweights, and knowing decay
on the light cone, we can derive from (5.10) the differential inequality
(5.13). The control of the corresponding nonlinear terms relies on clas-
sical interpolation estimates between weighted Sobolev norms.

5.1 Algebraic energy identity

We derive the energy identity for high Sobolev norms. Due to the use of the
hydrodynamical variables, the identity exhibits a quasilinear structure.
Step 1 Equation for ρ̃, 	. Recall (2.23):

∣
∣
∣
∣
∣
∣
∣

∂τρTot = −ρTot�	Tot − μ�(r−1)
2 ρTot − (2∂Z	Tot + μZ) ∂ZρTot

ρTot∂τ	Tot = b2�ρTot −
[|∇	Tot|2 + μ(r − 2)	Tot − 1

+μ�	Tot + ρ
p−1
Tot

]

ρTot.

By construction

∣
∣
∣
∣
∣

|∇	P |2 + ρ
p−1
D + μ(r − 2)	P + μ�	P − 1 = ẼP,	,

∂τρD + ρD

[

�	P + μ�(r−1)
2 + (2∂Z	P + μZ)

∂ZρD
ρD

]

= ẼP,ρ
(5.2)

with Ẽ supported in Z ≥ 3Z∗. The linearized flow is given by

∣
∣
∣
∣
∣
∣
∣

∂τ ρ̃ = −ρTot�	 − 2∇ρTot · ∇	 + H1ρ̃ − H2�ρ̃ − ẼP,ρ

∂τ	 = b2�ρTot
ρTot

− {H2�	 + μ(r − 2)	 + |∇	|2
+(p − 1)ρ p−2

D ρ̃ + NL(ρ̃)
}

− ẼP,	

(5.3)

with the nonlinear term

NL(ρ̃) = (ρD + ρ̃)p−1 − ρ
p−1
D − (p − 1)ρ p−2

D ρ̃.

Note that the potentials

H2 = μ+ 2
	 ′

P

Z
, H1 = −

(

�	P + μ�(r − 1)

2

)
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remain the same in these equations: they are not affected by the profile local-
ization introduced by passing from ρP to ρD . We recall the Emden transform
formulas (2.24):

∣
∣
∣
∣

H2 = μ(1− w),

H1 = μ�
2 (1− w)

[

1+ �σ
σ

]

,
(5.4)

which, using (2.19), yield the bounds:

∣
∣
∣
∣
∣

H2 = μ+ O
(

1
〈Z〉r

)

, H1 = −2μ(r−1)
p−1 + O

(
1

〈Z〉r
)

,

|〈Z〉 j∂ j
Z H1| + |〈Z〉 j∂ j

Z H2| � 1
〈Z〉r , j ≥ 1.

(5.5)

Our main task is now to produce an energy identity for (5.3) which respects
the quasilinear nature of (5.3) and does not loose derivatives.
Step 2 Equation for derivatives. We recall the notation for the vector ∂k :

∣
∣
∣
∣

∂k := (∂k1 , . . . , ∂
k
d ),

ρ̃(k) = ∂k ρ̃, 	(k) = ∂k	.

Also, for convenience, we denote ∂1 in various computations simply by ∂ .
We use

[∂k,�] = k∂k

to compute from (5.3):

∂τ ρ̃
(k) = (H1 − kH2)ρ̃

(k) − H2�ρ̃(k) − (∂kρTot)�	 − k∂ρTot∂
k−1�	

−ρTot�	(k) − 2∇(∂kρTot) · ∇	 − 2∇ρTot · ∇	(k) + F1 (5.6)

with

F1 = −∂k ẼP,ρ + [∂k, H1]ρ̃ − [∂k, H2]�ρ̃

−
∑

∣
∣
∣
∣
∣

j1 + j2 = k
j1 ≥ 2, j2 ≥ 1

c j1, j2∂
j1ρTot∂

j2�	

−
∑

∣
∣
∣
∣
∣

j1 + j2 = k
j1, j2 ≥ 1

c j1, j2∂
j1∇ρTot · ∂ j2∇	. (5.7)
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For the second equation:

∂τ	
(k) = b2

(

∂k�ρTot

ρTot
− k∂k−1�ρTot∂ρTot

ρ2
Tot

)

−kH2	
(k) − H2�	(k) − μ(r − 2)	(k) − 2∇	 · ∇	(k)

−
[

(p − 1)ρ p−2
D ρ̃(k) + k(p − 1)(p − 2)ρ p−3

D ∂ρD∂
k−1ρ̃

]

+ F2

(5.8)

with

F2 = −∂k ẼP,	 + b2
[

∂k
(
�ρTot

ρTot

)

− ∂k�ρTot

ρTot
+ k∂k−1�ρTot∂ρTot

ρ2
Tot

]

−[∂k , H2]�	 − (p − 1)
(

[∂k , ρ p−2
D ]ρ̃ − k(p − 2)ρ p−3

D ∂ρD∂k−1ρ̃
)

−
∑

j1+ j2=k, j1, j2≥1
∂ j1∇	 · ∂ j2∇	 − ∂kNL(ρ̃). (5.9)

Step 3 Algebraic energy identity. Let χ be a smooth function. We compute:

1

2

d

dτ

{∫

b2χ |∇ρ̃(k)|2 + (p − 1)
∫

χρ
p−2
D ρTot(ρ̃

(k))2 +
∫

χρ2
Tot|∇	(k)|2

}

= 1

2

∫

∂τ χ
{

b2|∇ρ̃(k)|2 + (p − 1)ρ p−2
D ρTot(ρ̃

(k))2 + ρ2
Tot|∇	(k)|2

}

−eb2
∫

χ |∇ρ̃(k)|2 +
∫

∂τ ρ̃
(k)
[

−b2χ�ρ̃(k)

−b2∇χ · ∇ρ̃(k) + (p − 1)χρ p−2
D ρTotρ̃

(k)
]

+ p − 1

2

∫

χ(p − 2)∂τ ρDρ
p−3
D ρTot(ρ̃

(k))2

+
∫

χ∂τ ρTot

[
p − 1

2
ρ
p−2
D (ρ̃(k))2 + ρTot|∇	(k)|2

]

−
∫

∂τ	
(k)
[

2χρTot∇ρTot · ∇	(k)

+χρ2
Tot�	(k) + ρ2

Tot∇χ · ∇	(k)
]

.

We compute:
∫

∂τ ρ̃
(k)
[

−b2χ�ρ̃(k) − b2∇χ · ∇ρ̃(k) + (p − 1)χρ p−2
D ρTotρ̃

(k)
]

=
∫

F1
[

−b2∇ · (χ∇ρ̃(k))+ (p − 1)χρ p−2
D ρTotρ̃

(k)
]

+
∫ [

(H1 − kH2)ρ̃
(k) − H2�ρ̃(k) − (∂kρTot)�	 − 2∇(∂kρTot) · ∇	

]

×
[

−b2χ�ρ̃(k) − b2∇χ · ∇ρ̃(k) + (p − 1)χρ p−2
D ρTotρ̃

(k)
]
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−
∫

k∂ρTot∂
k−1�	

[

−b2χ�ρ̃(k) − b2∇χ · ∇ρ̃(k)

+(p − 1)χρ p−2
D ρTotρ̃

(k)
]

−
∫

(ρTot�	(k) + 2∇ρTot · ∇	(k))

×
[

−b2χ�ρ̃(k) − b2∇χ · ∇ρ̃(k) + (p − 1)χρ p−2
D ρTotρ̃

(k)
]

= b2
∫

χ∇F1 · ∇ρ̃(k) + (p − 1)
∫

χF1ρ
p−2
D ρTotρ̃

(k)

+
∫ [

(H1 − kH2)ρ̃
(k) − H2�ρ̃(k) − (∂kρTot)�	 − 2∇(∂kρTot) · ∇	

]

×
[

−b2∇ · (χ∇ρ̃(k))+ (p − 1)χρ p−2
D ρTotρ̃

(k)
]

−
∫

k∂ρTot∂
k−1�	

[

−b2∇ · (χ∇ρ̃(k))+ (p − 1)χρ p−2
D ρTotρ̃

(k)
]

+b2
∫

∇χ · ∇ρ̃(k)
(

ρTot�	(k) + 2∇ρTot · ∇	(k)
)

−
∫

χ(ρTot�	(k) + 2∇ρTot · ∇	(k))

×
[

−b2�ρ̃(k) + (p − 1)ρ p−2
D ρTotρ̃

(k)
]

.

Similarly:

−
∫

∂τ	
(k)
[

2χρTot∇ρTot · ∇	(k) + χρ2
Tot�	(k) + ρ2

Tot∇χ · ∇	(k)
]

= −
∫

F2∇ · (χρ2
Tot∇	(k))

−
∫
{

b2
(

∂k�ρTot

ρTot
− k∂k−1�ρTot∂ρTot

ρ2
Tot

)}

×
[

2χρTot∇ρTot · ∇	(k) + χρ2
Tot�	(k) + ρ2

Tot∇χ · ∇	(k)
]

−
∫ {

− kH2	
(k) − H2�	(k) − μ(r − 2)	(k) − 2∇	 · ∇	(k)

−
[

(p − 1)ρ p−2
D ρ̃(k) + k(p − 1)(p − 2)ρ p−3

D ∂ρD∂k−1ρ̃
] }

×
[

2χρTot∇ρTot · ∇	(k) + χρ2
Tot�	(k) + ρ2

Tot∇χ · ∇	(k)
]

=
∫

χρ2
T∇	(k) · ∇F2 − b2

∫

(∂k�ρD +�ρ̃(k))
[

2χ∇ρTot · ∇	(k)

+χρTot�	(k) + ρTot∇χ · ∇	(k)
]

+b2
∫

k∂k−1�ρTot∂ρTot

ρTot

[

2χ∇ρTot · ∇	(k)

+χρTot�	(k) + ρTot∇χ · ∇	(k)
]

−
∫ [

−kH2	
(k) − H2�	(k) − μ(r − 2)	(k) − 2∇	 · ∇	(k)

]

∇

·(χρ2
Tot∇	(k))+

∫

(p − 1)ρ p−2
D ρ̃(k)

[

2χρTot∇ρTot · ∇	(k)

+χρ2
Tot�	(k) + ρ2

Tot∇χ · ∇	(k)
]
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+
∫

k(p − 1)(p − 2)ρ p−3
D ∂ρD∂k−1ρ̃∇ · (χρ2

Tot∇	(k))

=
∫

χρ2
T∇	(k) · ∇F2 − b2

∫

(∂k�ρD)∇ · (χρ2
Tot∇	(k))

+
∫

(−b2�ρ̃(k) + (p − 1)ρ p−2
D ρTotρ̃

(k))

×
[

2χ∇ρTot · ∇	(k) + χρTot�	(k) + ρTot∇χ · ∇	(k)
]

+b2
∫

k∂k−1�ρTot∂ρTot

ρ2
T

∇ · (χρ2
Tot∇	(k))

−
∫ [

−kH2	
(k) − H2�	(k) − μ(r − 2)	(k) − 2∇	 · ∇	(k)

]

∇ · (χρ2
Tot∇	(k))

+
∫

k(p − 1)(p − 2)ρ p−3
D ∂ρD∂k−1ρ̃∇

·(χρ2
Tot∇	(k)).

This yields the algebraic energy identity:

1

2

d

dτ

{∫

b2χ |∇ρ̃(k)|2 + (p − 1)
∫

χρ
p−2
D ρTot(ρ̃

(k))2 +
∫

χρ2
Tot|∇	(k)|2

}

= 1

2

∫

∂τ χ
{

b2|∇ρ̃(k)|2 + (p − 1)ρ p−2
D ρTot(ρ̃

(k))2 + ρ2
Tot|∇	(k)|2

}

−b2
∫

(∂k�ρD)∇ · (χρ2
Tot∇	(k))

−eb2
∫

χ |∇ρ̃(k)|2 +
∫

χ
∂τ ρTot

ρTot

[
p − 1

2
ρ
p−2
D ρTot(ρ̃

(k))2 + ρ2
T |∇	(k)|2

]

+ p − 1

2

∫

χ(p − 2)
∂τ ρD

ρD
ρ
p−2
D ρTot(ρ̃

(k))2 +
∫

F1χ(p − 1)ρ p−2
D ρTotρ̃

(k)

+b2
∫

χ∇F1 · ∇ρ̃(k) +
∫

χρ2
T∇F2 · ∇	(k)

+
∫ [

(H1 − kH2)ρ̃
(k) − H2�ρ̃(k) − (∂kρTot)�	 − 2∇(∂kρTot) · ∇	

]

×
[

−b2∇ · (χ∇ρ̃(k))+ (p − 1)χρ p−2
D ρTotρ̃

(k)
]

−
∫ [

−kH2	
(k) − H2�	(k) − μ(r − 2)	(k) − 2∇	 · ∇	(k)

]

×∇ · (χρ2
Tot∇	(k))

−
∫

k∂ρTot∂
k−1�	

[

−b2∇ · (χ∇ρ̃(k))+ (p − 1)χρ p−2
D ρTotρ̃

(k)
]

+b2
∫

k∂k−1�ρTot∂ρTot

ρ2
T

∇ · (χρ2
Tot∇	(k))

+
∫

k(p − 1)(p − 2)ρ p−3
D ∂ρD∂k−1ρ̃∇ · (χρ2

Tot∇	(k))

+b2
∫

∇χ · ∇ρ̃(k)
(

ρTot�	(k) + 2∇ρTot · ∇	(k)
)

+
∫

(−b2�ρ̃(k) + (p − 1)ρ p−2
D ρTotρ̃

(k))
[

ρTot∇χ · ∇	(k)
]

. (5.10)
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5.2 Weighted L2 bound for m ≤ km − 1

Given σ ∈ R, we recall the notation

∣
∣
∣
∣
∣
∣
∣

‖ρ̃, 	‖2k,σ =∑k
m=0

∫

χk,m,σ

[

b2|∇ρ̃m |2 + (p − 1)ρ p−2
D ρTotρ̃

2
m

+ρ2
Tot|∇	m |2

]

,

χk,m,σ (Z) = 1
〈Z〉2(k−m+σ) ξk

( Z
Z∗
)

.

We let

Ik,σ =
∫

ξk
( Z
Z∗
)

〈Z〉2σ
[

b2|∇ρ̃(k)|2 + (p − 1)ρ p−2
D ρTot(ρ̃

(k))2

+ρ2
Tot|∇	(k)|2

]

. (5.11)

Lemma 5.2 (Weighted L2 bound) Recall the definition (4.28), (4.29) of σ(m)

and let

∣
∣
∣
∣

σ = σ(k),
ν + 2(r−1)

p−1 = ν̃,
(5.12)

then there exists ckm > 0 such that for all 0 < ν̃ < ν̃(km) � 1 and b0 <

b0(km) � 1, for all 1 ≤ k ≤ km − 1, Ik := Ik,σ (k) given by (5.11) satisfies the
differential inequality

d Ik
dτ

+ 2μν̃ Ik ≤ e−ckm τ . (5.13)

We claim that Lemma 5.2 implies Proposition 5.1.

Proof of Proposition 5.1 Integrating (5.13) on the interval [τ0, τ ], with initial
data prescribed at τ0, we obtain

Ik(τ ) ≤ e−2μν̃(τ−τ0) Ik(τ0)+ 1

ckm − 2μν̃

(

e−2μν̃(τ−τ0)−ckm τ0 − e−ckm τ
)

.

We now recall, see Remark 4.3, that Ik(τ0) ≤ e−cτ0 . Choosing 4μν̃ ≤
min{c, ckm } we obtain that

Ik(τ ) ≤ 2e−2μν̃τ . (5.14)
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We now recall from (4.35) and (4.36) for even m that ‖ρ̃, 	‖m,σ controls all
the corresponding Sobolev norms: let a multi-index α = (α1, . . . , αd) with

α1 + · · · + αd = |α|, ∇α := ∂
α1
1 · · · ∂αd

d ,

then for all |α| = k, 0 ≤ k ≤ m,

b2
∫

χk,m,σ |∇∇αρ̃|2 + (p − 1)
∫

χk,m,σ ρ
p−2
D ρTot|∇αρ̃|2

+
∫

χk,m.σ ρ
2
Tot|∇∇α	|2,

� ‖ρ̃, 	‖2k,σ , (5.15)

and similarly the norm ‖ρ̃, 	‖2k,σ (with even k) is equivalent to the one where

∂m with 1 ≤ m ≤ k derivatives are replaced by �m with 1 ≤ m ≤ k
2 .

We now claim

‖ρ̃, 	‖2m,σ (m) ≤
m
∑

k=0

Ik,σ (k). (5.16)

Combining this with (5.14) concludes the proof of (5.1) (with c∗km = μν̃).
Proof of (5.16). Indeed,

‖ρ̃, 	‖2m,σ (m) =
m
∑

k=0

∫

χm,k,σ (m)

[

b2|∇ρ̃(k)|2 + (p − 1)ρ p−2
D ρTot(ρ̃

(k))2 + ρ2
Tot|∇	(k)|2

]

=
m
∑

k=0

∫ 〈Z〉2k
〈Z〉2(m+σ(m))

ξm(x)

[

b2|∇ρ̃(k)|2 + (p − 1)ρ p−2
D ρTot(ρ̃

(k))2 + ρ2
Tot|∇	(k)|2

]

and

m
∑

k=0

Ik,σ (k) =
m
∑

k=0

∫
ξk(x)

〈Z〉2σ(k)

[

b2|∇ρ̃(k)|2 + (p − 1)ρ p−2
D ρTot(ρ̃

(k))2 + ρ2
Tot|∇	(k)|2

]

=
m
∑

k=0

∫ 〈Z〉2kξk(x)
〈Z〉2(σ (k)+k)
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[

b2|∇ρ̃(k)|2 + (p − 1)ρ p−2
D ρTot(ρ̃

(k))2 + ρ2
Tot|∇	(k)|2

]

and hence (5.16) follows from σ(k)+ k ≤ σ(m)+ m and ξk(x) ≥ ξm(x) for
0 ≤ k ≤ m. ��

5.3 Proof of Lemma 5.2

This follows from the energy identity (5.10) coupled with the pointwise bound
(4.40) to control the nonlinear term.
Step 1 Interpolation bounds. Inwhat followswe use the convention� to denote
any dependence on the universal constants, including km . Constants c, ckm will
stand for generic, universal small constants.
Our main technical tool below will be the following interpolation bound: for
any 0 ≤ m ≤ km − 1 and δ > 0, there exists cδ,km > 0 such that

‖ρ̃, 	‖2m,σ (m)+δ ≤ e−cδ,km τ . (5.17)

Indeed, the claim follows by interpolating the local decay bootstrap bound
(4.39) and the bound (4.38) for the highest Sobolev norm for Z ≤ Z∗

c := (Z∗)c
and using the global weighted Sobolev bound for (4.34) for Z ≥ Z∗

c

‖ρ̃, 	‖2m,σ (m)+δ ≤ (Z∗
c )

Ckm e−ckm τ + 1

(Z∗
c )

2δ ‖ρ̃, 	‖2m,σ (m)

≤ e−cδ,km τ (5.18)

Above, on the set Z ≤ Z∗
c , we can replace the norm ‖ρ̃, 	‖2m,σ (m)+δ by

(Z∗
c )

Ckm with some large constant Ckm , times the unweighted Sobolev norm
‖ρ̃, 	‖2Hm(Z≤Z∗c ) and then interpolate the latter between the Sobolev bounds

(4.39) and (4.38). That will bring an additional factor (Z∗
c )

C , which can be
absorbed by Ckm , and the decaying factor e−ckm τ with a small constant ckm ,
explicitly dependent on km and δ. We can then choose c small enough (depen-
dent on Ckm ) to obtain the second inequality in (5.18).

We will also use the bound for the damped profile from (4.7), (4.8) and
(4.9):

|Zk∂kZρD| � 1

〈Z〉 2(r−1)
p−1

1Z≤Z∗ + 1

(Z∗)
2(r−1)
p−1

1
( Z
Z∗
)nP 1Z≥Z∗ . (5.19)

We will also use the bound

χk−1,k−1,σ (k−1) ≤ 〈Z〉2(α+β)χk,k,σ (k) ≤ 〈Z〉2χk,k,σ (k), (5.20)
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which follows from

σ(k − 1)+ α ≥ σ(k), σ̃ (k − 1) ≤ σ̃ (k)+ β (5.21)

and α + β ≤ 1.
Step 2 Energy identity. We run (5.10) with

χ = 1

〈Z〉2σ ξk

(
Z

Z∗

)

, σ = σ(k), 1 ≤ k ≤ km − 1 (5.22)

with ξk(x) = 1 for x ≤ 1 and ξk(x) = x2σ̃ (k) for x > 1, and estimate all
terms. In our notations

χ = χk,k,σ (k).

From (4.28), (4.29) and recalling m0 = 4km
9 + 1:

σ(k)+ k =
∣
∣
∣
∣

σν for 0 ≤ k ≤ m0
−α(km − k)+ k = (α + 1)(k − m0)+ σν for m0 ≤ k ≤ km

≥ σν (5.23)

and

σ̃ (k) =
∣
∣
∣
∣
∣

nP − 2(r−1)
p−1 − (r − 2)+ 2ν̃ for 0 ≤ k ≤ 2km

3 + 1,

β(km − k) for 2km
3 + 1 ≤ k ≤ km,

≤ nP − 2(r − 1)

p − 1
− (r − 2)+ 2ν̃, (5.24)

which implies

χ = 1

〈Z〉2σ(k)
ξk

(
Z

Z∗

)

� 1

〈Z〉2σ(k)

⎡

⎣1+
(

Z

Z∗

)2nP− 4(r−1)
p−1 −2(r−2)+4ν̃

1Z≥Z∗

⎤

⎦

� 1

〈Z〉−2k+2
(
d
2+ν̃− 2(r−1)

p−1 −(r−1)
) +

( Z
Z∗
)2nP− 4(r−1)

p−1 −2(r−2)+4ν̃

〈Z〉−2k+2
(
d
2+ν̃− 2(r−1)

p−1 −(r−1)
) 1Z≥Z∗ .

