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Abstract We consider the energy supercritical defocusing nonlinear
Schrodinger equation

i+ Au—ululP~'=0

in dimension d > 5. In a suitable range of energy supercritical parameters
(d, p), we prove the existence of C* well localized spherically symmetric
initial data such that the corresponding unique strong solution blows up in
finite time. Unlike other known blow up mechanisms, the singularity formation
does not occur by concentration of a soliton or through a self similar solution,
which are unknown in the defocusing case, but via a front mechanism. Blow
up is achieved by compression for the associated hydrodynamical flow which
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in turn produces a highly oscillatory singularity. The front blow up profile is
chosen among the countable family of C*° spherically symmetric self similar
solutions to the compressible Euler equation whose existence and properties in
a suitable range of parameters are established in the companion paper (Merle
et al. in Preprint (2019)) under a non degeneracy condition which is checked
numerically.

Mathematics Subject Classification 35Q55
1 Introduction

We consider the defocusing nonlinear Schrodinger equation

idu+ Au—ululP~! =0,

(t,x) € [0, T,) x R, u(t,x) eC.
Ujr=0 = Uo,

(1.1)

(NLS)

in dimension d > 3 for an integer nonlinearity p € 2N* 4 1 and address the
problem of its global dynamics. We begin by giving a quick introduction to
the problem and its development.

1.1 Cauchy theory and scaling

It is a very classical statement that smooth well localized initial data u yield
local in time, unique, smooth, strong solutions. For the global dynamics, two
quantities conserved along the flow (1.1) are of the utmost importance:

mass: M (u) =/ |u(t,x)|2=/ |u0(x)|2,
Rd R4

1 2 1 +1
energy: Ew) == [ |Vu@,x)|"+—— [ |u(t,x)|"" dx = E(uo).
2 Rd p+ 1 R4
(1.2)

The scaling symmetry group

2

w (1, x) = A7Tu(A>t, Ax), A >0

acts on the space of solutions by leaving the critical norm invariant

2

d
/ IVSu, (z, x)|? :/ IVSu(r, x)|> for s = = — ——.
R4 R4 2 p—1

Accordingly, the problem (1.1) can be classified as energy subcritical, critical
or supercritical depending on whether the critical Sobolev exponent s, lies
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On blow up for the energy super critical defocusing NLS

below, equal or above the energy exponent s = 1. This classification also
reflects the (in)/ability for the kinetic term in (1.2) to control the potential one
via the Sobolev embedding H! < L9.

1.2 Classification of the dynamics

We review the main known dynamical results which rely on the scaling clas-
sification.

Energy subcritical case. In the energy subcritical case s, < 1, the pioneer-
ing work of Ginibre—Velo [22] showed that for all uy € H I there exists a
unique strong solution u € CO([0, Ty, HY) to (1.1) and identified the blow up
criterion

Ty < +00 = tl%r;l lu(®)ll g1 = +oo. (1.3)

Conservation of energy, which is positive definite and thus controls the energy
norm H', then immediately implies that the solution is global, T, = +oc. In
fact, it can be shown in addition that these solutions scatter as t — 00, [23].
Energy critical problem. In the energy critical case s, = 1, the criterion (1.3)
fails and the energy density could concentrate. For the data with a small critical
norm, Strichartz estimates allow one to rule out such a scenario, [10]. The large
data critical problem has been an arena of an intensive and remarkable work
in the last 20 years.

For large spherically symmetric data in dimensions d = 3, 4, the energy
concentration mechanism was ruled out by Bourgain [7] and Grillakis [25] via a
localized Morawetz estimate. In Bourgain’s work, a new induction on energy
argument led to the statements of both the global existence and scattering.
These results were extended to higher dimensions by Tao [60].

The interaction Morawetz estimate, introduced in [11], led to a breakthrough
on the global existence and scattering for general solutions without symmetry,
firstind = 3,[11], thenind = 4, [55],and d > 5, [65].

A new approach was introduced in Kenig—Merle [30] in which, if there exists
one global non-scattering solution, then using the concentration compactness
profile decomposition [2,46], one extracts a minimal blow up solution and
proves that up to renormalization, such a minimal element must behave like a
soliton. The existence of such objects is ruled out using the defocusing nature
of the nonlinearity, which is directly related to the non existence of solitons
for defocusing models.

In all of these large data arguments, the a priori bound on the critical norm
provided by the conservation of energy plays a fundamental role. Let us note
that in the energy critical focusing setting, the concentration of the critical
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norm is known to be possible via type II (non self similar) blow up with
soliton profile, see e.g. [34,41,51-54].

Energy supercritical problem. In the energy supercritical range s, > 1, local
in time unique strong solutions can be constructed in the critical Sobolev space
H?,[10,32]. Kenig—Merle’s approach, [31,32], gives a blow up criterion

Ty < +00 = limsup [lu(z, )| s« = +00,
1T

but the question of whether this actually happens for any solution remained
completely open. On the other hand, the main difficulty in proving that 7, = oo
for all solutions is that there are no a priori bounds at the scaling level of
regularity H°%.

1.3 Qualitative behavior for supercritical models

The question of global existence or blow up for energy supercritical models
is a fundamental open problem in many nonlinear settings, both focusing and
defocusing. For focusing problems, the existence of finite energy type I (self
similar) blow up solutions is known in various instances, see e.g. [15,19,36,
38], and solitons have been proved to be admissible blow up profiles in certain
type II (non self-similar) blow up regimes in all three settings of heat, wave
and Schrodinger equations, see e.g. [14,28,39,42,49]. There are also several
examples of supercritical problems with positive definite energy (wave maps,
Yang—Mills) which admit smooth self-similar profiles and thus provide explicit
blow up solutions, [5,18,58].

On the other hand, for defocusing problems, soliton-like solutions are known
not to exist and admissible self similar solutions are expected not to exist. For
a simple defocusing model like the scalar nonlinear defocusing heat equation
du = Au — |u|P~'u, a direct application of the maximum principle ensures
that LN H' data yield uniformly bounded solutions which are global in time
and in fact dissipate. We recall again that for the energy critical problems,
blow up occurs in the focusing case, where solitons exist, and it does not in
the defocusing case where solitons are known not to exist.

This collection of facts led to the belief, as explicitly conjectured by Bour-
gain in [6], that global existence and scattering should hold for the energy
supercritical defocusing Schrodinger and wave equations. Indications of vari-
ous qualitative behaviors supporting different conclusions have been provided
(we give a highly incomplete list) in numerical simulations e.g. [12,50], in
model problems showing blow up e.g. [61,62], in examples of global solu-
tions e.g. [4,33], in logarithmically supercritical problems e.g. [13,59,63],
and in ill-posedness and norm inflation type results e.g. [1,24,35,64].

@ Springer



On blow up for the energy super critical defocusing NLS

The behavior of solutions in other supercritical models such as the ones
arising in fluid and gas dynamics is extremely interesting and not yet well
understood. We will not discuss it here.

1.4 Statement of the result

We assert that in dimensions 5 < d < 9 the defocusing (NLS) model (1.1)
admits finite time type II (non self similar) blow up solutions arising from
C* well localized initial data. The singularity formation is based neither on
soliton concentration nor self similar profiles, but on a new front scenario
producing a highly oscillatory blow up profile: the leading order dynamics,
after renormalization, is given by a type I (self-similar) singularity formation
for the compressible Euler equation. The first step of our analysis is to construct
C*° self-similar solutions to the compressible Euler equations in a suitable
range of parameters, which is done in full details in the companion paper [43].
The proof of existence of those solutions involves a non vanishing condition
for an explicit constant

4
p—1
which is checked numerically in the range of (p, d) considered in [43].
The main result of this paper is the following.
Theorem 1.1 (Existence of energy supercritical type II defocusing blow up)
Let

d, p) €{(5.9).(6,5), (8,3),9,3)}, (1.5)
and let the critical blow up speed be

L+d 4
rd, ) = i , b= ——0o0. (1.6)
(++/d p—1

Assume that (1.4) holds for the range (1.5) as is checked numericallyl in [43].
Then there exists a discrete sequence of blow up speeds (ry)k=1 with

2<re<rid,£), lim r,=r"d,¥%)
k—+00

1 According to Lemma 5.4 in [43], Soo is the limit of a sequence Sy, satisfying | Sy — Soo| < %
for a constant C > 0. The sequence Sy is defined by iteration, and we use matlab to compute it.
In the range (1.5), it suffices in practice to run the computations until Sgg to check that Sy # 0
as the sequence Sy is almost constant for k > 62. We refer to “Appendix I of [43] for more
details.
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such that any k > 1, there exists a finite co-dimensional manifold of smooth
initial data uy € Np>oH™ (R4, C) with spherical symmetry such that the
corresponding solution to (1.1) blows up in finite time 0 < T, < +o00 at the
center of symmetry with

Cp,k,d(1 +0t—>T*(1))
=2\ °’
(T — t)ﬁ(H_ " )

lu(t, e = cpra > 0. (1.7)

Comments on the result.

1. Hydrodynamical formulation. The heart of the proof of Theorem 1.1 is a
study of (1.1) in its hydrodynamical formulation, i.e. with respect to its phase
and modulus variables. The key to our analysis is the identification of an
underlying compressible Euler dynamics. The latter arises as a leading order
approximation of a “front” like renormalization of the original equation. In this
process, the Laplace term applied to the modulus?® of the solution is treated
perturbatively in the blow up regime. This is one of the key insights of the paper.
The approximate Euler dynamics furnishes us with a self-similar solution,
which requires very special properties and is constructed in the companion
paper [43] and which, in turn, acts as a blow up profile for the original equation.
The existence of these blow up profiles is directly related to the restriction on
the parameters (1.5) which we discuss in comment 3 below. Let us recall
that there is a long history of trying to use the hydrodynamical variables in
(NLS) problems and exploit a connection with fluid mechanics, going back
to Madelung’s original formulation of quantum mechanics in hydrodynamical
variables, [37]. Geometric optics and the hydrodynamical formulation were
used to address ill-posedness and norm inflation in the defocusing Schrodinger
equations, [1,24] as well as the study of the semiclassical limit [29]. There
is also a recent study of vortex filaments in [3] and its dynamical use of the
Hasimoto transform. The scheme of proof of Theorem 1.1 will directly apply
to produce the first complete description of singularity formation for the three
dimensional compressible Navier—Stokes equation in the companion paper
[44].

2. Blow up profile. The blow up profile of Theorem 1.1 is more easily described
in terms of the hydrodynamical variables:

u(t, x) = prog(t, x)e'? 9. (1.8)

2 But not to the phase!.
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More precisely, we establish the decomposition

pron(t, x) = ———1 oy (op + )(2).

(Tf—oﬁ Z=—— (19
ot x) = (—,;2(\1110 + V) (2), (T — t)r

Te—1t) T

and prove the local asymptotic stability
lim [[W]roz<1) + lpllLez<1) = 0.
t— Ty

Here, the blow up profile (pp, Wp) is, after a suitable transformation, picked
among the family of spherically symmetric, smooth and decaying as Z — +00
self-similar solutions to the compressible Euler equations. The interest in self-
similar solutions for the equations of gas dynamics goes back to the pioneering
works of Guderley [26] and Sedov [57] (and references therein) who in partic-
ular considered converging motion of a compressible gas towards the center
of symmetry. However, the rich amount of literature produced since then is
concerned with non-smooth self-similar solutions. This is partly due to the
physical motivations, e.g. interests in solutions modeling implosion or deto-
nation waves, where self-similar rarefaction or compression is followed by a
shock wave (these are self-similar solutions which contain shock discontinu-
ities already present in the data), and, partly due to the fact that, as it turns out,
global solutions with the desired behavior at infinity and at the center of sym-
metry are generically not C*°. This appears to be a fundamental feature of the
self-similar Euler dynamics and, in the language of underlying acoustic geom-
etry, means that generically such solutions are not smooth across the backward
light cone (of the acoustical metric associated to the Euler profile) with the
vertex at the singularity. The key of our analysis is to find those non-generic
C solutions and to discover that this regularity is an essential element in
controlling suitable positivity properties of the associated linearized operator.
This is at the heart of the control of the full blow up. A novel contribution
of the companion paper [43] is the construction of C*° spherically symmetric
self-similar solutions to the compressible Euler equations with suitable behav-
ior at infinity and at the center of symmetry for discrete values of the blow up
speed parameter r in the vicinity of the limiting blow up speed r*(d, £) given
by (1.6).

3. Restriction on the parameters. There is nothing specific with the choice of
parameters (1.5), and we refer to Remark 2.4 for a precise discussion. Two main
constraints govern the restriction on the parameters. First of all, a fundamental
restriction in order to make the Eulerian regime dominant is the constraint

r¥(d,€) > 2o < lyd)=d—2V/d (1.10)
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which provides a non empty set of nonlinearities iff
lh(d) >0« d=>>5.

As a result, the case of dimensions d = 3, 4 is not amenable to our analysis
at this point, and the existence of blow up solutions for d = 3,4 remains
open. The second restriction concerns the existence of C°° smooth blow up
profiles with suitable positivity properties of the associated linearized operator,
as addressed in [43], see Sect. 2.2 and Remark 2.4 for detailed statements. In
particular, a non degeneracy condition Seo(d, £) 7# 0 for an explicit convergent
series is required. An elementary numerical computation to check the condition
in the range (1.5).

4. Behavior of Sobolev norms. The conservation of mass and energy imply a
uniform H'! bound on the solution. This can also be checked directly on the
leading order representation formulas (1.8), (1.9). For higher Sobolev norms, a
computation, see “Appendix D”, shows that the blow up solutions of Theorem
1.1 break scaling, i.e., we can find

d 2

l<o<se=————
2 p-—-1

such that

lim flu(r)| o = 400,
t— Ty

and the critical Sobolev norm |Ju(¢, -)|| gsc blows up polynomially.

5. Stability of blow up. The blow up profiles of Theorem 1.1 have a finite
number of instability directions. Local asymptotic stability in the interior of
the backward light (acoustic) cone from the singularity relies on an abstract
spectral argument for compact perturbations of maximal accretive opera-
tors. Related arguments have been used in the literature for the study of
self-similar solutions both in focusing and defocusing regimes, for example
[8,16,21,45,47] for parabolic and [19] for hyperbolic problems. The key to
the control of the nonlinear flow in the exterior of the light cone is the propa-
gation of certain weighted scale invariant norms. This generalizes a Lyapunov
functional based approach developed in [42]. Counting the precise number of
instability directions is an independent problem, disconnected to the nonlinear
analysis of the blow up. A natural conjecture is that the number of unstable
directions goes to infinity as ry — r*(d, £).

6. Non spherically symmetric perturbations. We expect that our analysis can
be extended to prove the finite codimensional stability of singular dynamics to
all perturbations, without the restriction to spherical symmetry. This remains
to be done.
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7. Oscillatory behavior. The constructed solutions are smooth at the blow up
time away from x = 0:

VR >0, lim u(t,x) =u"(x) in Hk(|x| > R), keN. (1.11)

t—T,

As in the cases for blow up problems in the focusing setting, see e.g. [40], the
profile outside the blow up point has a universal behavior when approaching
the singularity

i<
|x|r72

e
u*(x) = cp(1 + o j»0(1) —5;=, cp #0. (1.12)
x| -1

What is unusual, and together with potential non-genericity perhaps respon-
sible for difficulties in numerical detection of the blow up phenomena, is
the highly oscillatory behavior. This appears to be a deep consequence of the
structure of the self-similar solution to the compressible Euler equation and the
coupling of phase and modulus variable in the blow up regime, generating an
anomalous Euler scaling. The heart of our analysis is to show that after pass-
ing to the suitable renormalized variables provided by the front, the highly
oscillatory behavior (1.12) becomes regular near the singularity and can be
controlled with the monotonicity estimates of energy type, without appealing
to Fourier analysis.

8. On the role of the defocusing nonlinearity. The existence of self similar
solutions to the energy supercritical (NLS) decaying at infinity is expected to
hold in the focusing case, like for the heat equation [15]. In the defocusing
case, such solutions are easily ruled out for the heat equation using the maxi-
mum principle, and their non existence is an open problem for the defocusing
NLS, we refer to [33] for further discussion in the case of the wave equation.
A fundamental observation is that in a suitable range of parameters, the semi-
classical Euler limit provides admissible approximate blow up profiles for the
defocusing NLS. The fact that our range of parameters is energy supercritical
can be seen directly on the constraint (1.10):

4
r*(d,£)>2©—1:£<d—2«/3
p_

1+

4
Spslf— =l —
P d—2ja -2

In other words, the existence of suitable blow up profiles given by Euler (r <
r*(d, £)) combined with the constraint that the Euler regime dominates (r > 2)
forces an energy supercritical range of parameters.
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The paper is organized as follows. In Sect. 2, we present the “front” renor-
malization of the flow which makes the Euler dynamics dominant, and recall
all necessary facts about the corresponding self similar profile built in [43].
Theorem 1.1 reduces to building a global in time non vanishing solution to
the renormalized flow (2.25) written in hydrodynamical variables. In Sect. 2.4
we detail the strategy of the proof. In Sect. 3, we introduce the functional
setting related to maximal accretivity (modulo a compact perturbation) of the
corresponding linear operator which leads to a statement of exponential decay
in a neighborhood of the light cone for the space of solutions (modulo an a
priori control of a finite dimensional manifold corresponding to the unstable
directions.) In Sect. 4, we describe our set of initial data and the set of bootstrap
assumptions which govern the analysis. In Sects. 5, 6, 7, we close the control
of weighted Sobolev norms and the associated pointwise bounds. In Sect. 8,
we close the exponential decay of low Sobolev norms by relying on spectral
estimates and finite speed of propagation arguments.

Notations
The bracket
(ry=+v1+r2

The weighted scalar product for a given measure g:

(,v)g = /d uvg dx. (1.13)
R

The integer part of x € R
x<[x]<x+1, [x]e€Z.
The infinitesimal generator of dilations

A=y V.

2 Front renormalization, blow up profile and strategy of the proof

In this section we introduce the hydrodynamical variables to study (1.1) and
the associated renormalization procedure which makes the compressible Euler
structure dominant. We collect from [43] the main facts about the existence of
smooth spherically symmetric self-similar solutions to the compressible Euler
equations which will serve as blow up profiles.
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2.1 Hydrodynamical formulation and front renormalization

We begin by establishing a link between the Eq. (1.1) and the compressible
Euler equations. For non vanishing solutions, we write the equivalent hydro-
dynamical formulation in phase and modulus variables:

u(t, x) = /p@, 0V F=02r
Equation (1.1) becomes a system

00 + pAY + Vp Vt/f
p—1

oY + 5V P+ 30T

%_\%

l
2

This is precisely the compressible Euler (potential flow) equations (the second
equation is the Bernoulli equation) for the density p, velocity Vi, the classical
pressure

p—1 pu
0 2
20p+1)
and the quantum stress tensor
1 1V v
Q= SApl—+ P& ,0’
2 2 Jo

so that

d;p +div (p - Vi) =0, @2.1)
p;VY + pVir - VVY + VP = div Q. '
Below, we will show that passing to self-similar variables, the above system
admits an additional front renormalization which damps the quantum stress
term and therefore possesses approximate stationary solutions which, in turn,
are self-similar solutions of the classical Euler equations. For convenience, we
work in slightly different variables (using density squared in place of density,
for instance). The correspondence between the systems derived below and the
compressible Euler equations, along the lines of (2.1), will hold at every step.
The explicit identification of the final approximate system (2.11) with the cor-
responding system representing self-similar solutions of the Euler equations
is done in “Appendix A”.
The standard self-similar renormalization

2 U(T,)’)eiy, y=
A(t)r-1

u(t,x) =

’

> =
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where we freeze the scaling parameter at the self-similar scale

e 1 x e 1
a2 T a0 T2

then (1.1) becomes

. AT
larv—I—Av—ytv—lT

v+ Av) —opPt=0. (22
p—1
In the defocusing case, (2.2) has no known decaying type I self similar station-
ary solution, or type Il soliton like solutions, [42], but, it turns out, that it admits
approximate front like solutions. Their existence relies on a specific phase and
modulus coupling and anomalous scaling. We introduce the parameters

2
I—e

O<e<l,
1—

= 2.3)

~ =
A~

r
l,{,:
14

p—1
and claim:

Lemma 2.1 (Front renormalization of the self similar flow) Define geometric
parameters

w1 b, 1 dr 1
_— ==, — = —e, = -, — = —= 24
A2 bp VT ar T 24

and introduce the renormalization

1 . X
ut, x) = ——-v(r, y)e'”, y=+
A(r) PT
with the phase and modulus
v =we'?,
w(t,y) = —5p1a(t, Z) € RY,
(V) 7T
d(t,y) = ;VT0t(7, Z2),
Z = |y|v/b,
In these variables (1.1) becomes, on [y, +00):
B ot = — prot AWy — L4 proy — (202 Wt + LZ) D2t
PTotdr Yot = bzAPTot (2.5

—1
- [meﬁ + pu(r — 2)Wror — 1 4+ p AW + ph ] OTot.-
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Remark 2.2 Since from (2.4) we have frozen the scaling in its selfsimilar law,
the lifetime of the solution in original variables is T, = ¢~ ™, see also (4.2).

Proof Starting from (2.2), we define a polar decomposition
v = we'?
so that
Vo= +ig'w)e?, v =w" — ¢ )Pw+ 2w +i¢"w
and

A
0=id,w—+ Aw + (—a,qs —|Vo)? — e + T’y - v¢) w

. 2 A . Az -1
i Ap— =T )w+i 2V — Ty ) -V —wlw|P

p—1A
(2.6)

Separating the real and imaginary parts yields the self-similar equation (2.2):

- A Y- (222 41
dw == (80 + gty ) w— (252 + 3) Aw, 2.7)
wdp = Aw + (—IV(}SI2 — Y — %Aqﬁ) w— wlw|P L.
We now renormalize according to
1 . 1
w(t,y) = ———pra(t, 2) €RY, $(r.y) = 2 Wra(t. 2) Z = |yIVb

(Vo)

with a fixed choice of parameters in the modulation equations

S

- 1
?=—e, )/T:_E’ O<e<l1
which transforms (2.7) into
0z PTot = — PTot AWTor — ;i_llPTot - (zazlpTot + %Z) 9Z PTot,
PTot 0t Wot = bZAPTot
—1
- I:lv\IJTot|2 +eWror — 1 + %(1 — ) AWy + p{zot ] PTot-
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We now compute from (2.3):

plr—=1) _ 2 _ 1+
7 —ﬁ(l—ﬂ)— p_pl

ur—2)=1—-({0—-e)=e

’

and (2.5) is proved. |

2.2 Blow up profile and Emden transform

We recall in this section the main results of [43].
Emden transform. A stationary solution (pp, Wp) to (2.5) in the limiting Eule-
rian regime b = 0 satisfies the profile equation

VWP + pp "+ u(r = DWp + uAWp = 1, 08)
AWp + =D 4 (20,Wp + pZ) 228 = 0, '
We supplement it with the boundary conditions:
0)=1, Yp0)=0
‘,OP( ) =1, ¥p(0) =0, 2.9)

pp(Z) = 0, Up(Z) — L as Z > .

We now show that the system (2.8), (2.9) is equivalent to the corresponding
system of equations describing self-similar solutions of the Euler equations.
We define the Emden variables:

¢ = Eﬁ? P — 1= %’

0=pp ' = L =0Zo, x=logz, (2.10)
Yp _ iy,

VA 27

then (2.8) is mapped onto

(w—Dw +loo’ + (w? —rw + £o?) =0, 2.11)
%w/—l—(w—1)0/+0[w(%+1)—r]=0, '
or equivalently
ajw’ +bio’ +d; =0,
aw' 4+ by’ +dr =0
with
a=w-—1, by ={o, dlzwz—rw—l—foz,
2.12
m=% bh=w-1, d=c[l+H)w-r. P
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The system (2.11) is exactly the one describing spherically symmetric self-
similar solutions to the compressible Euler equation, [57] (and the references
therein). For an explicit derivation see “Appendix A”. It is analyzed in [43],
following pioneering work of Guderley, Sedov and others.

Let
L(r—1)
We = — (2.13)
and the determinants
A=aby —blay = (w—1)% -2,
Ay = —bidy + brd) = w(w — D(w —r) —d(w — w,)o2,
Ay =dhay —diay =% [(€+d — Dw> —wl+d+lr—r)+&r — {o?]
(2.14)
then
A A d A
w ="t g =-22 20 _2l (2.15)
A A do Ay

Solution curves w = w(o) of the above system can be examined through its
phase portrait in the (o, w) plane.

Critical points and admissible profile. The shape of the phase portrait depends
crucially on the polynomials A, Ay, A, and the parameters (r, d, £), and we
refer to [43] for a complete description. In particular, three critical points play
a distinguished role in the analysis:

e the Pg unstable point which corresponds to a point at infinity (0 =
400, w = w,), which in original variables corresponds to the smooth
solution coming out of the origin Z = 0,

e the Py stable point (o = 0, w = 0) which corresponds to selfsimilar decay
as Z — +o0,

e the P, stable point which is a solution to the triple point equation

A(Py) = A1(P2) = Ax(P) = 0. (2.16)

A classical analysis of the phase portrait reveals that in a suitable regime of
parameters, there is a unique solution coming out of Pg with the normalization

pp(0) =1, ¥p0)=0 (2.17)

at Z = 0, which is also C*° in the vicinity of Z = 0, and it must be attracted
into P». This solution can be continued beyond P> by gluing it to a member
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of the 1-parameter family of curves that join P, to the selfsimilar decay Py as
Z — +oo0.

The above procedure produces a curve which is C*° everywhere except
at P, where it generically experiences an unavoidable discontinuity of high
derivatives, except for discrete values of the speed r. The following structural
proposition on the blow up profile is proved in the companion paper [43].

Theorem 2.3 (Existence and asymptotics of a C* profile, [43]) Let
d, p) €{(5,9),(6,5),(8,3), 9,3)}

and recall (1.6). Then there exists a sequence (ry)k=>1 with

klim re=r*d, ), rx <r*(d,?) (2.18)
— 00

such that for all k > 1, the following holds:

1. Existence of a smooth profile at the origin: the unique radially symmetric
solution to (2.8) with Cauchy data at the origin (2.9) reaches in finite time
Z> > 0 the point P.

2. Passing through P;: the solution passes through Py with C™ regularity.

3. Large Z asymptotic: the solution admits the asymptotics as Z — +00:

w(Z) =% (140 (L)) -
o(2) =& (1+0 (1) (2.19)

or equivalently

02) = ol (2) = S (14 0 (%)), (2.20)
Wp(Z) =1+ L5 (140 (%))

with non zero constants cy, cp. Similar asymptotics hold for all higher
order derivatives.
4. Non vanishing: there holds

vVZ >0, pp>0.

5. Strict positivity inside the light cone: there exists c = c(d, £, r) > O such
that

(1—w—Aw)>— (6 +A0)’ >c
VO<Z<2Z, I —w— Aw— Uwdotho) (2.21)
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6. Strict positivity outside the light cone:

(1—w—Aw)? — (0 + Ao)? > &.22)

dc=cye,r >0, VZ > 2>, l—w— Aw > ¢

Remark 2.4 (Restriction on the parameters) The proof of Theorem 2.3 requires
the non degeneracy of an explicit series Soo(d, £) # 0 which is numerically
checked in [43] in the range (1.5). The positivity properties (2.21), (2.22) are
checked analytically in [43] and will be fundamental for the well-posedness
of the linearized flow inside the light cone, and the control of global Sobolev
norms outside the light cone. Let us insist that the restriction on parameters
relies on the intersection of the conditions (1.10), Sx(d, £) # 0 and (2.21),
(2.22). The range (1.5) is just an example where this holds, but a larger range of
parameters can be directly extracted from [43], and the conclusion of Theorem
1.1 would follow. In particular, since we are working with non vanishing
solutions, the fact that the non linearity is an odd integer can be relaxed as
in [44], hence providing an open range of parameters. Determining the exact
range of validity of parameters for which Theorem 1.1 holds remains open.