(5.25)
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which we will use below. The following additional inequality will be of par-
ticular significance (b = (Z∗)2−r ):

ρ2
Dχ � 1

〈Z〉−2k+2
(
d
2+ν̃−(r−1)

)

[

1Z≤Z∗ +
(

Z

Z∗

)4ν̃−2(r−2)

1Z≥Z∗

]

= 1

〈Z〉−2k+2
(
d
2+ν̃−(r−1)

) 1Z≤Z∗ + 1

b2−
4ν̃
r−2 〈Z〉−2k+2

(
d
2−ν̃−1

) 1Z≥Z∗

(5.26)

Step 3 Leading order terms. In what follows, we will systematically use the
standard Pohozhaev identity:

∫

�gF · ∇gdx =
d
∑

i, j=1

∫

∂2i gFj∂ j gdx = −
d
∑

i, j=1

∫

∂i g(∂i Fj∂ j g + Fj∂
2
i, j g)

= −
d
∑

i, j=1

∫

∂i Fj∂i g∂ j g + 1

2

∫

|∇g|2∇ · F (5.27)

which becomes in the case of spherically symmetric functions

∫

Rd
f�g∂r gdx = cd

∫

R+
f

rd−1 ∂r (r
d−1∂r g)r

d−1∂r g dr

= −1

2

∫

Rd
|∂r g|2

[

f ′ − d − 1

r
f

]

dx,

Cross terms. We consider

A1 = b2k

[
∫

∂ρTot∂
k−1�	∇ · (χ∇ρ̃(k))+ ∂k−1�ρTot∂ρTot

ρ2
T

∇ · (χρ2
Tot∇	(k))

]

.

We compute

∂ρTot∂
k−1�	∇ · (χ∇ρ̃(k))+ ∂k−1�ρTot∂ρTot

ρ2
T

∇ · (χρ2
Tot∇	(k))

= ∂ρTot∂
k−1�	

[

∇χ · ∇ρ̃(k) + χ�ρ̃(k)
]

+∂k−1�ρTot∂ρTot

[

∇χ · ∇	(k)

+2χ
∇ρTot

ρTot
· ∇	(k) + χ�	(k)

]

= ∂ρTot∂
k−1�	∇χ · ∇ρ̃(k) + ∂k−1�ρTot∂ρTot∇χ · ∇	(k)
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+2∂k−1�ρTot∂ρTotχ
∇ρTot

ρTot
· ∇	(k)

+χ∂ρTot∂
k−1�	�ρ̃(k) + χ∂k−1�ρTot∂ρTot�	(k).

The last 2 terms require an integration by parts:

b2k

∣
∣
∣
∣

∫ [

χ∂ρTot∂
k−1�	�ρ̃(k) + χ∂k−1�ρTot∂ρTot�	(k)

]
∣
∣
∣
∣

= b2k

∣
∣
∣
∣

∫ [

−(�∂k−1ρ̃)∂(χ∂ρTot∂
k−1�	)+ χ∂k−1�ρTot∂ρTot�	(k)

]
∣
∣
∣
∣

= b2k

∣
∣
∣
∣

∫ [

−∂k−1�ρ̃
[

χ∂2ρTot∂
k−1�	 + ∂χ∂ρTot∂

k−1�	
]

+χ∂k−1�ρD∂ρTot�	(k)
]∣
∣
∣

� Ckb
2
∫

χ |∂k−1�	|
[

|∂k−1�ρ̃∂2ρTot|

+|∂k−1�ρ̃∂ρTot|
〈Z〉 + |∂(∂k−1�ρD∂ρTot)|

]

� Ckb
2
∫

χρTot|∂k−1�	|
[

ρD

〈Z〉k+2 +
|∂k−1�ρ̃|

〈Z〉
]

�
∑

|α|=k

∫
χρ2

Tot

〈Z〉 |∇∂α	|2 + ckb
4
∫

χ

〈Z〉 |∇∂αρ̃|2 + b4
∫

χ
ρ2
D

〈Z〉2k+3 ,

where in penultimate inequality we used the pointwise bound (4.40).
We now estimate the source term from (5.26):

b4
∫

χ
ρ2
D

〈Z〉2k+3 � b4
∫

Z≤Z∗
Zd−1dZ

〈Z〉2k+3−2k+2
(
d
2+ν̃−(r−1)

)

+b2
∫

Z≥Z∗

(
Z

Z∗

)4ν̃ Zd−1dZ

〈Z〉2k+3−2k+2
(
d
2+ν̃−1

)

� b4
∫

Z≤Z∗
〈Z〉2(r−2)−2−2ν̃dZ

+b2
∫

Z≥Z∗

(
Z

Z∗

)4ν̃

〈Z〉−2−2ν̃dZ

� b4(Z∗)2(r−2)−1−2ν̃ � e−cτ (5.28)
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and hence, using (5.18),

b2k

∣
∣
∣
∣

∫ [

χ∂ρTot∂
k−1�	�ρ̃(k) + χ∂k−1�ρTot∂ρTot�	(k)

]
∣
∣
∣
∣

� e−cτ + ‖ρ̃, 	‖2
k,σ+ 1

2
� e−ckm τ . (5.29)

We estimate similarly,

kb2
∣
∣
∣∂ρTot∂

k−1�	∇χ · ∇ρ̃(k) + ∂k−1�ρTot∂ρTot∇χ · ∇	(k)

+2∂k−1�ρTot∂ρTotχ
∇ρTot

ρTot
· ∇	(k)

∣
∣
∣
∣

�
∑

|α|=k

[

b4
∫

χ

〈Z〉 |∇∂αρ̃|2 +
∫

χ

〈Z〉3ρ
2
Tot|∇∂α	|2

]

+ b4
∫

χ
ρ2
D

〈Z〉2k+3

� e−ckm τ + ‖ρ̃, 	‖2
k,σ+ 1

2
� e−ckm τ . (5.30)

The remaining cross terms are estimated as follows.

k(p − 1)

∣
∣
∣
∣

∫

χ∂ρTot∂
k−1�	ρ

p−2
D ρTotρ̃

(k)
∣
∣
∣
∣

� ck

∫

χ
ρ
p−1
Tot

〈Z〉 ρTot|∂k−1�	||ρ̃(k)|

�
∫

χ

〈Z〉ρ
p−1
D (ρ̃(k))2 +

∫
χ

〈Z〉ρ
2
Tot|∇∂α	|2

≤ ‖ρ̃, 	‖2
k,σ+ 1

2
� e−ckm τ , (5.31)

where we used that p ≥ 1 and a trivial bound |ρD| � 1. Similarly,

∫ ∣
∣
∣(p − 1)ρ p−2

D ρ̃(k)ρ2
T∇χ · ∇	(k)

∣
∣
∣

�
∫

χ

〈Z〉ρ
p−1
D (ρ̃(k))2 +

∫
χ

〈Z〉ρ
2
Tot|∇∂α	|2

≤ ‖ρ̃, 	‖2
k,σ+ 1

2
� e−ckm τ . (5.32)
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The other remaining cross term is estimated using an integration by parts:

k(p − 1)(p − 2)

∣
∣
∣
∣

∫

∇ · (χρ2
Tot∇	(k))ρ

p−3
D ∂ρD∂

k−1ρ̃

∣
∣
∣
∣

�
∫

χ

〈Z〉ρ
p−1
D |∇ρ̃k−1|2 +

∫
χ

〈Z〉3ρ
p−1
D ρ̃2

k−1 +
∫

χ

〈Z〉ρ
2
Tot|∇∂α	|2

≤ ‖ρ,	‖2
k,σ+ 1

2
� e−ckm τ . (5.33)

ρk terms. We compute using (5.5):

∫

χ(H1 − kH2)ρ̃
(k)(−b2�ρ̃(k) + (p − 1)ρ p−2

D ρTotρ̃
(k))

−b2
∫

[H1 − kH2] ρ̃
(k)∇χ · ∇ρ̃(k)

=
∫

χ(H1 − kH2)
[

b2|∇ρ̃(k)|2 + (p − 1)ρ p−2
D ρTotρ̃

2
k

]

−b2

2

∫

(ρ̃(k))2∇ · [χ∇(H1 − kH2)]

= −
∫

μχ

(

k + 2(r − 1)

p − 1
+ O

(
1

〈Z〉r
))

×
(

b2|∇ρ̃(k)|2 + (p − 1)ρ p−2
D ρTotρ̃

2
k

)

−b2

2

∫

(ρ̃(k))2∇ · [χ∇(H1 − kH2)]

= O(e−ckm τ )−
∫

μχ

(

k + 2(r − 1)

p − 1

)

×
(

b2|∇ρ̃(k)|2 + (p − 1)ρ p−2
D ρTotρ̃

2
k

)

−b2

2

∫

χ(ρ̃(k))2
[
�χ�(H1 − kH2)

χ Z2 +�(H1 − kH2)

]

,

where we used the interpolation bound (5.18). Similarly, using that χk,k,σ =
〈Z〉2χk,k−1,σ and |ρk | ≤ |∇ρk−1| as well as (5.5), (5.18) gives

b2

2

∫

χ(ρ̃(k))2
[
�χ�(H1 − kH2)

χ Z2 +�(H1 − kH2)

]

� ‖ρ̃, 	‖2
k,σ (k)+ 1

2 (1+r)
� e−ckm τ . (5.34)
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Next using

|∂kρD| � ρD

〈Z〉k ,

we estimate after an integration by parts:

b2
∣
∣
∣
∣

∫

(χ�ρ̃(k) +∇χ · ∇ρ̃(k))
[

(∂kρD)�	 + 2∇(∂kρD) · ∇	
]
∣
∣
∣
∣

� b2
∫

χ |∇ρ̃(k)|
[

|∇(∂kρD�	)| + |∇(∇∂kρD · ∇	)|

+|(∂kρD)�	 + 2∇(∂kρD) · ∇	|
〈Z〉

]

≤ b2
∫

χ
|∇ρ̃(k)|2
〈Z〉 + b2

3
∑

j=1

∫

χ
〈Z〉ρ2

D

〈Z〉2k
( |∂ j	|
〈Z〉3− j

)2

.

We use the pointwise bootstrap bound (4.40)

|〈Z〉 j∂ j	| ≤ CK

[
1Z≤Z∗

〈Z〉r−2 + b

]

�
[

1Z≤Z∗

〈Z〉r−2 +
1Z≥Z∗

〈Z∗〉r−2

]

, 1 ≤ j ≤ 3

(5.35)

to estimate from (5.26):

b2
3
∑

j=1

∫

χ
〈Z〉ρ2

D

〈Z〉2k
( |∂ j	|
〈Z〉3− j

)2

≤ b2CK

∫
Zd−1dZ

〈Z〉2(ν̃+ d
2−(r−1))

1

〈Z〉5
([

1Z≤Z∗

〈Z〉2(r−2)
+
(

Z

Z∗

)4ν̃ 1Z≥Z∗

〈Z〉2(r−2)

])

� e−ckm τ

and hence

b2
∣
∣
∣
∣

∫

(χ�ρ̃(k) + ∇χ · ∇ρ̃(k))
[

(∂kρD)�	 + 2∇(∂kρD) · ∇	
]
∣
∣
∣
∣
� e−ckm τ .

(5.36)

For the nonlinear term, we use the Pohozhaev identity (5.27) and the pointwise
bound (5.35)

|Z j∂ j	| � 〈Z〉−(r−2), j = 1, . . . , 3
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On blow up for the energy super critical defocusing NLS

to estimate by the interpolation bound (5.18)

b2
∣
∣
∣
∣

∫

(χ�ρ̃(k) +∇χ · ∇ρ̃(k))
[

ρ̃(k)�	 + 2∇ρ̃(k) · ∇	
]
∣
∣
∣
∣

� b2
[
∫

χ
|∇ρ̃(k)|2
〈Z〉r +

∫

χ
(ρ̃(k))2

〈Z〉r+2

]

� e−ckm τ . (5.37)

Note that the last term in the case k = 0 should be treated with the help
of the bound ρ̃ � ρD and the estimate (5.28). For k �= 0, we simply use
|ρk | ≤ |∇ρk−1|. We recall that by definition of the norm:

‖ρ̃, 	‖2k,σ �
k
∑

m=0

∫

χk,k,σ
ρ2
Tot|∂m∇	|2
〈Z〉2(k−m)

�
k+1
∑

m=1

∫

χ
ρ2
Tot|∂m	|2

〈Z〉2(k+1−m)
.

Hence, by the interpolation bound,

∣
∣
∣
∣

∫

χ
[

(∂kρD)�	 + 2∇(∂kρD) · ∇	
]

(p − 1)ρ p−2
D ρTotρ̃

(k)
∣
∣
∣
∣

�
∫

χ
ρ
p−2
D ρTot(ρ̃

(k))2

〈Z〉 +
∫

χρ
p−2
Tot ρ2

Tot

[ |∂2	|2
〈Z〉2k−1 +

|∂	|2
〈Z〉2(k+1)−1

]

≤ ‖ρ̃, 	‖2
k,σ+ 1

2
� e−ckm τ . (5.38)

For the nonlinear term, we integrate by parts and use (5.35):

∣
∣
∣
∣

∫

χ
[

ρ̃(k)�	 + 2∇ρ̃(k) · ∇	
]

(p − 1)ρ p−2
D ρTotρ̃

(k)
∣
∣
∣
∣

�
∫

χ
ρ
p−2
D ρTot(ρ̃

(k))2

〈Z〉 � e−ckm τ . (5.39)

From Pohozhaev (5.27) and (5.5):

−
∫

H2χ�ρ̃(k)(−b2�ρ̃(k))+ b2
∫

H2�ρk∇χ · ∇ρ̃(k)

= b2
[∫

�ρ̃(k)(ZχH2) · ∇ρ̃(k) +
∫

H2�ρk∇χ · ∇ρ̃(k)
]

= b2

⎡

⎣−
d
∑

i, j=1

∫

∂i (Z jχH2)∂i ρ̃
(k)∂ j ρ̃

(k) + 1

2

∫

|∇ρ̃(k)|2∇ · (ZχH2)
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+
d
∑

i, j=1

∫

H2Z j∂ j ρ̃
(k)∂iχ∂i ρ̃

(k)

⎤

⎦

= b2
{

−
d
∑

i, j=1

∫

∂i ρ̃
(k)∂ j ρ̃

(k) [δi jχH2 + Z j∂iχH2

+Z jχ∂i H2 − H2Z j∂iχ
]

+1

2

∫

|∇ρ̃(k)|2χH2

[

d + �χ

χ
+ �H2

H2

]}

= μ

2
b2
∫

χ |∇ρ̃(k)|2
[

d − 2+ �χ

χ
+ O

(
1

〈Z〉r−1

)]

. (5.40)

Integrating by parts and using (5.5):

−
∫

χH2�ρ̃(k)
[

(p − 1)ρ p−2
D ρTotρ̃

(k)
]

+ p − 1

2

∫

χ(p − 2)∂τρDρ
p−3
D ρTot(ρ̃

(k))2

+ p − 1

2

∫

χ∂τρTotρ
p−2
D (ρ̃(k))2

= p − 1

2

∫

(ρ̃(k))2
[

∇ · (ZχH2ρ
p−2
D ρTot)

+χρTot∂τ (ρ
p−2
D )+ χ∂τρTotρ

p−2
D

]

= p − 1

2

∫

χρ
p−2
D ρTot(ρ̃

(k))2
[

μd + μ
�χ

χ
+ (p − 2)

(
∂τρD + μ�ρD

ρD

)

+∂τρTot + μ�ρTot

ρTot
+ O

(
1

〈Z〉r−1

)]

.

We now claim the fundamental behavior

∂τρD + μ�ρD

ρD
= −2μ(r − 1)

p − 1
+ O

(
1

〈Z〉r
)

(5.41)

and

∂τρTot + μ�ρTot

ρTot
= −2μ(r − 1)

p − 1
+ O

(
1

〈Z〉r
)

. (5.42)
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Assume (5.41), (5.42), we obtain

−
∫

χH2�ρ̃(k)
[

(p − 1)ρ p−2
D ρTotρ̃

(k)
]

+ p − 1

2

∫

χ(p − 2)∂τρDρ
p−3
D ρTot(ρ̃

(k))2

+ p − 1

2

∫

∂τρTotρ̃
p−2(ρ̃(k))2

= μ
p − 1

2

∫

χρ
p−2
D ρTot(ρ̃

(k))2
[

d + �χ

χ
− 2(r − 1)+ O

(
1

〈Z〉r
)]

= μ
p − 1

2

∫

χρ
p−2
D ρTot(ρ̃

(k))2
[

d + �χ

χ
− 2(r − 1)

]

+O
(

e−ckm τ
)

. (5.43)

Proof of (5.41). From (4.9):

∂τρD + μ�ρD = −μ�ζ

(
Z

Z∗

)

ρP(Z)+ μ�ζ

(
Z

Z∗

)

ρP(Z),

+μζ

(
Z

Z∗

)

�ρP = μζ

(
Z

Z∗

)

�ρP ,

∂τρD + μ�ρD

ρD
= μ

�ρP

ρP
= −2μ(r − 1)

p − 1
+ O

(
1

〈Z〉r
)

and (5.41) is proved.
Proof of (5.42). Recall (2.23)

∂τρTot = −ρTot�	Tot − μ�(r − 1)

2
ρTot − (2∂Z	Tot + μZ) ∂ZρTot

which yields

∣
∣
∣
∣

∂τρTot + μ�ρTot

ρTot
+ μ�(r − 1)

2

∣
∣
∣
∣
=
∣
∣
∣
∣
−�	Tot − 2

∂Z	Tot∂ZρTot

ρTot

∣
∣
∣
∣

and (5.42) follows from (5.35).
	(k) terms. Integrating by parts:

∣
∣
∣
∣
b2
∫

∂k�ρD∇ · (χρ2
Tot∇	(k))

∣
∣
∣
∣
� b2

∫

χρ2
T
|∇	(k)|
〈Z〉k+3

�
∫

χ
ρ2
Tot|∇	(k)|2

〈Z〉 + b4
∫

χ
ρ2
Tot

〈Z〉2(k+3)−1
� e−ckm τ , (5.44)
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where we used (5.28).
Next

μ(r − 2)
∫

	(k)∇ · (χρ2
Tot∇	(k)) = −μ(r − 2)

∫

χρ2
Tot|∇	(k)|2.

(5.45)

Similarly, using ∂Z H2 = O
(

1
〈Z〉r

)

:

k
∫

H2	
(k)∇ · (χρ2

Tot∇	(k))

= −k

[
∫

χμ

[

1+ O

(

1

〈Z〉 12

)]

ρ2
Tot|∇	(k)|2

+O

(
∫

χρ2
Tot

|	(k)|2
〈Z〉2r− 1

2

)]

= −kμ
∫

χρ2
Tot|∇	(k)|2 + O

(

e−ckm τ
)

, (5.46)

where we also used that r > 2, k �= 0 and

∫

χk,k,σ (k)ρ
2
Tot

|	(k)|2
〈Z〉2r− 1

2

�
∫

χk,k−1,σ (k)ρ
2
Tot

|∇	k−1|2
〈Z〉2r− 1

2−2
≤ ‖ρ̃, 	‖2

k,σ (k)+ 1
2

Then using (5.35):

∣
∣
∣
∣

∫

2χρ2
Tot∇	 · ∇	(k)

(

2
∇ρTot

ρTot
+ ∇χ

χ

)

· ∇	(k)
∣
∣
∣
∣

�
∫

χ
ρ2
Tot|∇	(k)|2

〈Z〉 � e−ckm τ (5.47)

and from (5.27), (5.35):

∣
∣
∣
∣

∫

2χρTot∇	 · ∇	(k)(ρTot�	(k))

∣
∣
∣
∣

�
∫

χ |∇	(k)|2
(

|∂(ρ2
Tot∇	)| + |ρ2

Tot∇	|
〈Z〉

)

�
∫

χ
ρ2
Tot|∇	(k)|2

〈Z〉2 � e−ckm τ . (5.48)

123



On blow up for the energy super critical defocusing NLS

We now carefully compute from (5.27) again:

∫

χρTotH2�	(k)
(

2∇ρTot · ∇	(k) + ρTot�	(k)
)

+
∫

H2�	(k)ρ2
Tot∇χ · ∇	(k)

= 2
∑

i, j

∫

χρTotH2Z j∂ j	
(k)∂iρTot∂i	

(k)

−
∑

i, j

∫

∂i (χ Z j H2ρ
2
Tot)∂i	

(k)∂ j	
(k)

+1

2

∫

∇ · (χ ZH2ρ
2
Tot)|∇	(k)|2 +

∑

i, j

H2ρ
2
TotZ j∂ j	

(k)∂iχ∂i	
(k)

=
∑

i, j

H2∂ j	
(k)∂i	

(k)
[

2χρTot∂iρTotZ j − ∂iχ Z jρ
2
Tot

−χδi jρ
2
Tot − 2χ Z jρTot∂iρTot − χ Z j

∂i H2

H2
ρ2
Tot + Z jρ

2
Tot∂iχ

]

+1

2

∫

χH2ρ
2
Tot|∇	(k)|2

[

d + �χ

χ
+ �H2

H2
+ 2

�ρTot

ρTot

]

= 1

2
μ

∫

χρ2
Tot|∇	(k)|2

[

d − 2+ �χ

χ
+ 2

�ρTot

ρTot
+ O

(
1

〈Z〉r
)]

.

(5.49)

Hence the final formula recalling (5.42):

∫

χρTotH2�	(k)
(

2∇ρTot · ∇	(k) + ρTot�	(k)
)

+
∫

H2�	(k)ρ2
Tot∇χ · ∇	(k) +

∫

χ∂τ ρTotρTot|∇	(k)|2

=
∫

μχρ2
Tot|∇	(k)|2

[
d − 2

2
+ 1

2

�χ

χ
+ �ρTot

ρTot
+ 1

μ

∂τρTot

ρTot
+ O

(
1

〈Z〉r
)]

=
∫

μχρ2
Tot|∇	(k)|2

[
d − 2

2
+ 1

2

�χ

χ
− 2(r − 1)

p − 1
+ O

(
1

〈Z〉r
)]

=
∫

μχρ2
Tot|∇	(k)|2

[
d − 2

2
+ 1

2

�χ

χ
− 2(r − 1)

p − 1

]

+ O(e−ckm τ ). (5.50)

Loss of derivatives terms. We integrate by parts the non linear termwhichmust
loose derivatives:
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b2
∣
∣
∣
∣

∫

ρTot∇χ · ∇	(k)�ρ̃(k)
∣
∣
∣
∣

� b2
∣
∣
∣
∣

∫

ρTot�	(k)∇χ · ∇ρ̃(k)
∣
∣
∣
∣
+ b2

∫

χ
ρTot

〈Z〉2 |∇	(k)||∇ρ̃(k)|

� b3
∫

χ |∇ρ̃(k)|2 + b

[
∫

χ
ρ2
Tot|�	(k)|2

〈Z〉2 +
∫

χ
ρ2
Tot|∇	(k)|2

〈Z〉4
]

� e−ckm τ + b
∫

χ
ρ2
Tot|�	(k)|2

〈Z〉2 . (5.51)

We now use (5.20) for 0 ≤ k ≤ km − 1 which implies

∫

χk,k,σ (k)
ρ2
Tot|�	(k)|2

〈Z〉2 ≤
∫

χk+1,k+1,σ (k+1)ρ
2
Tot|�	(k)|2

� ‖ρ̃, 	‖2k+1,σ (k+1) � 1.

Hence

b2
∣
∣
∣
∣

∫

ρTot∇χ · ∇	(k)�ρ̃(k)
∣
∣
∣
∣
+ b2

∣
∣
∣
∣

∫

ρTot�	(k)∇χ · ∇ρ̃(k)
∣
∣
∣
∣

+b2
∣
∣
∣
∣

∫

∇χ · ∇ρ̃(k)∇ρTot · ∇	(k)
∣
∣
∣
∣
� e−ckm τ . (5.52)

Conclusion for linear terms. The energy identity (5.10) with the weight χ in
(5.22), together with the estimates (5.29)–(5.34), (5.36)–(5.39), (5.43)–(5.48),
(5.50) and (5.52) yields:

1

2

d

dτ

{∫

b2χ |∇ρ̃(k)|2 + (p − 1)
∫

χρ
p−2
D ρTot(ρ̃

(k))2 +
∫

χρ2
Tot|∇	(k)|2

}

≤ e−ckm τ + μ

∫

χ

[

−k + d

2
− (r − 1)− 2(r − 1)

p − 1
+ 1

2

μ−1∂τχ +�χ

χ

]

×
[

b2|∇ρ̃(k)|2 + (p − 1)ρ p−2
D ρTot(ρ̃

(k))2 + ρ2
Tot|∇	(k)|2

]

+
∫

F1χ(p − 1)ρ p−2
D ρTotρ̃

(k) + b2
∫

χ∇F1 · ∇ρ̃(k)

+
∫

χρ2
T∇F2 · ∇	(k). (5.53)
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Step 4 F1 terms. We recall (5.7) and claim the bound:

(p − 1)
∫

χF2
1 ρ

p−2
D ρTot + b2

∫

χ |∇F1|2

� e−ckm τ
[

1+ ‖ρ̃, 	‖2k,σ
]

(5.54)

Source term induced by localization. Recall (5.2)

ẼP,ρ = ∂τρD + ρD

[

�	P + μ
�(r − 1)

2
+ (2∂Z	P + μZ)

∂ZρD

ρD

]

= ∂τρD + μ�ρD + μ
�(r − 1)

2
ρD + ρD�	P + 2∂Z	P∂ZρD.

From the proof of (5.41)

ρD = ζ

(
Z

Z∗

)

ρP , ∂τ ρD + μ�ρD = μζ

(
Z

Z∗

)

�ρP .

Therefore, using the profile equation for ρP , we obtain

ẼP,ρ = 2
	 ′

P

Z

Z

Z∗ ζ
′ρP .

From (2.10) and (2.19) we then conclude that

|∂k ẼP,ρ | � ρD

〈Z〉k+r 1Z≥Z∗ . (5.55)

Hence, recalling (5.19) and (5.26):

∫

χρ
p−2
D ρTot|∂k ẼP,ρ |2

�
∫

Z≥Z∗
Zd−1dZ

Z
−2k+2

(
d
2−(r−1)+ν̃− 2(r−1)

p−1

)

1

Z2k+2r

(Z)
− 2(r−1)(p+1)

p−1

( Z
Z∗
)(p−1)nP−2(r−1)+2(r−2)−4ν̃

�
∫

Z≥Z∗
dZ

Z2r+2ν̃+1
( Z
Z∗
)(p−1)nP−2−4ν̃

� (Z∗)−2r−2ν̃ � e−cτ .

Similarly, from (5.26):

b2
∫

χ |∇∂k ẼP,ρ |2 �
∫

Z≥Z∗
Zd−1dZ

Z
2
(
d
2−1−ν̃

)

+2+2r
� (Z∗)−2r+2ν̃ � e−cτ .
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[∂k, H1] term. We use (5.5) to estimate:

∣
∣
∣
∣
∣
∣

|[∂k, H1]ρ̃| �
∑k−1

j=0 |∂ j ρ̃∂k− j H1| �
∑k−1

j=0
|∂ j ρ̃|

〈Z〉r+k− j ,

|∇[∂k, H1]ρ̃| �
∑k

j=0
|∂ j ρ̃|

〈Z〉1+r+k− j .
(5.56)

Hence

(p − 1)
∫

χρ
p−2
D ρTot([∂k, H1]ρ̃)2 �

k−1
∑

j=0

∫

χρ
p−1
D

|∂ j ρ̃|2
〈Z〉2(r+k− j)

� ‖ρ̃, 	‖2k,σ (k)+r � e−ckm τ ,

and

b2
∫

χ |∇([∂k, H1]ρ̃)|2 � b2
k
∑

j=0

∫

χ
|∂ j ρ̃|2

〈Z〉2(1+r+k− j)

� b2
∫

χ
ρ̃2

〈Z〉2(1+r+k)
+ b2

k
∑

j=0

∫

χ
|∂ j∇ρ̃|2

〈Z〉2(r+k− j)

� b2
∫

χ
ρ2
D

〈Z〉2(1+r+k)
+ e−ckm τ � e−ckm τ ,

where we used the bootstrap bound (4.40), the decay of b2 and (5.26).
[∂k, H2] term. Similarly, from (5.5):

∣
∣
∣
∣
∣
∣

|[∂k, H2]�ρ̃| �
∑k−1

j=0 |∂ j (�ρ̃)∂k− j H2| �
∑k

j=1
|∂ j ρ̃|

〈Z〉r−1+k− j

|∇[∂k, H2]�ρ̃| �
∑k+1

j=1
|∂ j ρ̃|

〈Z〉r+k− j .
(5.57)

Hence, using r > 1:

(p − 1)
∫

χρ
p−2
D ρTot([∂k, H2]�ρ̃)2

�
k
∑

j=1

∫

χρ
p−1
D

|∂ j ρ̃|2
〈Z〉2(r−1+k− j)

� e−ckm τ ,

and
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b2
∫

χ |∇([∂k, H2]�ρ̃)|2 � b2
k+1
∑

j=1

∫

χ
|∂ j ρ̃|2

〈Z〉2(r+k− j)

= b2
k
∑

j=0

∫

χ
|∂ j∇ρ̃|2

〈Z〉2(r−1+k− j)
� ‖ρ̃, 	‖2k,σ+r−1 � e−ckm τ

Nonlinear term. Changing indices, we need to estimate terms

N j1, j2 = ∂ j1ρTot∂
j2∇	, j1 + j2 = k + 1, 2 ≤ j1, j2 ≤ k − 1. (5.58)

For the profile term:

|∂ j1ρD∂
j2∇	| � ρD

|∂ j2∇	|
〈Z〉 j1 = ρD

|∂ j2∇	|
〈Z〉k+1− j2

and hence using from (5.19) the rough global bound:

ρD � 1

〈Z〉 2(r−1)
p−1

(5.59)

yields

∫

(p − 1)χN 2
j1, j2ρ

p−2
D ρTot �

∫

χ
ρ2
Tot|∂ j2∇	|2

〈Z〉2(k+1− j2)+2(r−1)

=
∫

χ
ρ2
Tot|∂ j2∇	|2
〈Z〉2(k− j2)+2r

� e−ckm τ .

Similarly, after taking a derivative:

b2
∫

χ |∇N j1, j2 |2 � b2
∫

χ
ρ2
Tot|∂ j2∇	|2
〈Z〉2(k+2− j2)

� e−ckm τ .

We now turn to the control of the nonlinear term. If j1 ≤ 4km
9 , then from

(4.40):

∫

χρ
p−1
D |∂ j1 ρ̃∂ j2∇	|2 �

∫

χρ2
D

|∂ j2∇	|2
〈Z〉2(k+1− j2)+2(r−1)

� e−ckm τ . (5.60)

If j2 ≤ 4km
9 , then from (4.40) and b = 1

(Z∗)r−2 :

∫

χρ
p−1
D |∂ j1 ρ̃∂ j2∇	|2 �

∫

Z≤Z∗
χρ

p−1
D

|∂ j1 ρ̃|2
〈Z〉2(k+1+(r−2)− j1)
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+b2
∫

Z≥Z∗
χρ

p−1
D

|∂ j1 ρ̃|2
〈Z〉2(k+1− j1)

� e−ckm τ .

We may therefore assume j1, j2 ≥ m0 = 4km
9 + 1, which implies k ≥ m0 and

j1, j2 ≤ 2km
3 . From (4.29):

σ(k) = −α(km − k) ≥ −α

(

km − 4km
9

)

= −4

5

(

1− 4

9

)

km + Okm→+∞(1)

≥ −4km
9

+ Okm→+∞(1). (5.61)

From (4.41):

σ(k)+ n( j1)+ n( j2) ≥ −4km
9

+ km
4

+ km
4

+ Okm→+∞(1) ≥ km
20

(5.62)

and hence from (4.40) and interpolating on Z ≤ Z∗
c with (4.39):

∫

χρ
p−1
D |∂ j1 ρ̃∂ j2∇	|2 � e−ckm τ +

∫

Z≥Z∗c

Zd−1dZ

〈Z〉 km10
⎡

⎣1Z≤Z∗ +
(

Z

Z∗

)−(p−3)nP− 4(r−1)
(p−1) −2(r−2)−2(r−1)+4ν̃

1Z≥Z∗

⎤

⎦

� e−ckm τ

The b2 derivative term and the other nonlinear term in (5.7) are estimated
similarly. We note that the relation

km � nP � 1

ensures that the terms containing km are dominant and eliminates the need to
track the dependence on nP . This concludes the proof of (5.54).
Step 5 F2 terms. We claim:

∫

χρ2
Tot|∇F2|2 � e−ckm τ

[

1+ ‖ρ̃, 	‖2k+1,σ (k+1)

]

. (5.63)

Source term induced by localization. Recall (5.2):

ẼP,	 = |∇	P |2 + ρ
p−1
D + e	P + 1− e

2
�	P − 1 = ρ

p−1
D − ρ

p−1
P
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which yields the rough bound

|∇∂k ẼP,	 | � 1

〈Z〉k+1+2(r−1)
1Z≥Z∗

and hence, from (5.26),

∫

χρ2
Tot|∇∂k ẼP,	 |2 �

∫

Z≥Z∗
Zd−1

b2〈Z〉−2k+2
(
d
2+ν̃−1

)

( Z
Z∗
)4ν̃

〈Z〉2k+2+4(r−1)

� Z∗2(r−2)−4(r−1)+4ν̃ � e−cτ

[∂k, H2]�	 term. From (5.5):

|∇([∂k, H2]�	)| �
k+1
∑

j=1

|∂ j	|
〈Z〉r+k− j

�
k
∑

j=0

|∇∂ j	|
〈Z〉r+k− j−1

and hence

∫

χρ2
Tot|∇([∂k, H2]�	)|2 �

k
∑

j=0

∫

χρ2
Tot

|∇∂ j	|2
〈Z〉2(r−1+k− j)

� e−ckm τ .

[∂k, ρ p−2
D ]ρ̃ − k(p − 2)ρ p−3

D ∂ρD∂
k−1ρ̃ term. By Leibnitz:

∣
∣
∣

[

[∂k, ρ p−2
D ]ρ̃ − k(p − 2)ρ p−3

D ∂ρD∂
k−1ρ̃

]∣
∣
∣ �

k−2
∑

j=0

|∂ j ρ̃|
〈Z〉k− j

ρ
p−2
D

and, hence, taking a derivative:
∫

χρ2
Tot

∣
∣
∣∇
[

[∂k, ρ p−2
D ]ρ̃ − k(p − 2)ρ p−3

D ∂ρD∂
k−1ρ̃

]∣
∣
∣

2

�
k−1
∑

j=0

∫

χρ
2(p−2)+2
D

|∂ j ρ̃|2
〈Z〉2(k− j)+2

�
k−1
∑

j=0

∫

χρ
p−1
D

|∂ j ρ̃|2
〈Z〉2(k− j)+2

� e−ckm τ .

Nonlinear 	 term. Let

∂N j1, j2 = ∂ j1∇	∂ j2∇	, j1 + j2 = k + 1, j1, j2 ≥ 1.
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If j1 ≤ 4km
9 , then from (4.40):

∫

χρ2
Tot|∇N j1, j2 |2 �

∫

ρ2
Totχ

|∂ j2∇	|2
〈Z〉2(k+1− j2)

� ‖ρ̃, 	‖2
k,σ+ 1

2
� e−ckm τ .

The expression being symmetric in j1, j2, we may assume j1, j2 ≥ m0 =
4km
9 +1, j1, j2 ≤ 2km

3 and k ≥ m0 = 4km
9 +1. Using (4.40), (5.62) and arguing

as above (km � nP ):

∫

χρ2
Tot|∇N j1, j2 |2 � e−cτ +

∫

Z≥Z∗c

d Z

〈Z〉 km10

[

1Z≤Z∗ +
(

Z

Z∗

)2nP+4ν̃

1Z≥Z∗

]

� e−ckm τ .

Quantum pressure term. We estimate from Leibniz:

b2
∣
∣
∣
∣
∣
∂k
(
�ρTot

ρTot

)

− ∂k�ρTot

ρTot
+ k∂k−1�ρTot∂ρTot

ρ2
Tot

∣
∣
∣
∣
∣

� b2
∑

j1+ j2=k, j2≥2

∣
∣
∣
∣
∂ j1�ρTot∂

j2

(
1

ρTot

)∣
∣
∣
∣
.

and using the Faa-di Bruno formula:

∣
∣
∣
∣
∂ j2

(
1

ρTot

)∣
∣
∣
∣
� 1

ρ
j2+1
Tot

∑

q1+2q2+···+ j2q j2= j2

�
j2
i=1|(∂ iρTot)qi |.

We decompose ρTot = ρD + ρ̃ and control the ρD term using the bound

|∂ iρD| � ρD

〈Z〉i

which yields

1

ρ
j2+1
Tot

∑

m1+2m2+···+ j2m j2= j2

�
j2
i=1|(∂ iρD)

mi | � 1

ρTot〈Z〉 j2 (5.64)

and hence the corresponding contribution to (5.63):

b4
∫

χρ2
Tot

⎧

⎨

⎩

∑

j1+ j2=k, j2≥2

|∂ j1+1�ρTot|2
ρ2
Tot〈Z〉2 j2

+ |∂ j1�ρTot|2
ρ2
Tot〈Z〉2 j2+2

⎫

⎬

⎭
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On blow up for the energy super critical defocusing NLS

� b4
∑

j1+ j2=k, j2≥2

[
∫

χ
ρ2
DdZ

〈Z〉2 j2+2( j1+3)
+
∫

χ
|∂ j1+3ρ̃|2
〈Z〉2 j2

]

� b4
∫

χ
ρ2
DdZ

〈Z〉2k+6 + b4
k
∑

j1=2

∫

χ
|∇∂ j1 ρ̃|2

〈Z〉2(k− j1)+2
� e−ckm τ

where we used (5.28) in the last step.
We now turn to the control of the nonlinear term and consider

N j1, j2 = b2
(

∂ j1+1�ρTot

) 1

ρ
j2+1
Tot

∑

q1+2q2+···+ j2q j2= j2

�
j2
i=1(∂

i ρ̂)qi ,

where ρ̂ is either ρD or ρ̃. In both cases we will use the weaker estimates
(4.40).

First assume that qi = 0 whenever i ≥ 4km
9 + 1, then from (4.40):

|N j1, j2 | � b2|∂ j1+1�ρTot| 1

ρ
j2+1
Tot

∑

q1+2q2+···+ j2q j2= j2

�
j2
i=1|(∂ i ρ̂)qi |

� b2
|∂ j1+1�ρTot|
ρTot〈Z〉 j2

and the conclusion follows verbatim as above. Otherwise, there are at most
two value 4km

9 ≤ i1 ≤ i2 ≤ j2 with qi1, qi2 �= 0 and qi1 +qi2 ≤ 2. Hence from
(4.40):

1

ρ
j2+1
Tot

�
j2
i=1|(∂ i ρ̂)qi | � 1

ρ
j2+1
Tot

|∂ i1 ρ̂|qi1 |∂ i2 ρ̂|qi2�1≤i≤ j2,i /∈{i1,i2}
(

ρD

〈Z〉i
)qi

�
( |∂ i1 ρ̂|

ρD

)qi1
( |∂ i2 ρ̂|

ρD

)qi2 1

ρTot〈Z〉 j2−(qi1 i1+qi2 i2)
.

Assume first i2 ≥ 2km
3 + 1, then qi1 = 0, qi2 = 1 and j1 + 3 ≤ 4km

9 from
which:

∫

χρ2
Tot|N j1, j2 |2 � b4

∫

χρ2
Tot|∂ j1+1�ρTot|2 |∂

i2 ρ̂|2
ρ2
T

1

ρ2
T 〈Z〉2( j2−i2)

� b4
∫

χ
|∂ i2 ρ̂|2

〈Z〉2( j2−i2)+2( j1+3)

� b4
∫

χ
|∂ i2 ρ̂|2

〈Z〉2(k−i2)+6
� e−ckm τ .
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There remains the case 4km
9 + 1 ≤ i1 ≤ i2 ≤ 2km

3 which imply j1 + 3 ≤ 2km
3 ,

and we distinguish cases:
– case (mi1,mi2) = (0, 1): if j1 + 3 ≤ 4km

9 , we estimate

∫

χρ2
Tot|N j1, j2 |2 � b4

∫

χρ2
D|∂ j1+1�ρTot|2 |∂

i2 ρ̂|2
ρ2
T

1

ρ2
T 〈Z〉2( j2−i2)

� b4
∫

χ
|∂ i2 ρ̂|2

〈Z〉2( j2−i2)+2( j1+3)
� b4

∫

χ
|∂ i2 ρ̂|2

〈Z〉2(k−i2)+6
� e−ckm τ .

Otherwise, 4km
9 + 1 ≤ j1 + 3 ≤ 2km

3 . Since j2 ≥ 4km
9 + 1, then necessarily

j2 ≤ 2km
3 . Hence 4km

9 + 1 ≤ j1 + 3 ≤ 2km
3 , 4km

9 + 1 ≤ j2 ≤ 2km
3 and we

estimate from (4.40):

∫

χρ2
Tot|N j1, j2 |2 � b4

∫
Zd−1dZ

〈Z〉2
(

σ(k)+ km
4 + km

4 + j2−i2
)

[

1Z≤Z∗ +
(

Z

Z∗

)2nP+4ν̃

1Z≥Z∗

]

� b4 � e−ckm τ ,

where we once again used that in this range of k

σ(k)+ km
2

≥ km
20

, km � nP � 1

– case mi1 + mi2 = 2: we use (4.40) and estimate crudely:

∫

χρ2
Tot|N j1, j2 |2 � b4

∫

χ |∂ j1+1�ρTot|2
(

1

〈Z〉 km4

)4

� b4
∫

Zd−1dZ

〈Z〉2
(

σ(k)+ km
2

)

×
[

1Z≤Z∗ +
(

Z

Z∗

)2nP+4ν̃

1Z≥Z∗

]

� b4 � e−ckm τ .

NL(ρ̃) term. We expand, using, according to our assumptions, that the power
of the nonlinear term is an integer p ≥ 3:

NL(ρ̃) = (ρD + ρ̃)p−1 − ρ
p−1
D − (p − 1)ρ p−2

D ρ̃ =
p−1
∑

q=2

cq ρ̃
qρ

p−1−q
D
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and hence by Leibniz:

∂kNL(ρ̃) =
p−1
∑

q=2

∑

j1+ j2=k

cq, j1, j2∂
j1(ρ̃q)∂ j2(ρ

p−1−q
D )

=
p−1
∑

q=2

∑

j1+ j2=k

∑

�1+···+�q= j1

∂�1 ρ̃ · · · ∂�q ρ̃∂ j2(ρ
p−1−q
D ).

Let

N�1,...,�q , j1,q = ∂�1 ρ̃ · · · ∂�q ρ̃∂ j2(ρ
p−1−q
D ), �1 ≤ · · · ≤ �q ,

then

|∇N�1,...,�q , j1,q | � |N (1)
�1,...,�q , j1,q

| + |N (2)
�1,...,�q , j1,q

|

with

|N (1)
�1,...,�q , j1,q

| � |∂m1 ρ̃ · · · ∂mq ρ̃|ρ
p−1−q
D

〈Z〉 j2 ,

∣
∣
∣
∣

0 ≤ m1 ≤ · · · ≤ mq ≤ k + 1,
m1 + · · · + mq = j1 + 1.

We estimate N (1)
�1,...,�q , j1,q

, the other term being estimated similarly. We distin-
guish cases.
– case mq ≤ 4km

9 , then from (4.40):

|N (1)
m1,...,mq , j1,q

| � ρ̃q

〈Z〉 j1+1

ρ
p−1−q
D

〈Z〉 j2 �
ρ
p−1
D

〈Z〉k+1

and hence, from (5.19) and (5.25), the contribution of this term is given by

∫

χρ2
Tot|N (1)

m1,...,mq , j1,q
|2 � e−cτ

+
∫

Z≥Z∗c

Zd−1dZ

〈Z〉2σ(k)+2(k+1)

1Z≤Z∗ +
( Z
Z∗
)−2(p−1)nP−4(r−1)−2(r−2)+4ν̃

1Z≥Z∗

〈Z〉4(r−1)+ 4(r−1)
p−1

� e−cτ +
∫

Z≥Z∗c

d Z

〈Z〉2(r−1)+3
� e−ckm τ .

We now assume mq ≥ 4km
9 + 1 and recall mq ≤ j1 + 1 ≤ k + 1 ≤ km .
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– case mq−1 ≤ 4km
9 , then from (4.40):

|N (1)
m1,...,mq , j1,q

| �
ρ
q−1
D

〈Z〉 j1−mq+1 |∂mq ρ̃|ρ
p−1−q
D

〈Z〉 j2 � |∂mq ρ̃|ρ p−2
D

1

〈Z〉k+1−mq
.

If mq ≤ k then

∫

χρ2
Tot|N (1)

m1,...,mq , j1,q
|2 �

∫

χρ2
D

|∂mq ρ̃|2
〈Z〉2(k−mq+1)+ 4(r−1)(p−2)

p−1

� e−ckm τ

On the other hand, if mq = k + 1, then, using (5.20)

∫

χk,k,σ (k)ρ
2
Tot|N (1)

m1,...,mq , j1,q
|2 �

∫

χk,k,σ (k)ρ
2
Dρ

2(p−3)
D ρ̃2 |∂k+1ρ̃|2

�
∫

Z<Z∗c
χk+1,k+1,σ (k+1)ρ

2(p−2)
D 〈Z〉2ρ̃2 |∂k+1ρ̃|2

+
∫

Z>Z∗c
χk+1,k+1,σ (k+1)ρ

p−1
D

|∂k+1ρ̃|2
〈Z〉−2+2(r−1)

� e−ckm τ‖ρ̃, 	‖2k+1,σ (k+1),

where we used the following interpolation bound

‖ρ̃‖L∞(Z≤Z∗c ) � e−cτ ,

the estimate

ρ̃ � ρD � 〈Z〉− 2(r−1)
p−1

and the condition

−2+ 2(r − 1) > 0,

which follows from r > 2.
– case mq−1 ≥ 4km

9 + 1, then necessarily mq−2 ≤ 4km
9 < 4km

9 + 1 ≤ mq−1 ≤
mq < 2km

3 and k ≥ 4km
9 + 1. Hence

|N (1)
m1,...,mq , j1,q

| �
ρ
q
D

〈Z〉 km4 + km
4

ρ
p−1−q
D �

ρ
p−1
D

〈Z〉 km2
.
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The integral for Z < Z∗
c is estimated as above, and we further estimate from

(5.25) and (5.62), using that km � nP � 1,
∫

Z≥Z∗c
χρ2

D|N (1)
m1,...,mq , j1,q

|2 �
∫

Z≥Z∗c

d Z

〈Z〉 km20
� e−ckm τ .