Remark 2.5 The strict positivity property (2.21) inside the light cone will play
a distinguished role in the analysis of the linearized of the operator and the
derivation of the spectral gap which is the key to decay, see Proposition 3.10.
Together with the strict positivity (2.22) outside the light cone, it will also
allow us to derive energy bounds at high regularity, see Proposition 7.1.

From now on and for the rest of this paper, we assume (1.5). We observe
from direct check that there holds:

d+1t

>28 ¢ <d—2Vd = t:(d).
+d

rie) =

Recalling (2.3), we may therefore assume from (2.18) that the blow speed
r = ry satisfies

r—2

r

r>2%&e= > 0.

2.3 Linearization of the renormalized flow

We look for u solution to (1.1) and proceed to the decomposition of Lemma
2.1. We are left with finding a global, in self similar time t € [7g, +00),
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solution to (2.5):

—1
97 PTot = —PTot AWTor — uﬂ(rz )PTot — (20zWtot + HZ) 37 PTots

PTotdr Yot = b? ApTot (2.23)

-1
—[IVOrl + 10 = 2 r = 1+ A1+ ol oo

with non vanishing density po; > 0. We define

Hy = i +25F = u(l — w),

_ (
Hy = — (A\IJP + 4=l ”) = HyZ2e = Bl —w) [1 + 42].

2.24)

We linearize

PTot = pp + 0, Yot = Wp + W

and compute, using the profile Eq. (2.8), for the first equation:
wl(r —1)
dep = —(pp + P)A(Vp + V) — —5  (ert )

—Q07Yp + uZ +20,9)Dzpp + 02p)
= —p1ot AV — 2V 1ot - VW + Hip — Ha Ap

and for the second one:

Prode W = D Apres = pro{ VW2 +2VWp - VU 4 [VUP = 1+ u(r — 20
Fu(r —2)W + u(AVp + AW)
+(op + p)”"}

= b2 Aprot — P10t {2VWp - VU + AW + pu(r —2)W
_ -1
HYGP + (op + )7 = o'}

= b’ Apror — Proc {HA AW + p(r — 2)W
HYVWP + (p = Dopp +NL(p)

with

_ -1 2
NL(p) = (pp +p)*~" = pb " — (p— Dpp "p.
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We arrive at the exact (nonlinear) linearized flow

dep = H”i_ HyAp — p1ot AV — 2V pror - VY,
0.0 = DPIEN — (H)AW + pu(r =W + VU (305

+(p—pj 2p +NL(p)] .

Theorem 1.1 is therefore equivalent to exhibiting a finite co-dimensional man-
ifold of smooth well localized initial data leading to global, in renormalized
T-time, solutions to (2.25).

2.4 Strategy of the proof

We now explain the strategy of the proof of Theorem 1.1.

Step 1 Wave equation and propagator estimate. After the change of variables
® = ppW¥, we may schematically rewrite the linearized flow (2.25) in the
form

0
9, X = M X + NL(X) — b* 2.26
! +NL(X) A(pp + p) (2.26)
with
0 Hy — HbA —A+ Hj
x=|" ., m= . (227
‘fb (—(p—l)Q—HzAHl—w—z)) 2:27)

where Q, Hy, Hp, Hz are explicit potentials generated by the profile pp, Wp.
During the first step the b>A term is treated perturbatively. We commute the
equation with the powers of the laplacian A¥ and obtain for X; = AKX

0 Xk = M X + NLy (X). (2.28)

We then show that, provided & is large enough, 771; is a finite rank perturbation
of a maximally dissipative operator with a spectral gap § > 0. The topology
in which maximal accretivity is established depends on the properties of the
wave equation® encoded in (2.28) and is based on weighted Sobolev norms
with weights vanishing on the light cone corresponding to the point P2 of the
profile. Indeed, the principal part of the wave equation is roughly of the form

07 p — D(Z)d7p,

3 Reminiscent of the wave equation arising in a linearization of the compressible Euler equa-
tions.
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where the weight D(Z) vanishes on the light cone Z = Z; corresponding to
the P, point. The corresponding propagation estimates for the wave equation
produce an priori control of the solution in the interior of the light cone Z < Z»,
modulo an a priori control of a finite number of directions corresponding
to non positive eigenvalues of 77;. An essential structural fact of this step
is the C* regularity of the profile. Indeed, we claim that for a generic non
C° solution at P2, the number of derivatives required to show accretivity
of the linearized operator is always strictly greater than the regularity of the
profile at P>. As a result such profiles may be completely unstable and are
not amenable to our analysis. The C* regularity obtained in [43] is therefore
absolutely fundamental. The analytic properties leading to the maximality of
the linearized operator will be consequences of (2.21), (2.22). We note that
the coercivity constant in (2.21) degenerates as r — r*, and the number of
derivatives needed for accretivity is inversely proportional to this constant. This
is a manifestation of a quasilinear effect which is new for NLS: the problem
sees a scaling which depends on the chosen self similar profile.

Step 2 Extension slightly beyond the light cone. Exponential decay estimates
provided in the first step yield control in the interior of the light cone Z <
Z> only. It turns out that the analysis of the first step can be made more
robust and extended* slightly beyond the light cone, all the way to a spacelike
hypersurface Z = Z> +a, 0 < a < 1, even though it is complicated by
the dependence of the underlying wave equation on variable coefficients or,
equivalently, on non constancy of the Q(Z) term in (2.27). We can revisit the
first step by producing a new maximal accretivity structure for a norm which
does not generate in the zone Z < Z> + a, 0 < a < 1. The argument relies
on a new generalized monotonicity formula. The corresponding propagation
estimates recovers exponential decay in the extended zone Z < Z; 4+ a. Once
decay has been obtained strictly beyond the light cone, a simple finite speed
of propagation argument allows us to propagate decay to any compact set
Z < Zo, Zo > 1.

Step 3 Loss of derivatives. The decay obtained in step 2 relies on energy
estimates compatible with the wave propagation and the Eulerian structure of
approximation. The full evolution however is that of the Schrodinger equation
and contains the b2 A term on the right hand side of (2.26). Such a term leads
to an unavoidable loss of one derivative. However, this loss comes with a b?
smallness in front. We then argue as follows. We pick a large enough regularity
level k,, = ky, (r, d) > 2kg, where kg is the power of the laplacian used for
commutation in step 2, and derive a global Schrodinger like energy identity
on the full flow (2.25). The choice of phase and modulus as basic variables
turns the equation quasilinear and makes this identity rather complicated and

4 Reminiscent of a non-characteristic energy estimate.
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unfamiliar. An essential difficulty, which is deeply related to step 2, is that at
the highest level of derivatives, the non trivial space dependence of the profile
measured by Q(Z) = ,of,_l (Z) in (2.27) produces a coupling term and a non
trivial quadratic form. The condition (2.22) implies that the corresponding
quadratic form is definite positive for &, large enough.

Step 4 Closing estimates. As explained above, we work with a linearized
nonlinear equation, i.e., obtained after subtracting off the profile, written in
terms of the phase and modulus unknowns (W, p), in renormalized self-similar
variables (t, Z), where the singularity corresponds to (t = oo, Z = 0), a
special light cone is (7, Z = Z») and where in the original variables (¢, r) the
region r > 1 corresponds to Z > eM7.

First, outside the singularity » > 1, we modify the profile by strengthening
its decay to make it rapidly decaying and of finite energy. Relative to the
self-similar variables this modification happens at Z ~ e*?, far from the
singularity, and as aresult is harmless. Then, we run two sets of estimates. First,
we employ wave propagation like estimates which go initially just slightly
beyond the special light cone and then extend to any compact set in Z. These
estimates are carried out at a sufficiently high level of regularity with ~ 2kg
derivatives. The number ko emerges from the linear theory and is determined by
the (conditional) positivity of a certain quadratic form responsible for maximal
accretivity.

Then, we couple these estimates to global Schrodinger like estimates which
take into account previously ignored b>A and take care of global control.
These estimates are carried out at all levels of regularity up to k,, derivatives
with k,, >> ko. They are carefully designed weighted L? type estimates. The
weights depend on the number of derivatives k: at first, their strength grows
with k but by the time we reach the highest level of regularity k,, the weight
function is identically = 1. The latter has to do with a well-known fact that
even for a linear Schrodinger equation, use of weights leads to a derivative
loss (A is not self-adjoint on a weighted L? space.) Therefore, our highest
derivative norm should correspond to an unweighted L? estimate. Of course,
this last estimate also sees a positivity condition (2.22) responsible for the
coercivity of an appearing quadratic form.

These global weighted L? bounds then allow us to prove pointwise bounds
for the solution and its derivatives which, in turn, allow us to control nonlinear
terms. The obtained sets of weighted L bounds on derivatives recover in
particular the non vanishing assumption required of the solution. We should
note that while all the local (in Z) norms decay exponentially in 7, the global
norms are merely bounded. In the original (¢, r) variables this means that the
perturbation decays inside and slightly beyond the backward light cone from
the singular point but does not decay away from the singularity. This is, of
course, entirely consistent with the global conservation of energy for NLS.
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The whole proof proceeds via a bootstrap argument which also involves a
Brouwer type argument to deal with unstable modes, if any, arising in linear
theory of step 1. This is what produces a finite co-dimension manifold of
admissible data.

3 Linear theory slightly beyond the light cone

Our aim in this section is to study the linearized problem (2.25) for the exact
Euler problem b = 0. We in particular aim at setting up the suitable functional
framework in order to apply classical propagator estimates which will yield
exponential decay on compact sets Z < 1 modulo the control of a finite number
of unstable directions.

3.1 Growth bounds for dissipative operators

We start this section by recalling classical facts about unbounded operators
and their semigroups. Let (H, (-, -)) be a hermitian Hilbert space and A be
a closed operator with a dense domain D(A). We recall the definition of the
adjoint operator A*: let

D(A") ={X € H, X € D(A) —~ (X, AX)

extends as a bounded functional on H},
then A*X is given by the Riesz theorem as the unique element of A such that
VX € D(A), (A*X, X) = (X, AX). (3.1)

Let 0 (A) denote the spectrum of A, i.e., the complement of the resolvent
set. We recall the following classical lemma.

Lemma 3.1 (Properties of maximal dissipative operators, [56] p. 49) Let A
be a maximal dissipative operator on a Hilbert space H with domain D(A),
then:

(1) A is closed;
(ii) A* is maximal dissipative;
(iii) o(A) Cc {r € C, R() <0},
(iv) 1A =07 < R~ for R > 0.

We now recall from Hille—Yoshida’s theorem that a maximally dissipative
operator Ag generates a strongly continuous semigroup 7p on H, and so does
Ao + K for any bounded perturbation K. Let us now recall the following
classical properties of strongly continuous semigroup 7 (¢).
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Proposition 3.2 (Growth bound, [20] Cor 2.11, p. 258) Let the growth bound
of the semigroup be defined as

wo = inf{w € R, IM,, such that Nt >0, ||T(t)|| < Mye™'}.
Let wegs denote the essential growth bound of the semigroup:
Wess = inf{w € R, AM,, such that ¥t >0, ||T(t)|less < Mye™"}

with

IT(@)lless= inf |T() — Kllg—n
KeX(H)

and K (H) is the ideal of compact operators on H; and let
s(A) = sup{N(r), A €o(A)}.
Then
wo = max{wess, s(A)}
and
YW > Wegs, the set Ay(A) ;=0 (A) N{NRQ) > w} is finite. (3.2)

Moreover, each eigenvalue » € Ay, (A) has finite algebraic multiplicity m§:
3k, € Z such that

ker(A — 2D £ @,  Vk > ky, ker(A — A = ker(A — A",

md = dimker(A — A"
We note that the subspaces Vy,(A) = Ujea,, a)ker (A —xD)* and VU}(A*) are
invariant for A. In particular, A (D(A) N VwL(A*)) C Vlj(A*). The invariance
Vi (A) is immediate. To show that A (D(A) NV, (A*)) C Vg (A*) we let
XeDAN Vuf(A*), Y € V,,(A*) and consider (AX, Y). Since Y € D(A*)
and V,,(A*) is invariant for A*,

(AX,Y) = (X, A*Y) =0.

We claim the following corollary.
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Lemma 3.3 (Perturbative exponential decay) Let Ty be the strongly contin-
uous semigroup generated by a maximal dissipative operator Ay, and T be
the strongly continuous semi group generated by A = Ag + K where K is a
compact operator on H. Then for any 6 > 0, the following holds:

®

(i)

(iii)

the set As(A) = o (A)N{r € C, RN(A) > 8} is finite, each eigenvalue
A € As(A) has finite algebraic multiplicity k). In particular, the subspace
Vs(A) is finite dimensional;

We have As(A) = As(A*) and dimVs(A*™) = dimVs(A). The direct
sum decomposition

H = Vs(A) @D V5~ (4*) (3.3)
is preserved by T (t) and there holds:
VX € V;H(A"), ITOX] < Mse™ || X]]. (3:4)

The restriction of A to Vs(A) is given by a direct sum of (m) Xm;)yens(A)
matrices each of which is the Jordan block associated to the eigen-
value A and the number of Jordan blocks corresponding to )\ is equal
to the geometric multiplicity of k—mi = dimker(A — AI). In partic-
ular, mi < mka. Each block corresponds to an invariant subspace J)
and the semigroup T restricted to J), is given by the matrix

M teM ... il ght

0 eM ... tmk—zem
TOl,=| "

0O 0 --- M

Proof This is a simple consequence of Proposition 3.2.
Step I Perturbative bound. First, since Ag is maximally dissipative,

Vi >0, [[To()] S1

implies wo(Agp) < 0. By Proposition 3.2, s(Ap) < 0 and

Wess (Tp) < 0.

On the other hand, from [20] Prop 2.12 p. 258, compactness of K implies

Wess (T) = wess(To) < 0.
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Let now A € o (A) with 1(L) > 0, then the formula
A—A=Ao+ K —1=(Ag—1Id+ (A9 — 1) 'K)

and invertibility of (A9 — A) imply that A belongs to the spectrum of the
Fredholm operator Id + (Ag — 1)K . Therefore, A is an eigenvalue of A. On
the other hand, M(A) > § implies RH(A) > § > 0 > wes(7T), and hence, by
(3.2), there are finitely many eigenvalues with :(1) > §. In fact, Proposition
3.2 also directly shows that each some A is an eigenvalue and implies the rest
of (i).

Since A* = Aj+ K™ and A(j is maximally dissipative from Lemma 3.1, we
can run the same argument as above for A*. Moreover, o (A) = o (A*) ([56],
Prop. 2.7), (i) is proved.

The argument above, in fact, shows that {A € C, R(\) > 3} N{A € 0 (A)}
is finite, since for every 9i(A) > O and A € o (A), X is an eigenvalue of A.
Step 2 The first statement of (ii) is standard. We already explained that the
subspaces Vs(A) and D(A) N VSL (A*) are invariant for A. To prove the direct
decomposition we recall that the subspace Vs(A) is the image of H under the
spectral projection Ps(A) associated to the set As(A):

Py(A) = 1 da
M T i ol — A
where I' is an arbitrary contour containing the set As(A). There is a direct
decomposition

H = ImPs(A) @kerPg(A).

On the other hand, the adjoint

1 dx
P(A) = — | ——— = Py(A*
s =i e —ar = A

is the spectral projection of A* associated to the set As(A). The result is now
immediate.

Step 3 Semigroups generated by restriction and conclusion. Let V = Vs(A),
U = VSJ- (A*) and P denote the projection on VSJ- (A*) in the direct decom-
position (3.3). Let A denote the restriction of A to U with the domain
D(A) = U N D(A). By invariance

VX € UND(A), AX = AX.
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Let T be the semigroup on U generated by A = A. Then for all X €
D(A)NU,T#)X € C([0, +00), D(A)) is the unique strong solution to the
ode

dX ()
dt

= AX(1), X(0)=X.

This implies that f"(t)X = T()X for all X € D(A) N U and thus for all
X € U by continuity of the semigroup. By Proposition 3.2 the growth bound
of T satisfies

wo(T) < max{wess(T), s(A)}.
We first argue that
wess(T) <0.

To prove that we note that we already established that wegs(7) < 0. We then
fix ¢ > 0 and, for any # > 0 choose a compact operator K (t) € K(H) on H
such that

log||T(t) — K()| o n < et + logM

for some constant M which may depend on ¢. The restriction K (t) = PK(1)
of K (t) to U is a compact operator on U. Then, for any t > 0

logl|T (1) = K()|ly—v = log| P(T (1) — K1) |lu—~u
< log{Cp|T (1) = K(*)llH—H}
<logCp +logM + et,

where C p denotes the norm of the projector P. The desired conclusion follows.
To show that s(A) < & we assume that A € o (A) with %(1) > &, then A
is an eigenvalue of A and, by invariance of U, A is an eigenvalue of A with a
non-trivial eigenvector ¥ € U. However, by construction, all such i belong
to the subspace V = V5(A), contradiction. Hence S(A) < § and Proposition
3.2 yields (3.4).
Finally, part (iii) is completely standard. m|

We will use Lemma 3.3 in the following form.

Lemma 3.4 (Exponential decay modulo finitely many instabilities) Let § > 0
and let Ty be the strongly continuous semigroup generated by a maximal
dissipative operator Ay, and T be the strongly continuous semigroup generated
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by A = Ay — 8 + K where K is a compact operator on H. Let the (possibly
empty) finite set

A={reC, RQA)=0}N{r isaneigenvalue of A} = (Ai)1<i<N
and let
H=UEvV.

where U and V are invariant subspaces for A and 'V is the image of the spectral
projection of A associated to the set A. Then there exist C, 8 > 0 such that

s
By

VX eU, ITOX| <Ce 27|X]. (3.5)

Proof We apply Lemma 3.3 to A = A+ = Ag+ K with generates the semi
group 7T'. Hence the set

A%(A~) = {k eC, ) > g} N {A is an eigenvalue of A}
is finite. Moreover
AX =2X & AX = (L + 80X
and hence
A C A%.
Let

H=U5€BV5

be the invariant decomposition of A (and of A) associated to the set A 5.
Clearly, Us C U and

U=Ua@05,

where Ojs is the image of the spectral projection of A associated with the set
A% \ A. By Lemma 3.3,

VX € Us. IT(1)X] < Mse'| X,
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which implies
VX € Us, ITOX] = e ITOXI < Mye™ | X]). (3.6)

Letnow X € U. Since Us is invariant by T and (3.6) yields exponential decay
on Us, we assume X € Ojs. Og is an invariant subspace of A generated by the
eigenvalues A with the property that —%8 <NA) <0.Letdg > 0 be defined
as

3
—8g = sup {Sﬁ(k) : —18 <R < 0}
From part (iii) of Lemma 3.3,

)
IT®)Xlo, <C sup et 1|X| < C_7g1||X||~
R <0

This concludes the proof of Lemma 3.4. m|

Our final result in this section is to set up a Brouwer type argument for the
evolution of unstable modes.

Lemma 3.5 Let A, §; as in Lemma 3.4 with the decomposition

H=UPV
into stable and unstable subspaces Fix a sufficiently large to > 0 (dependent

on A). Let F(t, x) such that, Vt > ty, F(t,x) € V, depends continuously on
x and

_ g,
F (x| <e 3
be given. Let x(t) denote the solution to the ode

4 — Ax + F(t,x),
x(ty) =x9 € V.

Then, for any xq in the ball

_3e,
xoll <e 57,
we have

t

8
x| <e 2!, tg<t<itp+T 3.7)
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for some large constant I" (which only depends on A and ty.) Moreover, there
exists x* € V in the same ball as a above such that ¥t > ty the solution x(t)
with initial data x (ty) = x™* obeys
38g
x| <e” 5.
Proof According to Lemma 3.3 the subspace V' can be further decomposed
into invariant subspaces on which A is represented by Jordan blocks. We may
therefore assume that V is irreducible and corresponds to a Jordan block of A

of length m; associated with an eigenvalue A with {(X) > 0 and restrict A to
V. We decompose A as

A =X+ N,

where N has the property that N"*~! = 0, and

1 t_”tm;\fl
sV _ |0 1o m—2
00--- 1

The claim (3.7) follows from the growth on the Jordan block:

xI =

t
e(t—t())AxO +/ e(Z—T)AF(T’x)d-[
10

38g19

t
2
< CFm*_lem()‘)Fe_ 2 +f C|‘L’ o t()Im*_lem()‘)(t_f)e_j'sgrdt
fo

N 3dgtp
S CFIn)L—le§7L()\.)re— 3

and hence the size of constant I' is determined from the inequality
. 3dgtp s
Crm)‘_lejl(k)re_T < e_j([()‘i‘r)7

a sufficient condition being

) dg
r<—|—=|1,
— 2 L10M(R) + 58,

which can be made arbitrarily large by a choice of #.
We now define a new variable

198
Y(t) = e Ve 0 x(r).
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Since N and A commute,

av _ A—i—l%g Y+ F@,Y), Y@ =
dr 30 ) BHO =Y

~ 195g
where F(t,Y) = e "Ne 'F(z, x) and

- 3¢
IF@ V)| S e st

Since g was chosen to be sufficiently large, we can assume that vVt > ¢

1F (L Y)) S e et
and e < ML) + %. We now run a standard Brouwer type argument for Y.
For any y such that ||y|| < 1 we define the exit time ¢* to be the first time such
that | Y (¢*)|| = 1. If for some y, t* = oo, we are done. Otherwise, assume
that for all || y|| < 1,#* < oo and definethemap ® : B — Sas ®(y) = Y (¢t*)
mapping the unit ball to the unit sphere. Note that ® is the identity map on the
boundary of B. To prove continuity of ® we compute

d|y|?
dt

. , 195, Sy o 198,
(1) =20 + = +2MFE Y ), Y () = == > 0.

This is the outgoing condition which implies continuity. The Brouwer argu-
ment applies and shows that such ® can not exist. We now reinterpret the
result in terms of x. We have shown existence of the data x* such that the
corresponding solution x(¢) has the property that V¢ > 1y,

193¢
le ™Nx(r)| <e 3,

Now e ="V is an invertible operator with the inverse given by e’" and its norm

bounded by C¢"~!. The result follows immediately. We note that the resulting
36

solution x (¢) has initial data x (zp) in the ball ||x(fp)|| < e~ 3, O

3.2 Linearized equations

Recall the exact linearized flow (2.25) which we rewrite:

drp = Hip— HyAp — ppAYV —2Vpp - VU — pAWV — 2Vp - VU
B = b2 o0m {HzA\If Fu(r =2+ (p— Dpb~%p
+|VW¥|? + NL(p)}.
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Our aim for the remainder of the section is to find a Hilbert space in which
the linearized operator is accretive modulo a compact perturbation in order to
apply the general results of the previous section.

We introduce the new unknown

D =ppV (3.8)
and obtain equivalently using (2.24):

d:p=Hyp—HyAp— A+ H3®+ G,

3.9
0:P=—(p—1DQ0p— HhAD+ (H —pn@r —2)P+ Go G-
with
_ A
0=p"" H=2E2 (3.10)
op
and the nonlinear terms:
Gy =—pAVY —2Vp -V,
_ 2 b2op (G.11)
Go = —pp(IV¥[" 4+ NL(p)) + =5 Apror.-

We transform (3.9) into a wave equation for ® and compute:

3o =—(p—1Q(Hp— HyAp — A® + H3d + G ) + 3:Go
—Hy A3, D + (H) — u(r —2))9; d
=—(p—-—DO(AD+ H3®) — HpA9: D + (H] — u(r —2))0; P
+(p — DO(—H1+H2A) {; [—0: P — HoAD
(p—DQ
+(H; — pu(r =2))®+Gol} +3:Go — (p — 1) 0OG,
=(p—1QAD — H}IA>® —2H) A3, ® + A AD + A0, D + A3 D

A
+0:Go — <H1 + H2?Q) Go+ H2AGo — (p— 1)QG,

with

Ay = HhHy — HyAHy + Hy(Hy — ju(r — 2)) + sz%
Ay =2H) — p(r —2) + Hb 28,
A3 =—(Hy —e)H + HoAHy — Hy(H; — u(r — 2))A—QQ —(p—1OH;.

In this section we focus on deriving decay estimates for (3.9).
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Remark 3.6 (Null coordinates and red shift) We note that the principal symbol
of the above wave equation is given by the second order operator

Og =02 —((p—1)Q — H} ZHd2 + 2Hy 2079,
In the variables of Emden transform this can be written equivalently as
Oo =82 — pu? [0 — (1 — w)?] 92 + 20(1 — w)d,ds.
The two principal null direction associated with the above equation are
L=0+pull-—w)—0]dy, L=03+npll—-w)+o]d
so that
Op=LL.

We observe that at P2, we have L = 0, and the surface Z = Z, is a null
line (cone, if we view from the point of view of the higher dimensional space
where a point (t, Z) is in fact a (d — 1)-dimensional sphere). Moreover, the
associated acoustical metric is

go = ,uzAdt2 —2u(l —w)dtdx + dx?, A= (- w)2 P

for which 9; is a Killing field (generator of translation symmetry). Therefore,
Z = Z3 is a Killing horizon (generated by a null Killing field.) We can make
it even more precise by transforming the metric g into a slightly different
form by defining the coordinate s:

1_
s=pt—feo, fl=—"

so that

02
g0 = Ads)? — dez

x* :/gd}f
A

go =Ad(s+x%)d(s — x¥)

and then the coordinate x™:

so that
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and s+x* and s —x* are the null coordinates of g o. The Killing horizon Z = Z,
* Cx* .. .
corresponds to x* = —oo and A ~ e~* for some positive constant C. In this
form, near Z; the metric g o resembles the 1+ 1-quotient Schwarzschild metric
near the black hole horizon. Note that the region Z > Z; corresponds to the
interior of a black hole in a sense that the null geodesics of the acoustical
metric never leave that region.
The associated surface gravity k which can be computed according to

8X*A| axA| —w/(l—w)—a’al
K = = =
A P2 20 P2 o P2
1—w)F
=(—w/—a/)|p2:l—w—Aw—ﬂ|p2>O.
o

This is precisely the positivity condition (2.21) (at P2). The positivity of surface
gravity implies the presence of the red shift effect along Z = Z; both as an
optical phenomenon for the acoustical metric gp and also as an indicator
of local monotonicity estimates for solutions of the wave equation [lpg =
0, [17]. Near Z;, the null characteristics spread out and the monotonicity
estimates can be captured with the energy estimates based on a multiplier
transversal to the set Z = Z;, while the standard energy estimates based on
the multiplier d; would be degenerate. The complication in the analysis below
is the presence of lower order terms in the wave equation as well as the need
for global in space estimates.

3.3 The linearized operator

The degeneracy of wave operator [ is a feature of the chosen coordinate
system and, specifically, of the fact that d; is tangent to the set Z = Z,. We
can remedy this by adding to d; a small amount of A-derivative near Z,. The
precise technical implementation is as follows.

Pick a small enough parameter

0<axl

and consider the new variable

T =3,®+aHhAd, (3.12)

then

3. T = 02® +aHyAd; ® = 8°® + aH, A(T — aH, A D)
=320 + aHo AT — a* HyAHyAD — a> HF A* @,
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which yields the (7', ®) equation

0: 0 =T —aH)AD

and
3T =(p—1)QAD — HA*® —2H, A(T — aHy AD)
+AIAD + Ay(T —aHyAD) + A3
+aHyAT — a? HyAHyAD — a> HF A*® + G
=(p—DOAD — (1 —a)*H;A*®

+AIAD 4+ A3D — (2 — a)HoAT + A>T + Gp

with
AQ
Gr =0.Go — | H + HZ? Go + HhbAGo — (p—1)0G, (3.13)

and

Az = A1+ Qa - az)HzAHz —aAyH,.