This concludes the proof of (5.63).
Step 6 Conclusion. Injecting (5.54) and (5.63) into (5.53) yields:

1

2

d

dτ

{∫

b2χ |∇ρ̃(k)|2 + (p − 1)
∫

χρ
p−2
D ρTot(ρ̃

(k))2 +
∫

χρ2
Tot|∇	(k)|2

}

≤ μ

∫

χ

[

−k + d

2
− (r − 1)− 2(r − 1)

p − 1
+ 1

2

μ−1∂τχ +�χ

χ

]

×
[

b2|∇ρ̃(k)|2 + (p − 1)ρ p−2
D ρTot(ρ̃

(k))2 + ρ2
Tot|∇	(k)|2

]

+ e−ckm τ .

We now compute, noting that ∂τ Z∗ = μZ∗ and that ξk only depends on τ

through Z∗:

∂τχ + μ�χ

= 1

〈Z〉2σ(k)

[

∂τ ξk

(
Z

Z∗

)

+ μ�ξk

(
Z

Z∗

)]

+ ξk

(
Z

Z∗

)

μ�

(
1

〈Z〉2σ(k)

)

= ξk

(
Z

Z∗

)

μ�

(
1

〈Z〉2σ(k)

)

.

Hence recalling (5.23):

k − d

2
+ r − 1+ 2(r − 1)

p − 1
− 1

2

μ−1∂τχ +�χ

χ

= k + σ(k)− d

2
+ r − 1+ 2(r − 1)

p − 1
+ O

(
1

〈Z〉
)

≥ σν − d

2
+ r − 1+ 2(r − 1)

p − 1
+ O

(
1

〈Z〉
)

≥ ν̃ + O

(
1

〈Z〉
)

.

Using that k ≤ km − 1 and the interpolation bound (5.17) we may absorb the

O
(

1
〈Z〉
)

term and (5.13) is proved.

6 Pointwise bounds

We are now in position to close the control of the pointwise bounds (4.40). We
start with inner bounds |x | � 1:
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Lemma 6.1 (Interior pointwise bounds) For all 0 ≤ k ≤ 2km
3 :

∣
∣
∣
∣
∣

∀0 ≤ k ≤ 2km
3 , ‖〈Z〉n(k)∂kZρ

ρP
‖L∞(Z≤Z∗) ≤ d0

∀1 ≤ k ≤ 2km
3 , ‖〈Z〉n(k)〈Z〉r−2∂kZ	‖L∞(Z≤Z∗) ≤ d0

(6.1)

where d0 is a smallness constant depending on data.

Proof We integrate (5.13) in time and obtain, by choosing 0 < ν̃ � c + ckm ,∀0 ≤ m ≤ km − 1:

Im(τ ) ≤ e−2μν̃(τ−τ0) Im(0)+ 1

ckm − 2μν̃

(

e−2μν̃τ−ckm τ0 − e−ckm τ
)

≤ e−2μν̃(τ−τ0)e−cτ0 + e−ckm τ0

ckm − 2μν̃
e−2μν̃τ ≤ d0e

−2μν̃τ (6.2)

for some small constant d0, which can be chosen to be arbitrarily small by
increasing τ0. Below, we will adjust d0 to remain small while absorbing any
other universal constant.

Recalling (5.16):

∀0 ≤ m ≤ km − 1, ‖ρ̃, 	‖m,σ (m) ≤ d0e
−μν̃τ . (6.3)

This, in particular, already implies bounds on the Sobolev and pointwise norms
of (ρ̃, 	) on compact sets: for any ZK < ∞ and any k ≤ km − d

‖(ρ̃, 	)‖Hk(Z≤ZK ) ≤ d0e
−μν̃τ , ‖(∂k ρ̃, ∂k	)‖L∞(Z≤ZK ) ≤ d0e

−μν̃τ(6.4)

case m ≤ 4km
9 + 1 = m0. Recall (4.29), then (6.2) implies: ∀0 ≤ m ≤ m0,

∥
∥
∥
∥
〈Z〉m− d

2+ 2(r−1)
p−1 −ν̃

∂mZ ρ

∥
∥
∥
∥

2

L2(Z≤Z∗)
+
∥
∥
∥〈Z〉m− d

2+(r−1)−ν̃∂m+1
Z 	

∥
∥
∥

2

L2(Z≤Z∗)

≤ d0e
−2μν̃τ . (6.5)

We now write for any spherically symmetric function u and γ > d
2 − 1:

|u(Z)| � |u(1)| +
∫ Z

1
|∂Zu|dσ � |u(1)|

+
(∫

1≤σ≤Z

|∂Zu|2
τ 2γ

τ d−1dτ

) 1
2
(∫

1≤σ≤Z

τ 2γ

τ d−1 dτ

) 1
2

� |u(1)| + 〈Z〉γ+1− d
2

∥
∥
∥
∥

∂Zu

〈Z〉γ
∥
∥
∥
∥
L2(1≤σ≤Z)

. (6.6)
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We pick 1 ≤ m ≤ m0 and apply this to u = Z
2(r−1)
p−1 Zm−1∂m−1

Z ρ, γ+1 = d
2+ν̃

and obtain for Z ≤ Z∗ from (6.4) and (6.5):

|Zm−1+ 2(r−1)
p−1 ∂m−1

Z ρ| � e−cτ + 〈Z〉ν̃
∥
∥
∥
∥
∥
∥

∂Z (Z
2(r−1)
p−1 +m−1

∂m−1
Z ρ)

〈Z〉 d2+ν̃−1

∥
∥
∥
∥
∥
∥
L2(2Z2≤Z≤Z∗)

� e−cτ + 〈Z〉ν̃
⎡

⎣

∥
∥
∥
∥
∥
∥

〈Z〉m+ 2(r−1)
p−1 ∂mZ ρ

〈Z〉 d2+ν̃

∥
∥
∥
∥
∥
∥
L2(Z≤Z∗)

+
∥
∥
∥
∥
∥
∥

〈Z〉m−1+ 2(r−1)
p−1 ∂m−1

Z ρ

〈Z〉 d2+ν̃

∥
∥
∥
∥
∥
∥
L2(Z≤Z∗)

⎤

⎦

� e−cτ + d0〈Z〉ν̃e−μν̃τ ≤ e−cτ + d0

(〈Z〉
Z∗

)ν̃

� d0

and hence

∀0 ≤ m ≤ 4km
9

,

∥
∥
∥
∥

Zm∂mZ ρ

ρP

∥
∥
∥
∥
L∞(Z≤Z∗)

≤ d0.

We similarly pick 1 ≤ m ≤ m0, apply (6.6) to u = 〈Z〉r−2+m∂mZ 	, γ + 1 =
d
2 + ν̃, and obtain for Z ≤ Z∗ from (6.5):

|〈Z〉r−2+m∂mZ 	| � e−cτ + 〈Z〉ν̃
∥
∥
∥
∥
∥

∂Z (〈Z〉r−2+m∂mZ 	)

〈Z〉 d2+ν̃−1

∥
∥
∥
∥
∥
L2

+〈Z〉ν̃
⎡

⎣

∥
∥
∥
∥
∥

〈Z〉r−3+m∂mZ 	)

〈Z〉 d2+ν̃−1

∥
∥
∥
∥
∥
L2(2Z2≤Z≤Z∗)

+
∥
∥
∥
∥
∥

〈Z〉r−2+m∂m+1
Z 	)

〈Z〉 d2+ν̃−1

∥
∥
∥
∥
∥
L2(2Z2≤Z≤Z∗)

⎤

⎦

� e−cτ + d0〈Z〉ν̃e−μν̃τ ≤ e−cτ + d0

(〈Z〉
Z∗

)ν̃

≤ d0

and hence

∀1 ≤ m ≤ m0 = 4km
9

+ 1, ‖〈Z〉r−2+m∂mZ 	‖L∞(Z≤Z∗) ≤ d0.
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case m0 ≤ m ≤ 2km
3 + 1. Recall (5.23):

σ(m)+ m = −α(km − m)+ m = (α + 1)(m − m0)+ σν

and rewrite the norm:

‖ρ̃, 	‖2m,σ ≥
m
∑

k=0

∫

Z≤Z∗
1

〈Z〉2(m−k+σ(m))

×
[

b2|∇ρ̃(k)|2 + (p − 1)ρ p−2
D ρTot(ρ̃

(k))2 + ρ2
Tot|∇	(k)|2

]

=
m
∑

k=0

∫

Z≤Z∗
〈Z〉2k

〈Z〉2(α+1)(m−m0)+2σν

×
[

b2|∇ρ̃(k)|2 + (p − 1)ρ p−2
D ρTot(ρ̃

(k))2 + ρ2
Tot|∇	(k)|2

]

.

We infer, using also (6.2):

∫

2Z2≤Z≤Z∗

∣
∣
∣
∣
∣

Zm−(α+1)(m−m0)∂mZ ρ

〈Z〉 d2− 2(r−1)
p−1 +ν̃

∣
∣
∣
∣
∣

2

+
∫

Z≤Z∗

∣
∣
∣
∣
∣

Zm−(α+1)(m−m0)〈Z〉r−1∂m+1
Z 	

〈Z〉 d2+ν̃

∣
∣
∣
∣
∣

2

� ‖ρ,	‖2m,σ (m) ≤ d0e
−2μν̃τ . (6.7)

Observe that for m0 ≤ m ≤ 2km
3 + 1, from (4.30):

m − (α + 1)(m − m0) = m0(1+ α)− αm ≥ m0(1+ α)− α

(

2
km
3

+ 1

)

= km

[
4

9

(

1+ 4

5

)

− 2

3

4

5

]

+ Okm→+∞(1)

= 4km
15

+ Okm→+∞(1) >
km
4

+ 10. (6.8)

We now apply (6.6), (6.7) to m0 + 1 ≤ m ≤ 2km
3 + 1,

u = 〈Z〉m+ 2(r−1)
p−1 −(α+1)(m−m0)−1

∂m−1
Z ρ, γ+1 = d

2+ν̃ and obtain for Z ≤ Z∗:

|〈Z〉m+ 2(r−1)
p−1 −(α+1)(m−m0)−1

∂m−1
Z ρ|
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� e−cτ + 〈Z〉ν̃
∥
∥
∥
∥
∥
∥

∂Z (〈Z〉m+
2(r−1)
p−1 −(α+1)(m−m0)−1

∂m−1
Z ρ)

〈Z〉 d2+ν̃−1

∥
∥
∥
∥
∥
∥
L2(Z≤Z∗)

� e−cτ + 〈Z〉ν̃
∥
∥
∥
∥
∥
∥

〈Z〉m+ 2(r−1)
p−1 −(α+1)(m−m0)∂mZ ρ

〈Z〉 d2+ν̃

∥
∥
∥
∥
∥
∥
L2(Z≤Z∗)

+〈Z〉ν̃
∥
∥
∥
∥
∥
∥

〈Z〉m+ 2(r−1)
p−1 −(α+1)(m−m0)−1

∂m−1
Z ρ

〈Z〉 d2+ν̃

∥
∥
∥
∥
∥
∥
L2(Z≤Z∗)

� d0

[

1+ 〈Z〉ν̃e−μν̃τ
]

and hence using (6.8) for Z ≤ Z∗:
∣
∣
∣
∣
∣

Z
km
4 ∂m−1

Z ρ

ρD

∣
∣
∣
∣
∣
�
∣
∣
∣
∣
Zm+ 2(r−1)

p−1 −(α+1)(m−m0)−1
∂m−1
Z ρ

∣
∣
∣
∣
� d0

[

1+
(

Z

Z∗

)ν̃
]

� d0

and hence

∀4km
9

+ 1 ≤ m ≤ 2km
3

,

∥
∥
∥
∥
∥

Z
km
4 ∂mZ ρ

ρD

∥
∥
∥
∥
∥
L∞(Z≤Z∗)

≤ d0.

For the phase, we apply (6.6), (6.7) tom0+1 ≤ m ≤ 2km
3 +1, γ +1 = d

2 + ν̃,
u = 〈Z〉r−1+m−(α+1)(m−m0)∂mZ 	 and obtain:

〈Z〉r−1+m−(α+1)(m−m0)|∂mZ 	|

� e−cτ + 〈Z〉ν̃
∥
∥
∥
∥
∥

∂Z (〈Z〉r−1+m−(α+1)(m−m0)∂mZ 	)

〈Z〉 d2+ν̃−1

∥
∥
∥
∥
∥
L2(Z≤Z∗)

� e−cτ + 〈Z〉ν̃
∥
∥
∥
∥
∥

〈Z〉r−1+m−1−(α+1)(m−m0)∂mZ 	

〈Z〉 d2+ν̃−1

∥
∥
∥
∥
∥
L2(Z≤Z∗)

+〈Z〉ν̃
∥
∥
∥
∥
∥

〈Z〉r−1+m−(α+1)(m−m0)∂m+1
Z 	

〈Z〉 d2+ν̃−1

∥
∥
∥
∥
∥
L2(Z≤Z∗)

≤ d0

[

1+ 〈Z〉ν̃e−μν̃τ
]

and hence for m0 + 1 ≤ m ≤ 2km
3 from (6.8) for Z ≤ Z∗:

〈Z〉r−2+ km
4 |∂mZ 	| � 〈Z〉r−1+m−(α+1)(m−m0)|∂mZ 	| ≤ d0,
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which concludes the proof of (6.1). ��
Similar to the above, we also have the following exterior bounds for |x | ≥ 1:

Lemma 6.2 (Exterior pointwise bounds) There holds:
∣
∣
∣
∣
∣
∣

∀0 ≤ k ≤ 2km
3 , ‖〈Z〉n(k)∂kZρ

ρD
‖L∞(Z≥Z∗) ≤ d0,

∀1 ≤ k ≤ 2km
3 , ‖〈Z〉n(k)∂kZ	b ‖L∞(Z≥Z∗) ≤ d0,

(6.9)

where d0 is a smallness constant depending on data.

Proof We start with the case 0 ≤ k ≤ 4km
9 . We have in that case

Ik,σ (k) ≥
∫

Z≥Z∗
〈Z〉2k−2σν

(
Z

Z∗

)2nP− 4(r−1)
p−1 −2(r−2)+4ν̃

×
[

b2|∇ρ̃(k)|2 + (p − 1)ρ p−1
D (ρ̃(k))2 + ρ2

D|∇	(k)|2
]

We observe from (4.9), (4.28), (5.12) and b = Z∗2−r that for Z ≥ Z∗

Zd−1〈Z〉2k−2σν

(
Z

Z∗

)2nP− 4(r−1)
p−1 −2(r−2)+4ν̃

b2|∇ρ̃(k)|2

≈ 〈Z〉d−1+2k−2σν− 4(r−1)
p−1 −2(r−2)+4ν̃ |∇ρ̃(k)|2

(Z∗)4ν̃ρ2
D

= 〈Z〉1+2ν̃

(

〈Z〉k |∇ρ̃(k)|
(Z∗)2ν̃ρD

)2

Similarly,

Zd−1〈Z〉2k−2σν

(
Z

Z∗

)2nP− 4(r−1)
p−1 −2(r−2)+4ν̃

ρ2
D|∇	(k)|2

≈ 〈Z〉d−1+2k−2σν− 4(r−1)
p−1 −2(r−2)+4ν̃ |∇	(k)|2

(Z∗)4ν̃b2

= 〈Z〉1+2ν̃

(

〈Z〉k |∇	(k)|
(Z∗)2ν̃b

)2

.

Now, for a spherically symmetric function u, Z ≥ Z∗ and an arbitrary λ > 0

|u(Z)| =
∣
∣
∣
∣
u(Z∗)+

∫ Z

Z∗
∂Zu

∣
∣
∣
∣
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≤ |u(Z∗)| +
(∫ Z

Z∗
τ 1+2λ|∂Zu|2dτ

) 1
2
(∫ Z

Z∗
τ−1−2λdτ

) 1
2

≤ |u(Z∗)| + (Z∗)−λ

(∫ Z

Z∗
τ 1+2λ|∂Zu|2dτ

) 1
2

.

We apply this to u =
( 〈Z〉k ρ̃(k)

(Z∗)2ν̃ρD

)

for k ≥ 1 and λ = ν̃

∣
∣
∣
∣
∣

(

〈Z〉k ρ̃(k)

(Z∗)2ν̃ρD

)

(Z)

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

(

〈Z〉k ρ̃(k)

(Z∗)2ν̃ρD

)

(Z∗)
∣
∣
∣
∣
∣

+(Z∗)−ν̃

⎛

⎝

∫ Z

Z∗
τ 1+2ν̃

⎡

⎣

(

〈τ 〉k |∇ρ̃(k)|
(Z∗)2ν̃ρD

)2

+
(

〈τ 〉k−1ρ̃(k)

(Z∗)2ν̃ρD

)2
⎤

⎦ dτ

⎞

⎠

1
2

� (Z∗)−2ν̃d0 + (Z∗)−ν̃ (Ik,σ (k) + Ik−1,σ (k−1))
1
2 ,

where we used the already proved interior bounds (6.1). This, together with
(6.2), immediately implies the exterior bound for ∂kZρ and 1 ≤ k ≤ 4km

9 + 1.

The corresponding bound for ∂kZ	 is obtained similarly using u =
( 〈Z〉k	(k)

(Z∗)2ν̃b

)

and λ = ν̃. To prove the result for ρ in the case of k = 0 we note that the
bootstrap assumptions imply that ρ̃ → 0, so that, together with the above
estimate for k = 1, we have, for Z ≥ Z∗,

|ρ̃(Z)| =
∣
∣
∣
∣

∫ +∞

Z
∂Z ρ̃

∣
∣
∣
∣
≤ d0

∫ +∞

Z

ρD(τ )

τ
dτ ≤ d0ρD(Z)

as desired.
Finally, we consider the regime 4km

9 + 1 ≤ k ≤ 2km
3 . We have in that case

Ik,σ (k) ≥
∫

Z≥Z∗
〈Z〉2α(km−k)

(
Z

Z∗

)2nP− 4(r−1)
p−1 −2(r−2)+4ν̃

×
[

b2|∇ρ̃(k)|2 + (p − 1)ρ p−1
D (ρ̃(k))2 + ρ2

D|∇	(k)|2
]

We observe, using n(k) = km/4 in that range, for Z ≥ Z∗

Zd−1〈Z〉2α(km−k)
(

Z

Z∗

)2nP− 4(r−1)
p−1 −2(r−2)+4ν̃

b2|∇ρ̃(k)|2
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≈ 〈Z〉�(k)

(

〈Z〉n(k)|∇ρ̃(k)|
(Z∗)2ν̃ρD

)2

and

Zd−1〈Z〉2α(km−k)
(

Z

Z∗

)2nP− 4(r−1)
p−1 −2(r−2)+4ν̃

ρ2
D|∇	(k)|2

≈ 〈Z〉�(k)

(

〈Z〉k |∇	(k)|
(Z∗)2ν̃b

)2

where

�(k) := 2α(km − k)− km
2

− 2(r − 2)+ 4ν̃ − 4(r − 1)

p − 1
+ d − 1.

Since k ≤ 2km
3 , and in view of the control of α in (4.30), we have

�(k) ≥
(

8

15
− 1

2

)

km + O(1)km→+∞ = 1

30
+ O(1)km→+∞ ≥ km

31
.

In particular, we have �(k) > 1, so that the proof for Z ≥ Z∗ in the case
4km
9 + 1 ≤ k ≤ 2km

3 is analogous to the case 0 ≤ k ≤ 4km
9 . Details are left to

the reader. ��

7 Highest Sobolev norm

In this section we improve the bootstrap bound (4.38) on the highest
unweighted Sobolev norm of (ρ̃, 	). Specifically, for (see (4.23))

‖ρ̃, 	‖2km =
km∑

j=0

∑

|α|= j

∫
b2|∇∇αρ̃|2 + (p − 1)ρ p−2

D ρTot(∇αρ̃)2 + ρ2
Tot|∇∇α	|2

〈Z〉2(km− j)

(7.1)

we will establish the following

Proposition 7.1 (Control of the highest Sobolev norm) For some small con-
stant d dependent on the data,

‖ρ̃, 	‖2km ≤ ‖(ρ̃, 	)(τ0)‖2km + d. (7.2)
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On blow up for the energy super critical defocusing NLS

Proof of Proposition 7.1 This follows from the global unweighted quasilinear
energy identity. We let

km = 2Km, Km ∈ N

and denote in this section

k = km, ρ̃(k) = �Km ρ̃, 	(k) = �Km	.

We recall the notation (5.11)

Ikm =
∫

b2|∇∂km ρ̃|2 + (p − 1)
∫

ρ
p−2
D ρTot|∂km ρ̃|2 +

∫

ρ2
Tot|∇∂km	|2.

(7.3)

Step 1 Control of lower order terms. We recall the notation:

∣
∣
∣
∣
∣
∣
∣

‖ρ̃, 	‖2km ,σ (m) =
∑km

j=0

∫

χ j,km ,σ (m)b2|∇∂ j ρ̃|2
+(p − 1)

∫

χ j,kmρ
p−2
D ρTot(∂

j ρ̃)2 + ∫ χ j,kmρ
2
Tot|∇∂ j	|2

χ j,km ,σ (m)(Z) = 1
〈Z〉2(km− j) .

In view of (5.16) and (6.2), we have

‖ρ̃, 	‖2km ,σ (m) ≤
km∑

k=0

Ik ≤ Ikm + d0. (7.4)

ByRemark 4.2we can replace (up to the lower order terms controlled as above)
Ikm with

Jkm :=
∫

b2|∇�Km ρ̃|2 + (p − 1)
∫

ρ
p−2
D ρTot|�Km ρ̃|2

+
∫

ρ2
Tot|∇�Km	|2. (7.5)

We claim: there exist k∗m(d, r, p), cd,r,p > 0 such that for all km > k∗m(d, r, p),
there holds:

d

dτ

{

Jkm [1+ O(δ)]
}+ cd,r km Jkm ≤ d. (7.6)

Integrating the above in time, using (4.24), (7.4), yields (7.2).
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Step 2 Energy identity. We revisit the computation of (5.6), (5.7), (5.8), (5.3)
in order to extract all the coupling terms at the highest level of derivatives.
Recall (5.3):

∣
∣
∣
∣
∣
∣
∣

∂τ ρ̃ = −ρTot�	 − 2∇ρTot · ∇	 + H1ρ̃ − H2�ρ̃ − ẼP,ρ

∂τ	 = b2�ρTot
ρTot

− {H2�	 + μ(r − 2)	

+|∇	|2 + (p − 1)ρ p−2
D ρ̃ + NL(ρ̃)

}

− ẼP,	.

We use

[�Km ,�] = km�Km

and recall (C.1):

[�k, V ]�− 2k∇V · ∇�k−1� =
∑

|α|+|β|=2k,|β|≤2k−2

ck,α,β∂
αV ∂β�,

which gives

�Km (H2�ρ̃) = km(H2 +�H2)ρk + H2�ρk +Ak(ρ̃)

with
∣
∣
∣
∣
∣
∣

|Ak(ρ̃)| � ck
∑k−1

j=1
|∇ j ρ̃|

〈Z〉km+r− j ,

|∇Ak(ρ̃)| � ck
∑k

j=1
|∇ j ρ̃|

〈Z〉km+r+1− j ,
(7.7)

where ∇ j = ∂
α1
1 · · · ∂αd

d , j = α1 + · · · + αd denotes a generic derivative of
order j . Using (C.1) again:

∂τ ρ̃
(k) = (H1 − k(H2 +�H2))ρ̃k − H2�ρ̃k − (�KmρTot)�	

−k∇ρTot · ∇	(k) − ρTot�	k

−2∇(�KmρTot) · ∇	 − 2∇ρTot · ∇	k + F1 (7.8)

with

F1 = −�Km ẼP,ρ + [�Km , H1]ρ̃ − Ak(ρ̃)

−
∑

∣
∣
∣
∣
∣

j1 + j2 = k
j1 ≥ 2, j2 ≥ 1

c j1, j2∇ j1ρTot∇ j2�	
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−
∑

∣
∣
∣
∣
∣

j1 + j2 = k
j1, j2 ≥ 1

c j1, j2∇ j1∇ρTot · ∇ j2∇	. (7.9)

For the second equation, we have similarly:

∂τ	k = b2
(

�Km+1ρTot

ρTot
− k∇�KmρTot · ∇ρTot

ρ2
Tot

)

−k(H2 +�H2)	k − H2�	k − μ(r − 2)	k − 2∇	 · ∇	k

−
[

(p − 1)ρ p−2
P ρ̃k + k(p − 1)(p − 2)ρ p−3

D ∇ρD · ∇�Km−1ρ̃
]

+F2 (7.10)

with

F2 = −∂k ẼP,	 + b2
[

�Km

(
�ρTot

ρTot

)

− �Km+1ρTot

ρTot
+ k∇�KmρTot · ∇ρTot

ρ2
Tot

]

−(p − 1)
(

[�Km , ρ
p−2
D ]ρ̃ − k(p − 2)ρ p−3

D ∇ρD · ∇�Km−1ρ̃
)

−Ak(	)−
∑

j1+ j2=k, j1, j2≥1
∇ j1∇	 · ∇ j2∇	 −�KmNL(ρ̃) (7.11)

and
∣
∣
∣
∣
∣
∣

|Ak(	)| �
∑k−1

j=1
|∇ j	|

〈Z〉km+r− j

|∇Ak(	)| �
∑k

j=1
|∇ j	|

〈Z〉km+r+1− j .
(7.12)

We then run the global quasilinear energy identity similar to (5.10) with χ = 1
and obtain:

1

2

d

dτ

{∫

b2|∇ρ̃k |2 + (p − 1)
∫

ρ
p−2
D ρTotρ̃

2
k +

∫

ρ2
Tot|∇	k |2

}

= −μ(r − 2)b2
∫

|∇ρ̃k |2 +
∫

∂τρTot

[
p − 1

2
ρ
p−2
D ρ̃2

k + ρTot|∇	k |2
]

+ p − 1

2

∫

(p − 2)∂τρDρ
p−3
D ρTotρ̃

2
k

+
∫

F1(p − 1)ρ p−2
D ρTotρ̃k + b2

∫

∇F1 · ∇ρ̃k +
∫

ρ2
T∇F2 · ∇	k

−
∫

k∇ρTot · ∇	k(−b2�ρ̃k + (p − 1)ρ p−2
D ρTotρ̃k)
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+
∫

b2
k∇�KmρTot · ∇ρTot

ρTot
(ρTot�	k + 2∇ρTot · ∇	k)

+
∫
[

(H1 − k(H2 +�H2))ρ̃k − H2�ρ̃k

−(�KmρTot)�	 − 2∇(�KmρTot) · ∇	
]

×
[

−b2�ρ̃k + (p − 1)ρ p−2
D ρTotρ̃k

]

−
∫ [

b2ρTot�
Km+1ρD − kρTot(H2 +�H2)	k

−ρTotH2�	k − μ(r − 2)ρTot	k − 2ρTot∇	 · ∇	k]

× [2∇ρTot · ∇	k + ρTot�	k]+
∫

k(p − 1)(p − 2)ρTotρ
p−3
D ∇ρD

·∇�Km−1ρ̃ [2∇ρTot · ∇	k + ρTot�	k] . (7.13)

We now estimate all terms in (7.13). The proof is similar to that one of Propo-
sition 5.2 with two main differences: the absence of a cut-off function χ , and
a priori control of lower order derivatives from (7.4). The challenge here is
to avoid any loss of derivatives and to compute exactly the quadratic form
at the highest level of derivatives. The latter will be shown to be positive on
a compact set in Z provided km > k∗m(d, r, p) � 1 has been chosen large
enough.

In what follows, below, we will use δ > 0 as a small universal constant
and will assume that the pointwise bounds (6.1) obtained on the lower order
derivatives of ρ̃ and 	 are dominated by δ. On the set Z ≤ Z∗, this will
often be a source of smallness, while for Z ≥ Z∗, we may use the bootstrap
bounds (4.40) and the δ-smallness will be generated by extra powers of Z . We
also note that from (7.6) the quadratic form is expected to be proportionate
to km Ikm . Choosing km large will allow us to dominate other quadratic terms
without smallness but with the uniform dependence on km . The notation�will
allow dependence on km , while O will indicate a bound independent of km .
As before, d0 (as well as d) will denote small constants, dependent on the data
(or, more precisely, on τ0), that can be made arbitrarily small. In particular, we
will use

‖ρ̃, 	‖km−1,σ (km−1) ≤ d0. (7.14)

The constants δ � d0 will be assumed to be smaller than any power of km , so
that our calculations will be unaffected by combinatorics generated by taking
km derivatives of the equations.
Step 3 Leading order terms.
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Cross term. Recall (5.27):

∫

�gF · ∇g dx =
d
∑

i, j=1

∫

∂2i gFj∂ j g dx

= −
d
∑

i, j=1

∫

∂i g(∂i Fj∂ j g + Fj∂
2
i, j g)

= −
d
∑

i, j=1

∫

∂i Fj∂i g∂ j g + 1

2

∫

|∇g|2∇ · F.

Letting g = g1 + g2 yields a bilinear off-diagonal Pohozhaev identity:

∫

[�g1F · ∇g2 +�g2F · ∇g1] dx

= −
d
∑

i, j=1

∫

∂i Fj (∂i g1∂ j g2 + ∂i g2∂ j g1)

+
∫

∇g1 · ∇g2(∇ · F).

Wemay therefore integrate by parts the one term in (7.13) which has too many
derivatives:

b2k

∣
∣
∣
∣

∫ [

∇ρTot · ∇	k�ρ̃k +∇�KmρTot · ∇ρTot�	k

]
∣
∣
∣
∣

= b2k

∣
∣
∣
∣

∫

∇ρTot · ∇	k�ρ̃k +∇ρTot · ∇ρ̃k�	k +∇ρTot · ∇�KmρD�	k

∣
∣
∣
∣

= b2k

∣
∣
∣
∣
−
∫ d
∑

i, j=1

∂2i, jρTot(∂i ρ̃k∂ j	k + ∂i	k∂ j ρ̃k)+
∫

∇ρ̃k · ∇	k�ρTot

−
∫

∇	k · ∇(∇ρTot · ∇�KmρD)

∣
∣
∣
∣

� b2k
∫

ρTot|∇	k |
[

1

〈Z〉k+2 +
|∇ρ̃k |
〈Z〉2

]

≤ δ

∫

ρ2
Tot|∇	k |2 + Cδb

4 + Cδb
4
∫

|∇ρ̃k |2

� δ Jkm + Cδb
4.

123



F. Merle et al.

We estimate similarly:

∣
∣
∣
∣
kb2

∫ ∇�KmρTot · ∇ρTot

ρTot
∇ρTot · ∇	k

∣
∣
∣
∣

≤ δ

[

b2
∫

|∇ρ̃k |2 +
∫

ρ2
Tot|∇	k |2

]

+ cδb
4 � δ Jkm + Cδb

4.

We use

|ρ̃|
ρTot

+ |�ρ̃|
〈Z〉cρTot � δ, 0 < c � 1 (7.15)

to compute the first coupling term:

−k(p − 1)
∫

∇ρTot · ∇	kρ
p−2
D ρTotρ̃k

= −k
∫

ρD∇ρ
p−1
D · ∇	k ρ̃k + O

(

δ

∫ |∇	k |ρ p−1
D ρTot|ρ̃k |
〈Z〉

)

= −k
∫

ρD∇ρ
p−1
D · ∇	k ρ̃k + O

(

δ Jkm
)

.

The second coupling term is computed after an integration by parts using
(7.15), the control of lower order terms (7.4) and the spherically symmetric
assumption:
∫

(ρTot�	k + 2∇ρTot · ∇	k)k(p − 1)(p − 2)ρTotρ
p−3
D ∇ρD · ∇�Km−1ρ̃

= k(p − 1)(p − 2)
∫

∇ · (ρ2
Tot∇	k)ρ

p−3
D ∇ρD · ∇�Km−1ρ̃

= −k(p − 1)(p − 2)
∫

ρ2
Tot∇	k · ∇

(

ρ
p−3
D ∇ρD · ∇�Km−1ρ̃

)

= −k(p − 1)(p − 2)
∫

ρ2
Tot∂Z	k∂Z

(

ρ
p−3
D ∂ZρD∂Z�

Km−1ρ̃
)

= −k(p − 1)(p − 2)
∫

ρ
p−3
D ∂ZρDρ

2
Tot∂Z	k∂

2
Z�

Km−1ρ̃

+O

(∫

ρTot|∇	k |ρ p−1
Tot

|∇km−1ρ̃|
〈Z〉2

)

= −
∫

k(p − 2)ρD∂Z (ρ
p−1
D )∂Z	k ρ̃k

+
∫

k(p − 2)(d − 1)ρD∂Z (ρ
p−1
D )∂Z	k

∂Z�
Km−1ρ̃

|Z |
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+O

(∫

ρTot|∇	k |ρ p−1
Tot

|∇km−1ρ̃|
〈Z〉2

)

= −k(p − 2)
∫

ρD∇ρ
p−1
D · ∇	k ρ̃k + O

(

d0 + δ Jkm
)

,

where in the last step we used that |∂ZρD ||Z |ρD
� 1

〈Z〉2 .
ρk terms. We compute:

∫

(H1 − k(H2 +�H2))ρ̃k(−b2�ρ̃k + (p − 1)ρ p−2
D ρTotρ̃k)

=
∫

(H1 − k(H2 +�H2))
[

b2|∇ρ̃k |2 + (p − 1)ρ p−2
D ρTotρ̃

2
k

]

−b2

2

∫

ρ̃2
k�(H1 − k(H2 +�H2)).

We now use the global lower bound, see properties (2.21) and (2.22) of the the
profile (w, σ ),

H2 +�H2 = μ(1− w −�w) ≥ cp,d,r , cp,d,r > 0

to estimate using (8.17), (7.14):

∫

(H1 − k(H2 +�H2))ρ̃k(−b2�ρ̃k + (p − 1)ρ p−2
D ρTotρ̃k)

≤ −k
∫ [

1+ Okm→+∞
(

1

km

)]

(H2 +�H2)

×
[

b2|∇ρ̃k |2 + (p − 1)ρ p−2
D ρTotρ̃

2
k

]

+ Cb2
∫

ρ̃2
k

〈Z〉2+r
≤ −k

∫

(H2 +�H2)
[

b2|∇ρ̃k |2 + (p − 1)ρ p−2
D ρTotρ̃

2
k

]

+ d0.

Next, using

|∂kρD| � ρD

〈Z〉k ,

we estimate from (4.40):

b2
∣
∣
∣
∣

∫

�ρ̃k

[

(�KmρD)�	 + 2∇(�KmρD) · ∇	
]
∣
∣
∣
∣

� b2
∫

|∇ρ̃k |
[

|∇(�KmρD�	)| + |∇(∇�KmρD · ∇	)|
]
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≤ b2δ
∫

|∇ρ̃k |2 + b2

δ

3
∑

j=1

∫
ρ2
D|∂ j	|2

〈Z〉2(k+3− j)
≤ δ Jkm + d0b

2.

For the nonlinear term, we use (6.1), (4.40), (5.27), (7.4) to estimate

b2
∣
∣
∣
∣

∫

�ρ̃k
[

ρ̃k�	 + 2∇ρ̃k · ∇	
]
∣
∣
∣
∣

� b2
[
∫

|∂2	||∇ρ̃k |2 +
∫

ρ̃2
k

〈Z〉2
]

≤ δ Jkm + d0b
2.

Next

∣
∣
∣
∣

∫ [

(�KmρD)�	 − 2∇(�KmρD) · ∇	
]

(p − 1)ρ p−2
D ρTotρ̃k

∣
∣
∣
∣

≤ δ

∫

ρ
p−2
D ρTotρ̃

2
k +

C

δ

∫

ρ
p−2
D ρ2

Tot

[ |∂2	|2
〈Z〉2k + |∂	|2

〈Z〉2(k+1)

]

≤ δ Jkm + d0,

since we are assuming that d0 � δ, and for the nonlinear term after an inte-
gration by parts:

∣
∣
∣
∣

∫
[

ρ̃k�	 − 2∇ρ̃k · ∇	
]

(p − 1)ρ p−2
D ρTotρ̃k

∣
∣
∣
∣
� δ

∫

ρ
p−2
D ρTotρ̃

2
k .

From Pohozhaev (5.27):

−
∫

H2�ρ̃k(−b2�ρ̃k) = b2
∫

�ρ̃k(ZH2) · ∇ρ̃k = O

(

b2
∫

|∇ρ̃k |2
)

.

Integrating by parts and using (8.17), (5.41), (5.42):

−
∫

H2�ρ̃k

[

(p − 1)ρ p−2
D ρTotρ̃k

]

+ p − 1

2

∫

(p − 2)∂τρDρ
p−3
D ρTotρ̃

2
k +

p − 1

2

∫

∂τρTotρ
p−2
D ρ̃2

k

= p − 1

2

∫

ρ̃2
k

[

∇ · (ZH2ρ
p−2
D ρTot)+ ∂τ (ρ

p−2
D )ρTot + ∂τρTotρ

p−2
D

]

= O

(∫

ρ
p−2
D ρTotρ̃

2
k

)
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Note that the above two bounds, even though dependent on the highest order
derivatives, contain no k dependence.
	k terms. After an integration by parts:

∣
∣
∣
∣

∫

b2�Km+1ρD [2∇ρTot · ∇	k + ρTot�	k]

∣
∣
∣
∣

� b2
∫

ρTot
|∇	k |
〈Z〉k+3 ≤ δ

∫

ρ2
Tot|∇	k |2 + d0.

Then

μ(r − 2)
∫

ρTot	k [2∇ρTot · ∇	k + ρTot�	k]

= −μ(r − 2)
∫

	2
k∇ · (ρTot∇ρTot)− μ(r − 2)

∫

∇	k · ∇(ρ2
Tot	k)

= −μ(r − 2)
∫

ρ2
Tot|∇	k |2

and similarly, using (8.17), (7.4):

k
∫

ρTot(H2 +�H2)	k [2∇ρTot · ∇	k + ρTot�	k]

= k
∫

(H2 +�H2)	k∇ · (ρ2
Tot∇	k)

= −k

[∫

(H2 +�H2)ρ
2
Tot|∇	k |2

+
∫

ρ2
Tot	

2
k

(

∇ · (ρ2
Tot∇(H2 +�H2))

2ρ2
T

)]

= −k
∫

(H2 +�H2)ρ
2
Tot|∇	k |2 + d0,

where the 	2
k term is controlled, with the help of the bound

∣
∣
∣
∣
∣

∇ · (ρ2
Tot∇(H2 +�H2))

2ρ2
T

∣
∣
∣
∣
∣
� 〈Z〉−2−r ,

by using the already bounded ‖(ρ̃, 	)‖km−1,σ (km−1)-norm.
Then, from (6.1) and (6.9):

∣
∣
∣
∣

∫

2ρTot∇	 · ∇	k(2∇ρTot · ∇	k)

∣
∣
∣
∣
� d0

∫

ρ2
Tot|∇	k |2
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and using (5.27):

∣
∣
∣
∣

∫

2ρTot∇	 · ∇	k(ρTot�	k)

∣
∣
∣
∣
�
∫

|∇	k |2||∂(ρ2
Tot∇	)|

� d0

∫

ρ2
Tot|∇	k |2.

Arguing verbatim as in the proof of (5.49) produces the bound

∣
∣
∣
∣

∫

ρTotH2�	k (2∇ρTot · ∇	k + ρTot�	k)

∣
∣
∣
∣
= O

(∫

ρ2
Tot|∇	k |2

)

.

Step 4 F1 terms. We claim the bound:

b2
∫

|∇F1|2 + (p − 1)
∫

ρ
p−1
D F2

1 � δ Jkm + d0. (7.16)

Source term induced by localization. From (5.55), for km large enough:

∫

ρ
p−2
D ρTot|�Km ẼP,ρ |2 + b2

∫

|∇�Km ẼP,ρ |2 � d0.

[�Km , H1] term. We estimate from (5.56), (7.14)

(p − 1)
∫

ρ
p−1
D ([�Km , H1]ρ̃)2 �

k−1
∑

j=0

∫

ρ
p−1
D

|∂ j ρ̃|2
〈Z〉2(r+k− j)

≤ d0

and

b2
∫

|∇([�Km , H1]ρ̃)|2 � b2
k
∑

j=0

∫ |∂ j ρ̃|2
〈Z〉2(1+r+k− j)

= b2
∫

ρ̃2dZ

〈Z〉2(1+r+k)
+ b2

k−1
∑

j=0

∫ |∂ j∇ρ̃|2
〈Z〉2(r+k+1− j)+2

� b2 + ‖ρ̃, 	‖km−1,σ (km−1) ≤ d0.

Ak(ρ̃) term. From (7.7), (7.14):

(p − 1)
∫

ρ
p−1
D (Ak(ρ̃))

2 �
k−1
∑

j=1

∫

ρ
p−1
D

|∇ j ρ̃|2
〈Z〉2(r+k− j)

≤ d0
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and

b2
∫

|∇(Ak(ρ̃))|2 � b2
k−1
∑

j=0

∫ |∇∇ j ρ̃|2
〈Z〉2(r+k− j)

≤ d0

and (7.16) is proved for this term.
Nonlinear term. After changing indices, we need to estimate

N j1, j2 = ∇ j1ρTot∇ j2∇	, j1 + j2 = k + 1, 2 ≤ j1, j2 ≤ k − 1.

For the profile term:

|∂ j1ρD∇ j2∇	| � ρD
|∇ j2∇	|
〈Z〉 j1 = ρD

|∇ j2∇	|
〈Z〉k+1− j2

and therefore, recalling (5.59), (7.14):

∫

(p − 1)N 2
j1, j2ρ

p−1
D �

∫
ρ2
Tot|∇ j2∇	|2

〈Z〉2(k+1− j2)+2(r−1)
≤ d0.

Similarly, after taking a derivative:

b2
∫

|∇N j1, j2 |2 � b2
∫

ρ2
Tot|∇ j2∇	|2
〈Z〉2(k+2− j2)

+ b2
∫

ρ2
Tot|∇ j2+1∇	|2
〈Z〉2(k+1− j2)

≤ d0 + δ Jkm .

The δ Jkm term above controls the case j2 = k − 1.
We now turn to the control of the nonlinear term. If j1 ≤ 4km

9 , then from
(4.40), (7.4):

∫

ρ
p−1
D |∇ j1 ρ̃∇ j2∇	|2 �

∫

ρ2
D

|∇ j2∇	|2
〈Z〉2(k+1− j2)+(p−1) 2(r−1)

p−1

≤ d0.

If j2 ≤ 4km
9 , then from (4.40) with b = 1

(Z∗)r−2 :

∫

ρ
p−1
D |∇ j1 ρ̃∇ j2∇	|2 �

∫

Z≤Z∗
ρ
p−1
D

|∇ j1 ρ̃|2
〈Z〉2(k+1+(r−2)− j1)

+b2
∫

Z≥Z∗
ρ
p−1
D

|∇ j1 ρ̃|2
〈Z〉2(k+1− j1)

≤ d0.
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We may therefore assume j1, j2 ≥ m0 = 4km
9 + 1, which implies k ≥ m0 and

j1, j2 ≤ 2km
3 and hence from (4.40) and (6.1):

∫

ρ
p−1
D |∂ j1 ρ̃∇ j2∇	|2 � d0 +

∫

Z≥Z∗
dZ

〈Z〉 km10
≤ d0.

The b2 derivative contribution of the nonlinear term is estimated similarly.
Step 5 F2 terms. We claim:

∫

ρ2
Tot|∇(F2 +�KmNL(ρ̃))|2 ≤ δ Jkm + d0. (7.17)

The nonlinear term �KmNL(ρ̃) will be treated in the next step.
Ak(	) term. From (7.12)

|∇Ak(	)| �
k
∑

j=1

|∇ j	|
〈Z〉r+k− j+1

and hence:

∫

ρ2
Tot|∇Ak(	)|2 �

k−1
∑

j=0

∫

ρ2
Tot

|∇∇ j	|2
〈Z〉2(r+k− j)

≤ d0.

[�Km , ρ
p−2
D ] term. From (C.1):

∣
∣
∣[�Km , ρ

p−2
D ]ρ̃ − k(p − 2)ρ p−3

D ∇ρD · ∇�Km−1ρ̃

∣
∣
∣ �

k−2
∑

j=0

|∇ j ρ̃|
〈Z〉k− j

ρ
p−2
D .