We rewrite these equations in vectorial form

(3.14)

D 0
T b

BIX=mX+G,X=‘ G =
Gr

with

m— —aH) A 1
"\ (p—DOA —(1—a)’H} A’ + ApA + A3 —2 —a)H A +Ay )
(3.15)

3.4 Shifted measure

The fine structure of the operator (3.15) involves the understanding of the
associated light cone.
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Lemma 3.7 (Shifted measure) Ler
D,=(1-a)w-172-0c2 (3.16)

then for 0 < a < a* small enough, there exists a C' map a — Z, with

0Z
Za:O - 227 z > O
da
such that
Da(Za) = Os
—D,(Z)>0o0on 0<Z < Z,, (3.17)

limz_ Z%*(=D,) > 0.

Proof of Lemma 3.7 We recall the notations of the Emden transform:

x =logZ,
w=1,
F =0+ Ao,

_ 2722 AQ __ Ao _ 2(c+Ao)
(p—1)Q =uzZo”, 7—24—270—7,

(p— 1020 = (p— DVEES =247Z0% (1 + 22)
= ZMZZO'(O' + Ao),
Hy =3¢ 42972 = (1 — w),

_ App _ Hy AQ _ 2u(c+Ac)(1—w)
Hi=Hor =50 =G0

(3.18)
Step I Values of derivatives at P2. Let
A=w-—1)?%—-0%
Let the variables

w=w+ W, 0 =00+ Z,

5 Note that Dy, is directly connected to the highest (second) order term in 771. Indeed, we have

(p— 1032 — (1 —a)?H3Z%8% = > 76202 — (1 — a)* 1> (1 — w)? 705 = —u> 2> D403,
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then near P2:
W=c_%+ 0(Z?.
Let

c1 = wA1(P),
c = owAr(P2),

3.19
c3 = s A1 (P2), (3.19)
cs =I5 Mg (Pr) = —207.

Then, in our range of parameters,
c1 <0, cp<0, ¢c3<0, ¢4 <0, (3.20)
and we have
cC— +c4 = Ay,
ccy + C4+: A, (3.21)
ci|c C
which imply
cic—+c3=c_(cac—+cq4) =c_Iy
as well as
—l<c_o<0<cy, Ao <Ay <0, (3.22)
see Lemmas 2.8 and 2.9 in [43].
We compute
Al =ciW+c3Z + 0(W? 4+ 22) = (cie_ +c3)Z + 0(2?),
Ay =W 432 + O(W? 4+ £2) = (cae— +c4) T + O(Z?),
A=(0—-wy—W)?— (024 %) = (02— W)> = (02 + £)?
= 20 (c_ + DT + 0(T?)
This yields
dw __ Ay cic—+c3+0(2) _ e—||A4]
&= TN = T T t0 = Inare T (%), (3.23)
do _ _ Ay _ e 440X + +0(%) :
dx — A T T DDoa(I+c)+0(2) 20 (1+c) )
and hence
2,92 22 = 22 (P = —201 — up T (Py) — 20,2 ()
_ [ p— —_ — — WwH)— — 20> —
az Y T ax Ydx ? Ydx 7
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le—[|1A4] A4
202(1 +c-) 202(1 +c-)
[A+]
=—{—|c_
1_‘_C_( le—])
=|Aye] >0 (3.24)

Step 2 Computation of Z,. Let Do(Z) = A(Z), we have D((Z3) > 0 from
(3.24) and hence by the implicit function theorem applied to the function
F(a,Z) = D,(Z) at (a, Z) = (0, Z) where Dy(Z>) = 0, we infer for all a
small enough the existence of a locally unique solution Z, to

D.(Z,) = 0. (3.25)
Furthermore, Z, is C! in a neighborhood of ¢ = 0 and its derivative is given
by
0Z, 2Da(Z) 2073
3a =0\ Du(@) T Dy(Zy) 0
- Tz /[ a=0,2=2, 0
Thus
0Z, ,
5 >0, Z,> 7y for 0 <a<x1, D,(Z,;)>0. (3.26)
a |la=0

We now observe

Dy(Z) = (1 -a)(1 —w)+0)((1-a)(l —w) —o0)

so that D, (Z) is of the sign of (1 —a)(1 —w) — o sincew < 1 and o > 0.
Now from (3.23):

d PPN At
d_x((l -l —w) _0) = U-a e T im0
= L[l—(l—a)lc 1>0
205(1 +c2) B ’

Thus, (1 —a)(1 — w) — o is increasing on (0, Z,] and vanishes at Z = Z, so
that

D,(Z) <0 on(0, Z,).

Moreover, we have in view of the behavior of o and w as Z — 04, see
Lemma 3.1 in [43],

lim Z2(—D,(Z)) = lim Z%*¢*=1> 0.
Z~>0+ Z‘)O+
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This concludes the proof of (3.17). m|

3.5 Commuting with derivatives
We define
Ty = AFT, &) = AFo.

Lemma 3.8 (Commuting with derivatives) Let k € N. There exists a smooth
measure® g defined for Z € [0, Z,] such that the following holds. Let the
elliptic operator

2
W _
Lo =z (2471 22 D)sz )

then there holds

AFmx) = my ;’ik" + M X (3.27)
with
m b | —aHyADp —2ak(Hy + AHy) Dy + Ty
1T T | Ly®k— 2= a) o ATy — 2k(2 — a)(Hy + AH) Ty + As Ty,

where 77Zk satisfies the following pointwise bound

2k—1 )
> log@l,
_ —
|ka| Sk jzk 2k—1 (3.28)
D 105®1+ > 95T,
j=0 j=0

Moreover, g > 0in [0, Z,) and admits the asymptotics:

gZ)=1+ 0(Z% as Z — 0,

8(Z) =caari(Zy — Z)[1 + O(Z — Zy)] as Z 1 Za, (3.29)

with cq 4.r¢ > 0 and

cg >0 (3.30)

6 g is the density of the measure gZ d=147 with respect to which the operator L' is selfadjoint.
By a slight abuse of terminology, we call g a measure.
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for all k > ky large enough and 0 < a < a* small enough. Finally, note that
g and cq depend on k.

Proof This is a direct computation.
Step 1 Proof of (3.27), (3.28). We recall (C.1):

(A%, VI® —2kVV - VA @ = 3 Ckapd* VP,
|l +[BI=2k, |B]<2k—=2

which together with the commutator formulas

[AK, A1 =2kAK, [3z, Al =0z,
A% =Z2A —(d = 2)A, (3.31)
Iz =4 = ZA —(d -2

yields
AY(VA®D) = VAK(AD) +2kVV - VA I A
+ > Chapd®VIPAD.
la|+|B|=2k,|B|<2k—2
and

UVV - VAT AD = 2%d, Vi [AAk_1<D 2%k — 1)q>k_1]

=2kdzV [(ZA — (d —2)37)Pk—1 + 2(k — )z Py_1]
=2kAV® +2kQRk —2 —d +2)37,Vdz Dr_1

from which for0 < Z < Z,:
%-1
Ak(VAQD) =VQ2k+ APk +2kAVO; + Ok 4 Z |8éCI>|
j=0

We then use

[A%) A%] = AFAZ — AZAF = [AF, AJA + AARA — A(—[AF, A1+ AFA)
= 2kAXA + 2k AAF = 4k> AR + 4k A AF

to compute similarly:
AN (VA2D) = VAR (A2D) +2kVV - VA IA2D
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+ > Chapd®VOPAD
ol -+11=2k, | B| <2k —2
= V[A2®p + 4k> D + 4k A Dy
2k
+2k0zVaz A A2 + 0 | Y oL@l
j=0

and

0z A TN =07 [AP Dy + 4k — 12Dy + 4k — 1)AD; ]
2k )
= 07(Z°®1 — (d = DAD) + O | Y185 ®]
j=0
2k
= ZA®+ 0 | ) 13}®]
j=0

and hence
AN (VA?D) = VA% Dy + 4k D + 4k A D]
2k

+2UAVAD+ O [ Y 1959
j=0

Recalling the definition of the operator (3.15), we obtain (3.27), (3.28) with
—aHyA®y — 2ak(Hy + AHy) Dy + Ty

=|(p— DOADL — (1 —a)?HF N> Oy + Ay ADy — (2 — a) Ho ATy
—2k(2 —a)(Hy + AHy) Ty + ATy

Dy

My T

and

a ~
Ay = 2k(p — 1)27Q (1 — @)%k Hy [Hy + AHb] + A».

Step 2 Equation for the measure. We compute using (3.18), (3.16):
(p— DOQADL — (1 —a)*H; APy

d—1
= u*z%? (a%obk +— azq>k)

—p2(1 = w)*(1 — a)* (2% dx + Ady)
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= u2{=22D, 0%y + 2070 [(d — Do? — (1 —a)>(1 —w)?]}
and, using F = o + Ao,

Ay = 2k(p — 1>Z—Q (1 — a4k H [Hy + AHo] + As

=4kp* [oF — (1 —a)*(1 —w) + (1 —a)*(1 — w)(w + Aw)] + A,
and hence:
(p — DQAD, — (I —a)*H; A*®y + Ay AD;

= —u*7*D, 350 + AD; [MZ ((d—Do? =1 —a)*(1 — w)?)
+akp* [o F — (1 —a)*(1 —w) + (1 —a)*(1 — w)(w + Aw)] + A}].

We compute the measure

2

gzﬁaz (Zd_l Zzg(_Da)cD;{)

/
= 12 Z%(=Dy)02 Dy — > Ad; <(d +1)D, + %ZDa + ZD;>
and hence the relation:

/
iy ((d +1)D, + gEZDa n ZD;)

=u?(d—1Do? = (1 —w)?) +4kp* [0 F — (1 —a)*(1 — w)
+(1 = a)*(1 — w)(w + Aw)] + As.

Equivalently:

A
(=Dg)— =-¢ (3.32)

g

with
GC=—d—-1o?+ (1 —w?—(d+1)D, — AD,
+4k[(1 — a)*(1 —w) — o F — (1 —a)*(1 — w)(w + Aw)]
A

u*

(3.33)
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Step 3 Asymptotics of the measure. We now solve (3.32). Near the origin, the
normalization (2.17) and (3.18) yield

NS

nZzZ

o= [1+0(Z»], F=0+ Ao =0(2), —Ds=0>+0(1).

We compute

A, |F|
= =0(—+Aw|+]al) =0()
" o

and hence

G=—(d—1)0%—(d+1)(—0?) — A(~0?)
+0 (1 +|a|+o|F|+ |w|+ |[Aw])
=20F+ 0(1) = 0(1),

which, recalling (3.17), yields:

g o)

_ _ _ 2
(=Dg) o024+ 0() 0@

and we may therefore choose explicitly:

fZ[_ G ]di
g=el Ll ThalT

To compute the behavior near Z,, recall from (3.25) (3.26) that we have

D,(Z,) =0, D,(Z,) > 0.
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We infer in the neighborhood of Z = Z,

izg G  GZy) 1+0(Z-12Z,)
g  ZD, AD.(Z,) Z—27Z,
_( G(Z) 14+ 0(Z - Z,)
== (m + 0(|Cl|)) Z——Za. (334)

The fundamental computation is then at P2 using (3.23):

[(1I—w)—0(cd+Ac)— (1 —w)(w+ Aw)]
= (1 —w2)(I — w2 — Aw) — 02(02 + Ao)
=o0p(0p — Aw) —op(02 + Ao) = or(—Aw — Ao)

le— 1A+ ] A1 } Ay

=02 | —
|: 200(1+c-)  200(1 +c-)
Hence from (3.33)

= > 0.
2

G(Z2) =2k(|r4] + O(a)) + O(1)
and from (3.24)

G(Z2) 2k(Jr4]+ O(@) + O(1)

= >k
ADy(Z>) [

for 0 < a < a* small enough and k > k| large enough. Inserting this into
(3.34) yields (3.29). O

3.6 Hardy inequality and compactness

We let k > ki large enough so that (3.30) holds and extend the measure g
by zero for Z > Z,. We let x be a smooth cut off function supported strictly
inside the light cone |Z| < Z, with

g > — on Suppy.

| =

Let
Do = {® € C*([0, Z,], C) with spherical symmetry }

be the space of test functions and

(@, D)) = (L Pk, Pr)g +/Xq>$gzd—1dz (3.35)

@ Springer



F. Merle et al.

be a Hermitian scalar product, where we recall the notation (1.13). We let
He be the completion of D¢ for the norm associated to (3.35). We claim the
following compactness subcoercivity estimate:

Lemma 3.9 (Subcoercivity estimate) For 0 < v < 1:

A
(D, ‘D)>Z/mgzd ldz
a

+Z/|azd>(z)| Z)1 ———_—7%l4z.  (336)

Furthermore, there exists c > 0 and a sequence [, > 0 with lim,_, y 5o Un =
+o0 and I1,, € Ho, ¢, > 0 such that Vn > 0, VO € Hy,

D> 4
O, ) > — o7 dz
( >>_cfZ —¢

+un2/|azq>(2)| Z)1 —————74"laz

—Cn Z@, M);. (3.37)

Proof This is a classical Hardy and Sobolev based argument with a loss v. We
provide a proof for the reader’s convenience.

Step 1 Interior estimate. Let Zg < Z, which will be chosen close enough to
Z, in step 2. Then, we have

/ZO |<I)k|2 Zd 1dZ+Z/ |am®(z)|2;zd—ldz
0 Zg —Z z (Za_Z)l—v

=< CZO ” d ”H2k(0,Zo)

Zo Zo
< Cyz, UO |azq>k|zzd—1dz+/0 x|<1>(2)|22d—1dz].

Since —Z2D, and g are smooth and satisfy —72D, > 0and g > 0on|0, Zy],
we infer
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(D, D)) > ¢z /ZO ﬂgzd_ldz
0 0 Z _Z

+Z/ |07 ®(2)] #Zd_le}

for some cz, > 0. Thus, to prove (3.36), it remains to consider the region
(Zo, Z). This will be done in steps 2 and 3.

Step 2 Hardy inequality with loss. Let 0 < v < 1, we claim the lossy Hardy
bound for all ® € D:

Z/ |8Z<I>(Z)| & e — 7777 < ¢, (@, ). (3.38)

Indeed, let Zyp = Z, — 6 with § > 0 small enough, we estimate by Taylor
expansion for Zg < Z < Z, for0 <m < 2k:

2
02| dt)

2k ) 2 7
ol <c| Y e @) + (/
j=m “0
From Soboleyv,

2k
: 2
Y oo @] = Caloag p < Caoli@. @)
j=m
and hence

2
100D (Z)|* < Cz,((®, D)) + C (/Z

8ZAqu(t)| dr)
0
2

2k
+C /Z|a§q>|dr
j=1
4
< Cz,((®, <I>>>+C(/
Zo
(], &)
X —_—
Z() (Z _T)]_v

C Z—lajq)lz dzZ ZZ I=vg
* Z fz (Za — 2)1— (zo( « 0 T)
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V4

< Cy ((®, D)) + C8" / 1970 2(Zo —7)' e
Zo

zZ |8Jq)|2
+C$é Z (/;0 Wdt s

where we used the fact that 0 < v < 1 and Z, — Zp = 4. Using again
0 <v<landZ, — Zy =4, as well as Fubini and the fact that dzg < 0 on

(Zy, Z) for Zy close enough to Z, so that g is decreasing on (Zg, Z,), we
infer

8 -
Z/ |07 ®(2)] Wzd ldz

Za

v 8
= CZ()((q)’ @)+ Cé ~/Zo (Zy — Z)lfv

Z
x (/ 107Dk |>(Zy — r)”dr) 74 1lqz7
Z

0

2k Z, g z |an)|2
)y @7\l @0
Zy
< Cp (D, ®)) + ca”/ 19701 28 (2) (Za — )
Zy

Zq
X / d—Z 9 4z
¢ (Za—2Z)7V

Za o) ®|2g(r) dZ i
+C‘SZ/ (Za -0 (/ (za—zw)f ar

Z,
< Czy((®, ) + C3" / 192D g(2) (Za — ©)dr

Zo

Z J 2
“ |a @|“g(7) £4-1
Cé — dr.
* Z/zo Za—0)1 "

Letting § = §(v) small enough and estimating from (3.26)
— (Da)(Z) = c(Za — Z) (3.39)
yields (3.38).
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Step 3 Sharp Hardy. We now claim the sharp Hardy inequality for f € Dg:

Za 2
(@, D)) > / [Pl 97974z, (3.40)

Zo (Za - Z)
Indeed, recall (3.29), (3.30) near Z,:
8(Z2) =c(Zs — 2)¢ [1 + O(Z — Zo)],

then integrating by parts:

Za |y ]? d—1 Za 2 1
f ez laz 5[ B 2(Zy — )" dZ
Zo (Za - Z) Zo
1 2 co1Z 1 Za c
= ——[|Px|"(Zs — 2)*¢] ;0 + — 20407 Pp(Zy — 2)4dZ
Cg 0 g Uz

1
2
< 1Dk 2(Zo) + ( / |Dk1*(Zy — Z)Cg—lzd—le)

1

2
X (/ 107D *(Zg — Z)Cg“Zd_le>

1
Zoo o2 )
< (D, D —o7%7'dZ
~ >>+<[zo Za—2)"

1

2
X (/|azd>k|2g(—Da>zd—1dZ) ,

where we used (3.39). The bound (3.40) now follows using Holder. Together
with steps 1 and 2, this concludes the proof of (3.36).

Step 4 Compactness. We now turn to the proof of (3.37) which follows from
a standard compactness argument. Let us consider 7' € Lg. Then from (3.36),
the antilinear form

hi— (T, h)g

is continuous on Hg, and hence by Riesz Theorem, there exists a unique
L(T) € Hg such that

Vh € He, ((L(T),h)) = (T, h)g, (3.41)
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and the linear map L is bounded from Lé to He. Forany 0 < § < Z,, we
have in view of (3.36)

1—-v
Il <87 + 1kl 222z, -5)

1—v

(Za—2)7

2
Lls’

1—v
<87 Ihllegy + Il 22z, -5

Relying on the smallness of §'7" for the first term, and Rellich Theorem for
the second one, we easily infer that

He embeds compactly in L;. (3.42)
Since L is bounded from L§ to He, we infer that the map
.72 2
L:Lyw Ly

is compact. Moreover, if ®| = L(Ty), ®; = L(T?):

(L(T1), Th)g = (@1, T2)g = (T2, @1)g = ((LT2, @y1)) = ((P1, D2))

and hence interchanging the roles of 77, T»:

(T1, L(T2))g = (L(T2), T1)g = ({P2, P1)) = ((P1, P2)) = (L(T1), T2)g

and L is selfadjoint on L;. Since L > 0 from (3.41), we conclude that L
is a diagonalizable with a non increasing sequences of eigenvalues 1, > 0,
lim, 4 A, =0, and let (IT, ;) 1<i<7(»n) be an Lé orthonormal basis for the
eigenvalue 1,,. The eigenvalue equation implies I1, ; € He.

Let then

Ay = {cb € Ho, / 1012297 1dZ = 1,(0, ;1) =0, 1<i<I(j),

l<j=nj
and the minimization problem

I, = inf ((®, D)),
n cI)1;1%1(( )

@ Springer



On blow up for the energy super critical defocusing NLS

then the infimum is attained in view of (3.42) at ® € A, and, by a standard
Lagrange multiplier argument:

n 1))

VheHo, (@)=Y Y o i h)g+a(®, h),.
j=1i=1

Letting & = I1; ; implies «; ; = 0 and hence from (3.41):

1
L(®) = — @,

which together with our orthogonality conditions implies
1
— =< )\n—l—l
o

and hence

1

Iy = (@, @) = «((L(P), P)) = (P, P)g = = ;
n+1

(3.43)
Also, for Zy = Z, — § with § > 0 small enough, we estimate from (3.38)

2k 7
‘ 8 _ v
Z/ZO |8?<I>(Z)I2WZ‘1 147 < ¢,82 (@, D)).
m=0

On the other hand, from Rellich and an elementary compactness argument, for
all Z, > 0,8 >0,e >0,k > 1, there exists ¢z, 5,¢x > 0 such that

2k
Zf ond?z4az < e/ l0zAK®)2 729 1qz7
0 2<2,—8 Z<Z,—8

+cz, 5.ck f |@1*z9 " dz.
Z<Z,—8

Summing the two inequalities yields for all § > 0 small and € smaller still:

2k Za
Zf 9 (2)P 20z
= Jo (Za = 2)1~

Zy
< )85 ((®, BY) + Gz 54 f @229 dz.
0
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Together with (3.43), this implies for any ® satisfying the orthogonality con-
ditions (®,I1; ;)¢ =0, 1 <i <I(j), 1 <j <n,andforanyé >0

Z / D 247 < (e + 2kt ) (9, D),

which yields (3.37). |

3.7 Accretivity

We now turn to the proof of the accretivity of the operator 771.
Hilbert space. Recall (3.35). We define the space of test functions

CD()Z@(D X@cp,

and let Hy; be the completion of @ for the scalar product:

(X, X) = (D, &>>>+(Tk,fk)g+/XT?zd—1dz, (3.44)

which is a coercive Hermitian form from (3.36).
Unbounded operator. Following (3.15), we define the operator

nm — —aHy) A 1
T\ -1D0A -1 —a)H}N> + AhA + A3 —Q2—a)HaA + Ay
with domain
D) = {X € Hy, MX € Hy} (3.45)

equipped with the domain norm. We then pick suitable directions (X;)1<j<y €
Hj and consider the finite rank projection operator

N
= Z(., XX
i=1

The aim of this section is to prove the following accretivity property:

Proposition 3.10 (Maximal accretivity/dissipativity) Let

w, r>0.
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There exist k* > 1 and 0 < ¢*, a* < 1 such that forallk > k*, V0 < a < a*
small enough, there exist N = N (k, a) directions (X;)1<i<n € Hp such that
the modified unbounded operator

m=m--Aa
is dissipative:’
VX € D(M), R(—MX, X) > c*ak(X, X) (3.46)
and maximal:

VR >0, VF € Hy, 3X € D(MN) such that (=11 + R)X = F.(3.47)

Remark 3.11 We recall that maximal dissipative operators are closed.

Proof of Proposition 3.10 given R > R*(k) large enough, we define the space
of test functions

D= X = (@,1), X €CF0, 2D x CF 10, ZD}

m{x / (=M + R)X € CX([0, Z,]) x C=([0, za])}. (3.48)

In steps 1-3 below, we prove (3.46) for X € @Dg so that all integrations by
parts in steps 1-3 are justified, and all boundary terms at Z = Z, vanish due
to the vanishing of g at Z = Z,. In steps 4 and 5, for any smooth F on [0, Z,],
we show existence and uniqueness of a solution X € Hy; to (=11 +R)X = F
for R > R*(k) large enough. In step 6, we prove that Dg is dense in D (171).
In step 7, we conclude the proof of (3.46) and (3.47).

Step 1 Main integration by parts. Let X € @Dg for R > R*(k) large enough.
We aim at proving (3.46) and split the computation in two:

(X, X)1 = = (L @x, Da)g + (Tk T,
(X, X)3 = / X DD + f xTT.
In step 1, we consider the principal part. We compute from (3.27):
—IIMX, X)1 = RLAMX) 0, Pr)g — RAMX) T, T

-0 {f V [~aHy A®y — 2ak(Hy + AH) By + Ti + (M X) o]

7 Equivalently, —171 is accretive.
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V.72 (~D) 2 ugdz]|
-0 {/ [Le®k — (2 — a)Ho ATy — 2k(2 — a)(Hy + AH) Ty
+Ax T + (ﬁTkX)T] Tkgzd_ldz}

=% {/ V [—aH>Ady — 2ak(Hy + AHy)dy
+(ThX)0] - VO 22 (=D 74 gulaz]
—9% {/ [—(2 — @) Ho ATy — 2k(2 — a)(Hy + AH>) Ty
+Ax T + (ﬁTkX)T] Tkgzd_ldz} .

T terms. We use

([ )=t f o o)

to compute
—9N {/ [—(2—a)H2ATk]Tkgzd—1dz}
2—a Ag AH>
=" | I\ gH [d+ =+ —=
. /|k|g 2( + 2y HZ)
and hence

—% {/ [—(2 — a)Ha ATy — 2k(2 — a)(Hs + AH2) Ty + Asz]ﬁgZ"’le}

=Q2—a) / AsHy| Ty *gZz% 'dz

with

As = —rla 4 D8 ARy AR A2 (349
ST ¢ | H H, C—aH, =

@y terms. We first compute:

—N {f V [—2ak(H, + A Hy)®y] - VdeZZ(—Da)Zd_lgdZ}

= 2akf(H2 + AH) VD> Z%(=Dy) 2% gdz
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+2akh {/ OV (Hy + AH) -vT>kzz(—Da)zd‘gdz}
= 2ak /(Hz + AH) VD> Z%(=Dy) 24 ' gdz
—ak/ |k >V - (Z2(=Do)V(Hy + AH)g) 297 'dZ.
For the second term:

—9% {/ V[—aHyADy] - VCDkZz(—Da)Zd_lgdZ}

d

—___D,Z
= —a 07 (HyA D) Hy A Dy, 7 gdZ
2

D,Z% (3,D d 0;H, 3
=9/|H2Aq>k|2“—g z2Za & 0272 | 928 47
2 H> D, Z H; g

AD AH, A
-2 / 197 ®k |2 Ha @ g 224 28N poezizilaz.
2 D, H, 4

We have therefore obtained the formula:

X X0 = Q= a) [ AstlTePe + i
x/|V®k|2A6ZZ(—Da)Zd_1gdZ
~1lak [ 0PV - (22D (Hy + AHg) 20z
—u*h { f VM X)o -kaZz(—Da)Z“gdZ}
—% {f(%X)TTkgzd—‘dz} (3.50)

where we have defined

H (ADa AH, Ag)
> .

Ag =2k(Hy + AHp) — — +
D, H> 8

We now claim the following lower bounds on As, Ag: there exist universal
constants k* > 1,0 < ¢*,a* « 1 such thatforallk > k* and 0 < a < a*,

As = 5,
= Za 2 (3.51)
6= 7,-Z"

VO<Z <7,
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Proof of (3.51). Recall (3.32), (3.33):

Ag 1
8 (—=Da)

+4k[(1 —a)* (1 —w) — o F — (1 —a)*(1 — w)(w + Aw)| — =

{—(d—1)02+(1—w)2—(d+1)Da—ADa

B 4k
~ (=Dy)

|:(1—w)—JF—(l—w)(w—l—Aw)—i—O(a-i—%)]

and hence from (3.49):

As=—1|ag B8 AR 2k<1 A A2
5__2|:+g+H2i|+ +H2>_(2—a)H2
2k 1
= |:(1—w)—aF—(1—w)(w—|—Aw)+0( k)]

(l

+2'<( o))

[(1I—w)—0cF — (1 —w)(w+ Aw)

(_Da)

D | Aw 0 1
s (1= ) o (avg)

= (—zl];a) [(1I—w)—0cF — (1 —w)(w+ Aw)

A (1 Aw 0 1
+“>(‘ﬁtz>+ @*zﬂ~

We now compute for Z < Z»

Aw
(1—w)—oF—(l—w)(w+Aw)+(—A)<l—m)
2 I —w—Aw
=l-w({d—-—w—-Aw)—0cF + (6" — (1 —w)) —
o2(l —w — Aw) o? [ 1—w ]
1 —w 1 —w o

> co?
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from the fundamental coercivity bound (2.21), and hence for Z < Z, and
a < a* small enough:

kco? kc*
As > >
(_Da) Za -7

for some ¢* independent of k, a. Similarly:

A_2kH2 1+AH2+0 1
6= T, H> k

(—Da)—i-(l—w)—o*F—(l—w)(w-i—Aw)-i—O(a-i—l)}

k
:W[a_w)—af”—(l—wﬂw““”
(- (—m) (“ §>
kc*
>
_Za_Z

arguing as above. This concludes the proof of (3.51).
Step 2 No derivatives term. We compute

—RMX, X)3 = —R {/ x(MX)e @2 dz
+/X(mX)TTzd—1dz}
=N {/ x [—aHyAD + T]Ez‘“dz}

—9% {/ X [(p —1DQA® — (1 —a)’HiA*® + AyAD
+A3d — 2 —a)H,AT + AT T}
=0 (f(x +1AxD (191> + 197

+9Z®1> +|T%)).
(3.52)
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Step 3 Accretivity in %g. We compute from (3.52), (3.50):

NN, X) = =R, X)) — RN, X)3
=Q2-a) / AsHy|Ti|*g + 1*a / VO [2A6Z*(—=Dy) 29 gdZ

—,uzak/ |k *V - (Z2(—=Da)V(Ha + AHa)g) 297 'dZ
2 h Y, 72 d—1

—1 9%{/V(ka)q> V&, Z2(-D))Z gdZ}

—R {/(%X)Tﬁgzd—ldz}

+0 </(x + 1AxD (1917 + 10291 + |07®1” + |T|2)).
We lower bound from (3.51) and the fact that H> = 1:

(2 —a) f AsHy|Ti|*g + 1*a / VO, [?A6Z*(—Dy) 24 g dz

| Tx |? »Z*2(=Da)\  a
> c*ak Vo, | —— V4 dZ|.
—Ca[/(za—z+| k| Zz.—7 )¢

The smoothness and boundedness of the profile together with (3.32), (3.33)
ensure that

Z*(~Da)g _

V- [Z2(D)VH + A)g]| = Oy — <

Crg
and in view of (3.28),

'— N {/ VI X)o -sz(—Da)zdlgdz}

- { f (%X)Tﬁgzd‘le}

1
2

1 2k
2 .
< Cy </|VCDk|2Z2(—Da)gZd_1dZ) § /|a§cp|2gzd—1dz
Jj=0
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1
2k—1 2

1
2
+Cx (/|Tk|2gzd—‘d2) §jf|aJT| gz ldz

2k )
Z/ 95,0 %g 29 1dz
Jj=0

The collection of above bounds yields:

T 2
™ ZgZd_le

a

Z%(=Dy)
Vo, P2 Y ozd" 1 g7
+f| kl z,—z ¢

—R(MX, X) > c*ak [/

2k—1

2/|afq>| 97947 + Z/Wﬂ ¢z laz

We conclude using (3.37) with N = N (a, k) large enough and its analogue
for T':

“R(MX, X) > c*ak(X, X) — ukz<(<bl'l)+(TiT))
i=1

Therefore,

N
WM — DX, X) = c*ak(X, X) + > (X, Xi1)> + (X, X;2)*
i=1

~Cak [ @, D2+ (1. T1)2]).
The linear from

= (P, T) = Ca (P, I1j)g

from (Hyy, (-)) into C is continuous from Cauchy—Schwarz and (3.36), and
hence by Riesz theorem, there exists X; € Hyy such that

and similarly for 7;, and (3.46) follows for X € Dg.
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Step 4 ODE formulation of maximality. Our goal, in steps 46, is to prove that
for all R > O large enough,

VF € C*([0, Z,]), I'X € Hy; suchthat (=111 + R)X = F.(3.53)
(3.53) corresponds to solving

—[—aHA]® —T + RO = Fo,
— {[(p —1)QA — (1 —a)*H2A% + As A + A3] @
—(2 —a)HoAT + A>T} + RT = Fr.

Solving for 7T':
T = (aHyA + R)® — Fo, (3.54)
we look for d—solution to the second order elliptic equation:
[(p ~DOA — (1 —a)*HF A* + AsA + A3] @

[ @ —a)HoA + Az] [aHyAD + RD — Fg
— _Fy + R(aH)A® + RD — Fy)

ie.

(p—1)QAD — HIA2® + AD [Az +aH>Ay — 2R H;
~a2 — a)HyAH>] + (A3 + RA> — RH) D
— _Fr — RFg + [ —Q—a)HA + Az]Fcp.

Now, we have

(p—1)OAD — HIA?® = ((p — 1o - H§z2)3§q>

N ((d -D(p-DHQO H222> 3,
Z
and hence
((p-Do-H7?)oi0+ {(d - 1)(Zp —DC 2y

+Z [Az +aH>Ay —2RHy — a(2 — a)HzAHz] }azcb
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+(A3 + RA> — RH®
— —Fy — RFg + [ — Q2 —a)HA + AZ]FQD.

Since (p — 1)Q = u?Z%c?, we have

d-Dlp-DQO

— H?Z
Z 2

((p ~ 1o - ngz)agob + {
+Z [Az Y aH>As —2RH> —a(2 — a)HgAHz] }azcb

- (,ﬂaz . H22>223§q> + {(d — Dp2Zo? — H2Z
47 [Az Y aHyAy —2RHy —a(2 — a)HzAHz} }ach

|
———0 (zd”w(u%z - sz) Zzasz>
T

with
SCACAN —H )Z
( w + zZ ) <,u “ 2
—|—22<M202 - sz) n <2,u20820 - 2H282H2)22
=(d - u*Ze* - H}Z
1z [Az +aHyAr —2RHy —a(2 — a)HzAHz] ,
i.e.

dyw 2 2ulcdzo —2H,07H,
@ z n20? — H?
2RH, — (d —2)H} — Ay — aHyAy +a(2 — a) Hy A Hy

(;1,202 — H22> Z

Recalling H> = u(1 — w) yields

Izw 2 dzlo? — (1 —w)?]
o Z o2 — (1 —w)?
@R—(d—z)(l—w)z—%—a(l—w)%—a(z—a)(l—w)Aw

Z(aZ —a- w)2)
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We therefore define

o—F-(2)
for 0<Z <2,
2072 — (1 — 02 =4 =42
w2 =7 Sl (3.55)
for Z > Z».
7202 — (1—w)?) ?
where®
z 2R @A —w? -4 _a(l —w)A2 —a@ —a)(l — w)Aw
F_(2) :/ ® & K dZ +C_,
3 Z/(a2 — - w?)
z AEWR _(d—2)(1 —w)? - & w2 a2 -a)1-wAw
Fi(Z) = / ! L ! dZ' +C,.
22, Z’(UZ —1- w)2>
In view of the above, we have obtained the elliptic equation:
iz (Zd_lw(o*z - w)Z)ZZaZcb)
+-L5(R* — A2R — A3)® = H, (3.56)

H=11Fr+ RFo + [@ - a)HaA — Ao Fo,

with T recovered by (3.54). As Z — Z», we have from (3.24):

A(Z) = '%'(z — Z0)+ 0((Z — Z)*)
and hence
Zo® — (1 —w)®) = A [(Za — 2) [1 + O(Z — Z2)]
and hence

@R—(d—ﬁ(l—w)z—%—a(l—w)%—a(z_a)(l_w)Aw
Z<02 —(1— w)2>
_ arR+ 0 (%)
(Zo—2)[1+0(Z - Z0)]

8 The choice of the lower limits % and 27 in the definition of F4 is arbitrary but dictate the
choice of the constants C+ in such a way as to ensure thatlimz4 z, F—(Z2) —limz z, F+(Z) =
0. The additional degree of freedom in the choice of C+ is used to fix an overall normalization
of w.
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Since the profile passes through P2 in a C* way, we obtain the development
of the measure at P2: forany M > 1,

M
w(2) =22 - Z|™ |:1 + Z dom r(Zy — Z)" + OM(|22 _ Z|M+1)} ,

m=0
(3.57)
where
207 1 "
Cowr = Rl14+0|[— >c*R >0 (3.58)
jay R

for R > R* large enough. Note that the above choice of C is made to fix the
normalization constant in front of |Zy — Z|°® to be equal to 1.

Step 5 Solving (3.56). We analyze the singularity of (3.56) at P2 using a
change of variables.

0<Z < Z. Welet

V4 dz'
®(Z) = W(Y), Y =h(Z), h(Z):/

2 729 w702 — (1 —w)?)’

which maps (3.56) onto:

" (3.59)

—32W + #(R2 — AR — A Z¥%m 202 — (1 —w)H )V = H
H=7"%20c% - (1 —w))H.

From (3.57),

Z
Y:h(Z):/Z dz

2 27 w2 (0% — (1 — w)?)

/Z dz
2 2012A (22 = D(Za = 0 [+ X dounr(Z2 = 2" + Oy (172 = 211+1)]

- “hitran (3.60)
R

where from (3.58) constant C > 0 is independent of R and, choosing M =

VR,

VR
M@ =Y domi(Zo = 2"+ 0(Z2 - 2VF) (6D

m=1
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with similar estimates for derivatives. Hence the potential term in (3.59) can
be expanded in Y and estimated as ¥ — +oo for R large enough:

1
— (R* = AR — A Z¥ w2 (0% — (1 — w)?)

1
YHCR Z et (—m ( ﬁ+1>> (3.62)

for some universal constants d;,

C C+0 ! 0 ! < !

= — s < — — —
R R R ew O R
where C > 0 is independent of R. Therefore, by an elementary fixed point
argument, (3.59) with H = 0 admits a basis of solutions ¥, and ¥, with the
following behavior as ¥ — +o00

VR ¢ 1
1 _1+Zj IY;CR O(Y(«/EH)CR)
- VR ¢j2 1
IIJZ - Y|:1+ZJ:1 YjCR +0 (M—+qu>]

with similar estimates for derivatives. The sequences (c; 1) j=1,2 are uniquely
determined inductively from (3.59) with H = 0 using the expansion of the
potential (3.62).

Zr < Z < Z,. To the right of P2, we let

(3.63)

V4 dZ B
@) =), ¥ =h@). w2 = | + e,

27, 297w 22(02 — (1 — w)?)

which sends” Y — 400 as Z | Z,. We construct a similar basis of homoge-
nous solutions 1Ifl+ and \If2+ as Y — 400 with asymptotics given by

1
+ _
qjl =1+ Z YJCR <Y(1+~/E)CR) ’

R Cio 1
vi=v|1 J> -
2 +.2;YJCR +O<Y(l+«/R)CR>
J:

9 We add constant C, to match the asymptotic expansion of Y in terms of (Z; — Z). In
principle, it is unnecessary as it influences the terms of order R and higher while we only need
the universality of the expansion up to the order +/R.

@ Springer



On blow up for the energy super critical defocusing NLS

with the sequences c; 1, ¢; > the same as in (3.63).

Basis of fundamental solutions. The function ®1(Z) = W, (Y) for Z < Z;
and ®(Z) = \I/1+(Y) for Z > Z,,obtained by gluing \IJ?E(Y) belongs to
(?*/E([O, Z,4]) and is a solution to the homogeneous Eq. (3.59). Let now
®;9(Z) be the radial solution to the homogeneous problem associated to
(3.56) with ®,,3(0) = 1. Then the wronskian is given by

Wo

ZEEnd O T Z2d Ty 22(02 — (1 — w)?)

where W) is a constant. We claim Wy # 0. Indeed, otherwise ®,q is propor-

tionate to ®; and hence is C VR on [0, Z,]. In particular, if Ti,q is given by
(3.54) with Fp = 0, then X;aqg = (Prad, Trad) satisfies

(=M + R)X1aa =0o0n (0, Z,).

Since X,44 18 C‘/E_l[[O, Z»]), we may apply the analysis in steps 1-4 for
R > R*(k) large enough and (3.46) holds for X4, i.e.

0= %((—m + R)Xrud’ Xrad)
= MW(—M + D) Xrad, Xraa) — WMAX rads Xraa) + RIIdeII]%hk

> R Xraallfy,, — (AXrad: Xraa)

so that for R > R*(k) sufficiently large

> 1 Xradllfg, <0

and hence X,,45 = 0 a contradiction. This concludes the proof of Wy £ 0.
Inner solution of the inhomogeneous problem. (®raq, 1) is then a basis for the
homogeneous problem corresponding to (3 56). As a consequence, the only

solution to (3.56) whichis 0((Z, — Z) ‘R) at Z = Z; is given bylo

—dr.

Zs
O(Z) = —,(2) O H(r)Cbrad(r) (Drad(z)/ H(t)® (1)

WGk W(z)

_ L
10 Note that D,0d(Z2) ~ (Zy—Z) °R as Z — Z inview of the behavior of Wy as Y — +o0.
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For a smooth H, ® is smooth on [0, Z>) and we study its regularity at Z,. In
Y variables we obtain for some Y large enough:

Y
V) =ena ¥ (D =) | H@W; (e
0

+o0
—W5 (Y) H(t)¥[ (t)dr. (3.64)
Y

We have from (3.57), (3.60):

VR

(RY)°F = > Bu(Za = 2)" + 0122 — Z|VEY |
m=0

Zr— 7

and hence

i 1
Ir — 7 = m Ol ——
2 i <y<ﬁ+1m>

with similar estimates for derivatives. In particular, a smooth function H (Z)
yields expansion for H (Z):

vR
A= (2 2)7% [ Y ha(Zo = 2" + 0((Z2 = 2)/7)

m=0
v R q 1
m
= ——t 0| — ).
mX::] y2+mer + (Y2+(«/R+1)CR)

Conversely, an expansion of the form

VR 1
€= 2_% e +0<Yﬁcze>

definesa CVE function G(Z) at Z = Z;. Plugging in the asymptotic expansion
for W,", ¥, and H in (3.64) yields
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VR

Cm,1 1
\I’(Y) = CYy,H 2;) ymer +0 (m>
m=
_ g Cmal _|_ 0 ;
— Ymcr Y(\/E-FI)CR
v (YR .
m
% — 4+ O
/Yo mXZE) TR (Y(f+l)LR)
VR a;
J
X ;f1+ch +0< 1+(f+1)cze) ar
j:
B YR Cm,2 Y + 0
— ymer Y(\F-H)LR
Z TMCR + 0 (f+1)CR
Y m=0 T
E
J
X e T 9 (T2+(f+1)cR) dr

j=1
1

- m=0 ymer YﬁcR ‘

We therefore have proved that for H € C*°([0, Z»]), there exists a unique
1
solution ® to (3.56) on [0, Z>] which is 0((Zy — Z) °r) at Z = Z,. Fur-

thermore, this solution is smooth on [0, Z5), and is C‘/E at Z = Z, where it
admits an asymptotic expansion

VR-1
®(2Z)= Y cjo(Za—2) + 0((22 - Z)‘/E). (3.65)
j=0

Outer solution of the inhomogeneous problem We argue similarly, consider-
ing the basis ®1(Z) and d>+d(Z) with CD i Za) = 1, for 2, < Z < Z,
and construct & solution to (3.56) on [Z>, Z,] which is smooth on (Z», Z,],

_ b
0((Zy — Z) °r)at Z = Z, and Cﬁ at Z = Z,. Furthermore, ® admits at
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Z = Z the following asymptotic expansion analogous to (3.65)

VR-1 .
2= Y Gz -2 +0(Z - 2)VF).

j=0

The asymptotic expansion is uniquely determined from the Eq. (3.56) and the

first coefficient ¢p, 4. We now recall that the function @ belongs to Gﬁ[O, Zal
and ®1(Z,) = 1. By adding @, to the above expansion, we obtain another
solution in which we can force the condition

Co,® = €0,d

with cp ¢ appearing in (3.65). As a result, the asymptotic expansions of the
inner and outer solutions are matched to order \/E, so that the constructed
solution is CVR at Z». Finally, we have shown that given any smooth function
H on [0, Z,], there exists a unique solution ® to (3.56) on [0, Z,] which is
0((Zy — Z)fi) at Z = Z,. Furthermore, this solution is smooth for Z # Z»
and CVR at 7 = Z». In particular, with T recovered by (3.54) and smooth for
Z # Zp and C*FR—1 at Z = Z,, we have that (&, T) e1 Hyy for R > R(k)
large enough. Also, since (®, T) with ® ~ (Z, — Z) °k near Z = Z; does
not belong to Hy,'! we have now proved that, in fact, there exists a unique
solution X = (®, T) to (=111 + R)X = F on [0, Z,] in Hj;, which concludes
the proof of (3.53).

Step 6 Density of Dg. We now prove that g given by (3.48) is dense in
D(1). Indeed, if X € D(1), then X € Hy; and 171X € Hy; so that there
exists a sequence (Yy,),en € C®([0, Z,], C?) with

lim Y, — (=11 + R)X in Hy.

n——+00

From step 5, for each integer n, there exist a unique Z, € @Dpg solution to
(_m +R)Z, =Yy, Z, € Hy,
and hence

(=M + R)Zy, — (=M + R)X in Hyy.

T Recall that (cg) ™! > R > 1.
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Thus, to conclude, it remains to check that Z, converges to X in Hyy. To this
end, since Z, € D, (3.46) holds for Z,, — Z, and thus:

Ny — Yy, Zn — Zg) = W=+ R)(Zy — Zy), Zn — Zy)
= W(=M + A)(Zn — Zg). Zn — Zg) — WA(Zy — Zg). Zn — Zg)
+R1Zy — Z4 Iy,
> R\ Zn — Zglly,, — NA(Zn — Zg). Zn — Zg)

so that, since A is a bounded operator, we infer for R sufficiently large

EHZH - Zq”sz =< ||Yl’l - Yq”sz-

In view of the convergence of (Y},) in Hyi, we deduce that Z, is a Cauchy
sequence in Hy; and hence converges, i.e.

lim Z, — ZinHy, Z e Hy.

n——+00
Since (—1711 + R)Z, converges to (—1711 + R) X in Hy;, we infer
(=M +RY(Z—-X)=0inD'(0,Z,), Z— X € Hy.

The uniqueness statement in (3.53) applied for F = 0 yields Z = X. Thus
Z, — Xand (—=1M+R)Z,, — (—N1+ R)X in Hy. Finally, we have obtained
a sequence Z, € Dpg such that Z, — X in D(111), and hence D, is dense in
D (1) as claimed.

Step 7 Maximal accretivity. We have proved in steps 1 to 3 that (3.46) holds
for X € Dy, ie.

VX € Dg, R((—M+ DX, X) > c*ak(X, X).
Since Dp is dense in D(111), in view of step 6, we have
VX € DM, R((—M + )X, X) > c*ak(X, X),

which concludes the proof of the accretivity property (3.46).
We now claim:

VF € Hy,, 3X € D(11) suchthat (=711 + R)X = F. (3.66)
Indeed, since F € Hyy, by density, there exists

lim F, > FinHy, F, € C*®([0,Z,)).

n—-+00
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Since F;,, € C*°([0, Z,]), by (3.53), there exists X,;, € Hpr—solution to
(=M + R)X, = F,.

Using (3.46) and arguing as in step 6, we have for R sufficiently large
R
EHXVL - Xq”]HIZk = ”Fn - Fq”sz'

In view of the convergence of (F}) in Hyi, we deduce that X,, is a Cauchy
sequence in Hy; and hence converges, i.e.

lim X, —> XinHyy, X e Hy.

n——+00
On the other hand, since (=111 + R)X,, = F,, converges to F in Hy;, we infer
(=M +RX=F, XeDb(,

which concludes the proof of (3.66).
Finally, (3.46) and a classical and elementary argumen
maximality property (3.47) is implied by

t!2 ensures that the

3R >0, VF € Hy, 3X € D(M) suchthat (=171 + R)X = F.

Indeed, let R > 0 large enough and F € Hyy. Since A is a bounded operator,
for R large enough, from (3.66) and (3.46),

R(F, X) = RN(—M + R)X, X) = R(~TTl — A+ R)X, X) >

R
Xl

Therefore, for any F € Hyy, solution X to (3.66) is unique. Therefore,

(=M + R)~ ! is well defined on Hy; with the bound

1

11+ R) s ) S -

Hence
~M+R=-M+A+R=(-M+R)[ld+ (-M+ R)~'A]

is invertible on Hy; for R large enough, which yields (3.47). This concludes
the proof of Proposition 3.10. |

12 More precisely, one can easily prove that the set of R in (0, +00) such that a solution X
exists is both closed and open. Hence, it suffices to prove that it is non empty.
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4 Set up and the bootstrap

In this section we describe a set of smooth well localized initial data which
lead to the conclusions of Theorem 1.1. The heart of the proof is a bootstrap
argument coupled to the classical Brouwer topological argument of Lemma
3.5 to avoid finitely many unstable directions of the corresponding linear flow.
Since our analysis relies essentially on the phase-modulus decomposition of
solutions of the Schrédinger equation, our chosen data needs to give rise to
nowhere vanishing solutions to (1.1) (at least for a sufficiently small time as
in Proposition 4.1 of [9]).

4.1 Renormalized variables

Letu(z, x) € C([0, Ty), ﬂkonk) be a solution to (1.1) such that u(z, x) does
not vanish at any (¢, x) € [0, T,) X R4, This will be a consequence of our
choice of initial data and suitable bootstrap assumptions. We introduce for
such a solution the decomposition of Lemma 2.1

1 i i\pTOt
ut,x) = ———w(r, y)e'’, w(r,y) = pror(t, Z)e' >
(Ab)r=T

4.1

with the renormalized space and times

Z=y\/B=Z*x, Z*:el"f’
MD)y=eT2, b(D) =€, yr=—1=—¢7, 4.2)
T = —log(Tx — 1), 10 = —log(Ty).

Here, 0 < ¢ < 1 is the fixed front speed such that

2
1—e

> 2.

r =

Up to a constant the phase can more explicitly be written in the form

1
= ——. 43
y (D) 7 (4.3)
Our claim is that given
7o = —log(T%)

large enough, we can construct a finite co-dimensional manifold of smooth
well localized initial data ug such that the corresponding solution to the renor-
malized flow (2.23) is global in renormalized time t € [tg, +00), bounded in a
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suitable topology and nowhere vanishing. Upon unfolding (4.1), this produces
a solution to (1.1) blowing up at T in the regime described by Theorem 1.1.

4.2 Stabilization and regularization of the profile outside the singularity

The spherically symmetric profile solution (pp, Wp) has an intrinsic slow
decay as Z — 400

cp 1
zZr T

which needs to be regularized in order to produce finite energy non vanishing
initial data.

1. Stabilization of the profile. Recall the asymptotics (2.20) and the choice of
parameters (4.3), (4.2) which yield

2 _l—e
" /’L_ 2 .

)\Z(r—Z) — br’ F =

For Z = ‘/Tgx > 1, i.e., outside the singularity:
v

upt,x) = ——pp(2)e'
(Ab) 7T

cPe_ﬁ [ b(*{zx)rzl 1
(1+o(z))

i (45)

= %e%?ﬁz[”o(%)] [1 +0 (zi)] . (4.4)

We see that far away from the singularity the profile up is stationary. It is
precisely this property that will allow us to dampen the tail of the profile
below and construct solutions arising from rapidly decaying (in particular,
finite energy) initial data.

2. Dampening of the tail. We dampen the tail outside the singularity x > 1,
i.e., Z > Z* as follows. Let

Rp(t,x) = ;zpp(Z), x = Ze M7, 4.5)
(A/b) T
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then the asympotics (4.4) imply the existence of a limiting profile for x > 1:

c —ur
Rp(1,x) = — (1 + 0(e7T))

x r-1

We then pick once and for all a large integer np > 1 and define a smooth non
decreasing connection K (x)

H(x) = 0 for |x| <35, 46
(= |np - 22D for x| = 10 (46)

for some large enough universal constant
np=np(d) > 1.
We then define the dampened tail profile in original variables

X C7((x’)dx/
Rp(t,x) = Rp(t,x)e 70
Rp(t, x) for |x| <5,
FE[1+ 0 (e7#™)] for |x| =10

x"P

4.7)

and hence in renormalized variables:

pp(t, Z) = ()\\/E)%RD(I, x), (4.8)

X =%, Z*=el".

NN

Let

X U((X/)dx/
’

() =e oy
we have the equivalent representation:

pp(Z) = (/BT Rp (1, x) = (/D)7 T Rp (1, )¢ (x)
Z
—¢ (Z—> pp(2) (4.9)

Note that by construction for j € N*:

. . J
CZiofop |~ (EER) 40 () for Z =527,

D (—1)i~Inl, + 0 <<Zl>,> for Z > 10Z*

(4.10)
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and

Z/9jpp
PD

<1

LOO
The obtained dampened profile for Z > Z* will be denoted

-1
(pp. ¥p), Op=pph .

4.3 Initial data

We now describe explicitly an open set of initial data which will be considered
as perturbations of the profile (op, Wp) in a suitable topology. The conclusions
of Theorem 1.1 will hold for a finite co-dimension set of such data.

We pick universal constants 0 < a < 1, Zg > 1 which will be adjusted
along the proof and depend only on (d, £). We define two levels of regularity

d
5 < ko < ki,

where k,, denotes the maximum level of regularity required for the solution
and kg is the level of regularity required for the linear spectral theory on the
compact set [0, Z,].

0. Variables and notations for derivatives. We define the variables

PTot = PP + P = pp + P,
Yot = Wp + V, 4.11)
D = ppV¥,

and specify the datain the (p, W) variables. We will use the following notations
for derivatives. Given k € N, we note

=@k, ... 08, B =aky

the vector of k-th derivatives in each direction. The notation 85 f is the k-th
radial derivative. We let

o= AFp, Wy = Afw
Given a multiindex « = («1, ..., og) € N¥, we note
3 =90y, lal=ar 4+ ag.
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1. Initializing the Brouwer argument. We define the variables adapted to the
spectral analysis according to (3.8), (3.12):

® = ppV, T
T =0,®+athAd, ~ = |o (4.12)

and recall the scalar product (3.44). For 0 < ¢g,a < 1 small enough, we
choose kyp > 1 such that Proposition 3.10 applies in the Hilbert space Ho,
with the spectral gap
VX € D(M), R((=N+ D)X, X) > cg(X, X). (4.13)
Hence
M=N—-A+cg) —cg+ A

and we may apply Lemma 3.4:

Ag={reC, RHA) =>0}N{r is an eigenvalue of 771}
= (Ai1<i<n (4.14)
is a finite set corresponding to unstable eigenvalues, V is an associated (unsta-

ble) finite dimensional invariant set, U is the complementary (stable) invariant
set

Hyo = UEPV (4.15)
and PP is the associated projection on V. We denote by 71 the nilpotent part of
the matrix, which consists of a finite collection of Jordan blocks, representing
M on V:

M|y = N + diag. (4.16)

Note that 71 commutes with /71|y . Then there exist C, §; > 0 such that (3.5)
holds:

f _%
VX €U, (e Xy, < Ce 27X |Hy,. VT = 0.

We now choose the data at 7o such that (its restriction to [0, Z,], where the
projection P and the space Hyy, are defined, satisfies)

_lg _ 3%
I —P)X @)l <e 20 [PX(w0)lz,, < 5 .