After taking a derivative:

∫

ρ2
Tot

∣
∣
∣∇
[

[�Km , ρ
p−2
D ]ρ̃ − k(p − 2)ρ p−3

D ∇ρD · ∇�Km−1ρ̃
]∣
∣
∣

2

�
k−1
∑

j=0

∫

ρ
2(p−2)+2
D

|∇ j ρ̃|2
〈Z〉2(k− j)+2

≤ d0.

Nonlinear 	 term. Let

∂N j1, j2 = ∇ j1∇	∇ j2∇	, j1 + j2 = k + 1, j1, j2 ≥ 1.
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We first treat the highest derivative term using the L∞ smallness of small
derivatives: Using (4.40) and (6.1)

∫

ρ2
Tot|∇∇	|2|∇km∇	|2 ≤ (d0 + b2)Ikm .

We now assume j1, j2 ≤ km − 1. If j1 ≤ 4km
9 , then from (4.40), (7.4):

∫

ρ2
Tot|∇N j1, j2 |2 � (d0 + b2)

∫

ρ2
Tot

|∇ j2∇	|2
〈Z〉2(k+1− j2)

≤ d0.

The expression being symmetric in j1, j2, we may assume j1, j2 ≥ m0 =
4km
9 + 1, j1, j2 ≤ 2km

3 , and using (4.40), (7.4):

∫

ρ2
Tot|∇N j1, j2 |2 � d0

∫

Z≤Z∗
dZ

〈Z〉 km10
+ b4

∫

Z>Z∗
dZ

〈Z〉 km10
≤ d0.

Quantum pressure term. We estimate from Leibniz and (C.1):

b2
∣
∣
∣
∣
∣
�Km

(
�ρTot

ρTot

)

− �Km+1ρTot

ρTot
+ k∇�KmρTot · ∇ρTot

ρ2
Tot

∣
∣
∣
∣
∣

�k b
2

∑

j1+ j2=k, j2≥2

∣
∣
∣
∣
∇ j1�ρTot∂

j2

(
1

ρTot

)∣
∣
∣
∣
.

We use the Faa di Bruno formula:

N j1, j2 = b2∇ j1+1�ρTot
1

ρ
j2+1
Tot

∑

m1+2m2+···+ j2m j2= j2

�
j2
i=1(∇ iρTot)

mi

and m1+ 2m2+ · · · + j2m j2 = j2. We decompose ρTot = ρD + ρ̃ in the sum
and estimate the ρD contribution:

b4
∫

ρ2
Tot

⎧

⎨

⎩

∑

j1+ j2=k, j2≥2

|∇ j1+1�ρTot|2
ρ2
Tot〈Z〉2 j2

+ |∇ j1�ρTot|2
ρ2
Tot〈Z〉2 j2+2

⎫

⎬

⎭

� b4
∑

j1+ j2=k, j2≥2

[
∫

ρ2
TotdZ

〈Z〉2 j2+2( j1+3)
+
∫ |∇ j1+3ρ̃|2

〈Z〉2 j2
]

� b4

⎛

⎝1+
k
∑

j1=2

∫ |∇∇ j1 ρ̃|2
〈Z〉2(k− j1)+2

⎞

⎠ ≤ d0 + δ Jkm .
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In the general case, we replace (∇ iρTot)
mi by (∇ i ρ̂)mi where ρ̂ is either ρD

or ρ̃. In both cases we will use the weaker estimates (4.40).
First, assume that mi = 0 for i ≥ 4km

9 + 1, then from (4.40):

|N j1, j2 | � b2|∇ j1+1�ρTot| 1

ρ
j2+1
Tot

∑

m1+2m1+···+ j2m j2= j2

�
j2
i=0|(∇ i ρ̂)mi |

� b2
|∇ j1+1�ρTot|
ρTot〈Z〉 j2

and the conclusion follows as above. Otherwise, there are at most two value
4km
9 ≤ i1 ≤ i2 ≤ j2 withmi1,mi2 �= 0 andmi1+mi2 ≤ 2. Hence from (4.40):

1

ρ
j2+1
Tot

�
j2
i=0|(∇ i ρ̃)mi | � 1

ρ
j2+1
D

|∇ i1 ρ̃|mi1 |∇ i2 ρ̂|mi2�0≤i≤ j2,i /∈{i1,i2}
(

ρD

〈Z〉i
)mi

�
( |∇ i1 ρ̂|

ρD

)mi1
( |∇ i2 ρ̂|

ρD

)mi2 1

ρD〈Z〉 j2−(mi1 i1+mi2 i2)
.

Assume first i2 ≥ 2km
3 + 1, then mi1 = 0, mi2 = 1 and j1 + 3 ≤ 4km

9 from
which:

∫

ρ2
Tot|N j1, j2 |2 � b4

∫

ρ2
Tot|∇ j1+1�ρTot|2 |∇

i2 ρ̂|2
ρ2
D

1

ρ2
D〈Z〉2( j2−i2)

� b4
∫ |∇ i2 ρ̂|2

〈Z〉2( j2−i2)+2( j1+3)

� b4
∫ |∇ i2 ρ̂|2

〈Z〉2(k−i2)+6
≤ d0

There remains the case 4km
9 + 1 ≤ i1 ≤ i2 ≤ 2km

3 which imply j1 + 3 ≤ 2km
3 ,

and we distinguish cases:
– case (mi1,mi2) = (0, 1): if j1 + 3 ≤ 4km

9 , we estimate

∫

ρ2
Tot|N j1, j2 |2 � b4

∫

ρ2
D|∇ j1+1�ρTot|2 |∇

i2 ρ̂|2
ρ2
D

1

ρ2
D〈Z〉2( j2−i2)

� b4
∫ |∇ i2 ρ̂|2

〈Z〉2( j2−i2)+2( j1+3)

� b4
∫ |∇ i2 ρ̂|2

〈Z〉2(k−i2)+6
≤ d0.
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Otherwise, 4km
9 + 1 ≤ j1 + 3 ≤ 2km

3 . Hence 4km
9 + 1 ≤ j1 + 3 ≤ 2km

3 ,
4km
9 + 1 ≤ i2 ≤ 2km

3 and we estimate from (4.40), using km large:

∫

ρ2
Tot|N j1, j2 |2 � b4

∫
Zd−1dZ

〈Z〉2
(
km
4 + km

4

) � b4 ≤ d0.

– case mi1 + mi2 = 2: we obtain from (4.40) and j1 + 3 ≤ 2km
3

∫

ρ2
Tot|N j1, j2 |2 � b4

∫

ρ2
D|∂ j1+1�ρTot|2

(

1

〈Z〉 km4

)4

� b4
∫

dZ

〈Z〉km ≤ d0.

Step 6 NL(ρ̃) term. We need to estimate

∫

ρ2
Tot∇�KmNL(ρ̃) · ∇	k

which requires an integration by part in time for the highest order term. We
expand using that, according to our assumptions, the nonlinearity is an integer:

NL(ρ̃) = (ρD + ρ̃)p−1 − ρ
p−1
D − (p − 1)ρ p−2

D ρ̃ =
p−1
∑

q=2

cq ρ̃
qρ

p−1−q
D

and hence by Leibniz:

�KmNL(ρ̃) =
p−1
∑

q=2

cq ρ̃
q−1

(

�Km ρ̃
)

ρ
p−1−q
D

+
p−1
∑

q=2

∑

j1+ j2=k

∑

�1+···+�q= j1,�1≤···�q≤k−1

∇�1 ρ̃ · · · ∇�q ρ̃∇ j2 (ρ
p−1−q
D )

Let

N�1,...,�q , j1,q = ∇�1 ρ̃ · · · ∇�q ρ̃∇ j2(ρ
p−1−q
D ), �1 ≤ · · · ≤ �q .

case �q ≤ km − 2: we estimate

|∇N�1,...,�q , j1,q | � |∇m1 ρ̃ · · · ∇mq ρ̃|ρ
p−1−q
D

〈Z〉 j2 ,

∣
∣
∣
∣

0 ≤ mi ≤ km − 1
m1 + · · ·mq = j1 + 1.
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We may reorder m1 ≤ · · · ≤ mq . If mq ≤ 4km
9 , then

|∇N�1,...,�q , j1,q | � ρ̃q

〈Z〉 j1+1

ρ
p−1−q
D

〈Z〉 j2 � d0

〈Z〉 km2

and hence the contribution of this term
∫

ρ2
Tot|∇N�1,...,�q , j1,q |2 ≤ d0.

If 4km
9 ≤ mq ≤ 2km

3 , then similarly, combining (6.9), (6.1):

|∇N�1,...,�q , j1,q | � 1

〈Z〉 j2
d0

〈Z〉 km4

and the conclusion follows. If mq ≥ 2km
3 , then mq−1 ≤ 4km

9 from which:

|∇N�1,...,�q , j1,q | �
ρ
p−1−q
D

〈Z〉 j2
ρ
q−1
D

〈Z〉 j1+1−�q
|∇�q ρ̃| �

ρ
p−2
D |∇�q ρ̃|

〈Z〉km+1−mq

and hence the bound

∫

ρ2
Tot|∇N�1,...,�q , j1,q |2 �

∫

ρ
2(p−2)+2
Tot

|∇mq ρ̃|2
〈Z〉2(km−mq )+2

� ‖ρ̃, 	‖2km−1,σ (km−1) ≤ d0.

case �q = km − 1: we compute ∇N�1,...,�q , j1,q . If the derivative falls on � j ,
j ≤ q − 1, we are back to the previous case, and we are therefore left with
estimating

|∂�1 ρ̃∂�q−1 ρ̃∂km ρ̃|ρ
p−1−q
D

〈Z〉 j2 ,

∣
∣
∣
∣

�1 + · · · + �q−1 + km = j1 + 1
j1 + j2 = km .

If j1 = km − 1, then j2 = 1, �1 = · · · = �q−1 = 0 and we estimate relying

onto the smallness of ρ̃
ρTot

from (7.4) (for Z ≤ Z∗) and using (4.40) together

with the smallness of 〈Z〉−1 (for Z ≥ Z∗):

|∇�1 ρ̃ · · · ∇�q−1 ρ̃∇km ρ̃|ρ
p−1−q
D

〈Z〉 j2 � |ρ̃q−1∇km ρ̃|ρ
p−1−q
D

〈Z〉 � d0ρ
p−2
D |∇km ρ̃|
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and hence the corresponding contribution (p ≥ 3)

d0

∫

ρ
2(p−2)
D |∂km ρ̃|2 ≤ δ Jkm .

Similarly, if j1 = km then �1 = · · · = �q−2 = j2 = 0 and �q−1 = 1.

|∇�1 ρ̃ · · · ∇�q−1 ρ̃∇km ρ̃|ρ
p−1−q
D

〈Z〉 j2 � ρ̃q−2|∇ρ̃||∇km ρ̃|ρ p−1−q
D

� d0ρ
p−2
D |∇km ρ̃|

Highest order termWe are left with estimating the highest order term:

N�1,...,�q , j1,q = ρ̃q−1ρ
p−1−q
D �Km ρ̃.

We treat this term by integration by parts in time using (7.8):

−
∫

ρ2
Tot∇

[

ρ̃q−1ρ
p−1−q
D �Km ρ̃

]

· ∇	k

=
∫

ρ̃q−1ρ
p−1−q
D ρ̃k∇ · (ρ2

Tot∇	k)

= −
∫

ρ̃q−1ρ
p−1−q
D ρ̃kρTot

[

∂τ ρ̃k − (H1 − k(H2 +�H2))ρ̃k

+H2�ρ̃k + (�KmρTot)�	

+ k∇ρTot · ∇	k + 2∇(�KmρTot) · ∇	 − F1
]

(7.18)

andwe treat all terms in (7.18).Wewill systematically use the smallness (4.27).
The ∂τ ρ̃k term is integrated by parts in time:

−
∫

ρ̃q−1ρ
p−1−q
D ρTotρ̃k∂τ ρ̃k = −1

2

d

dτ

{∫

ρ̃q−1ρ
p−1−q
D ρTotρ̃

2
k

}

+1

2

∫

ρ̃2
k ∂τ

(

ρ̃q−1ρ
p−1−q
D ρTot

)

= −1

2

d

dτ

{∫

ρ̃q−1ρ
p−1−q
D ρTotρ̃

2
k

}

+ O

(

δ

∫

ρ
p−1
D ρ̃2

k

)

and the boundary term in time is small

∫

ρ̃q−1ρ
p−1−q
D ρTotρ̃

2
k � δ

∫

ρ
p−1
D ρ2

k .
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We then estimate:
∣
∣
∣
∣

∫

ρ̃q−1ρ
p−1−q
D ρ̃kρTot(H1 − k(H2 +�H2))ρ̃k

∣
∣
∣
∣

� kδ
∫

ρ
p−1
Tot ρ̃2

k � δ Jkm .

Using the extra decay in Z and ‖�	‖L∞ ≤ δ � 1:

∣
∣
∣
∣

∫

ρ̃q−1ρ
p−1−q
D ρ̃kρTot(�

KmρTot)�	

∣
∣
∣
∣
� d0

∫
dZ

〈Z〉 km2
+
∫

ρ
p−1
Tot ρ̃2

k |�	| ≤ d0 + δ Jkm .

Similarly, after an integration by parts:

∣
∣
∣
∣
−
∫

ρ̃q−1ρ
p−1−q
D ρ̃kρTot∇(�KmρTot) · ∇	

∣
∣
∣
∣
� d0

+
∣
∣
∣
∣

∫

ρ̃q−1ρ
p−1−q
D ρTot∇(ρ̃2

k ) · ∇	

∣
∣
∣
∣
≤ d0 + δ Jkm .

Similarly, after an integration by parts using (4.40):

∣
∣
∣
∣
−
∫

ρ̃q−1ρ
p−1−q
D ρ̃kρTotH2�ρ̃k

∣
∣
∣
∣
� d0

+
(∥
∥
∥
∥

ρ̃

ρTot

∥
∥
∥
∥
L∞

+
∥
∥
∥
∥

Z |∇ρ̃|
ρTot

∥
∥
∥
∥
L∞

)

Jkm ≤ d0 + δ Jkm

and similarly

∣
∣
∣
∣

∫

ρ̃q−1ρ
p−1−q
D ρ̃kk∇ρTot · ∇	k

∣
∣
∣
∣
� d0 + δ Jkm .

Step 7 Conclusion for k = km(d, r) large enough. We now sum the collection
of above bounds and obtain the differential inequality with k = km .

1

2

d

dτ

{

Jkm (1+ O(δ))
}

≤ −k

[

1+ O

(
1

k

)]∫

(H2 +�H2)

×
[

b2|∇ρ̃k |2 + (p − 1)ρ p−2
D ρTotρ̃

2
k + ρ2

Tot|∇	k |2
]
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−k
∫

(p − 1)ρD∂Z (ρ
p−1
D )ρ̃k∂Z	k + d.

We recall from (2.21), (2.22):

H2 +�H2 = μ(1− w −�w) ≥ cd,p > 0 (7.19)

and we now claim the pointwise coercivity of the coupled quadratic form:
∃cd,p > 0 such that ∀Z ≥ 0,

(H2 +�H2)
[

(p − 1)ρ p−2
D ρTotρ̃

2
k + ρ2

Tot|∇	k |2
]

+(p − 1)ρD∂Z (ρ
p−1
D )ρ̃k∂Z	k

≥ cd,p
[

(p − 1)ρ p−2
D ρTotρ̃

2
k + ρ2

Tot|∇	k |2
]

(7.20)

which, after taking k > k∗(d, p) large enough, concludes the proof of (7.6).
Proof of (7.20). The coupling term is lower order for Z large:

|(p − 1)ρD∂Z (ρ
p−1
D )ρ̃k∂Z	k | � ρ

p−1
Tot

〈Z〉 ρ̃kρTot∂Z	k

≤ δ
[

(p − 1)ρ p−2
D ρTotρ̃

2
k + ρ2

Tot|∇	k |2
]

for Z > Z(δ) large enough. On a compact set using the smallness (4.27),
(7.20) is implied by:

(H2 +�H2)
[

(p − 1)Qρ̃2
k + ρ2

P |∇	k |2
]+ (p − 1)ρP∂Z Qρ̃k∂Z	k

≥ cd,p
[

(p − 1)Qρ̃2
k + ρ2

P |∇	k |2
]

. (7.21)

We compute the discriminant:

Discr = (p − 1)2ρ2
P(∂Z Q)2 − 4μ2(p − 1)ρ2

P Q(H2 +�H2)
2

= (p − 1)ρ2
P Q

[

(p − 1)
(∂Z Q)2

Q
− 4μ2(1− w −�w)2

]

.

We compute from (2.10):

(p − 1)
(∂Z Q)2

Q
= (p − 1)

(

2∂Z
√

Q
)2

= (p − 1)

(
1− e

2

√
�∂Z (σ Z)

)2

= (1− e)2(∂Z (Zσ))2

123



F. Merle et al.

= 4

r2
(∂Z (Zσ))2 = 4μ2(σ +�σ)2

and hence from (2.21), (2.22) the lower bound:

−Discr = 4μ2(p − 1)ρ2
PQ

[

(1− w −�w)2 − (σ +�σ)2
]

≥ cd,r (p − 1)ρ2
PQ, cd,r > 0,

which together with (7.19) concludes the proof of (7.20). ��

8 Control of low Sobolev norms and proof of Theorem 1.1

Our aim in this section is to control weighted low Sobolev norms in the interior
r ≤ 1 (Z ≤ Z∗). On our way we will conclude the proof of the bootstrap
Proposition 4.4. Theorem 1.1 will then follow from a classical topological
argument.

8.1 Exponential decay slightly beyond the light cone

We use the exponential decay estimate (3.5) for a linear problem to prove
exponential decay for the nonlinear evolution in the region slightly past the
light cone Z = Z2. We recall the notations of Sect. 3, in particular Za of
Lemma 3.7.

Lemma 8.1 (Exponential decay slightly past the light cone) Let

Z̃a = Z2 + Za

2
.

Then, there holds the following bound:

‖∇�‖H2k0 (Z≤Z̃a)
+ ‖ρ‖H2k0 (Z≤Z̃a)

� e−
δg
2 τ . (8.1)

Proof The proof relies on the spectral theory beyond the light cone Z = Z2
and an elementary finite speed propagation like argument in renormalized
variables, related to [48].
Step 1 Semigroup decay in X variables. Recall the definition (4.12) of X =
(�, T )

∣
∣
∣
∣
∣
∣

� = ρP	

T = ∂τ�+ aH2��

= −(p − 1)Qρ − H2��+ (H1 − e)�+ G� + aH2��

(8.2)
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with G� given by (3.11), the scalar product (3.44) and the definitions (4.14),
(4.15):

∣
∣
∣
∣

�0 = {λ ∈ C, �(λ) ≥ 0} ∩ {λ is an eigenvalue of M} = (λi )1≤i≤N ,

V = ∪1≤i≤N ker(M− λi I )
kλi

the projection P associated with V , the decay estimate (3.5) on the range of
(I−P) and the results of Lemma 3.5. Relative to the X variables our equations
take the form

∂τ X = MX + G,

which are considered on the time interval τ ≥ τ0 � 1 and the space interval
Z ∈ [0, Za] (no boundary conditions at Za). We consider evolution in the
Hilbert space H2k0 with initial data such that

‖(I − P)X (τ0)‖H2k0
≤ e−

δg
2 τ0, ‖PX (τ0)‖H2k0

≤ e−
3δg
5 τ0 . (8.3)

According to the bootstrap assumption (4.45)

‖PX (τ )‖H2k0
≤ e−

δg
2 τ , ∀τ ∈ [τ0, τ ∗] (8.4)

Lemma 3.5 shows that as long as

‖G‖H2k0
≤ e−

2δg
3 τ , τ ≥ τ0, (8.5)

there exists �, which can be made as large as we want with a choice of τ0,
such that

‖PX (τ )‖H2k0
� e−

δg
2 τ , τ0 ≤ τ ≤ τ0 + �. (8.6)

This will allow us to show eventually that if we can verify (8.5), the bootstrap
time τ ∗ ≥ τ0 + �.

Moreover, as long as (8.5) holds, the decay estimate (3.5) implies that

‖(I − P)X (τ )‖H2k0
� e−

δg
2 (τ−τ0)‖X (τ0)‖H2k0

+
∫ τ

τ0

e−
δg
2 (τ−σ)‖G(σ )‖H2k0

dσ

� e
−δg
2 τ

[

e
δg
2 τ0‖X (τ0)‖H2k0

+
∫ +∞

τ0

e−
δg
6 τdτ

]
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≤ e−
δg
2 τ . (8.7)

As a result,

‖X (τ )‖H2k0
� e−

δg
2 τ , τ0 ≤ τ ≤ τ ∗. (8.8)

Below we will verify (8.5) ∀τ ∈ [τ0, τ ∗] under the assumption (8.7), closing
both. Once again, this will allow us to show eventually that the length of the
bootstrap interval τ ∗ − τ0 ≥ � is sufficiently large.

Recall from (3.13), (3.14), (3.44):

‖G‖2
H2k0

�
∫

Z≤Za
|∇�k0GT |2gZd−1dZ +

∫

Z≤Za
G2

T Z
d−1dZ (8.9)

with

∣
∣
∣
∣
∣
∣
∣

GT = ∂τG� −
(

H1 + H2
�Q
Q

)

G� + H2�G� − (p − 1)QGρ,

Gρ = −ρ�	 − 2∇ρ · ∇	,

G� = −ρP(|∇	|2 + NL(ρ))+ b2ρP
ρTot

�ρTot.

Step 2 Semigroup decay for (ρ,	). We now translate the X bound to the
bounds for ρ and 	 and then verify (8.5). We recall (8.2) and obtain for any
Ẑ > Z2

‖T ‖H2k0 (Z≤Ẑ)
+ ‖�‖H2k0+1(Z≤Ẑ)

� ‖ρ‖H2k0 (Z≤Ẑ)
+ ‖	‖H2k0+1(Z≤Ẑ)

+ ‖G�‖H2k0 (Z≤Ẑ)

� ‖T ‖H2k0 (Z≤Ẑ)
+ ‖�‖H2k0+1(Z≤Ẑ)

+ ‖G�‖H2k0 (Z≤Ẑ)

and claim:

‖G�‖H2k0 (Z≤Ẑ)
� ‖∇	‖2

H2k0 (Z≤Ẑ)
+ ‖ρ‖2

H2k0 (Z≤Ẑ)
+ e−δgτ . (8.10)

Indeed, since H2k0(Z ≤ Ẑ) is an algebra for k0 large enough:

‖ρP(|∇	|2 + NL(ρ))‖H2k0 (Z≤Ẑ)
� ‖∇	‖2

H2k0 (Z≤Ẑ)
+ ‖ρ‖2

H2k0 (Z≤Ẑ)
.