@ Springer



F. Merle et al.

2. Bounds on local low Sobolev norms. Let 0 < m < 2k and

20—1) 8
vy = _=D + £, (4.17)
p—1 2p

let the weight function

1 Z 1 for Z <2,
Xvoum = (Z)de(r71)+2(vofM)§ (ﬁ) ¢(2) = ‘0 for 7z >3, 4198

Then

2k
>~ [0 = DO 0 1 + 198" SO sy < € .(4.19)
m=0

4. Pointwise assumptions. We assume the following interior pointwise bounds

VO <k <k, +1,

ZVkok 5(1
$2)79zp(0) +IZ) 2 W ()| e (z<27)
PD L>(Z<Z%)
et (4.20)

for some small enough universal constant cg, and the exterior bounds:
YO <k <k, +1,
ZM1 95 (o)
PD

N 1 ZEH Y95 W (1) | oo (25 74
bo

L®(Z>7%)
< bSP 4.21)

for some large enough universal Cy(d, r, p). Note in particular that (4.20),
(4.21) ensure for 0 < by < b < 1 small enough:

<% k1 (4.22)

H p(0)
LOO

PD

and hence the data does not vanish.
5. Global rough bound for large Sobolev norms. We consider the global
Sobolev norm
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15, Iz,
ki ~ -2 ~
> / b2IVa“51> + (p — Dpp 1ot P)* + piy [ VI W2
T 2(km—J) ’
J=0la|=j (2)
(4.23)
then we require:
- 1
15(z0), ¥ () lk,, < 5- (4.24)

The bound above is actually implied by the pointwise assumptions.
Remark 4.1 Note that we may without loss of generality assume ug €
4.4 Bootstrap bounds

We make the following bootstrap assumptions on the maximal interval [z, T*).
0. Nonvanishing and hydrodynamical variables. From standard Cauchy theory
and the smoothness of the nonlinearity since p € 2N* + 1, the smooth data
ug € ﬂkonk generates a unique local solution u € C([0, T,), ﬂkonk) with
the blow up criterion

T. < +00 = lim lu(t, )l e = +00 (4.25)
t—Tx

for some large enough k.(d, p). To ensure non vanishing, we first note
that since inf|y|<io [uo(x)] > 0, the continuity of u in time ensures
inf|y<10 [u(t, x)| > 0 fort € [0, Ty], T > 0 small enough. For |x| > 10, we
estimate from the flow

t
|I’"P|u(t,X)|_rnP|M0|| S/ FhnP |Au—u|u|p_1|dz
0

and hence from our choice of initial data, the non vanishing of u(z, x) follows
on a time interval where

T* Hrnp(lAul + |u|p)||Loo([0’T*),|x|210) = ) (426)

for some sufficiently small universal constant 0 < § < 1. Using spherical
symmetry we can replace the above by
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_d
T*(IIOCY”’Jrl 27 Aull oo, 1 1)

np—l-]—%—

2¢, 1p—1
Hlr el Lo o,7,), 1xjz10) 1) “Ull oo, rem) <8

for an arbitrarily small € > 0. Our initial data u( belongs to the space
d d
M=o HS O 1) 1727 u 2 01 )" P 2727 A 2.

Existence of the desired time interval [0, T%) now follows from a local well-
posedness for NLS in weighted Sobolev spaces which is (essentially) in [27].

We may therefore introduce the hydrodynamical variables (4.1) on such
a small enough time interval and will bootstrap the smallness bound which
ensures non vanishing:

0
PTot || L,

<4 (4.27)

for some sufficiently small 0 < § = 8 (k) < 1.
1. Global weighted Sobolev norms. Pick a small enough universal constant
0 <V < V*(ky) < 1, we define

p=p— 2=

p—1
oy = %1 —(r—1), (4.28)
mog=-2+1

and let the continuous function:

o, —m for 0 <m < my,
—a(ky, —m) for mo <m <k,

with the continuity requirement at mq:

_ 4 1
alhy —mo) =mo—oy, a =07 2L 0(—=). «30)
kpm—mg 5

In particular, « < 1. We note that for all 1 < m < ky,
om—1)>oc(m)—a. (4.31)
We also define the function

np — 2<’ D — (r—2)+2p for 0 <k < Zn 41,

o (k) = 2%
Bk —k) for =% +1 <k < kpn,
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fnP_M_(r_sz,;, (4.32)
p—1

where 8 is computed through the continuity requirement at ZkT’”:

ko
3

2 —1) i np—%—(r—zwrza
- —r—2)+2i & p=3 .
1 km

B=np

We will choose np < k;,,e.g.np = ]§—’8, so that in particular,

B < 1—10, a+p<1.
We also note that

o(m—1)<o@m)+B.
We then define the weighted Sobolev norm:

165 Wlin oy = 2o K )
[B2IVE02 + (p = Do o139 + o3, VW] | @33

I z
Xm ko) (Z) = rirremy €m (75) -

where the function

1 for x <1
S (%) = x200m  for x > 1
We assume the bootstrap bound:
15 W2 gy <1 0<m <ky — 1. (4.34)

Remark 4.2 (Equivalence of norms) It is easy to see that the norm (4.33) is
equivalent

m
TRTHE 3y / Kok )

k=0 |a|=k

[2IVV312 + IV + 0B IV VW] (435)
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and for even m

%
IRTFARNED DY Paps
k=0
~ —1, ~
(21952 + o 1o + o3IV W?]. @36

Letus briefly sketch the proof. First, we note that the weight function y,, k.- can
be replaced by a smooth function ¥, x » with similar properties. In particular,

)zm,k,a

4.37
) (4.37)

|Va)2m,k,a } = Co{,m’k’g

The functions p% Xm k.o and pg_l Xm. k.o also obey the property above. We
now consider the case m = 2, let ¥ be a weight function obeying (4.37) and
observe that

f X010 f 7 = / XOTfO3f — / 01%02f0102f + f 0RO f.

Therefore,

A

fma]amz s/2(|a%f|2+|a§f|2)+/é‘jualfﬁﬂamz).

Using this for f = Vp, p, V¥ and with any mixed derivative in place of
0102 immediately confirms the equivalence of the norms (4.33) and (4.35) for
m = 2. The equivalence for higher derivatives can be proved by induction.
The equivalence with (4.36) follows from a similar Bochner type identity

d d
S ROV FONGED S RPN,

i,j=1 i,j=1

d
+ 32 [ a0, s00.1

ij=1

implying
d A

519.9. £12 < A 2 X 2
> x10:0; 175 | XIAfI7+ —<Z>2|Vf|

i j=1
. ) X ’
§/X|Af|+fw|f|-
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This gives the equivalence of (4.33) and (4.36) for m = 2. Once again, higher
norms follow by induction.

Finally, note that the above norm equivalences are even independent of the
assumption of spherical symmetry on p, V.

2. Global control of the highest Sobolev norm:
13, WIIE, =15 Wl g <1 (4.38)

3. Local decay of low Sobolev norms: for any 0 < k < 2kg, any 1 52 < ZzZ*
and universal constant C = C(kg):

N so ¥
1B, Ol a7z < 2™ ST (4.39)
4. Pointwise bounds:
2%y 2055
VO <k ==, (=5, e = 1, — (4.40)
VI <k <2, |20(2) 205 W 1oz + LB <
with
k  for k< *u
= - 9
"=k o Y < B @4

Remark 4.3 Since b = ¢ *"=27 (4.20) and (4.21) imply that the initial data
verify the bootstrap inequalities (4.34), (4.38), (4.40) with the bound e~ “™ for
some small universal constant c.

The heart of the proof of Theorem 1.1 is the following:

Proposition 4.4 (Bootstrap) Let t™ be the maximal time with property that
(see (4.16) for the definition of 1)

198

le™ " PX () [y, <e™ (4.42)

for all T € [19, T*) and that the bounds (4.26), (4.34), (4.38), (4.39), (4.40),
(4.27) hold on [, T*) with 81, 7o large enough. Then the following holds:

1. Exit criterion. The bounds (4.26), (4.34), (4.38), (4.39), (4.40), (4.27) can
be strictly improved"3 on 1y, T*). Consequently, either t* = +00 or, if T* <

13 More precisely, the same bounds hold with the corresponding constants on the right-hand
side being replaced by 1/2 of their values.

@ Springer



F. Merle et al.

~+o00, then
- 195
le™ " ]PX(I*)HH%O@WT = 1. (4.43)
2. Linear evolution. The right hand side G of the equation for X (1)
0 X=MX+G

satisfies

28

_ %8
IG@lly, <e” 37, Vel o'l (4.44)

We will show in Sect. 8.3 that Proposition 4.4 immediately implies Theorem
1.1.

Remark 4.5 We note that the assumption (4.42) implies that

8¢
IPX (7) by, < 2T, Vrelwn . (4.45)

We will prove the bootstrap Proposition 4.4 under the weaker assumption
(4.45). Specifically, we will define [1g, T*) to be the maximal time interval on
which (4.45) holds and will show that both the bounds (4.26), (4.34), (4.38),
(4.39), (4.40), (4.27) can be improved and that G satisfies (4.44).

We now focus on the proof of Proposition 4.4 and work on a time interval
[0, T%), T0 < T* < 400 on which (4.26), (4.34), (4.38), (4.39), (4.40), (4.27)
and (4.45) hold.

5 Control of high Sobolev norms

We first turn to the global in space control of high Sobolev norms. This is
an essential step to control the b dependence of the flow and the dissipative
structure which can neither be treated by spectral analysis nor perturbatively.

We claim an improvement of the bound (4.34), controlling all but the highest
weighted Sobolev norm.

Proposition 5.1 There exists a universal constant c;c“m > 0 such that for all
0<m<k,—1

15, Wlim.oum < e %nt. (5.1

The rest of this section is devoted to the proof of Proposition 5.1. Let us
outline the main steps:
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(1) First, we derive a general weighted energy identity, see (5.10), which
will be used several times in the paper, and which respects the quasilin-
ear structure of the problem. It is important that the b>A term that was
neglected in the Euler approximation of the flow produces a positive term
in (5.10).

(2) Second, we show that thanks to our choice of weights, and knowing decay
on the light cone, we can derive from (5.10) the differential inequality
(5.13). The control of the corresponding nonlinear terms relies on clas-
sical interpolation estimates between weighted Sobolev norms.

5.1 Algebraic energy identity

We derive the energy identity for high Sobolev norms. Due to the use of the
hydrodynamical variables, the identity exhibits a quasilinear structure.
Step 1 Equation for p, V. Recall (2.23):

07 pTot = — PTot AWTor — ME(Z_l)pTot — (20zWT0t + Z) 3z PTot

PTotdr Wrot = bzApTot - |:|V\I"Tot|2 +u(r =2)Wre — 1
.
+u AW + :Ojlzot ] PTot-

By construction

|VLIJP|2 + ,05_1 + ,u(r — 2)‘1’[’ + /,LA\IJP — 1= éP,\I”

~ 5.2
depp + oo [ AW + BN 4 Qopwp 4 pz) 2] =, OF

with & supported in Z > 3Z*. The linearized flow is given by

3cp = —prat AV — 2V proc - VW + H1 5 — HyAp — Ep
0r W = HPALE — () AW + pu(r — 2)W + VU2 (5.3)

_2 - ~ ~
+(p— Do B+ NLG) | - Ep
with the nonlinear term
~ e -1 2.
NL(5) = (pp + £)’ ™' = ph " = (p — Dpp 5.

Note that the potentials

/

)\ L(r —1
Hy = +2-L. H1=—<Awp+%)

@ Springer



F. Merle et al.

remain the same in these equations: they are not affected by the profile local-
ization introduced by passing from pp to pp. We recall the Emden transform
formulas (2.24):

5.4
o) oY
which, using (2.19), yield the bounds:
_ 1 __ 2u@=D 1
‘Hz‘“0<<2>’)’,H1— MR+ 0 (7). (5.5)

(Z) ay Hil + (Z) 0y Hol < 7ys 2 1.
Our main task is now to produce an energy identity for (5.3) which respects
the quasilinear nature of (5.3) and does not loose derivatives.
Step 2 Equation for derivatives. We recall the notation for the vector 9*:

k . (ak k
ok = (dF, ..., 3%,
ok =okp, Wk = ghky,

Also, for convenience, we denote 3! in various computations simply by .
We use

[0%, A] = kdF
to compute from (5.3):

9:p® = (H, — kHy)p® — HyAp® — (8% pron) AW — kdprerd* ' AW
— 070t AVE — 2V (8* prop) - VW — 2V - VUO 4 B (5.6)

with

Fi = —0"8p, + (0", Hi1p — [9*, HalAp

- Z le,jz({)jl pTotajzA\If
htjp=k
122, jp>1
- ) pd Vor - 2V (5.7)
1+ j=k
Ji,ja =1
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On blow up for the energy super critical defocusing NLS

For the second equation:

k) _ 12 *Apror  k0F ! Aprordpror
3, wH =p - L
PTot ’OTOt
—kH WP — HoAW® — pr —2)u® —2vy . v ®
-2 ~ -3 —1~
—~ [(p — Dl 50 +k(p = D(p —2)p0 " dppd* Ip] +F
(5.8)

with

. A kA k¥ Aprord
Fy = —3k8P’\p -|—b2 ak ( pTot) _ PTot + );)Tot PTot
PTot PTot PTot

—[8", [)]AY — (p = 1) ([Bk, P15 — k(p — 2)p§738p08k*15)

- > VW . 92 VW — 9 NL(p). (5.9
Jit+ja=k,j1,j2=1

Step 3 Algebraic energy identity. Let x be a smooth function. We compute:

s [ a9a R o= oo + [ asavwtr]
=5 [ 3x [PIVAOR + 0 = 0of 9P + T U R
—et? [ v P+ [o50 [-6txas®
—b*Vy - VW 4+ (p - l)xpffzprmﬁ(k)]

p—1 - -
+fo(p72)81pup5 ? oo (502

p—1 , o .
+/Xar)0T0t|: 5 PZ (P(k))z—i-momIV\I/(k)lz]
- / 0.0 [ 20100V e - VOO
+Xp%otA\p(k) + p%otVX : V‘y(k)} .

We compute:

~ ~ ~ -2 ~
f 050 [<b2x A0 — 52V V5 ® + (p = Dol o1 |
~ -2 ~
=/F1 [—b2V~(pr‘k))+(p—l)xp,’§ pmp(")]
+ / [t = kH2)p® — 285 ® — (@ pro0 AW = 290 pro) - V¥ |

~ ~ -2 ~
x [—bzxAp(k) —*Vx - V5" + (p — Dxpp pmp“ﬂ
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—/kameak*'A\y [—b2XA5<k> — by V0
+(p = Dop prap | - / (Pra AW Y +2V o - VD)
x [0 A0 =52V V5 ® 4 (p = Dol o]
=b / xVF -V +(p—1) / XFiph > 1o p®
+ / (B~ k)3 — HoAp® — (3 pra) AW — 2V (@ 1) - V]
x [<62V - (V50 + (p = Do pra® |
- / koprod* ' AW [—va (V) + (p - 1)xp,’3‘2pmﬁ"‘>]
+b? / Vi Vi® (pra AW ® + 29 pr - VOO
- / X (P AW ® 42V pro - VWD)
x [—bzA,ﬁ(k) +(p— 1>p§”;2pm5<’<>} .

Similarly:

- f 3, w® [2xpTo[Vme VOO 4t AVO - pf V- W(’ﬂ

= 7/F2v.(xp%mvw<">)

_/ 2 3kA,0Tol - kak_lApTotapTot
PTot lo%ot

X [2X,0Totvl7rot Ve® 4 XP%mAlI’(k) + /O%va : V\I’(k)]

—/ { — kWO — HAW® — i — 2w —2v g vy ®
~[r = D0f 5% + k(p = D(p = 20 000" 5] |
x [ZXmeVme VU 4o AVD + 7 Vi - V\Il(k)]

= / xpp VW ® .V, —p? / @ App + A5%) [2xvmm ve®
+ 11t AY D) + pro Vx - V\P(")]

e / ko ! Aproidptot

20V r - VO ®
PTot

+XPTot AW + 1oV - V\P(k)]

—/ [—kHlel(k) — HAU® — i (r —2)w® —2vw . V\I/(k)] %
—2 ~

(Pt VI ®) + / (p—Dpp Y [2xpTo[VpTot-W‘k>

+X10%0[A\l}(k) + p%olVX : VW(I{)]
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On blow up for the energy super critical defocusing NLS

-3 1.
+ [k =1 = 20 90015 - (1R VOO
= [x6hvu® Ve -0 [0 300)7 - (R V)
~ -2 ~
+ [ 02850 4 = 1 o)

x [2XV/>T0[ VIO 4 xpra AVP + pro V- W(k)}

kd* =1 Aprord
—|—b2/ p/;Tot ﬂTotv . (Xp%quj(k))
T

—/ [—kHle/(k) — HyAW® — i (r —2)w® —2vw . V\Il(k)] V- (13, VI ©)

+ / k(p — D(p =20} 0pp0*~1 5V

'(Xp’%olvlll(k))-

This yields the algebraic energy identity:
1d - - ~
v {/bszp“‘)F +(p - 1)/xp,§ 2prn(64)” + / xp%ot\W(“lz}

1 - ) -
=5 [ 3x [PIV5OR + 0 = Dof oG0P + VU

5 [ @ 2p0)¥ - (o, TU®)

- dcprot [P =1 poa -
—et? [ [ 2L R 4 e
ot

p—1 9:pp p-2 - 2.
+T/x(p—2) ;D oh me(p(k))er/le(p—l)pf) oo™

+b? / XVF - V0 4 / X2V F, - vw®

+ f [y — k)6 — HaA6® — (3 pro0 AW — 2V 1) - VO]
x [—bzv ~(xVp) + (p - l)xpffzmotﬁ(k)]

—/ [—ng\IJ(k) — AV — i —2u® _ vy V\IJ(")]

XV - (0P VW)

- / Ko AW [=52Y - (V) + (p = Dol pra |

kkalA,OT 0T,

2 ot 0P Tot

+b /72
Pr

V- (i VYD)

-3 1~
+ / k(p = D(p —2)pp 90" BV - (xp7u VI™)
1p? / vy vk (meA\I’(k) 2V oo - vw(k))

+ / (—6285% + (p — Dpp > pra ™) [ﬂTmVX : w<'<>] : (5.10)
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5.2 Weighted L? bound for m < k,, —

Given o € R, we recall the notation

. k ~ 250 B
14, q;||]%70 =Y o Ximo [b2|me|2 +(p—Dpp ~Protin,
+ 070 | VW] 3 }
Xk,m,(r(Z) = Wék (7)

We let

& (%
o = f (1Y P + (0~ Dof 1o (592

+pTot|W(">| | (5.11)

Lemma 5.2 (Weighted L? bound) Recall the definition (4.28), (4.29) of o (m)

and let
o =0, 5.12
v—i—%:f), (5.12)

then there exists c, > 0 such that for all 0 < v < V(ky,) < 1 and by <
botkm) < 1, forall1 <k <ky — 1, Iy := I o) given by (5.11) satisfies the
differential inequality

dI
d—k Lol < e CnT (5.13)

We claim that Lemma 5.2 implies Proposition 5.1.

Proof of Proposition 5.1 Integrating (5.13) on the interval [7g, t], with initial
data prescribed at 7y, we obtain

I(7) < e—zm)(r—ro)lk(.,;o) 4 ; (e—ZMf)(T—r())—ckmro . e—ckmf> .
- ki — 214D

We now recall, see Remark 4.3, that I;(t9) < e “™. Choosing 4uv <
min{c, ¢, } we obtain that

Ii(T) < 272107, (5.14)
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On blow up for the energy super critical defocusing NLS

We now recall from (4.35) and (4.36) for even m that || p, ¥||,,.» controls all
the corresponding Sobolev norms: let a multi-index & = («y, ..., ag) with

ar+-Foag=la|, V=007,

then forall || =k, 0 <k <m,
~ -2 ~
b? / X[ VVBI2 +(p— 1) / Xemo Py OTotl VA1

+ / Xk,m.ap%ot|vva\lj|2s

S8, WIE . (5.15)

and similarly the norm ||p, ¥ ||,% , (with even k) is equivalent to the one where

0™ with 1 < m < k derivatives are replaced by A™ with 1 <m < %

We now claim
m
~ 2
15, Ul oy < D ko ty- (5.16)
k=0

Combining this with (5.14) concludes the proof of (5.1) (with c,fm = uv).
Proof of (5.16). Indeed,

m

~ 2 Z
”p’ LIJ”m’o‘(m) = /Xm,k,a(m)

k=0

~ -2 ~
[bZIV/O(k)I2 + (0 = Dpf oma (39 + ph VWO ]

= Z/ 2(I’I1+U(m)) Sm( )
~ -2 ~
[PP1950 1 + (0 = Do o1 (597 + o VO]

and

m

m
ék (x)
Z Lot = Z 7)20®
k=0

-2 ~
L |Vp<k>| +(p = D) (50 + VWO

B i (Z) & (x)

- 2(6 (k)+k)
~ ) 2
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~ -2 ~
[B2IVE0 P + (p = Do o1 (39 + ph VWO 2]

and hence (5.16) follows from o (k) + k < o (m) + m and & (x) > &,,(x) for
0<k<m. O

5.3 Proof of Lemma 5.2

This follows from the energy identity (5.10) coupled with the pointwise bound
(4.40) to control the nonlinear term.

Step 1 Interpolation bounds. In what follows we use the convention < to denote
any dependence on the universal constants, including k,,. Constants ¢, cx,, will
stand for generic, universal small constants.

Our main technical tool below will be the following interpolation bound: for
any 0 <m <k, — 1 and § > 0, there exists cs x, > 0 such that

15 Wl o mys < € " (5.17)

Indeed, the claim follows by interpolating the local decay bootstrap bound
(4.39) and the bound (4.38) for the highest Sobolev norm for Z < Z¥ := (Z*)¢
and using the global weighted Sobolev bound for (4.34) for Z > Z}

1
~ a2 Cipy o~ < 2
||p7 lIJ“m’o'(m)_FS S (ZZ‘() kme Chn T + (Z*)ZS ”p9 \Ijllm,g(m)
c

< ok (5.18)

Above, on the set Z < Z¥, we can replace the norm | p, \IJ||3n o (m)+8 by

(Zj)ckm with some large constant Cy,,, times the unweighted Sobolev norm
o, W ||%{m( Z<7%) and then interpolate the latter between the Sobolev bounds

(4.39) and (4.38). That will bring an additional factor (ZZ’,‘)C, which can be
absorbed by Cy,,, and the decaying factor e~ " with a small constant cy,,,
explicitly dependent on k,, and §. We can then choose ¢ small enough (depen-
dent on Cy,,) to obtain the second inequality in (5.18).

We will also use the bound for the damped profile from (4.7), (4.8) and
(4.9):

1 1 1
20—1) 1z<7+ + 20—1)

VATTIRS Z
(Z) P (z+y 1 (%)

i lzaze (5.19)

We will also use the bound

2(ax+p)

Xk—1k=1,0(k—1) < (Z) Xk ko () < AZ)* Xk koo () (5.20)
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On blow up for the energy super critical defocusing NLS

which follows from

otk —1)+a > o(k), ok—1 <ok)+p (5.21)
ando + 8 < 1.
Step 2 Energy identity. We run (5.10) with
1 Z
x=gmh( ) o=ol Iskska-1 622

with & (x) = 1 for x < 1 and & (x) = x20®) for x > 1, and estimate all
terms. In our notations

X = Xk,k,o(k)-

From (4.28), (4.29) and recalling mo = % + 1:

__|oy for 0 <k <myg
o) +k= —a(ky —k) +k = (¢ + 1)(k —mg) + 0, for mg <k < ky,
- (5.23)
and
ok) = np_Zg—__ll) (r—2)+2v for 0 <k < ZkTm"‘l’
IB(km—k) for 2k’"+1<k<k
2(r —1) )
snp = Ty T s, (5.24)
p_

which implies

_ 1 Z
p— =P —2(r—2)+47

1 2n
Sw |1t (z_) 1z22:

(l)znp—‘“p’_—l“ —2(r—2)+4p
Z*

1

<
Ty k(-2 o))

lZ>Z*~
—2k+2( +o-2=D - 1)) =

(Z) (Z)

(5.25)
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which we will use below. The following additional inequality will be of par-
ticular significance (b = (Z*)>™"):

| 45-2(r—2)
PHX S 1z<z« + (—) 17> 7+
DA~ <Z>—2k+2(g+f;—(r—1)) = zZ* =
1 1

= 17<z«+
d_ - = d_ -
( >—2k+2<7+v—(r—1)) —2k+2(7—v—1

- )
b r=2 (Z)
(5.26)

Step 3 Leading order terms. In what follows, we will systematically use the
standard Pohozhaev identity:

/AgF Vgdx = Z /a gFjd;gdx = — Z/ 0ig(3i Fjdjg + Fjd7 ;)

i,j=1 i,j=1

=— Z /a Fidigdig + = /\vg| V.F (5.27)

i,j=1

which becomes in the case of spherically symmetric functions

/d fAgogdx =cq /+ rdi_lar(r"‘larg)rd‘la,g dr
R R

1 d—1
= ——f 19,81 [f’ — —f} dx,
2 Jrd r

Cross terms. We consider

. 1 Aproid
Ar = bk U 310 1AWV - (x V5P + %V : (xp%mv‘p(k))} '
T

We compute

=L AprordpTor
7

= 0prad* T AW [V - V50 4 a5 |

dpratd* AWV - (x V5N + V- (P VYY)

+0* ! Aprodpos [V - VOO
V/OTot

+2x vw® 4 xA\IJ(k)]
PTot

= 91 AWV - VP 4 35 Aot V- VEP
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On blow up for the energy super critical defocusing NLS

V OTot
PTot
+x 0010t T AWAF® 1 3 5 Aprordprn AW,

v ®

+20 T AprordpTorx

The last 2 terms require an integration by parts:

bk

f [x 1ot AW ALY + xak‘lApTotamotAw(k’]‘

= b’k

/ [—(Aak_lﬁ)a(x Aot T AW) + xak—lApTotapTotAW]‘

= bk

/ [—ak‘lAﬁ [vammak—lAw + axamota"—lw]
10 Appopraaw® ]|

< Cub? f X104 AW 15 850 ora

|05~ L A 530t

k—1
7 +[0(d ApDapTot)|]

_ |0k Ap|
<c b2/ o Taw| | LD
2 2
XPTot PR 4 X o =2 4 Pp
< 20Tt |7 5y bt | Z-|Va b .
< Zf 9o 4o /<Z)| AP+ /X<Z>2k+3

||=k

where in penultimate inequality we used the pointwise bound (4.40).
We now estimate the source term from (5.26):

4 /O% < p4 z4-ld4z
b* | x VRS b —
(Z) z<7* <Z>2k+3—2k+2<7+u_(r_1))

+b2/ (z )49 z-'dz
z=7¢ \Z* 2k+3-2k+2(+7-1)

(Z)
< b4/ (Z)2r==2-20 47
z<z*

2 Z\Y
+b ~) @z
757+

5 b4(z*)2()’—2)—1—217 S e—C‘L’ (528)
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and hence, using (5.18),

bk ‘ / x0p1od T AW ASP 4 xa"—‘ApTotapmAw(")]‘

< " CkmT (5.29)

TV, ) S

We estimate similarly,
kb2 [0prad* AWV 1 - V5® + 9 Ao Vi - VIO

V PTot VAL
PTot

+23k_ ! ApTotdPTot X

Ph

< b4fi|va“ﬁ|2+fip2 |va“\v|2} +b4fx—
|a|zzk[ (2) (z)3" (2)2+3
ST B WL Ly S e (5-30)

The remaining cross terms are estimated as follows.

_ -2 ~
k(p—l)‘ / X 901000 AW proe Y
p—1

1% _ -
,sck/x <TZ°t> o1ot| 0 1AW 5P

X p—1,~(k)\2 / X 5 RN
< A AN
S pp (P + Pt VOU Y|
/ (z)"P (z)"Tot
<16, WIE ) S e, (5.31)

where we used that p > 1 and a trivial bound |pp| < 1. Similarly,

2~
[ | = o550 039 - vo®|

X (k)\2 X o
S’/(Z) (,0 ) ‘i‘/<Z>/0Tot|va \p|

<15 WI7, ) S et (532)
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The other remaining cross term is estimated using an integration by parts:

-3 1 ~
k(p — 1(p —2) ' / V- (107 V)] 9ppd* Ip‘

X p-lo~ X p-1x X
< r=ligs 2 / p—1:2 / 2 vy
N/<Z>pD IV ok-11" + E Pi—1 + <Z>10Tot| |

<lp,¥|I> | Se T, (5.33)

k,a—i—% ~

Pk terms. We compute using (5.5):

[t = k5 + (0= Do o)
—b? / [Hi — kHy] pOVy - v®
=[xttt =kt [I959P + (0 = 00 o
b2 k)\2
- / (3")?V - [xV(H) — kHy)]

=[x (k45 w0 ()
- p—1 (Z)

~ -2 ~
% (BIVAPP + (p = Dof o1}

b2
_?/(,5<’<>)2v (X V(H — kH))]

— 0(€_Ck’”r) _ /MX (k + M)
p—1

~ -2 ~
x (B1VAYR + (p = D o1}

D [ [AxACH — kHy)
—7/x(p<"))2[ X Xlzz 2 +A(H1—kH2)],

where we used the interpolation bound (5.18). Similarly, using that x4 x.o =
(Z)?xk k—1.0 and | px| < |Vpx_1] as well as (5.5), (5.18) gives

b? ~ AxA(Hy — kH>)
?/X(P(k))z[ X 7 +A(H1—kH2)]

<o 2 < o CkmT
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Next using

|<PD

0% pp| < ==,
(Z)

we estimate after an integration by parts:

2 / (x A% + vy - V0 [(aka)Aw +2V (35 pp) - W]‘

< bzfxwﬂkh [W(a"pDAw +|V(Vdkpp - V)|

1(8*pp) AW + 2V (3% pp) - W|]
- Z)

2 [IVEPR o [ AZ0d (197w )
<# xS+ ;/X 2 (i)

1

We use the pointwise bootstrap bound (4.40)

1 <Z* 1 < 7% 1 > 7%
AYA b 5 AV + z>7
(Z>r—2 <Z>r—2 (Z*>r—2

|(Z)j3j‘1’|§CK[ } 1<j<3

(5.35)

to estimate from (5.26):
Z) A%
2
o3 [ ()

=0 ) et (23 \ | (220D T\ Zx ) (220D

—Ckyy T
S e m

and hence

2 / (A + V- V) [ (0*pp) AW + 295 pp) V‘I’]‘ e,
(5.36)

For the nonlinear term, we use the Pohozhaev identity (5.27) and the pointwise
bound (5.35)

1Z/a/w| <(z)y" D) j=1,...,3
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to estimate by the interpolation bound (5.18)

2 /(x AR 4 vy . VR [ﬁ(k)A\If +2vp® . vw]‘

2 1Vp®)|2 (p")?
~b [/X Z)y +/X<Z>—r+2

< ¢ ~n T, (5.37)

Note that the last term in the case k = 0 should be treated with the help
of the bound p < pp and the estimate (5.28). For k # 0, we simply use
lok| < |Vpr—1]. We recall that by definition of the norm:

2 k+1 Mty 12
PRl VP Totla v
15, W13, 2 Zf o g Z VGECIEDE
Hence, by the interpolation bound,

‘ / 1 [@p0) AW +2V @ pp) - V¥ | (p = Dol o1 p®

p—2 ~(k)\2 2\y12 2
< XpD oot (0) 4 X,Op_z,O% [0-W] + [0
~ - (Z) Tot ot (Z>2k—1 <Z>2(k+1)71

= II/O,‘I’II,{ ot Se (5.38)

For the nonlinear term, we integrate by parts and use (5.35):
~ ~ -2 ~
‘ f x [0 aw +295 - vu ] (p = Do ors®

p—2 ~(k)\2
< / X% < e~onT, (539

From Pohozhaev (5.27) and (5.5):
- [ txapO a0+ [ HaApTx V5

= b’ [ / A (ZxHy) - VP + / HyAprVy -Vﬁ(")]

1
_ § ! / 02 )3 p ;50 + f VPPV - (Zy Ha)
i,j=1
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+ Z szz 9;5%8; x9;6%
i,j=1

—bz{ Z/ p00;5 [81jx Ha + Z;0: x Ha
i,j=1

+Zjx0iHy — HyZ;di x|

1 AH,
vyl g+ 24 L 272
+2/| P x Hy + Xt A

_ Ky ;012 g —ny 24 !
=50 /xIVp | [d 242 p +0(<z>r—1)]' (5.40)

Integrating by parts and using (5.5):

—/tzAﬁ(k) [(p Dph” /OTotp(k)]

p—1 _3 .
o / X (P = 2)0:p0pE " p1on (52

—1
+T XarpTot;OD (,O(k))

p—1 - )
== / G2V - ZxHapfy proo

) )
+XxPTotdz (P}, ) + Xz PTotPh }

p—1 2 Ax dzpp + HApPD
=5 xoh pTot(p(k))z[Md +u—"=+(p-2) (T—
X PD
+at/)Tot + WA PTOt 0 ( 1 1) :|
P (2)-

We now claim the fundamental behavior

0 A 2 —1 1
cPp +udpp 20 )+0( ) (5.41)
oD p—1 (Z)
and
0 A 2 —1 1
0Tot + LA PTot _ M(’” ) L0 ( > ' (5.42)
PTot -1 <Z>r
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Assume (5.41), (5.42), we obtain

/tzAp(") [(p— Dph” ,OTotp(k)]

p—1
+=5— | x(p =3Py > oo (5%))?
p—1 D~
+—— | deprad” (5 0)?
= pns— + = 20-D+0(—
5 xop Pt (%) Y (r—1+ 7y

p—1 Ax
=n— x082 pron (5 0)? [ . —2(r—1)}

+0 (% 7). (5.43)

Proof of (5.41). From (4.9):

Z Z
drpp + uhApp = —pnAg ( pp(Z) + nAg < ) pp(Z),

Z Z
+ug (;) App = ug ( >App,
dcpp +uhpp  App :_2u(r—1)+0<<1 )

PD " pp p—1 z)"

and (5.41) is proved.
Proof of (5.42). Recall (2.23)

ul(r —1)
07 pTot = —PTot AWTor — TpTOt — (20zW¥Tot + U Z) 07 pTot
which yields
0 A L(r —1 VAL
PTot + UAPTot LM (r )’ _ '—A‘IJTot 929702t
PTot PTot

and (5.42) follows from (5.35).
W& terms. Integrating by parts:

2 [ ak 2 Un| < 42 , VU]
b= | 3" AppV - (xp1 VY| S b XPT s

2 (k)2 2
Protl VY| 4 PTot —Chy T
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where we used (5.28).
Next

wir —2) / VOV - (xp7 V) = —p(r - 2) / XPE| VO
(5.45)

Similarly, using 0z H, = O <(Zl),):

k/ HyOV. (xp3, VE®)

1
= —k /xu 1+ 0| — | | phe VIO
(Z)2
LA
+0 fxpm—l
(z)> =2
— —kufxp%ot|vw(k)|2+ O (e™nT), (5.46)

where we also used that r > 2, k # 0 and

) |\Ij(k) |2
Xk,k,o (k) PTot (Z)T

2

NA 7o
< 2 | 2

Then using (5.35):

% v
‘/ZX/O%ON‘P g ® <2ﬂ n _X) vy ®
PTot X

2 *) 12
S / X pTO[|V\'IJ | S e—Cka (5.47)
(Z)

and from (5.27), (5.35):

2
vv
szpmw~vw<"><meAw(">> < fx|w<"’|2 <|a(p%mW)|+ "’T§‘Z> ')
2 (k)2
S/Xmelv‘p \ < e, (5.48)
()2
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On blow up for the energy super critical defocusing NLS

We now carefully compute from (5.27) again:

/ 1o Hy AW ® (ZVPTot VAL ,OTOtA\I’(k))
+/ H AP p2 vy vu®

=22/X/OTotszj3j\1’(k)3i/?Tot3i‘1/(k)
- / 0i (X Zj Hapto) 800, 0O

1
+5 / V(X ZHpt) VOO P+ Hypto 20,900 x0,9®
ij

= Z Hzaj\lf(k)ai\l-’(k) |:2X/0T0tai,0T0th - aiXij%ot
i,j
0iHy 5
H>

1 AH ApTot
+—/XH2,02 v ®2 [d+ +—=+2
2 ot X Hy PTot

1 ) Ax | Apta 1
= vw<k)2[d—2+ +2 +0( )}
R P om ik
(5.49)

—X(Sijp%ot 2XZjp1otdiPTot — X Zj pTot + Z,pTotazx]

Hence the final formula recalling (5.42):

/ 1o Ha AW S (29 pro - VO 4 prog WD)
+ / HAv®pt vy - ve® 4+ / X8 pTotpTot | VW O 2

d—2 1 Ay ApPTot 1 0; 9z PTot 1
_ 2 k)2
= [ uxp VY| [7 + = + + — + 0
,/ Tot 2 2 x PTot M PTot (Z)r

d—2 1Ax 20r-1 1
_ 2 (k)2
= v e 0
/uxpml | [ 5 +2 X o1 + ((zyﬂ

d—2 1 Ay 2(r — 1) .
_ 2 (k)2 - _ Chky T
_/meww | [72 +27 . ]—i—O(e fan T (5.50)

Loss of derivatives terms. We integrate by parts the non linear term which must
loose derivatives:
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b? ‘/pmvx - veas0

2 Tot k) (k)
+ b / V\IJ( V

2 (k)2 2 (k)2
3 02 |AWKR)] 02 |VW®)|
<3 / V012 4 p / Tot / Tot
S xIVo™ 1~ + X7 + | x 7

< b’ ‘/PTotA\IJ(k)VX -vp®

P2, | AW ®)2

727 (5.51)

Se T +b/x

We now use (5.20) for 0 < k < k;,, — 1 which implies

2 (k) 2
Pt AW
/Xk,k,a(k)TOt<2—>2 < | XLkt Lo G ) PR | AW 2

~ 2
S o, \Il”k+17o'(k+1) S L.

Hence

p? ' / PV - VO A5®

+ b? V ot AV OV y . v50

+b?

/vx V5OV prog - V\Il(")' < e kT, (5.52)

Conclusion for linear terms. The energy identity (5.10) with the weight x in
(5.22), together with the estimates (5.29)—(5.34), (5.36)—(5.39), (5.43)—(5.48),
(5.50) and (5.52) yields:

d » ) -
- { / BXIVAPR + (p— 1) / o2 (32 + f xp%ot|w<k>|2}

20— 1) 1pu Y. x + Ax
_|_ —
p—1 2 X
~ -2 ~
x [D1V50 P + (p = Dpf o150 + iy VWO

1
2

d
§e_c"m’+,u/)(|:—k+§—(r—l)—

_2 - -
+fF1x(p— oD PTotp(k)+b2/XVF1 V%

+/ X0FVFy - Vu®, (5.53)
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On blow up for the energy super critical defocusing NLS

Step 4 F terms. We recall (5.7) and claim the bound:

-2
(p—1 f XFLoD ™" proc + bzfxwmz

Se T [1+5, ¥} ,] (5.54)

Source term induced by localization. Recall (5.2)

. Lr—1) dzpD
&p,p = 0:pp + pPp |:A‘I’P + W + (20z¥p +nZ2) ) ]
D
Lir—1)
= 0rpp + uhpp + H—F—PD + ppAWVp +207z¥pdzpp.
From the proof of (5.41)
Zz 4
pp =¢ pp, 0:pp + uhApp = ug App.
Therefore, using the profile equation for pp, we obtain
g 2\11’ Z
Pp =2 Z*C PP.
From (2.10) and (2.19) we then conclude that
z PD
ERTHIBS ez (5.55)
Hence, recalling (5.19) and (5.26):
p—2 ko 2
/ XPp PTot|0"Ep o]
d—1 _20=D(p+D)
- / YA VA 1 (2) p=l
~ 757+ Z—2k+2(%—(r—1>+9—2§f:11)) 72k+2r (%)(pfl)npr(r71)+2(r72)74\7

dz

< (Z*)—Zr—Zf) < e—C‘L’.
~ /z>z* 722041 (£ )(P Dnp—2-4v ~ ~

Similarly, from (5.26):

d—1
b2/X|VakéP’p|2 5/ Z dz S (Z*)72r+2f) 5676“[
757* Zz(g—1—ﬁ)+2+2r
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[0%, H\] term. We use (5.5) to estimate:

J
1%, Hp| S Xh2g 197 pok T | < Ay AL

(5.56)
()J
VI8, Hi1p| S S5y bl

Hence

IR
(p — 1)/xpD prou([0%, H116)* < Z/ 1|20—I:)L|lcn

~ ”ﬁ’ \p”k,g(k){—r S.; e Ckm‘[a

and
k <9
2 k ~\ 12 2 cd
b /le([a 7H1],0)| Sb Z/)((Z)Z(I-H’-‘rk—])

< p2 b2 Z |31V/0|2
~ (Z)Z(l+r+k) (Z)2(r+k=])

Y _ _
< B2 D 4+ e mT < o= ChkmT
Sb fX (Z)2(+r+k) ¢ ~ € ’

where we used the bootstrap bound (4.40), the decay of b? and (5.26).
[0%, H,] term. Similarly, from (5.5):

~ k=1 yaj (A 2yak—j k 3 p
19%, HalAp| S 3426107 (AT o) S Y05y A
IVIo*, alAp| S 5 i

r+k Jj*

(5.57)

Hence, using r > 1:
2 ~
(p—1 f xPD  prot ([0, H2lAB)?
k L
1 19dpP?
< p—1 | < = Ckp T
~ Zl/ XIOD (Z>2(l’—1+k—j) ~ e ’
]:

and
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On blow up for the energy super critical defocusing NLS

k+1

2
bz/le([a" Hy AR <b22/ _1a7pP

2(r—|—k i)

10/ V5|2
2
=b Z/ (Z)20=T+k=]) ~ S8 WIE gy S €T

Nonlinear term. Changing indices, we need to estimate terms
Njijp = 07 pratd?VW, ji+ja=k+1, 2<ji, o <k—1.(558)
For the profile term:

[0/2VW| [072VW|

J1 2 < — T
|0/ ppd?VV¥| < pp 20 PD<Z>k+1_J-2

and hence using from (5.19) the rough global bound:
op < —en (5.59)

yields

Dy N2 R0 VI
(P = DXNj, joPp "ot S X Z) 2= ) +26=D)

2 (aj 2
— pT0t|312V\1/| < o CkmT
- (Z)20k=jo)+2r ~ )

Similarly, after taking a derivative:

2 192 2
2 o2 2 'OTOt|8 V| —Chky T
b /lele Sh /Xm5e '

We now turn to the control of the nonlinear term. If j; < M‘T’”, then from
(4.40):

j 2
e o A d et
f xob 107 5V S f 1Pb e o ¢ (5:60)

If J2 < km , then from (4 40) and b = W

xob 1 5oV < xop! 925
D ~ |, D 2 T2
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=2
2 p—1 |8]|p| —Cly, T
0 /M* CRveEnE

We may therefore assume ji, jo > mg = 4’% + 1, which implies k > mq and

jt, jo < % From (4.29):

4 4 4
(k) = —alkn — k) = —a <km - —) == (1 = 5) o + Oty —s400(1)

9 5
4k
> — 9'" + O, — +00(1). (5.61)
From (4.41):
. . Ak km | km ki
k >—— 4+ — 4+ — 4+ 0O, 1) > —
o(k) +n(j1) +n(p) = 9 + 2 + 7 + Ok, —>+00(1) = 20
(5.62)
and hence from (4.40) and interpolating on Z < Z* with (4.39):
/ P—1liaj1 za7 2 —Ckyy T Zd?ldz
xop 1971 paVWIT < e +/ T
7=7; (Z)T16
Vi —(p=3mp— 3= 2(=2)-2(r—1)+47
1z<7+ + (;) 17>z

—Clyy T
g e~ Ckm

The b? derivative term and the other nonlinear term in (5.7) are estimated
similarly. We note that the relation

km > np > 1
ensures that the terms containing k,,, are dominant and eliminates the need to

track the dependence on n p. This concludes the proof of (5.54).
Step 5 F» terms. We claim:

Source term induced by localization. Recall (5.2):

~ -1 l—e -1 -1
Epw=IVUpP +pp +eWp+——AVp—1=pp" —p}
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On blow up for the energy super critical defocusing NLS

which yields the rough bound

1

kg < -
IVITépwl S (Z)kH120=1)

and hence, from (5.26),

Zd—l

(£)"

/ X0l VO Ep wl® S /
Tz

< pRA=D—Ar—DH4D < -

[0%, Hy]AW term. From (5.5):

—2k+2(g+f;—

CcT

APy k j
. - 10/ W| IV W|
IV([85, Ho]AW)| < 2—<Z>,+k_j S L gy
]j= ]J=

and hence

|VaJ W |?
/XpTOt'V([a HAW)® S Z/ XPTox 2 Ty S

[0%, 2215 — k(p — 2)pb " 8ppd*—1 5 term. By Leibnitz:

[16, p57215 = k(p = 200 3pp0* " 5]

~

and, hence, taking a derivative:

2
/ XPTot

2(p nia 187517
S z / S

k—1

p1_ 1875 gy
S Z_/ XPpzyat=p+2 Se :

j=0

Nonlinear V term. Let

INj, j, = dVWILVY, ji+jp=k+1,

k=2 i~

187 pl
2 P
j=0

1) <Z>2k+2+4(r—1)

—Cly, T

p—2

(Z)k=i"P

2
-2~ -3 —1~
V{165, 0215 = k(p — 205 000"~

Ji, o= 1.
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If ji < MﬁT’”, then from (4.40):

j 2
) 5 N rAR] o -
/XpTotIVle,_f2| S.; / IOT()tX (Z>2(k+17j2) g ”10’ qj”k’a+% 5 e Ckml'.

The expression being symmetric in ji, jo, we may assume ji, j» > mg =
o 11, j1, jo < B and k > mg = Y& 4 1. Using (4.40), (5.62) and arguing
as above (k,, > np):

B dZ Z 2}’1[’4’41?y
/X/O%ot|VNj1,jz|2 Se +/ o | 1z<z+ + (—*) 17> 2+
Z=7; (Z)10 Z

—Ck,y T
Se T

Quantum pressure term. We estimate from Leibniz:

b2

ok (Apm) _ 3 Apror kI ApTidpTn
PTot PTot p%ot

; . 1
9/1 APTotajz ( > .
PTot

and using the Faa-di Bruno formula:

3]2( 1 )
PTot

We decompose ptot = pp + p and control the pp term using the bound

SIS

Jitj2=k, j2>2

1 .

] .

S 1 Z H[;]l(alpTot)ql|-
PTot  qi+2q2+-+jagj, =)

i PD
' < 2
10" oDl S 2
which yields
—1 j / .
ot > 210" pp)™ | S A (5.64)
PTot mi4+2ma+-tjam jy = jo PTot
and hence the corresponding contribution to (5.63):
b4/)(p2 Z |8j1+1AlOT0t|2 n |8j1A,OT0t|2
Tot ) - 3 '
Jiti=k, j2>2 'OTot<Z>2J2 pT0t<Z>2J2+2
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On blow up for the energy super critical defocusing NLS

2 1+3 =12
dZ 197143 5
< ph 'OD— R
Sb > |:/X(Z)2J'2+2(j1+3) +/X (Z)2

J1tja=k, j2>2
phdZ Va1 5 _
< 4 D 4 < Chy T
Sb /X 2k+6 Z/ (Z)26=jn+2 ~ €

where we used (5.28) in the last step.
We now turn to the control of the nonlinear term and consider

. 1
Nj.jp = b (8J1+1ApTot) 2+l Z HJZ 1(31 o),
PTot  qi+2q2++j2q;,=J2

where p is either pp or p. In both cases we will use the weaker estimates
(4.40).
First assume that ¢; = 0 wheneveri > % + 1, then from (4.40):

1
21q9j1+1 J2 I A\Gi
INji. ol S D71077 Aprotl——7 S| Z I, 10" )|
PTot O H2q++ g, =i
< 2107 Apra
~ PTot{Z) 72
and the conclusion follows verbatim as above. Otherwise, there are at most

two value % <iy <iy < jowithg;,, g, # 0and g, +¢i, < 2. Hence from
(4.40):

1 R 1 PD \"
2+1 |(al,0)ql| < — |8ll,0|q" |812p|%21_[1<1<12 i¢{iy,iz} ((Z) )
IOTot PTot

o (17BN 19281\ !
~ oD oD ,0T0t<Z)j2_(q” i1+qiyiz)

Assume first ip > Zk”’ +1,theng;; =0,¢g;, = 1land j; +3 < 4k’” from
which:

2 2 o4 2 qjitl 210251 1
XPTot! Nji ol S 07 [ X0Totl0”' ™ Aprot 3

pT p%(Z)Z(jZ_iZ)
4 9725]2
X 22— +2Gi+3)

y Ll ——
X Z)2k=i+6 ~ © :

A
Sy

N
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There remains the case % +1<i1<ip < 2]‘% which imply j; +3 < ZI‘T”‘
and we distinguish cases:
—case (mj,, mj,) =

2 2 < 2 aji+1 21075 1
XPTodl Nji p|© S xpPpld Apotl pz ,02 (Z)2(2=i2)
T T

i) A12 i) A12
<p* | .|a.'0| . <p* X&<e_ckmf.
~ (22— 20+ ~ (Z)2G=0)16 ~

Otherwise, T + 1 <j1+3< '" . Since _]2 > l;’" + 1, then necessarily
Jjr < Zk’" . Hence 2 ’" +1< ]1+3 < Zk'” 9’” +1 < jp < 2’; and we

estimate from (4. 40)

74 ldz
2 2 4
XPTotINji. o Sb/
/ o 2o+ 45+ jo—i2

{(Z) (

7 2np+4v
IZSZ* + (—) 1222* S b4 S, e_Cka,

Z*
where we once again used that in this range of k

o

cr(k)+7'" Sor m>»> e >

—case m;; + mj, = 2: we use (4.40) and estimate crudely:

4
. 1
/xp%mw,-l,hﬂ < b“/xw““Ame (mkm)
4

d—1
§b4/ 7414z
<Z>2(o(k)+k7’”)

7 2np+4v
X 1252* —+ (?> IZZZ* S/ b4 5 e CkmT

NL(p) term. We expand, using, according to our assumptions, that the power
of the nonlinear term is an integer p > 3:

~ ~ p— 1—
NL() = (pp + 5"~ — oy~ = (p = ol p—Zcqp‘”’ K
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and hence by Leibniz:

INL(D) =D D" g pnd (512l

q9=2 jitj=k

p—1
=D D DD DR AV IRV v ot

g=2 ji+ 2=k Li++=))

Let
~ ~a 7 —1—
Nevootgjig =396 3%p02 (007N, ¢ < < ¢y,
then
N 2
VN, ..., Ly, 1, q| N 0. Eq,j1,q| + |N€1 ,,,,, t, jl,ql
with
(1) P J0<my <o <mg <k+1
V] B R L N
..... qufI (Z>]2 m1++mq:l}1+1'
We estimate N (1).“ L the other term being estimated similarly. We distin-
guish cases.
—case mg < —g"*, then from (4.40):
~ p—1—q p—1
) - P Pp " Pp

| Mp,..., mqnil,ql ~ <Z>j1+1 (Z)JZ ~ (Z)k+1
and hence, from (5.19) and (5.25), the contribution of this term is given by

(1) 2 <« ,—ct
/XpTOtl ’mq,jl,q| Ne

—2(p—Dnp—4(r—1)=2(r—2)+4v

+/ 794z 1z<z+ + (%) 1757+
7578 (Z)20 )+2(k+1) <Z>4(r_1)+4§)’_—11>

< e—(,‘L' + d—Z < e—()](ml'.

~ Zoze (Z)20-DF3 ™
We now assume m, > ’" +landrecallmy, < j1+1=<k+1=<ky
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—casemg_| < , then from (4.40):
qg—1 p—1l—q
M < __Pp mg =z PD < |amg 51 o P2 1
|Nm1,...,mqvjlsq| ~ (Z)jl_mq+1|a q'0| (Z)j2 ~ |8 q,o|,0D (Z>k+1—mq'

If my < k then

s 2 < 2 8™ p|* o
XIOTot ,,,,, mq,jlyq ~ X/OD <Z>2(k_ q+1)+4(r 1)(1, 2) ~ €

On the other hand, if m; = k + 1, then, using (5.20)

2 2 2 3) <2 (k4152
/Xk,k,a(k)PTotIN,;,)V_.,mq,jl,q| S/Xk,k,a(k)prDp )52 195 5|

2(p=2) ; \2 <2 1 ~2
5/ Xk+1,k+1,a(k+1),0p(p (2)25% 1ok |
Z<Z¥

k1 512
+/ Xk+1,k+1,0(k 1),0p_1 | ol

k41,0 (k+ T N Yt

757 o D (Z)=2+20=1)

S e WIR L o hr):

where we used the following interpolation bound

1ol Loo(z<zs) S e 7,

the estimate

_2(r=1

and the condition
—242(r—-1) >0,

which follows from r > 2.
—casemg_1 > % + 1, then necessarily mg_» < 41ch < 4];’" +1<my_y <

my < 2kT’”andkz %—l—l.Hence

q
1< Pp p=1-¢ « Pp
Mmy,....,Mq, ji,q" ~ P
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On blow up for the energy super critical defocusing NLS

The integral for Z < Z7 is estimated as above, and we further estimate from
(5.25) and (5.62), using that k,, > np > 1,

2 (1) 2 < dZ < o CkmT
Lo PN mal 5 [ g S
ZLe =%

This concludes the proof of (5.63).
Step 6 Conclusion. Injecting (5.54) and (5.63) into (5.53) yields:

1d B ) -
= { f P xIVePP +(p—1) / x00 prot (P + / xp%otlw<">|2}

2dt
d 2r—1)  1pu ' x+A
fu/x[—kJr——(r—l)— ( )+_u X X}
2 p—1 2 X
~ -2 ~ —
x [PIVEOR + (p = Do 2 ora (50 + o VWO | 4 e7etm,

We now compute, noting that d; Z* = pnZ* and that & only depends on ©
through Z*:

Ocx +nAy

1 YA VA 7 1
= 2 ® [a’g" (Z_) A (Z_ﬂ e (Z_> A <<Z>2“<k)>
Z 1
=5 (7) n0 ()

Hence recalling (5.23):

R - TG VIR VY PR
2 p—1 2 X
:k+a(k)—c—l+r—1+u+0<L>
2 p—1 (Z)
>av—§+r—1+u+0(i)>ﬁ+0<i).
B 2 p—1 (z)) — (Z)

Using that k < k,, — 1 and the interpolation bound (5.17) we may absorb the
o (&—)> term and (5.13) is proved.

6 Pointwise bounds

We are now in position to close the control of the pointwise bounds (4.40). We
start with inner bounds |x| < 1:
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Lemma 6.1 (Interior pointwise bounds) For all 0 < k < ZkT'”
Uy (2" M0G0
VO <k <=, ||p—PZ||L°°(Z§Z*) <dp 6.1)

VI <k < e (2)"0(Z) 208 Wl Lo 2220 < do

where dg is a smallness constant depending on data.

Proof We integrate (5.13) in time and obtain, by choosing 0 < vV < ¢ + ¢,,,
YO <m <k, —1:

Im(f) < e—ZMﬁ(T—TO)Im(O) + ; <e—2;u~)f—ckm‘l.’0 _e—ckm‘[>
a c 21

km —
—Chky, TO
_ ~ _ _ e m _ ~ _ ~
<e 2uv(t to)e fox ) e 2uvT S&Oe 2uvT (62)
Ck,, — 21V

for some small constant d, which can be chosen to be arbitrarily small by
increasing 7. Below, we will adjust d¢ to remain small while absorbing any
other universal constant.