The remaining quantum pressure term is treated using the pointwise bound
(4.40) for small Sobolev norms and the smallness of b which imply:

∥
∥
∥
∥

b2ρP�ρTot

ρTot

∥
∥
∥
∥
H2k0 (Z≤Ẑ)

� CKb
2 ≤ e−δgτ
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provided δg > 0 has been chosen small enough, and (8.10) is proved. Choosing
Ẑ > Z2, this implies from (8.2) and the initial bound (4.19):

‖X (τ0)‖H2k0 � ‖	(τ0)‖H2k0+1(Z≤Ẑ)
+ ‖ρ(τ0)‖H2k0 (Z≤Ẑ)

+ e−δgτ0

� e−
δgτ0
2 . (8.11)

This verifies (8.3). On the other hand, choosing Ẑ = Z̃a with

Z̃a = Z2 + Za

2
,

we also obtain from (8.8)

‖	(τ)‖H2k0+1(Z≤Z̃a)
+ ‖ρ(τ)‖H2k0 (Z≤Z̃a)

� ‖X (τ )‖
H
2k0 + e−δgτ � e−

δgτ
2 .

(8.12)

The estimate (8.1) follows.
Step 3 Estimate for G. Proof of (8.5). We recall (8.9). On a fixed compact
domain Z ≤ Z0 with Z0 > Z2, we can interpolate the bootstrap bound (4.39)
with the global large Sobolev bound (4.38) and obtain for km large enough and
b0 < b0(km) small enough:

‖ρ‖H2k0+10(Z≤Z0)
+ ‖	‖H2k0+10(Z≤Z0)

≤ CKe
−
[
3
8− 1

100

]

δgτ ≤ e
−
[
3
8− 1

50

]

δgτ

(8.13)

and since H2k0 is an algebra and all terms are either quadratic or with a b term,
(8.13) implies

‖GT ‖H2k0+5(Z≤Z0)
+ ‖Gρ‖H2k0+5(Z≤Z0)

+ ‖G�‖H2k0+5(Z≤Z0)

≤ e
−
(
3
4− 1

20

)

δgτ ≤ e−
2δg
3 τ , (8.14)

which in particular using (8.9) implies (8.5). ��

8.2 Weighted decay for m ≤ 2k0 derivatives

We recall the notation (3.8). We now transform the exponential decay (8.1)
from just past the light cone intoweighted decay estimate. It is essential for this
argument that the decay (8.1) has been shown in the region strictly including
the light cone Z = Z2. The estimates in the lemma below close the remaining
bootstrap bound (4.39).
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Lemma 8.2 (Weighted Sobolev bound for m ≤ 2k0) Let m ≤ 2k0 and ν0 =
δg
2μ − 2(r−1)

p−1 , recall

χν0,m = 1

〈Z〉d−2(r−1)+2(ν0−m)
ζ

(
Z

Z∗

)

, ζ(Z) =
∣
∣
∣
∣

1 for Z ≤ 2
0 for Z ≥ 3,

then

2k0∑

m=0

d
∑

i=1

∫

(p − 1)Q(∂mi ρ)2χν0,m + |∇∂mi �|2χν0,m ≤ Ce−
4δg
5 τ . (8.15)

Proof of Lemma 8.2 The proof relies on a sharp energy estimate with time
dependent localization of (ρ,�). This is a renormalized version of the finite
speed of propagation.
Step 1 Ḣm localized energy identity. Pick a smooth well localized radially
symmetric function χ(τ, Z) and a coordinate 1 ≤ i ≤ d and note for m
integer

ρm = ∂mi ρ, �m = ∂mi �,

where we omit the i dependence to simplify notations. We recall the Emden
transform formulas (2.24):

∣
∣
∣
∣
∣
∣

H2 = μ(1− w),

H1 = μ�
2 (1− w)

[

1+ �σ
σ

]

,

H3 = �ρP
ρP

,

(8.16)

which yield the bounds using (2.19), (2.20):

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

H2 = μ+ O
(

1
〈Z〉r

)

, H1 = −2μ(r−1)
p−1 + O

(
1

〈Z〉r
)

,

|〈Z〉 j∂ j
Z H1| + ||〈Z〉 j∂ j

Z H2| � 1
〈Z〉r , j ≥ 1,

|〈Z〉 j∂ j
Z H3| � 1

〈Z〉2 ,
1

〈Z〉2(r−1)

[

1+ O
(

1
〈Z〉r

)]

� j |〈Z〉 j∂ j
Z Q| � j

1
〈Z〉2(r−1)

(8.17)
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and the commutator bounds:
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

|[∂mi , H1]ρ| �
∑m−1

j=0
|∂ j

Zρ|
〈Z〉r+m− j ,

|∇ ([∂mi , H1]ρ
) | �

∑m
j=0

|∂ j
Zρ|

〈Z〉m− j+r+1 ,

|[∂mi , Q]ρ| � Q
∑m−1

j=0
|∂ j

Zρ|
〈Z〉m− j ,

|[∂mi , H2]�ρ| �
∑m

j=1
|∂ j

Zρ|
〈Z〉r+m− j ,

|∇ ([∂mi , H2]��
) | �

∑m+1
j=1

|∂ j
Z�|

〈Z〉r+1+m− j .

(8.18)

Commuting (3.9) with ∂mi :

∣
∣
∣
∣

∂τρm = H1ρm − H2(m +�)ρm −��m + ∂mi Gρ + Em,ρ,

∂τ�m = −(p − 1)Qρm − H2(m +�)�m + (H1 − e)�m + ∂mi G� + Em,�

with the bounds
∣
∣
∣
∣
∣
∣

|Em,ρ | �
∑m

j=0
|∂ j

Zρ|
〈Z〉r−1+m− j +

∑m
j=0

|∂ j
Z�|

〈Z〉m− j+2 ,

|∇Em,�| � Q
∑m

j=0
|∂ j

Zρ|
〈Z〉m+1− j +

∑m+1
j=0

|∂ j
Z�|

〈Z〉r+m− j .

Let χ be an arbitrary smooth function. We derive the corresponding energy
identity:

1

2

d

dτ

{∫

(p − 1)Qρ2
mχ + |∇�m |2χ

}

= 1

2

∫

∂τχ
[

(p − 1)Qρ2
m + |∇�m |2

]

+
∫

(p − 1)Qρmχ [H1ρm − H2(m +�)ρm

−��m + ∂mi Gρ + Em,ρ

]

+
∫

χ∇�m · ∇ [−(p − 1)Qρm − H2(m +��m)

+(H1 − μ(r − 2))�m + ∂ imG� + Em,�

]

= 1

2

∫

∂τχ
[

(p − 1)Qρ2
m + |∇�m |2

]

+
∫

(p − 1)Qρmχ [H1ρm − H2(m +�)ρm

+∂mi Gρ + Em,ρ

]+
∫

(p − 1)Qρm∇χ · ∇�m

123



F. Merle et al.

+
∫

χ∇�m · ∇ [−H2(m +�)�m

+(H1 − μ(r − 2))�m + ∂mi G� + Em,�

]

.

In what follows we will use ω > 0 as a small universal constant to denote the
power of tails of the error terms. In most cases, the power is in fact r > 2
which we do not need.
ρm terms. From the asymptotic behavior of Q (2.20) and (8.17):

−
∫

(p − 1)QρmχH2�ρm

= p − 1

2

∫

ρ2
mχQH2

[

d + �Q

Q
+ �H2

H2
+ �χ

χ

]

=
∫

ρ2
m(p − 1)χQμ

[
d

2
− (r − 1)+ O

(
1

〈Z〉ω
)]

+1

2

∫

(p − 1)QH2�χρ2
m

�m terms. We first estimate recalling (8.17):
∫

χ∇�m · ∇ [(−mH2 + H1 − μ(r − 2))�m]

=
∫

(−mH2 + H1 − μ(r − 2))χ |∇�m |2

+O

(∫
χ

〈Z〉r |∇�m ||�m |
)

= −
[

μ(m + r − 2)+ 2μ(r − 1)

p − 1

] ∫

χ |∇�m |2

+O

(∫
χ

〈Z〉ω
[

|∇�m |2 + �2
m

〈Z〉2
])

.

From Pohozhaev identity (5.27) with F = χH2(Z1, . . . , Zd):

−
∫

χ∇�m · ∇(H2��m) =
∫

H2��m[χ��m +∇χ · ∇�m]

= −
d
∑

i, j=1

∫

∂i Fj∂i�m∂ j�m + 1

2

∫

|∇�m |2∇ · F

+
∫

H2��m∇χ · ∇�m
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=
d
∑

i, j=1

∂i�m∂ j�m
[−∂i (χH2Z j )+ H2Z j∂iχ

]

+1

2

∫

|∇�m |2χH2

[

d + �χ

χ
+ �H2

H2

]

= μ(d − 2)

2

∫

χ |∇�m |2 + 1

2

∫

H2�χ |∇�m |2 + O

(∫
χ

〈Z〉ω |∇�m |2
)

.

The collection of above bounds yields for some universal constant ω > 0
the weighted energy identity:

1

2

d

dτ

{∫

(p − 1)Qρ2
mχ + |∇�m |2χ

}

= −
∫

χ
[

(p − 1)Qρ2
m + |∇�m |2

]

×
[

μ

(

m − d

2
+ r − 1

)

+ 2μ(r − 1)

p − 1
+ O

(
1

〈Z〉ω
)]

+1

2

∫

(p − 1)Qρ2
m [∂τχ + H2�χ ]

+1

2

∫

|∇�m |2 [∂τχ + H2�χ ]+
∫

(p − 1)Qρm∇χ · ∇�m

+O

⎛

⎝

∫

χ

⎡

⎣

m+1
∑

j=0

|∂ j
Z�|2

〈Z〉2(m+1− j)+ω
+

m
∑

j=0

Q|∂ j
Zρ|2

〈Z〉2(m− j)+ω

⎤

⎦

⎞

⎠

+O

(∫

χ |∇�m ||∇∂mG�| +
∫

χQ|ρm ||∂mGρ |
)

. (8.19)

Step 2 Nonlinear and source terms. We claim the bound for χ = χν0,m :

2k0∑

m=0

d
∑

i=1

∫

χν0,m |∇∂mG�|2 +
∫

(p − 1)Qχν0,m |∂mGρ |2

�
( 2k0∑

m=0

d
∑

i=1

∫

Qρ2
mχν0+1,m + |∇�m |2χν0+1,m

)

+ b2. (8.20)

Gρ term. Recall (3.11)

Gρ = −ρ�	 − 2∇ρ · ∇	,
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then by Leibniz:

|∂mGρ |2 �
∑

j1+ j2=m+2, j2≥1
|∂ j1ρ|2|∂ j2	|2.

We recall the pointwise bounds (4.40) for Z ≤ 3Z∗,

|∂ j1ρ| ≤ CK

〈Z〉 j1+ 2(r−1)
p−1

, |∂ j2	| ≤ CK

〈Z〉 j2+r−2 .

This yields, recalling (8.33), for j1 ≤ 2k0:

∫

χν0,mQ|∂ j1ρ|2|∂ j2	|2 �
∫

Qζ

(
Z

Z∗

) |∂ j1ρ|2
Z2( j2−m)+d−2(r−1)+2(r−2)+2ν0

�
∫

ζ

(
Z

Z∗

)

Q
|∂ j1ρ|2

〈Z〉d−2(r−1)+2(ν0− j1)+2
�

j1∑

j=0

∫

χν0+1, j1Q|∂ j
Zρ|2

�
2k0∑

m=0

d
∑

i=1

∫

Qρ2
mχν0+1,m + |∇�m |2χν0+1,m .

For j1 = m + 1, j2 = 1, we use the other variable:

∫

χν0,mQ|∂ j1ρ|2|∂ j2	|2 �
∫

Qζ

(
Z

Z∗

) |∂ j2	|2
Z2( j1−m)+d−2(r−1)+ 4(r−1)

p−1 +2ν0

�
∫

ζ

(
Z

Z∗

)
ρ2
P |∂ j2	|2

〈Z〉d−2(r−1)+2(ν0− j2)+2

�
j2∑

j=0

∫

ζ

(
Z

Z∗

) |∂ j
Z�|2

〈Z〉d−2(r−1)+2(ν0− j)+2

�
j2∑

j=0

∫

χν0+1, j |∂ j
Z�|2 �

2k0∑

m=0

d
∑

i=1

∫

Qρ2
mχν0+1,m + |∇�m |2χν0+1,m

and (8.20) follows for Gρ by summation on 0 ≤ m ≤ 2k0.
G� term. Recall (3.11)

G� = −ρP(|∇	|2 + NL(ρ))+ b2ρP

ρTot
�ρTot.
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We estimate using the pointwise bounds (4.40) for j3 ≤ 2k0:

|∇∂m(ρP |∇	|2)| �
∑

j1+ j2+ j3=m+1, j2≤ j3

ρP

〈Z〉 j1 |∂
j2+1	∂ j3+1	|

�
∑

j1+ j2+ j3=m+1, j2≤ j3

1

〈Z〉 2(r−1)
p−1 + j1+r−2+ j2+1

|∂ j3+1	|

�
2k0∑

j3=0

|∂ j3+1�|
〈Z〉r+m− j3

and since r > 1:

2k0∑

j3=0

∫

χν0,m
|∂ j3+1�|2

〈Z〉2(r+m− j3)
�

2k0∑

j3=0

∫

χν0+1, j3 |∇� j3 |2.

For j3 = 2k0+1,weuse the other variable and the conclusion follows similarly.
The quantum pressure term is estimated using the pointwise bounds (4.40):

∫

χν0,m

∣
∣
∣
∣
∇∂m

(
b2ρP

ρTot
�ρTot

)∣
∣
∣
∣

2

� CKb
4
∫

Z≤3Z∗
χν0,m

〈Z〉 4(r−1)
p−1 +2(m+3)

� CKb
4
∫

Z≤3Z∗
Zd−1dZ

〈Z〉d−2(r−1)+2(ν0+ 2(r−1)
p−1 −m)+2(m+3)

≤ b2.

Step 2 Initialization and lower bound on the bootstrap time τ ∗.
Fix a large enough Z0 and pick a small enough universal constantω0 such that

∀Z ≥ 0, −ω0 + H2 ≥ ω0

2
> 0 (8.21)

and let � = �(Z0) such that

Z0

2Ẑa
e−ω0� = 1. (8.22)

We claim that provided τ0 has been chosen sufficiently large, the bootstrap
time τ ∗ of Proposition 4.4 satisfies the lower bound

τ ∗ ≥ τ0 + �. (8.23)
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Indeed, in view of Sects. 5, 6, 7 there remains to control the bound (4.39) on
[τ0, τ0 + �]. By (8.6) (8.7), the desired bounds already hold for Z ≤ Z̃a on
[τ0, τ0 + �].

We now run the energy estimate (8.19) with χ = χν0,m and obtain from
(8.19), (8.20) the rough bound on [τ0, τ ∗]:

d

dτ

{∫

(p − 1)Qρ2
mχν0,m + |∇�m |2χν0,m

}

≤ C
∫

(p − 1)Qρ2
mχν0,m + |∇�m |2χν0,m + b2.

which yields using (4.19):

∫

(p − 1)Qρ2
mχν0,m + |∇�m |2χν0,m

≤ eC(τ−τ0)

∫

(p − 1)Q(ρm(0))2χν0,m + |∇�m(0)|2χν0,m

+eCτ

∫ τ

τ0

e−(C+2δg)σdσ

≤ eC�
[

C0e
−δgτ0 + e−2δgτ0

] ≤ 2eC�C0e
−δgτ0

and hence

e
4δg
5 τ

[∫

(p − 1)Qρ2
mχν0,m + |∇�m |2χν0,m

]

≤ e
4δg
5 τ0e

4δg
5 �

[∫

(p − 1)Qρ2
mχν0,m + |∇�m |2χν0,m

×
∫

(p − 1)Qρ2
mχν0,m + |∇�m |2χν0,m

]

= 2eC�C0e
−δgτ0e

4δg
5 τ0 ≤ e2C�e−

δg
10 τ0 ≤ 1,

which concludes the proof of (8.23) and (8.15) for τ ∈ [τ0, τ0 + �].
Step 3 Finite speed of propagation. We now pick a time τ f ∈ [τ0+�, τ ∗] and
propagate the bound (8.1) to the compact set Z ≤ Z0 using a finite speed of
propagation argument. We claim:

‖ρ‖2
H2k0 (Z≤ Z0

2 )
+ ‖∇	‖2

H2k0 (Z≤ Z0
2 )

≤ Ce−δgτ . (8.24)
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Here the key is that (8.1) controls a norm on the set strictly including the light
cone Z ≤ Z2. Let

Ẑa = Z̃a + Z2

2

and note that wemay, without loss of generality by taking a > 0 small enough,
assume:

Z̃a

Ẑa
≤ 2. (8.25)

Recall that � = �(Z0) is parametrized by (8.22). We define

χ(τ, Z) = ζ

(
Z

ν(τ)

)

, ν(τ ) = Z0

2Ẑa
e−ω0(τ f−τ)

with ω0 > 0 defined in (8.21), (8.22) and a fixed spherically symmetric non-
increasing cut off function

ζ(Z) =
∣
∣
∣
∣

1 for 0 ≤ Z ≤ Ẑa

0 for Z ≥ Z̃a.
, ζ ′ ≤ 0. (8.26)

We define

τ� = τ f − �

so that from (8.22):

∣
∣
∣
∣
∣

τ0 ≤ τ� ≤ τ ∗,
ν(τ�) = Z0

2Ẑa
e−ω0(τ f−τ�) = Z0

2Ẑa
e−ω0� = 1. (8.27)

We pick

0 ≤ m ≤ 2k0

then (8.26), (8.27) ensure Supp(χ(τ�, ·)) ⊂ {Z ≤ Z̃a} and hence from (8.1):

(∫

(p − 1)Qρ2
mχ + |∇�m |2χ

)

(τ�) � e−δgτ� . (8.28)

This estimate implies that we can integrate energy identity (8.19) only on the
interval [τ�, τ f ]. We now estimate all terms in (8.19).
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Boundary terms. We compute the quadratic terms involving�χ which should
be thought of as boundary terms. First

∂τχ(τ, Z) = −∂τ ν

ν

Z

ν
∂Zζ

(
Z

ν

)

= −ω0�χ.

We now assume, recalling (8.16), that ω0 has been chosen small enough so
that (8.21) holds, and hence the lower bound on the full boundary quadratic
form using �χ ≤ 0:

1

2

∫

(p − 1)Qρ2
m [∂τχ + H2�χ ]

+1

2

∫

|∇�m |2 [∂τχ + H2�χ ]+
∫

(p − 1)Qρm∇χ · ∇�m

=
∫ {

1

2
(p − 1)Qρ2

m [−ω0 + H2]

+1

2
|∇�m |2 [−ω0 + H2]+ (p − 1)

Q

Z
∂Z�mρm

}

�χ.

From (3.18), the discriminant of the above quadratic form is given by

[

(p − 1)
Q

Z

]2

− (−ω0 + H2)
2(p − 1)Q

= (p − 1)Q

[
(p − 1)Q

Z2 − (−ω0 + H2)
2
]

= (p − 1)μ2Q

[

σ 2 −
(

−ω0

μ
+ 1− w

)2
]

= (p − 1)μ2Q [−D(Z)+ O(ω0)] .

We then observe by definition of χ that for τ ≥ τ�:

Z ∈ Supp�χ ⇔ Ẑa ≤ Z

ν(τ)
≤ Z̃a ⇒ Z ≥ ν(τ)Ẑa ≥ ν(τ�)Ẑa = Ẑa

from which since Ẑa > Z2:

Z ∈ Supp�χ ⇒ −D(Z)+ O(ω0) < 0

provided 0 < ω0 � 1 has been chosen small enough.
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Together with (8.21) and �χ < 0, this ensures: ∀τ ∈ [τ�, τ ∗],
1

2

∫

(p − 1)Qρ2
m [∂τχ + H2�χ ]

+1

2

∫

|∇�m |2 [∂τχ + H2�χ ]+
∫

(p − 1)Qρm∇χ · ∇�m < 0

(8.29)

Nonlinear terms. From (8.26), (8.25) for τ ≤ τ f :

Suppχ ⊂ {Z ≤ ν(τ)Z̃a} ⊂ {Z ≤ ν(τ f )Z̃a} =
{

Z ≤ Z0

2

Z̃a

Ẑa

}

⊂ {Z ≤ Z0},

and hence from (8.14):
∫

χ |∇∂mG�|2 +
∫

(p − 1)Qχ |∂mGρ |2

� ‖∇G�‖2H2k0 (Z≤Z0)
+ ‖Gρ‖2H2k0 (Z≤Z0)

≤ e−
4δg
3 τ .

Conclusion. Injecting the collection of above bounds into (8.19) and summing
over m ∈ [0, 2k0] yields the crude bound: ∀τ ∈ [τ�, τ f ],

d

dτ

{ 2k0∑

m=0

∫

(p − 1)Qρ2
mχ + |∇�m |2χ

}

≤ C
2k0∑

m=0

∫

(p − 1)Qρ2
mχ + |∇�m |2χ + e−

4δg
3 τ .