Recalling (5.16):

VO<m <km—1, 115, ¥lmom < doe ™", (6.3)

This, in particular, already implies bounds on the Sobolev and pointwise norms
of (p, V) on compact sets: for any Zx < oo and any k < k;, — d

1B, W)l gzt z<74) < doe 7T, (%, 9* W) || Lo z=z4) < doe™*7(6.4)

casem < % + 1 = myg. Recall (4.29), then (6.2) implies: VO < m < my,

2 i 2
+ H <Z>m—%+(r—l)—va;1+lqj

2= _+

H 2y g

L2(Z<Z%)

L%2(Z<Z¥%)
< dpe 2T (6.5)

. . . . d .
We now write for any spherically symmetric functionu and y > 5 — 1:

VA
W(Z)] < lu(D) +/1 9 zuldo < lu(D)|

1 1
2 2 2 2
|0zul” ,_ I
+ (/ de ldT ?dl'
l<o<z TV 1<o<Z T

H Bzu

1-4
S lu(D)] 4 (27172 27

(6.6)

L2(1<0<2Z)
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On blow up for the energy super critical defocusing NLS

2(r—1)
Wepick 1 <m < mgandapply thistou = Z r-1 Z’”_lag_l,o,)/—l-l = %4—17

and obtain for Z < Z* from (6.4) and (6.5):

20D 41 om—t
B A Gl D . 5 0z(Z rt 82 P)
|Z"T T T pl S em T 4 (2) -
(Z)%-l-v—l
L2(27Z,<Z<Z%)
[ |z amp
- z
Se T+ (z) —
(Z)2™
L L2(Z<Z*)
_Qp2=d
I K2 Ty
$+v
\zp IRIVAYAS)

and hence

< dp.

Ak, H Zmanp
L®(Z<Z*¥)

VOSmS_a
PP

We similarly pick 1 < m < my, apply (6.6) to u = <z>r—2+magw, y+1=
4 + 7, and obtain for Z < Z* from (6.5):

dz((Z)r—Hman )
<Z>%+f)—1

|<Z>r72+ma;’l\_p| 5 e*CT + <Z>\~)

12
(Z)ztv] L2(2Z,<Z<Z*)
N (Z>r—2+m8;1+lq,)
(Z)%J”N’_] L2(2Z,<Z<Z%)

L AR
Se—C‘L’ _i_(QO(Z)Ve—MV‘L’ S e—C‘[ —|—¢Q0 ((Z*>) S &0

and hence

4k
VI<m<my= T’" +1, {Z) MW | Loz < do.
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casemog < m < % + 1. Recall (5.23):
o(m)+m=—alky, —m)+m=(ae+ 1)(m —mp) + o,

and rewrite the norm:

16, W12, _Z/

Z<7* 2(m —k+o0(m))

~ -2 ~
x[b2|Vp<k>| (0 = Do (590 + PR VWO

m

B <Z>2k
= ](2(:) - <Z>2(a+l)(m—m0)+2(fv

~ -2 ~
x [D19591R + (0 = Dl ora (59 + phy VO],

We infer, using also (6.2):

/2225252*
+/
7<Z,

Sle, @l

Zm—(ot—i—l)(m—mo)amp

1
(z)

gm—(a+1)(m—mo) <Z>r—1 aanJrl w 2

<Z>%+f)
< dge” 2T, (6.7)

m,o(m) —

Observe that for mg < m < 21§m + 1, from (4.30):

m—(a+1)(m—m0):m0(l+a)—amzmo(l—i—oe)—a(Zk?m—i—l)

=k 4 1—|—4 24 + O (D)
= Km 9 5 35 ky— 400

_ Yo (1) > km 0. (6.8)
15 ¢ ke 4 '

We now apply (6.6), (6.7) to mg + 1 < m < ZkT’" + 1,

2(r l)
u = (Z)" e @ Dim=mo)= 18’" Lo y+1= %—H} and obtain for Z < Z*:

|<Z>m+2“ D — (1) (m—mo)— 18m Lol
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On blow up for the energy super critical defocusing NLS

20— 1) D(m—mo)—1am—1
B s laz(zy" o et 87" p)
Se T+ (2) —
<Z>7+v_1
L2(Z<Z*)
2(r
e . <Z>l~) (Z>m+ —(a+1)(m— mo)am
(2)5+0
L2(Z<Z%)
2(r—=1) _ _
+<Z>f; <Z>m+ =1 —(@+1)(m—mo) 1821_110

<Z>%+f) L2(Z<Z*)
< do [1 n <Z>%‘Wf]

and hence using (6.8) for Z < Z*:

km pm—1 B ]
Z1% po ‘Z’”*z?)11)‘(““)(’”‘”“0)‘18?'p < do [1 + (3) } < do
oD z*
and hence
kﬂ m
V£—|—1<m<2k’", i L < .
? 3 PD L®(Z<Z*)

For the phase, we apply (6.6), (6.7)tomg+1 <m < ZI‘T'” +lLy+1= % +7,
u = (Z)yr~tHm=rhm=mo)aMy and obtain:

(Z)r—l—l—m—(a-‘,-l)(m—mo) |aglqj|
8Z(<Z>r71+m7(a+l)(mfm0)8%1\1,)

ST+ (2) —
(z)2+-! L2(Z<Z¥)
r—14+m—1—(a+1)(m—mg) qm
< —cr+<Z>v <Z> aZ\Ij
- (Z)5+0-! L2(2<27%)
B r—1+m—(a+1)(m—mgy) qm+1
+(Z)" ) T A
<Z>7+v_ LZ(ZEZ*)

< do [1 + <z>ﬁe*“9f]
and hence formg +1 <m < ZI‘T’" from (6.8) for Z < Z*:
<Z>r 2+ |8m\lj| < (Z>r—1+m—((x+1)(m—mo)|aan\Ij| < ‘ﬂ()a
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which concludes the proof of (6.1). O
Similar to the above, we also have the following exterior bounds for |x| > 1:

Lemma 6.2 (Exterior pointwise bounds) There holds:

z n(k)ak
V0 < k < 2u, ||(>—Zp||L°0(zzz*) <, 69)
2%y (2" Poyw ‘
VI <k == |—F % lLez=z < do,

where dy is a smallness constant depending on data.

Proof We start with the case 0 < k < %. ‘We have in that case

4r=1)

2np——— 2(r—2)+4v
Z P=mpT
I > Z 2k—20’v
ko (k) = /ZzZ*< ) 7

~ -1, ~
x [PIVEOR + (p = Do~ (39)? + pp VWP ]

We observe from (4.9), (4.28), (5.12) and b = Z**~" that for Z > Z*

b2V 02

7 znp—%—z(r—z)ﬂa
Z*)

Zd*l <Z>2k720U (_

~(k) |2
d=142k=20,—20=D 2(r~2)+47 1V ®|

~ (Z AN
( ) (Z*)4”,012)

2
_ gy (124VAY
(29 pp

Similarly,

ppIVW O

7 2np—2=D 5 _2)147
Z*)

741 (7)%=20, <_ !

k)2
d—142k~20,~ =D _2(r—2) 447 VW R

~ <Z> (Z*)4f)b2

_ e (12A9RO1
- (Z*)Zf’b ’

Now, for a spherically symmetric function #, Z > Z* and an arbitrary A > 0

z
lu(2)| = M(Z*)+/ dzu

*
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On blow up for the energy super critical defocusing NLS

z Y/ 3
5|u(z*)|+</ rl+m|8zu|2dt> (/ r—l—”dr>
Z* *

1

V4 2
S |M(Z*)| + (Z*)—)» (/ r1+2k|azu|2dr>
7*

. (D)W > o~
We apply this to u = <(Z*)29pD fork>1land A =v

(2)45® 2050\
'((Z*)Z%D) (Z)‘ : ‘((Z*Wm)) )
1

z kio =01\ 2 k=1 (k) \ 2 2
s 5| [ (DK IVEW (M)'p
+ Z* v 1+2v ! + ~ d
([ ( ) pp ) <<Z*>2vpu> '

. . 1
<S(ZY Ao+ (Z) Uk oty + T—1.0-1)) 2,

where we used the already proved interior bounds (6.1). This, together with
(6.2), immediately implies the exterior bound for 85 pand 1 <k < % + 1.

. . . . . e (k
The corresponding bound for 8@4’ is obtained similarly using u = (<(ZZ>*)\; b)>
and A = v. To prove the result for p in the case of k = 0 we note that the
bootstrap assumptions imply that p — 0, so that, together with the above

estimate for k = 1, we have, for Z > Z,,

+o00
/ dzp
z
as desired.
4k, ki

Finally, we consider the regime o t+1= k < ZT We have in that case

400
5(2)] = < t(’o/ P 1 < dopp(Z)

VA T

4r=1)

S 7 2np— =1 2(r—2)+4v
I > 7\ 20 (ki —k)
ko (k) = /Z>Z*< ) 7

~ -1, ~
x [PIVEOR + (p = Do~ (39)? + pp VW PP ]

We observe, using n(k) = k;, /4 in that range, for Z > Z*

4r=1) _

7 2np— o1 2(r—2)+4v
Zd—l<z>20[(km—k) (?) b2|v[5(k)|2
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a2
~ (z)"® <<Z>"(k)|vp(k)|>

(Z*)% pp

and

7\ 2np— 4<p’;“ —2(r—2)+4p
AR VAR (;) phIVw®2
2
~ (zymo (LYY

(Z*)z‘jb

where

kom _ 4 —1)
@ (k) :=2a(km—k)—7—2(r—2)+4v—ﬁ+d—1.

Since k < ZI‘T’”, and in view of the control of « in (4.30), we have

(k) > 5 1\ +0(1) _ +0() > K
w =\ 15 > m ky—+00 = 30 kp—+o0 — 31-

In particular, we have @ (k) > 1, so that the proof for Z > Z, in the case
‘”(T’” +1<k< sz'” is analogous to the case 0 < k < %. Details are left to

the reader. O

7 Highest Sobolev norm

In this section we improve the bootstrap bound (4.38) on the highest
unweighted Sobolev norm of (o, ). Specifically, for (see (4.23))

km 2 ~2 p—2 ~\2 2 2
. b |VVI= + (p — Dpp ~prot(V0)~ + p1 [ VVE Y
16 Wiz, =3 > D o

2(km—J)
J=0lal=j (2)

(7.1)

we will establish the following

Proposition 7.1 (Control of the highest Sobolev norm) For some small con-
stant d dependent on the data,

13, Wiz, <15, ®)(x)II, +d. (7.2)
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On blow up for the energy super critical defocusing NLS

Proof of Proposition 7.1 This follows from the global unweighted quasilinear
energy identity. We let

km =2K,, KneN
and denote in this section
k=ky, p%=naKnp Wk = AKny,
We recall the notation (5.11)
I, = / LIV 51 + (p — 1) / b progldbn 512 + / P2, |Vakn w2,
(7.3)

Step 1 Control of lower order terms. We recall the notation:

~ o :
1o, lIJ”/’%m,a(m) = Zj:()f)(j,km,g(m)b2|va]p|2
) . .
+(p - l)fXj,kal‘l;) P10t(37 9) + [ Xk PRt VO W]
Xjskmom)(Z) = =

In view of (5.16) and (6.2), we have

kim

1. W1z, oy < D Ik < I, + do. (7.4)
k=0

By Remark 4.2 we can replace (up to the lower order terms controlled as above)
Iy,, with

~ -2 ~
T i=fb2|VAK’"pI2+(p— 1)fp§ prot| AK7 517
—|—/,o%0t|VAK’"\IJ|2. (7.5)

We claim: there exist k. (d, r, p), ca,r,p > Osuchthatforallk, > k; (d,r, p),
there holds:

d
- {Ji 1+ OO} + ca.rkm i, < 4. (7.6)
Integrating the above in time, using (4.24), (7.4), yields (7.2).
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Step 2 Energy identity. We revisit the computation of (5.6), (5.7), (5.8), (5.3)
in order to extract all the coupling terms at the highest level of derivatives.
Recall (5.3):

9p = —prot AV — 2Vproc - VY + Hi j — HhAp — Ep
9, = bZ% — (Hh AV + u(r —2)¥

HIVW 4 (p— Dph 25+ NL(ﬁ)} —&pu.
We use
[AKm A] = Ky AR
and recall (C.1):

[AF, V] — 2kVV - VA9 = » Cha sV PO,
|l +[BI=2k, |B] <2k =2

which gives
AR (HyAp) = ky (Hy + AH2) pr + HaApy + Ax(p)
with

~ k=1 |V/p
kD) S ek 21 gz

7 (7.7)
~ k J
IVAB) S ek oy b

where V/ = 8?‘ . 85‘1, Jj = a1 + -+ + a4 denotes a generic derivative of
order j. Using (C.1) again:

3% = (Hy — k(Hy + AH)pr — HaApr — (AKm pro) AW
—kV prot - VIR — pro AW
—2V(AK" pror) - VU — 2V ot - VI + Fy (7.8)

with

- > ¢, p VI Tt V2 AW

hti=k
122, 2>1
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On blow up for the energy super critical defocusing NLS

— > i pm V' Vot - VRV, (7.9)
Jhtp=k
Ji.j2>1

For the second equation, we have similarly:

A oo kV AL prog - Vo
9.0, = b ( ot 20t ot
PTot ’OTOt
—k(Hy, + AHY) WV, — HyAV, — u(r —2)¥, — 2VW - VU,

[0~ 005 2+ kp — Do~ 200 *Vp - VAR 5]

+F (7.10)
with
. A AKmtl kVAKm pro - V
Fr = —ak(gP,\ll -|—b2 AKnm ( pTot) _ PTot i /O"zfot PTot
PTot PTot PTot
-2~ -3 —1~
—(p = 1) (185, 057215 = k(p = 2}V op - VAF 1 5)
— A (V) — > VIV . v2vW — AKRNL(5) (7.11)
Jiti2=k,j1,j2>1
and

< yok=1 _|V/y|
| Ar(W)| S Z;:l (Z)km+r—]j (7.12)

k viy
VAW S X @ytm%

We then run the global quasilinear energy identity similar to (5.10) with y =1
and obtain:

1d 5 ) -
= {/b2|Vpk|2+<p— 1>/p,’; pTotp£+/p%ot|Wk|2}
- pP—
= —u(r —2)b2/ |Vpk|2+/ar/0Tot|:

p—1 3.
+T/(p —2)d:ppP} " PTotAR

I po.
oh p£+pTot|Wk|2}

_2 - -
+fF1(p— Do pToth+b2/VFl -Vpk+/p%VF2.vwk

~ -2 ~
_fkvaot VU(=b* A+ (p — Do protdr)
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KV AKm ppc - Vg
+ / b2 Pt YPTOU (o AWy + 2V prog - V)

PTot

+f [(H\ — k(Hy + AH2)) o — Ha Ay

~(AR pro) AW — 2V (AR pry) - V|
~ -2 ~

x [~b2 A+ (p = Dol prousi |

—/ I:bszotAKm_HpD — kprot (H2 + AH) Wy,
—pTot Hy AW — pu(r — 2) p1ot Wk — 2010t VW - VW]

-3
X [2V p1ot - VW + p1ot AWE] + f k(p — 1) (p —2pratp]  VPD

VAK =512V o1or - VU + 1ot AW ] (7.13)

We now estimate all terms in (7.13). The proof is similar to that one of Propo-
sition 5.2 with two main differences: the absence of a cut-off function yx, and
a priori control of lower order derivatives from (7.4). The challenge here is
to avoid any loss of derivatives and to compute exactly the quadratic form
at the highest level of derivatives. The latter will be shown to be positive on
a compact set in Z provided k,, > kJ;(d,r, p) > 1 has been chosen large
enough.

In what follows, below, we will use § > 0 as a small universal constant
and will assume that the pointwise bounds (6.1) obtained on the lower order
derivatives of p and W are dominated by 8. On the set Z < Z*, this will
often be a source of smallness, while for Z > Z*, we may use the bootstrap
bounds (4.40) and the §-smallness will be generated by extra powers of Z. We
also note that from (7.6) the quadratic form is expected to be proportionate
to ky, I,,. Choosing k,, large will allow us to dominate other quadratic terms
without smallness but with the uniform dependence on k,,. The notation < will
allow dependence on k,,, while O will indicate a bound independent of k,.
As before, dg (as well as d) will denote small constants, dependent on the data
(or, more precisely, on 1p), that can be made arbitrarily small. In particular, we
will use

10, Wllkp—-1,0(n—1) < do- (7.14)

The constants § > d( will be assumed to be smaller than any power of &, so
that our calculations will be unaffected by combinatorics generated by taking
kn, derivatives of the equations.

Step 3 Leading order terms.
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On blow up for the energy super critical defocusing NLS

Cross term. Recall (5.27):
d
/AgF-ngx = Z /aingjajgdx
ij=1

d
-y faig(aiFjajg + F;978)
i,j=1

d
1
=-> faiFjaigajg+§/|Vg|2V.F.

i,j=1
Letting g = g1 + g2 yields a bilinear off-diagonal Pohozhaev identity:
/[AglF Vg2 + AgoF - Vgildx
d
= — Z /3iFj(3ig13jg2+ 01820;81)
i,j=1

+/Vg1-ng<V-F>.

We may therefore integrate by parts the one term in (7.13) which has too many
derivatives:

b2k ‘/ |:V/0T0t ' v\IjkA,b‘k + VAKm PTot * v/OTotA\IJk]

= b’k

f VTt - VA + Votor - Vo AWy + Voo - VAR pp AW

d
= b’k —/ D 07 om0t (B prd ;Wi + 9 Wi x) +/V,5k - VWL Apror

i,j=1

— / VW - V(Vpre - VAR pp)

1 VA
Z T <Z>2}

S b2k/ﬂT0t|V"I"k| [

<4 f Pl VLI + Csb* + C3b4/ IV o

< 8Jk, + Csb™.
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We estimate similarly:

V AKn -V
‘ kb2 / PTot PTot Vpre - VU

PTot

< [bzf IVl + f p%otiwuz} +csb® < 8y, + Csb™.

We use

1ol [Ap]
PTot (Z) prot

<4, 0<ex 1 (7.15)
to compute the first coupling term:
) -
—k(p —1) / Vptor - V0D 0ot ok

- VU o2 ol
=—k/pDVpg 1'v"pk,5k+0 (5/' klpp ,OTot|Pk|>

(Z)
—1 ~
= — /pDvpg - VUpr+ 0 (8J1,) -
The second coupling term is computed after an integration by parts using

(7.15), the control of lower order terms (7.4) and the spherically symmetric
assumption:

/(pmm" +2Vpro - VEOK(p — D) (p = 2)prauply “Vop - VAK»=15
=k(p=Dlp-2) / V- (0 VW) Pp Vop - VAR
=—k(p—D(p—2) / p%otv\yk .V (,011;_3V,OD ) VAK'"_I,5>
=—k(p—D(p-2) / Prondz Vidz <p§_3azpDaZAKm—15)

-3 1.
= ~k(p = 10 ~2) [ o 02ppoRdr B3 A

_y [VEn=1 5]
+0 </ oot VWk| o, 27

__ / K(p — D ppdz(ol oz Wiy

BZAK*"_I,b“

+ / K = 2)(d = Dppdz(ely oz b2
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L VRl
+0 (/ oot VW] o 27

——k(p=2) [ ooVol " VUt O (d0+80,).

: l0zppl < _1
where in the last step we used that Ziop ~ 27

Pk terms. We compute:
[t =kt + AED A A+ = 10l i)
21w % 12 p—2 ~2
= /(Hl — k(Hy + AHy)) [b IVok|”+ (p — Dpp pTotpk]
b [
-5 P A(H — k(Hy + AH>)).

We now use the global lower bound, see properties (2.21) and (2.22) of the the
profile (w, o),

Hy + AH, = u(l —w — Aw) > ¢cpar, Cpdar >0

to estimate using (8.17), (7.14):

/ (Hy — k(Hy + A Ge(—b* A + (p — Dol proei)

1
=< _k/ [1 + Okm—>+oo <k_):| (HZ + AHZ)

~?2
~ - ~ 12
X [b2|V,0k|2 +(p— Dp} QpTotp,f] + Cb2/ Lk

<Z>2+r

<~k [ (o ) [PIVAEP + (p = Doy prad] + o

Next, using

PD
ok < —,

we estimate from (4.40):

b2

/ Api [(AKmpmAw +2v(AKmpp) - V‘I’]‘

< bzf V7 [ 1V 0p AW 4+ [V (VAK" pp - V0
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PN CEAY
< b28/ IV e |? +—Zf Dz(k+3 < 8Jy, + dob?.

For the nonlinear term, we use (6.1), (4.40), (5.27), (7.4) to estimate

b* '/ Ak [P AV + 2V - vw]‘

~)
<P Vw%nwg%f%} < 8Ji + dob*.

Next

' f [(AKpp) AW =2V (AK" o) - VW | (p = D0}y proci

2 2 2
p2 o C p=2 2 |97V 9]
< Spr PTot Py +3/pD lOTot|: <Z>2k + (Z)Z(k—l-l)

< 8Jk, + do,

since we are assuming that dp < 6, and for the nonlinear term after an inte-
gration by parts:

~ ~ -2 ~ -2 ~
V[pkA\If—ZVpk-V\If] (P — Dp, " Prothdk Sﬁfpg PTotAf-

From Pohozhaev (5.27):
- [ taptan =1 [ Apzin) V=0 (b2 / |V5k|2) .
Integrating by parts and using (8.17), (5.41), (5.42):
- / Hy A pr [(P - l)ﬂg_szotﬁk]
+—/(p 2)d:pppp pmpk +—/81pTotpD i
p—1

B [ B[V @thol oo + 000}y ) ot + o)y |

) »
=0 (/ o pTotplf)
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Note that the above two bounds, even though dependent on the highest order
derivatives, contain no k dependence.
Wy terms. After an integration by parts:

V bR o) 2V pror - VU + proc AW ]

S0 [ oty <8 [ oVl + o
Then
u(r —2) / PTot Wk [2V p10t - VWi + 010t AWk ]
=—u@r —2) f WiV - (o1t VoTor) — 1u(r —2) / VW - V(T W)
= —ur-2) / PV
and similarly, using (8.17), (7.4):
k / prot (Ha + AH2) Wi [2V prot - VWi + prot AWk ]
=k [t AH B - (5, VW)

= —k [ / (Hy + AHa) pi, |V |

V - (03, V(Hy + AH>))
2 2
+/PTot‘I’k ( ot 202

T

— / (Hy + AH) o3 [ VW + do.

where the \Illf term is controlled, with the help of the bound

V- (03, V(Hy + AH))
2,0%

<z,

by using the already bounded ||(p, ¥)Ilk, —1.0 (k,,—1)-nOrm.
Then, from (6.1) and (6.9):

‘/ 2010t VW - VW (2V p1ot - VW)

s&o/p%mw
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and using (5.27):

‘/2pTotV\I/ - VWi (pTot AWi)

§/|V‘I’k|2||3(/’12“otv‘p)|
s&o/p%otww.

Arguing verbatim as in the proof of (5.49) produces the bound

( / p%otwwz) .

'/ PTot Ho AV 2V p1ot - VW + p1ot AWE) | = O

Step 4 F terms. We claim the bound:

b2/ IVFII> + (p — 1)fpg“F12 < 8Jx, + do. (7.16)

Source term induced by localization. From (5.55), for k,, large enough:
-2 ~ ~
[ ool aknBe 4 82 [ 192G 5 a0

[AKm  H,] term. We estimate from (5.56), (7.14)

9
(p— 1)/,) LAk, H1p)? < Z/ ! 'z(r’i'k = < do

and

k =12
2 Knm 2 < 12 19,
b /IV([A SHDIE S Z/(Z)Wr—”rk—ﬂ

~7 - i 512
2 p-dZ 2 [0/Vpl
=b / (Z)2(1+r+k) +b Z/ <Z>2(r+k+1—j)+2

B 11P, Wiy —1.0Gm—1) < do-

Ay (p) term. From (7.7), (7.14):

vip|?
(p—l)/p (ﬂk(p))ZSZf ! |2(r_€,|{ —se = do

@ Springer



On blow up for the energy super critical defocusing NLS

and

2
2 2 2 |VVJ,0|
v [ v <o Z/ e <4
and (7.16) is proved for this term.
Nonlinear term. After changing indices, we need to estimate
Njjp = V01 V2V, it jp=k+1, 2<ji, p<k—1.
For the profile term:

P |VR2VW| V2V
| IOD | ~ pD (Z)jl - pD <Z>k+1_j2

and therefore, recalling (5.59), (7.14):

2 jzv\_p 2
p—1 Pl V |
/(p l)NuzpD 5/ (2)2G+1=j)+2(r—T) =< do.
Similarly, after taking a derivative:

2 ' 2 2wl 2

2 2 Pt V2V 5 [ Pr VTV
b> | IVNj pI" Sb° | 5705 +P ‘
bt~ (Z)2k+2=J2) (Z)2k+1=)2)

<do+3dJ,.

The 6 Ji,, term above controls the case j, =k — 1.

We now turn to the control of the nonlinear term. If j; < 4’;’", then from
(4.40), (7.4):

j 2
P=1yoji =0 2 2 V2V

Vi 5vieyy|? < < dp.

/pD Ve | N/pD<Z>2(k+1 —jtpn il = 0

If jp < 4k’” , then from (4.40) with b =

(Z*)’ 2

J1512
=g zui 2 < p-l V2ol
/pD [V V2V N/Z<Z* Pp (Z)20k+ T+ =2)=j1)
i =12
2 P*lm;p'
+b /Z>Z* Pp (Z)2k+1=j1) = do.
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We may therefore assume ji, jo > mg = 4’% + 1, which implies k > mq and
Ji, 2 < 2]‘% and hence from (4.40) and (6.1):

R - dz
/pf; o gy v w|? s&o+/ < dp.

kﬂ’l

727+ (Z)1b

The b? derivative contribution of the nonlinear term is estimated similarly.
Step 5 F» terms. We claim:

fp%mw(pz + AKnNL(p))1? < 8k, + do. (7.17)

The nonlinear term AX»NL(5) will be treated in the next step.
Ay (V) term. From (7.12)

k .
VW]
VAW S ZW
j=1

and hence:

2
) |VV/ W
/PTotWﬂk(‘VN S Z/ T0t2(r—+k]) < do.

[AKn, o271 term. From (C.1):

k—
S

\S]

|Vjp| p—2
(Zy=i P

-2~ -3 ~
1a%n, o815 — k(p = 209}y Vpp - VAK1 5

0

~.
I

After taking a derivative:

2
f PTot

2p— 2)+2 IVIp|?
<
Z/ 2(k Tz = do.

2
-2~ -3 1~
V{1857, 515 — k(p = 0l Vp - VA5

Nonlinear ¥V term. Let
INj ;= VIVUVEVE, ji+jp=k+1, ji.jp>1.
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On blow up for the energy super critical defocusing NLS

We first treat the highest derivative term using the L°° smallness of small
derivatives: Using (4.40) and (6.1)

/P%otIVV‘I’IQIV"’"V‘IJIQ < (o + bZ)Ikm.

We now assume ji, jo <k, — 1. If j; < %, then from (4.40), (7.4):

V2V |?
2
prot|VNJ1 2P S @o+b )/ Plot 730 =7 = do.