We integrate the above on [τ�, τ f ] and conclude using

χ(τ f , Z) = ζ

(
Z

ν(τ f )

)

= ζ

⎛

⎝
Z
Z0

2Ẑa

⎞

⎠ = 1 for Z ≤ Z0

and the initialization (8.28):

[

‖ρ‖2
H2k0 (Z≤Z0)

+ ‖∇	‖2
H2k0 (Z≤Z0)

]

(τ f )

� eC(τ f−τ�)e−δgτ� +
∫ τ f

τ�

eC(τ f−σ)e−
4δg
3 σdσ

� C(�)e−δgτ f = C(Z0)e
−δgτ f .
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Since the time τ f is arbitrary in [τ0 + �, τ ∗], the bound (8.24) follows.
Step 4 Proof of (8.15). We run the energy identity (8.19) with χν0,m and
estimate each term.
Terms Z0

3 ≤ Z ≤ Z0
2 . In this zone, we have by construction

ρ = ρ̃

and hence the bootstrap bounds (4.38) imply

‖ρ‖
Hkm (Z≤ Z0

2 )
+ ‖∇	‖

Hkm (Z≤ Z0
2 )

� 1

and hence interpolating with (8.24) for km large enough:

‖ρ‖
Hm(

Z0
3 ≤Z≤ Z0

2 )
� ‖ρ‖

m
km

Hkm (
Z0
3 ≤Z≤ Z0

2 )
‖ρ‖1−

m
km

L2(
Z0
3 ≤Z≤ Z0

2 )
� e

− δg
2

(

1− m
km

)

≤ e−
4δg
10 (8.30)

and similarly for the phase

‖∇	‖
Hm(

Z0
3 ≤Z≤ Z0

2 )
� e

− δg
2

(

1− m
km

)

≤ e−
4δg
10 . (8.31)

Linear term. We observe the cancellation using (8.17), (4.2):

∂τχν0,m + H2�χν0,m = 1

〈Z〉d−2(r−1)+2(ν0−m)

[

−μ�ζ

(
Z

Z∗

)]

+μ(1− w)

[
1

〈Z〉d−2(r−1)+2(ν0−m)
�ζ

(
Z

Z∗

)

+�

(
1

〈Z〉d−2(r−1)+2(ν0−m)

)

ζ

(
Z

Z∗

)]

= −μ [d − 2(r − 1)+ 2(ν0 − m)]χν0,m

+O

(
1

〈Z〉d−2(r−1)+2(ν0−m)+ω

)

(8.32)

for some universal constant ω > 0. We now estimate the norm for 2Z∗ ≤ Z ≤
3Z∗. Using spherical symmetry for Z ≥ 1 and m ≥ 1:

|Zm∂mρ| �
m
∑

j=1

Zm |∂ j
Zρ|

Zm− j
�

m
∑

j=1

Z j |∂ j
Zρ| (8.33)
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and hence using the outer L∞ bound (4.40):

∫

2Z∗≤Z≤3Z∗
(p − 1)Q|∂mρ|2 + |∂m∇�|2

〈Z〉d−2(r−1)+2(ν0−m)+ω

�
∫

2Z∗≤Z≤3Z∗

⎡

⎣

m
∑

j=0

∣
∣
∣
∣
∣

Z j∂
j
Zρ

〈Z〉 d2+ν0+ω
2

∣
∣
∣
∣
∣

2

+
m+1
∑

j=1

∣
∣
∣
∣
∣

Z j∂
j
Z�

〈Z〉ν0+ d
2−(r−1)+1+ω

2

∣
∣
∣
∣
∣

2
⎤

⎦

�
∫

2Z∗≤Z≤3Z∗

⎡

⎣

m
∑

j=0

∣
∣
∣
∣
∣

Z j∂
j
Zρ

ρP〈Z〉
d
2+ν0+ 2(r−1)

p−1 +ω
2

∣
∣
∣
∣
∣

2

+
m+1
∑

j=1

∣
∣
∣
∣
∣
〈Z〉r−2 Z j∂

j
Z	

〈Z〉ν0+ 2(r−1)
p−1 + d

2+ω
2

∣
∣
∣
∣
∣

2
⎤

⎦

� 1

(Z∗)ω+2
[

ν0+ 2(r−1)
p−1

]

(

1+ b2(Z∗)2(r−2)
)

≤ e−δgτ (8.34)

using

b(Z∗)r−2 = eτ [−e+μ(r−2)] = eτ [−e+1−2μ] = 1

and the explicit choice from (4.17):

2μ

(

ν0 + 2(r − 1)

p − 1

)

= δg.

Conclusion Injecting the above bounds into (8.19) yields:

1

2

d

dτ

{∫

(p − 1)Qρ2
mχν0,m + |∇�m |2χν0,m

}

= −
∫

χν0,m
[

(p − 1)Qρ2
m + |∇�m |2

]
[

μν0 + 2μ(r − 1)

p − 1

]

+O

(
∫

Z0≤Z≤2Z∗
χν0,m

[
m+1
∑

m=0

|∂ j
Z�|2

〈Z〉2(m+1− j)+2ω

+
m
∑

j=0

Q|∂ j
Zρ|2

〈Z〉2(m− j)+2ω

⎤

⎦+ e−
4δg
5 τ

⎞

⎠

+O

(∫

χν0,m |∇�m ||∇∂mG�| +
∫

χν0,mQ|ρm ||∂mGρ |
)
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and hence after summing over m:

1

2

d

dτ

{ 2k0∑

m=0

∫

(p − 1)Qρ2
mχν0,m + |∇�m |2χν0,m

}

= −μ

[

ν0 + 2(r − 1)

p − 1

] 2k0∑

m=0

∫

χν0,m
[

(p − 1)Qρ2
m + |∇�m |2

]

+O

(

e−
4δg
5 τ +

2k0∑

m=0

∫

(p − 1)Qρ2
mχν0+ω,m + |∇�m |2χν0+ω,m

)

+
2k0∑

m=0

O

(∫

χν0,m |∇�m ||∇∂mG�| +
∫

χν0,mQ|ρm ||∂mGρ |
)

Using (8.24) we conclude

1

2

d

dτ

{ 2k0∑

m=0

∫

(p − 1)Qρ2
mχν0,m + |∇�m |2χν0,m

}

= −μ

[

ν0 + 2(r − 1)

p − 1
+ O

(

1

ZC
0

)]

×
2k0∑

m=0

∫

χν0,m
[

(p − 1)Qρ2
m + |∇�m |2

]

+O

(

e−
4δg
5 τ +

2k0∑

m=0

∫

χν0,m |∇∂mG�|2

+
∫

(p − 1)Qχν0,m |∂mGρ |2
)

. (8.35)

Therefore, using also (8.20), for Z0 large enough and universal and

2μ

(

ν0 + 2(r − 1)

p − 1

)

= δg,

there holds

d

dτ

{ 2k0∑

m=0

∫

(p − 1)Qρ2
mχν0,m + |∇�m |2χν0,m

}
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≤ −4δg
5

2k0∑

m=0

∫

χν0,m
[

(p − 1)Qρ2
m + |∇�m |2

]+ Ce−
4δgτ
5 .

Integrating in time and using (4.19) yields (8.15). ��

8.3 Closing the bootstrap and proof of Theorem 1.1

We are now in position to prove the bootstrap Proposition 4.4 which immedi-
ately implies Theorem 1.1.

Proof of Proposition 4.4 and Theorem 1.1 Recall that the non vanishing of the
solution is ensured by (4.27). It remains to close the bound (4.26). Indeed, from
(4.1), (4.2), (4.8) for Z ≥ Z∗:

|�u|
ρD

� (Z∗)2

ρD

[

|�ρTot| + |∂ZρTot||∂Z	Tot|
b

+ |ρTot�	Tot|
b

]

� 1,

where we used (4.40) in the last step. The |u|p term is handled similarily, and
(4.26) is improved for b0 small enough.14 Note also that the bounds (4.40)
imply

‖u(t)‖Hkc ≤ C(t)

for d
2 � kc � km for times in the bootstrap interval and hence the bootstrap

time is strictly smaller than the life time provided by standard Cauchy theory.
We now conclude from a classical topological argument à la Brouwer. The
bounds of Sects. 5, 6, 7, 8 have been shown to hold for all initial data on the
time interval [τ0, τ0+�] with � large. Moreover, as explained in the proof of
Lemma 8.1, they can be immediately propagated to any time τ ∗ after a choice
of projection of initial data on the subspace of unstable modes PX (τ0).

This is done as follows. We define a decomposition of the the set of initial
data X (τ0). Recall that the restriction of the data X (τ0) to the interval [0, Za]
is contained in the Sobolev space H2k0 which can be split into a direct sum of
the stable and unstable subspaces

H2k0 = U
⊕

V .

14 The smallness of b0 is responsible for the size of the time length between initial data and
formation of a singularity.
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For functions defined for all Z , we define a subspace of functions satisfying
the assumptions of Sect. 4.3 on initial data

Vreg = {(ρ̃, 	) : ‖ρ̃, 	‖km < ∞}
with the property that Vreg has the same dimension as V and its restriction to
[0, Za] satisfies the property

dist(Vreg, V )H2k0
< e−3δgτ0 . (8.36)

Note that the space Vreg consists of functions which are defined for all Z
and which are more regular on [0, Za] than the ones contained in V . We
can explicitly construct Vreg by defining it as the linear space generated by

{v1reg, . . . , vnreg}where each v
j
reg is obtained from the element v j—a generator

of V—by a smoothing and an extension procedure. The precise details of both
the smoothing and extension are not important, as long as (8.36) is ensured to
hold. By (8.36), the projection P (composed with the restriction to [0, Za]) is
an isomorphismbetween Vreg and V . Denoting the inverse of this isomorphism
by I, we see that it satisfies the property that P ◦ I is the identity map on V .
We also define a complementary subspace W such that the space of all data
with ‖ρ̃, 	‖km < ∞ decomposes into the sum

Vreg
⊕

W

with W obeying the additional property that PW = 0. We can further restrict
W to consist of functions satisfying all of the assumptions of Sect. 4.3 on
initial data. Let X (τ ) be the solution of the nonlinear problem (3.14) with the
initial data X (τ0). We now apply Lemma 3.5 to x(τ ) = PX (τ ). We choose
the initial data X (τ0) obeying all the initial data bounds with the additional
condition that it is of the form w + Iv with a fixed element w ∈ W obeying
the bound

‖w‖H2k0
≤ e−

δg
2 τ0

and any element v ∈ V obeying

‖v‖H2k0
≤ e−

3δg
5 τ0 .

For such initial data PX (τ0) = v and the solution X (τ ) depends continuously
on v. As a consequence, the right hand side F of Lemma 3.5, which represents
the projection P of the nonlinear terms G in (3.14), can be shown to depend
continuously on x(τ ). All other assumptions of Lemma 3.5 follow from the
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bounds of Sects. 5, 6, 7, 8 and Lemma 8.1. It now follows from Lemma 3.5
that, for any w fixed as above, there exists v∗ = v∗(w) such that the exit time
τ ∗ corresponding to the initial data X (τ0) = Iv∗ + w satisfies τ ∗ = ∞. This
concludes the proof of Theorem 1.1. ��
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Appendix A: Comparison with compressible Euler dynamics

We consider the compressible Euler equations with a polytropic equation of
state:

∣
∣
∣
∣
∣
∣

∂tρ + ∇ · (ρu) = 0,
ρ∂t u + ρu · ∇u +∇P = 0,
P = γ−1

γ
ργ

x ∈ R
d , (A.1)

for γ > 1.
Each step below should be compared with the corresponding step in

Sect. 2.1.
Step 1 Scaling and renormalization. The scaling symmetry15 is

λ
2

γ+1ρ(λ
2γ
γ+1 t, λx), λ

γ−1
γ+1 u(λ

2γ
γ+1 t, λx).

We renormalize self-similarly

dτ

dt
= 1

λ
2γ
γ+1

, −λτ

λ
= 1

2

15 We choose a 1-parameter of scaling transformation, which is compatible with the Navier–
Stokes equations, out of a larger 2-parameter family of possible transformations.
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and obtain
∣
∣
∣
∣
∣
∣

∂τρ + 1
2

(
2

γ+1ρ + y · ∇ρ
)

+∇ · (ρu) = 0,

ρ∂τu + 1
2ρ
(

γ−1
γ+1u + y · ∇u

)

+ ρu · ∇u +∇P = 0.
(A.2)

As we did for the Schrödinger equations in Lemma 2.1, we proceed with a
front renormalization

ρ �→ 1

b
1

γ−1

ρ(y
√
b), u �→ 1

b
1
2

u(y
√
b)

with

bτ
b

= −e

and consider a potential spherically symmetric flowwith u = ∇	 = 	 ′. Note
that for the Euler equations, unlike the Schrödinger and Navier–Stokes cases,
the front renormalization corresponds to a symmetry of the equations. A direct
computation in which we also integrate the second equation leads to

∣
∣
∣
∣
∣
∣

−∂τρ = �	 +
(

e
γ−1 + 1

γ+1

)

+ ∇ρ
ρ
· [(1−e

2

)

Z +∇	
]

−∂τ	 = 1
2 |∇	|2 +

(

e− 1
γ+1

)

	 − 1+ (1−e
2

)

Z · ∇	 + ργ−1

These equations should be directly compared to the Schrödinger equations in
their front renormalized, self-similar, hydrodynamical formulation (2.5).

A stationary solution of the above equation satisfies

∣
∣
∣
∣
∣
∣

�	 +
(

e
γ−1 + 1

γ+1

)

+ ∇ρ
ρ
· [(1−e

2

)

Z +∇	
] = 0,

1
2 |∇	|2 +

(

e− 1
γ+1

)

	 + (1−e
2

)

Z · ∇	 + ργ−1 = 1.
(A.3)

Step 2 Emden transform. We introduce the variables

V = 	 ′, S = √
2ρ

γ−1
2 ,

where S is the space dependent sound speed, so that equivalently taking the
derivative of the second equation:

∣
∣
∣
∣
∣
∣

V ′ + d−1
Z V +

(
e

γ−1 + 1
γ+1

)

+ 2
γ−1

S′
S

[(1−e
2

)

Z + V
] = 0,

VV ′ +
(

e− 1
γ+1

)

V + (1−e
2

)

(ZV ′ + V )+ SS′ = 0.
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Let

� = logZ , V (Z) = v(�), S(Z) = s(�), Z
d

dZ
= d

d�
.

First equation

v′

Z
+ (d − 1)v

Z
+
(

e

γ − 1
+ 1

γ + 1

)

+ 2

γ − 1

s′

s

1

Z

[(
1− e

2

)

Z + V

]

and hence letting

v(�) = e�w, s(�) = e�σ

yields

(w′ + w)+ (d − 1)w

+
(

e

γ − 1
+ 1

γ + 1

)

+ 2

γ − 1

(
σ ′

σ
+ 1

)(
1− e

2
+ w

)

= 0,

i.e.,

σw′ + 2

γ − 1

(
1− e

2
+ w

)

σ ′ + σ

[(

d + 2

γ − 1

)

w + 2γ

γ 2 − 1

]

= 0.

Second equation. We get

vv′

Z
+
(

e− 1

γ + 1

)

v +
(
1− e

2

)

(v′ + v)+ ss′

Z
= 0

and hence

w(w′ + w)+
(

e− 1

γ + 1

)

w +
(
1− e

2

)

(w′ + 2w)+ σ(σ ′ + σ) = 0

or equivalently

(

w + 1− e

2

)

w′ + σσ ′ +
(

w2 + γ

γ + 1
w + σ 2

)

= 0

We have obtained:

Lemma A.1 (Emden transform) Let

� = logZ , 	 ′(Z) = e�w(�), S(Z) = e�σ (�), S = √
2ρ

γ−1
2 ,
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then
∣
∣
∣
∣
∣
∣

(

w + 1−e
2

)

w′ + σσ ′ +
(

w2 + γ
γ+1w + σ 2

)

= 0,

σw′ + 2
γ−1

(1−e
2 + w

)

σ ′ + σ
[(

d + 2
γ−1

)

w + 2γ
γ 2−1

]

= 0.
(A.4)

Step 3 Renormalized form. We define

� = 2

γ − 1
, r = 2γ

(1− e)(γ + 1)
, φ2

(
2

e− 1

)2

= �

and the renormalized unknowns

U = 2

c − 1
w, � = σ

φ
. (A.5)

The second equation becomes:

�
e − 1

2
U ′ + �

e − 1

2
(U − 1)�′

+��

[(

1+ d

�

)
e− 1

2
U + 2γ

(γ 2 − 1)�

]

= 0

i.e.,

σ

�
U ′ + (U − 1)σ ′ + σ

[(

1+ d

�

)

U − 2γ

(1− e)(γ + 1)

]

= 0.

The first equation becomes

(
e − 1

2

)2

UU ′ + φ2��′

+
[(

e − 1

2

)2

U 2 + γ

γ + 1

e− 1

2
U + φ2�2

]

= 0

and hence (A.5) yields:

(U − 1)U ′ + ���′ +
[

U 2 − 2γ

(1− e)(γ + 1)
U + ��2

]

= 0.

We arrive at the renormalized system

∣
∣
∣
∣

(U − 1)U ′ + ���′ + (U 2 − rU + ��2) = 0,
�
�
U ′ + (U − 1)�′ +�

[

U
(d
�
+ 1

)− r
] = 0,
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which is identical to the system (2.11) for the defocusing NLS but with the
parameters

� = 2

γ − 1
, r = 2γ

(1− e)(γ + 1)

in place of

� = 4

p − 1
, r = 2

(1− e)
.

Appendix B: Hardy inequality

Lemma B.1 Assume 2γ /∈ Z. Then, for all u ∈ C∞
rad(r ≥ 1) and j ≥ 1:

∫

r≥1
r2γ u2dr � j,γ ‖u‖2H j (1≤r≤2) +

∫

r≥1
r2(γ+ j)|∂ j

r u|2dr. (B.1)

Proof Assume 2γ �= −1, We integrate by parts

∫

r≥1
r2γ u2dr = 1

2γ + 1
[r2γ+1u2]+∞1 − 2

2γ + 1

∫

r≥1
r2γ+1u∂r u dr

≤ C‖u‖2H1(1≤r≤2) + C

(∫

r≥1
r2γ u2dr

) 1
2
(∫

r≥1
r2γ+2(∂r u)

2dr

) 1
2

,

where we used the one dimensional Sobolev embedding, and (B.1) for j = 1
follows by Hölder. For higher values of j , (B.1) now follows by induction. ��

Appendix C: Commutator for �k

Lemma C.1 (Commutator for �k) Let k ≥ 1, then for any two smooth func-
tions V,�, there holds:

[�k, V ]�− 2k∇V · ∇�k−1� =
∑

|α|+|β|=2k,|β|≤2k−2

ck,α,β∂
αV ∂β�.(C.1)

where ∂α = ∂
α1
1 · · · ∂αd

d , |α| = α1 + · · · + αd .

Proof We argue by induction on k. For k = 1:

�(V�)− V�� = 2∇V · ∇�.
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We assume (C.1) for k and prove k + 1. Indeed,

�k+1(V�) = �([�k, V ]�+ V�k�)

= �

⎛

⎝2k∇V · ∇�k−1�+
∑

|α|+|β|=2k,|β|≤2k−2

ck,α,β∂
αV ∂β�+ V�k�

⎞

⎠

= 2k∇V · ∇�k�

+
∑

|α|+|β|=2k+2,|α|≥2
c̃k,α,β∂

αV ∂β�+ V�k+1�+ 2∇V · ∇�k�

= V�k+1�+ 2(k + 1)∇V · ∇�k�+
∑

|α|+|β|=2k+2,|α|≥1
ck+1,α,β∂

αV ∂β�

and (C.1) is proved. ��

Appendix D: Behaviour of Sobolev norms

We compute Sobolev norms assuming that the leading part of the solution
is given by (1.9). Computations below are formal but could be justified as a
consequence of the bootstrap estimates.
Dirichlet energy of the profile. We show that the Dirichlet energy of the solu-
tion remains bounded until blow up time. Indeed, we recall (1.8), (1.9) and
compute:

‖∇u‖2L2 ∼ 1+ ‖∇u‖2L2(|x |≤1) = 1+
∫

|x |≤1
|∇ρ|2dx +

∫

|x |≤1
ρ2|∇φ|2.

We compute for the first term:

∫

|x |≤1
|∇ρ|2dx ∼ 1

(T∗ − t)
4(r−1)
r(p−1)

∫

|Z |≤ 1

(T−t)
1
r

(T∗ − t)
d
r

(T∗ − t)
2
r

Zd−1dZ

〈Z〉 4(r−1)
p−1 +2

= 1

(T∗ − t)
2
r

(
2(r−2)
p−1 + 2

p−1− d
2+1

)

∫

|Z |≤ 1

(T∗−t)
1
r

d Z

Z
1+2

(

1+ 2(r−2)
p−1 + 2

p−1− d
2

)

= 1

(T∗ − t)
2
r (1−σ)

∫

|Z |≤ 1

(T∗−t)
1
r

d Z

〈Z〉1+2(1−σ)

with

σ = sc − 2(r − 2)

p − 1
> 1 ⇔ d

2
− �

2
− �

2
(r − 2) > 1 ⇔ d − �(r − 1) > 2
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⇔ d − 2 > �

(
�+ d

�+√
d
− 1

)

= �(d −√
d)

�+√
d

⇔ (d − 2)
√
d + �(

√
d − 2) > 0

which holds, and hence

∫

|x |≤1
|∇ρ|2dx � 1.

Similarily:

∫

|x |≤1
ρ2|∇φ|2

= 1

(T∗ − t)
4(r−1)
r(p−1)+ 2(r−2)

r

∫

|Z |≤ 1

(T∗−t)
1
r

(T∗ − t)
d
r

(T∗ − t)
2
r

Zd−1dZ

〈Z〉2(r−2+1)+ 4(r−1)
p−1

= 1

(T∗ − t)
2
r

(

r−2+ 2(r−2)
p−1 +1+ 2

p−1− d
2

)

∫

|Z |≤ 1

(T∗−t)
1
r

d Z

〈Z〉1+2
(

1+r−2+ 2(r−2)
p−1 + 2

p−1− d
2

)

and at r∗(�):

r − 2+ 2(r − 2)

p − 1
+ 1+ 2

p − 1
− d

2
< 0 ⇔ (r − 1)

(

1+ �

2

)

<
d

2

⇔ (2+ �)(d −√
d) < d(�+√

d) ⇔ d(
√
d − 2)+ (�+ 2)

√
d > 0

which holds and hence
∫

|x |≤1
ρ2|∇φ|2 � 1.

In view of the above, we infer

sup
t∈[0,T∗)

‖∇u(t, ·)‖2L2 � 1.

Blow up of high enough Sobolev norms below the scaling. Let us now compute
the behavior of higher Sobolev norms. We unfold the change of variables

∣
∣
∣
∣
∣
∣
∣

u(t, x) = 1

λ(t)
2

p−1
v(s, y)eiγ , y = x

λ

v(s, y) = 1

(
√
b)

2
p−1

(

ρTote
i
b	Tot

)

(τ, Z), Z = y
√
b
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which yields

‖∇su‖L2 = 1

λs−sc
‖∇sv‖L2

≥ 1

λs−sc(
√
b)

2
p−1

(
√
b)s−

d
2 ‖∇s(ρTote

i	Tot
b )‖L2(|Z |≥1)

� e
s−sc
2 τ (

√
b)s−

d
2− 2

p−1 ‖∇s(ρTote
	Tot
b )‖L2(|Z |≤1)

� e
s−sc
2 τ (

√
b)s−

d
2− 2

p−1
1

bs

� e
τ
[
s−sc
2 + e

2

(

s+ d
2+ 2

p−1

)]

which blows up as soon as

s > σ = 1

1+ e

[

sc − e

(
d

2
+ 2

p − 1

)]

.

We can check that at r∗(�):

σ > 1 ⇔ d

2
− 2

p − 1
> 1+ e + e

(
d

2
+ 2

p − 1

)

⇔ d

2
(1− e) > (1+ e)

(

1+ �

2

)

⇔ d

2

2

r
>

1

r
(r − 1)(�+ 2) ⇔ d > (�+ 2)

(
d + �

�+√
d
− 1

)

⇔ d(
√
d − 2)+ (�+ 2)

√
d > 0

The last inequality holds for our assumptions on d ≥ 5 and � > 0.
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