The expression being symmetric in ji, jo, we may assume ji, j» > mg =
B 11, j1, jo < Hn, and using (4.40), (7.4):

dz dz
/P%otIVle,jzlz N J’o/ - +b4/ —— < do.
AY A (Z)W Z>7* <Z> 10

>~

Quantum pressure term. We estimate from Leibniz and (C.1):

<A0T0t> B AKn L pry kVAKm/OTot V pTot
PTot ’OTOt

: . 1
Vv/1 A/OTotajz ( > .
PTot

‘We use the Faa di Bruno formula:

bty

Jit+i2=k, j2>2

1

2 i
o+l § H 1(V PTo t)
Tot  mi+2ma+--+jomj,=ja

Nji.jp = bVt Aptot

and my +2my + - - - + jomj, = jo. We decompose pror = pp + p in the sum
and estimate the pp contribution:

bt | i Z IV Aprod® [V Aprad?
PTot 2 7\202 + 3 V212
J1+jo=k,jp>2 '0T0t< ) pTOt( )

<Y _ PdZ |V“+3,0|2
~ ( Z)212+2(11 +3) 212

J1t+j2=k.j2=2

1 VvV
ST+ Z/ )2(k—j1)+2 = do + 38,
J1=2
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In the general case, we replace (V! prop)™i by (Vip)™i where p is either pp
or p. In both cases we will use the weaker estimates (4.40).
First, assume that m; = 0 fori > 4’% -+ 1, then from (4.40):

1 A
INji ol S DV Aprod —— > M2, [(V o)™ |
pTOt m1+2m1+-~~+j2m_,~2:12
_ 21V Al
~ pTot(Z>j2

and the conclusion follows as above. Otherwise, there are at most two value

4];’” <iy <ipy < jpwithm; ,mj;, # 0andm; +m;, < 2.Hence from (4.40):

1 1 pp \"
J2+1 I(vl )mll S a1 |Vllp|mll |vlzp|m,2 H0<1<J2 i¢f{iy,iz} ( )
Plon P (2)
~(IVPBINT (1VRAINT 1
~ oD oD pD<Z>j2—(mi1i1+mi2i2)'
Assume first ip > 2k’” + 1, then m;; = 0, m;, = land j; +3 < 4k’” from
which:

: [V25[? 1
f Pt Nji o * S b / PTot| VI Apror >

o p%(Z)z(jZ—lé)
i) A12
< p VEAI
~ (Z)2(2=i2)+2(1+3)

> A2
4 V20l
Sb / (Z)2k=i2)+6 = do

There remains the case % + 1 <iy <ip <=2 whichimply j; +3 < ’",
and we distinguish cases:
—case (mi;, mjy) = (0, 1):1f j; + 3 < =g*, we estimate

- Nl 1
/p%othjl,jzlzSb“/p?)IV““ApTotF 5

IOD p%(Z)z(jZ_iZ)
ir A12
< bt V2ol
~ (Z)2(2=i2)+2(j1+3)

o
4 V2|
Sbh /Wf%.
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On blow up for the energy super critical defocusing NLS

2Kk
T .
and we estimate from (4.40), using k,, large:

z-ldz
2 2« 14 4
/PTot|Nj1,j2| Sb fmgb < dp.
(Z) (e+4)

Hence%+l§j1+3§2k—”‘,

Otherwise, % +1 < j+4+3< 3

A i 2k
9 +1512§ 3

— case mj, + m;, = 2: we obtain from (4.40) and j; + 3 < @

4
, 1 dZ

/ Pl N, ol S b* f ppld" T Apral* | — ) <o f — < do.
(Z)#+ (Z)%m

Step 6 NL(p) term. We need to estimate

f 03, VAKTNL(p) - vV

which requires an integration by part in time for the highest order term. We
expand using that, according to our assumptions, the nonlinearity is an integer:

p—1
~ ~ p— —1 -2 ~ ~ —1—
NL(3) = (pp + )"~ = p} = (p =Dy A= cqblp)  *

q=2

and hence by Leibniz:
p—1

< o N ool

AK'”NL(p) — Zcqpq 1 (AK”’,O) pg q
q=2

p—1
+Z Z Z Vllﬁ...véqﬁvjz(pg—l—q)

q=2 jit+jo=k li+-+lg=j1,61 <Ly <k—1

Let
~ i —1—
Nepotgojig = V95 VpVR(D™, 4y < < ¢y,
case Ly < k;, — 2: we estimate

p—l—q
- - Pp O0<m; <k, —1
. < my s, V"
VNG oty inal S IV 5 V= | S
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We may reorder my < --- <mg. lf my < 4];'”, then

_ -
- A pp T o
----- 4 ,jl,q| ~ i j ~ k
! (Z)th (Z)2 ™7

and hence the contribution of this term

2 2
/,OTOJVNeI ..... 191" = do.

If 4k’” <myg =< ’" , then similarly, combining (6.9), (6.1):

..... tirgl S 55
q-J1-49 <Z>]2 (Z)%

2km

and the conclusion follows. If m, > , then mg_) < =g* from which:
—1- -1
il jrgl (Z>jz <Z>j1+1—é <Z>km+1 mgy

and hence the bound

2 \WN 2 2p-42  IVMap)?
PTol VNGt jial™ S | Pt 2 m 2
S YR, 1,1y < do.

case Ly = kp, — 1: we compute VNy, . i1q- If the derivative falls on ¢},
Jj < g — 1, we are back to the previous case, and we are therefore left with
estimating

p I—¢
10 ‘e 5ot pl P2 —
(Z))2

b+ -+l +km=j1+1
J1+ Jj2 = km.

If j1 =k, — 1, then j2 = 1,4y =--- = {41 = 0 and we estimate relying
onto the smallness of from (7.4) (for Z < Z*) and using (4.40) together
with the smallness of ( ) ! (for Z > Z*):

p 1—q p 1—q 5
V5o Vi gV |—< T ST pIoL— 7 < doep IV
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On blow up for the energy super critical defocusing NLS

and hence the corresponding contribution (p > 3)

2 2
0 [ ot < o,
Similarly, if j; = k;, thené; =---={;, 2 = jp =0and {;, | = 1.
Pp_l_q 1
VO Vot pVin 1L < 5172V 5| VRl pl

(Z)jz
_2 ~
< doph VR |

Highest order term We are left with estimating the highest order term:

1— ~
NE lgajig = pq lpD qAKmIO-

We treat this term by integration by parts in time using (7.8):
~— —1— ~
—/p%otv[p" LT aR ] v
= / F1 o BV - (03 V)

=- / 1~ 1/0,’3 ! Brptot [0 o — (Hy — k(Ha + AH»)) fr

+HyAfr + (A" pro) AW
+ KV pror - VI +2V(AK prop) - VW — Fl} (7.18)

and we treat all terms in (7.18). We will systematically use the smallness (4.27).
The 9, px term is integrated by parts in time:

- A 1 d - .
—/pq Lol T Pt ke pr = — = — /pq b T prot}
2dt
1 [. o1 el
+§/p;381 <pq ob qIOTot)
1d ~q—1 p—l—q =2 p=12
=—§E{/p" Pp PTotP) ( + O S/pD Pk
and the boundary term in time is small
~q— —1- ~ -1
/p" Lol prowpi S(Sfpﬁ pi.
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We then estimate:

~— —1—qg ~ ~
Vﬂq Lol T Brotor(Hy — k(Ha + AHb))

’S k(S/'O'{zOtlﬁlz S/ 8ka
Using the extra decay in Z and ||AV |1~ < § K 1:
~q—1 p—1—q ~ Ko vl <y
P pp PkPTot (A" pro) AW | S dp

dz o
/—< o +fﬂfot PRIAW| < do+ 8 Jp,.

Z)2
Similarly, after an integration by parts:
‘— / P o) T ot V(A o) W‘ < do
+ ‘/ A1 b pr V(57 - V‘I" <do+ 38y,
Similarly, after an integration by parts using (4.40):

~g— —1—qg ~ ~
‘—/Pq Lol T prptoc Ha A ik | < do

i

Z|Vp|

L>® PTot

PTot

) Jiw < do + 8,
LOO

and similarly

~— —1—qg ~
‘/p" Lol 7 5k V prog - VW

Sdo+ 8k,

Step 7 Conclusion for k = k,,(d, r) large enough. We now sum the collection
of above bounds and obtain the differential inequality with k = k,,.

4 {Jk, 1+ 00))}
dr = ™"

< —k [1 + 0 (%)] /(Hz + AH>)

~ -2 ~
x [B1V 51 + (p = D po1ai} + PRl VUL

| =
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On blow up for the energy super critical defocusing NLS

~k [ (0 = Dondz (ol iorwi+ .

We recall from (2.21), (2.22):
Hy + AHy = p(1 —w — Aw) > ¢cqp >0 (7.19)

and we now claim the pointwise coercivity of the coupled quadratic form:
3cq,p > O such that VZ > 0,

-2 ~
(H + M) [ (p = Do o1} + 02 VWi |

+(p = Dppdz(p Aoz Wk
-2 -
> cap [ (p = VPG o1} + 02 VUi ] (7.20)

which, after taking k > k*(d, p) large enough, concludes the proof of (7.6).
Proof of (7.20). The coupling term is lower order for Z large:

p—1
PTot

(2)
-2 ~
=8 [(p = Do proai} + PR VUL

_1 ~ ~
I(p — Dppdz(pp )AdzVil S Pk PTot 0z W

for Z > Z(8) large enough. On a compact set using the smallness (4.27),
(7.20) is implied by:

(Hy+ AH>) [(p — DORE + pp | VU] + (p — Dppdz Qpkdz Wi
> ca,p [(p = DOGE + ppI V] (7.21)

We compute the discriminant:
Discr = (p — 1)*pp(920)° — 41’ (p — Dpp Q(Ha + AHy)?

9 2
e [(p— D’ ZQQ) -

4’1 —w — Aw)z} .

We compute from (2.10):

(820)? 2
(= D=5 == (2aZ\Fg>
_ 2
=(p-1 (%«/Zaz(oZ)) = (1 —)*(02(Z0))*
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4

= —(2(20))* = 4p*(0 + Ao)’

and hence from (2.21), (2.22) the lower bound:

—Discr = 4p*(p — Dpp 0 [(1 — w — Aw)* — (0 + Ao)?]
> cqr(p— DppQ, car >0,

which together with (7.19) concludes the proof of (7.20). O

8 Control of low Sobolev norms and proof of Theorem 1.1

Our aim in this section is to control weighted low Sobolev norms in the interior
r < 1(Z < Z*). On our way we will conclude the proof of the bootstrap
Proposition 4.4. Theorem 1.1 will then follow from a classical topological
argument.

8.1 Exponential decay slightly beyond the light cone

We use the exponential decay estimate (3.5) for a linear problem to prove
exponential decay for the nonlinear evolution in the region slightly past the
light cone Z = Z,. We recall the notations of Sect. 3, in particular Z, of
Lemma 3.7.

Lemma 8.1 (Exponential decay slightly past the light cone) Let

- Zr+ Z
o= Q
2
Then, there holds the following bound:

8

27, (8.1)

||vq)||H2k()(Z§Za) + ”p”HZkO(ZEZa) Se

Proof The proof relies on the spectral theory beyond the light cone Z = Z;
and an elementary finite speed propagation like argument in renormalized
variables, related to [48].

Step 1 Semigroup decay in X variables. Recall the definition (4.12) of X =
(®.7)

O = ppV¥

T=09,D+aH,A® (8.2)
=—(p—1D0p—HAP+ (H —e)®+ Go +aHr,AD
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On blow up for the energy super critical defocusing NLS

with G¢ given by (3.11), the scalar product (3.44) and the definitions (4.14),
(4.15):

Ao ={reC, RN >0}N{Ar isaneigenvalue of 1M} = (X;)1<i<n,
V = UlfifN ker(m — )\,'I)k)‘i

the projection [P associated with V, the decay estimate (3.5) on the range of
(I —P) and the results of Lemma 3.5. Relative to the X variables our equations
take the form

0: X =1MX + G,

which are considered on the time interval 7 > 7p >> 1 and the space interval
Z € [0, Z,] (no boundary conditions at Z,). We consider evolution in the
Hilbert space Hly, with initial data such that

_lg _ 3%
I =P X @)l <e 20 [PX(o)l,, <¢ 50 (8.3)

According to the bootstrap assumption (4.45)

§
IPX(D)llpy, <€ 27, ¥ elw, 7] (8.4)

Lemma 3.5 shows that as long as

_ %
IGlliy, <e” 37 =70, (8.5)

there exists I', which can be made as large as we want with a choice of 7,
such that

)
IPX(D)ly, Se 27 tm<t<t+T. (8.6)

~

This will allow us to show eventually that if we can verify (8.5), the bootstrap
time t* > 19+ I'.
Moreover, as long as (8.5) holds, the decay estimate (3.5) implies that

.
I = P)X (D)l < e 2T NX (0) 1y,

i —6—g(r—a)
+ e 2 I|G(0)||H2k()d0
70

g [ 3% oo 4
Se2’? 62’°||X(T0)||H2k0 —1—/ e 6%dt

70
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<e 2% 8.7)

As aresult,

3g
IX(Olliy, Se 27 wn<t=<th (8.8)

Below we will verify (8.5) VT € [, T*] under the assumption (8.7), closing
both. Once again, this will allow us to show eventually that the length of the
bootstrap interval 7* — 7y > I is sufficiently large.

Recall from (3.13), (3.14), (3.44):

1G I, < / VARG 1>gz47 dz +/ G3797'dz (8.9
0 Z<Z, Z<Z,
with
Gr = :Go — (Hi + H2") Go + H2AGo — (p = D QG

Gy, =—pAVY —2Vp . -V,
2
Go = —pp(IVU[* +NL(p)) + L Aprar.

Step 2 Semigroup decay for (p, V). We now translate the X bound to the
}:iounds for p and W and then verify (8.5). We recall (8.2) and obtain for any
Z > 7>

1T 1 k0 7<) + 1P pano+1(z< 2
S el o z<z) + W gor z<2) +1G ol v 222,

SJ ”T||H2k0(Z§Z) + ”cD”HZkOH(ZSZ) + ”Gq)”szO(ZSz)
and claim:
1Gall 5 S IV .+ llell? , e %7 (8.10)
[} szO(ZSZ) ~ H2k0(Z§Z) IO HZkO(ZfZ) . .

Indeed, since H*0(Z < Z) is an algebra for ko large enough:

1P (V9P + NLOD N t0 222 S 19105 5 + 10 33t

The remaining quantum pressure term is treated using the pointwise bound
(4.40) for small Sobolev norms and the smallness of b which imply:

S C[(bz 5 e—ﬁgf

H bZPP ApTot
H?*0(Z<27)

PTot
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provided §; > 0 has been chosen small enough, and (8.10) is proved. Choosing
7> Z», this implies from (8.2) and the initial bound (4.19):

||X(TO)||H21<() 5 ”\D(TO)”HZ/C()H(ZEQ) + ”p(TO)||H2k0(Z§Z) =+ e—zﬁgto
3g T,
<e 7 (8.11)

This verifies (8.3). On the other hand, choosing 7= Za with

~ Zr+ Z
Z, = Q,
2
we also obtain from (8.8)
_ _ gt
||‘-IJ(T)||H21<0+1(Z§Z&) + ||p(f)||H2ko(Z§Za) S 1 X (T) e + € %7 Se 7.
(8.12)

The estimate (8.1) follows.
Step 3 Estimate for G. Proof of (8.5). We recall (8.9). On a fixed compact
domain Z < Zy with Zy > Z;, we can interpolate the bootstrap bound (4.39)
with the global large Sobolev bound (4.38) and obtain for &, large enough and
by < bo(k;,) small enough:

||p”H2k0+10(Z§ZO) + ||lIJ||H2k0+10(Z§ZO) S CKe_|:

and since H 2% is an algebra and all terms are either quadratic or with a b term,
(8.13) implies

”GT||H2"0+5(Z§ZO) + ||Gp||[-12ko+5(zgzo) + ||G‘I>||H2k0+5(Z§ZO)

<o)t _ e (8.14)
which in particular using (8.9) implies (8.5). |

8.2 Weighted decay for m < 2k derivatives

We recall the notation (3.8). We now transform the exponential decay (8.1)
from just past the light cone into weighted decay estimate. It is essential for this
argument that the decay (8.1) has been shown in the region strictly including
the light cone Z = Z;. The estimates in the lemma below close the remaining
bootstrap bound (4.39).
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Lemma 8.2 (Weighted Sobolev bound for m < 2kg) Let m < 2kg and vy =
S 2(r—1)

20 =T recall

1 Z 1 for Z <2
Kvo.m = <Z>d—2(r—1)+2(vo—rn)§ (ﬁ)  ((2) = 'O for Z =3,

then

2ko d

45
>N / (P = DO 0)* Kopum + VO ®P ggm < Ce™ 5 7. (8.15)

m=0 i=1

Proof of Lemma 8.2 The proof relies on a sharp energy estimate with time
dependent localization of (p, ®). This is a renormalized version of the finite
speed of propagation.

Step 1 H™ localized energy identity. Pick a smooth well localized radially
symmetric function x(t, Z) and a coordinate 1 < i < d and note for m
integer

/Om=8imp’ q)m=3,mq>»

where we omit the i dependence to simplify notations. We recall the Emden
transform formulas (2.24):

Hy = p(l —w),
Hy = 451 —w)[1 + 2], (8.16)
H; = 2pp

pp’

which yield the bounds using (2.19), (2.20):

— 1 — _2ur=D 1
HZ—H"FO((ZV)’ .Hl —_ll},+1+0<(z)r)a
(Z)7 07 Hil + (Z)/ 97 Ha| < z7 iz, .17
(Z) 9y H3| S 175 ‘

1

1 jnJ 1
m [1+ (0] W)] Sj |<Z>J82Q| Sj W
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and the commutator bounds:

18", Hilpl S 370 - 27

Zyr+m=j>
187, p|
|V( i 1]/’)| Zl}lo”mzﬁv
8", Qlpl S @ Y1) 'BZ,,,’",, (8.18)

d
07, Halpl S Y, 40

A
IV (10", HalA®) | S Y0 2T

Commuting (3.9) with 9;":

Ocpm = Hipm — Hy(m + A)pyy — APy, + aimGp + Em,p’
0P = —(p— D)Qpm — Ho(m + AN)®y, + (H; — )Py + 0" Go + Epn oo

with the bounds

187 0l \3 ®|
|Em Pl Z 0 rzl+m J +Z O ym— j+2’
Jj= Jj=

1971 m+1 |07,
|VEm,(D| QZ] 0 mZ+l j +Z r+m J"

Let x be an arbitrary smooth function. We derive the corresponding energy
identity:

o /(p— D02 K + IV Px
T

1
-3 / dex [(p — DQOL + VO]

+ f(p 1) Qpux [Hipm — Halm + A)py
—A®, +0"Gp+ Em,p|

+/Xv¢m -VI[=(p—1)0pn — Hy(m + Ady,,)
+(Hy = 1 = 20)®p + 8,Goo + Eno ]

- %/afx [(p = DORR + VD, 2]

+/(p — DQpmx [Hipm — Hy(m + A) pp

+O1Gy + En,] + /(p — 1) QomVy - Yy
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+/qu>m -VI[=Hy(m 4+ AP,

+(H; — p(r =2)Pp, + a,‘mGQD + Em,QD] .

In what follows we will use w > 0 as a small universal constant to denote the
power of tails of the error terms. In most cases, the power is in fact r > 2
which we do not need.

Pm terms. From the asymptotic behavior of Q (2.20) and (8.17):

—/(p — D) OQpmx HyApm

p—1 5 AQ AH; Ay
=L - Hold+ =Xy 2772, 4
5 PmX Q 2[ + 0 + A + p

feo-tronft o)
= [ pulp = DxQuiz— 7)o

1
+§/(p — 1)QHAxp}

d,, terms. We first estimate recalling (8.17):
f XV, - V[(—mH; + Hi — u(r —2))Pp]
= [mta+ = = D)0,

X
0 V(Dm ¢l”'l
+ ( / Lo 1va,| |)

= _|:M(m+r_2)+%:|/)(|vq)m|2

[ ven+ 55])
(0] Vo, — .
- (/ ) [' 22

From Pohozhaev identity (5.27) with F = x H»(Zy, ..., Zg):

_/qu)m - V(H,ADy,) = / H2Aq>m[XAq)m + VX Vo]

d
1
=— Z /a,-Fja,-cbma,-cbm+§/IV<I>m|2V-F
i,j=1

+fH2A®mVX .V,
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d
= Y 9P P [0 (X HaZ)) + HaZj0ix ]
i, j=1
1 A AH
+—f|vq>m|2XH2 d+ =24 22
2 X Hy

M(d—z)f 2 1] 2 / X 2
= 7 Vo, — | HyAx|VP, o Vo,, .
. XIVO2 45 [ HaAx [V, + Vel

The collection of above bounds yields for some universal constant w > 0
the weighted energy identity:

1d B 2 2
> 7% {/(p DOp;,x + IV, x}
= —/x [(p — DOpy, + VO]
d 2u(r —1) 1
<l (n =g 1) S 0 ()]
1
+s f(p — QP2 9y + HaAy]

1
+§ / |VCI)m|2 [0: x + HaAx]+ /(P —DQpuVyx -V,

m+1 J &2 m J o2
|8ZCI)| Qlazp|
+0 /X Z <Z>2(m+1—j)+a) +Z <Z>2(m—j)+a)
j=0 j=0
+0 (/XIWDmIIVEV”chI+/XQ|pm||3’"Gp|>. (8.19)

Step 2 Nonlinear and source terms. We claim the bound for x = xy m:

2ko d
Z Z/ Xvo,m|V3qu>|2 + /(p — I)QXUO,m|8mGp|2
m=0 i=1
2ky d
S (Z Z/ QO Xop+1m + |V<I>m|2xv0+1,m> + 0% (8.20)
m=0 i=1

G, term. Recall (3.11)
Gy =—pAV¥Y —2Vp -V,

@ Springer



F. Merle et al.

then by Leibniz:

2 i 1219 0p 12
10"Gol” < E |0/ p|7[072 W]~
Jit+j2=m+2, jp>1

We recall the pointwise bounds (4.40) for Z < 3Z*,

Ck

J2 -t
[072W| < 22

191p] <

20D

(z)/

This yields, recalling (8.33), for j; < 2ko:

, . VA [871p]2
J1 512197212 =
/XVO”"Qla PITIEWITS / e¢ (Z*) 72(a—m)+d—2(r—D)+2(r—2)+2vg

VA |8j',0|2 J1 i
5 /g (?) Q<Z>d_2(r—l)+2(‘)0_jl)+2 rS Zf XU0+1,j1Q|8ZIO|
Jj=0
2kyg d

S_, Z Z/ Q;O;EZXU(H-I,m + |vq)m|2Xvo+1,m-

m=0 i=1

For ji = m + 1, jo» = 1, we use the other variable:

) . A |9/2w|?
371 21922 < / =
/X"O”"Ql Pl "3 el Z201=m)+d=2r— D+ 421
< [¢ z p%|8j2\p|2
N Z* ) (Z)d=20—=D+2(w—)+2

L z 10, @2
NJZ_(:) ‘Nz (Z)d=20=D+200—))+2

J2 2ko d
j 2 2 2
5 Z/Xvo-l—l,ﬂaécm 5 Z Z/ meXvo—H,m + VO, Xvo+1,m
j=0 m=0i=1

and (8.20) follows for G, by summation on 0 < m < 2kj.
G term. Recall (3.11)

2 bsz
Go = —pp(IV¥]" +NL(p)) +

ApTot-

Tot
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On blow up for the energy super critical defocusing NLS

We estimate using the pointwise bounds (4.40) for j3 < 2kgp:

2 1 1
V" (0P |V S > WI LE_|aitlgyitly)
Jitptji=m+l,jp<j3
1 .
< |8j3+1\11|
~ 2D i tr =2+ o+
Jitjatjz=mA1,jp<jz (Z) P71
2k i1
- |3J3+ |
~ Z\r+m—j3
J3=0 (2)
and since r > 1:
2ko |8J3+](D|2 2ko
Z/Xvom 2(r+m ) ~ Z/Xv0+l]3|vq)j3|
J3=0 J3=0

For j3 = 2kp+1, we use the other variable and the conclusion follows similarly.
The quantum pressure term is estimated using the pointwise bounds (4.40):
5 CK b4 / 4(rX‘I)§) =
7<37* <Z> +2(m+3)

2
b*pp
/Xvo,m vam( P AIOTot)
zd-laz 12

PTot
S CKb4/ =D =
Z<3Z7* (Z)d 2(r—=1)+2(vo+= =+ —m)+2(m+3)

Step 2 Initialization and lower bound on the bootstrap time 7%,
Fix a large enough Z( and pick a small enough universal constant wg such that

VZ >0, —wo+ Hy > % >0 (8.21)

and let I' = I'(Z) such that

Zo
2Z

el = 1. (8.22)

We claim that provided 7o has been chosen sufficiently large, the bootstrap
time t* of Proposition 4.4 satisfies the lower bound

™ >1+T. (8.23)
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Indeed, in view of Sects. 5, 6, 7 there remains to control the bound (4.39) on

[0, 70 + I']. By (8.6) (8.7), the desired bounds already hold for Z < Za on
[T, 0+ T'].

We now run the energy estimate (8.19) with x = x,,,» and obtain from
(8.19), (8.20) the rough bound on [tg, T*]:

d 2 2
E (p— I)meXvo,m + |V, | Xvo.m

<c / (0= 12 Xogm + VB 2o + b2

which yields using (4.19):

/(p — 1)QP2 xvom + VPl Xug.m

< £CT—10) f(p _ 1)Q(pm(0))2xv0’m + |V<Dm(0)|2)(vo,m
+eC7 /t e~ (CH2)0 45
70

< eCF [Coe—ég‘ro +e—28gro] < 2eCFCOe—5g‘E0

and hence

) 2 2
e’ (p — D OPy xvo.m + IVPul” Xvg,m
43g - 4dg
<esWes ' [ / (P — )OO xvo.m + 1V P> Xug.m

< [0 =106 + |V<I>m|2xuo,m]
= 26CT Cpets™e £ < Q20T =m0 < 1
which concludes the proof of (8.23) and (8.15) for t € [tg, 9 + I'].
Step 3 Finite speed of propagation. We now pick a time 77 € [t9 4+ I", 7*] and

propagate the bound (8.1) to the compact set Z < Z using a finite speed of
propagation argument. We claim:

Il ||§12k0(25%) + VW ||22k0(25%0) < Ce %, (8.24)
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On blow up for the energy super critical defocusing NLS
Here the key is that (8.1) controls a norm on the set strictly including the light

cone Z < Zp. Let
Za + 7>
(8.25)

and note that we may, without loss of generality by taking a > 0 small enough,

assume:
<2.

SR

0 —wo(Tr—71)

Recall that I' = I'(Zy) is parametrized by (8.22). We define

X(T,Z)=§<—>, (1) = —-e
v(T) u
with wp > 0 defined in (8.21), (8.22) and a fixed spherically symmetric non-
increasing cut off function

Z=Za < (8.26)

1 for 0 <
Z: - ~
¢(2) ' or Z>27,.

0 f
We define
=17 —T
so that from (8.22):
0 <71 < T,
v(1r) = Lo 0(r—m) = Lo pmonl — | (8.27)
274 274

We pick
0<m <2k

then (8.26), (8.27) ensure Supp(x (tr, -)) C {Z < Za} and hence from (8.1):
(8.28)

(/(P - I)Q,O,%lX + |vq)m|2)() (‘L’F) 5 e_agrr‘

This estimate implies that we can integrate energy identity (8.19) only on the
@ Springer

interval [tr, T¢]. We now estimate all terms in (8.19).
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Boundary terms. We compute the quadratic terms involving A x which should
be thought of as boundary terms. First

0;vZ Z
orx(t,2) =— N e 5 = —woA)x.

We now assume, recalling (8.16), that wp has been chosen small enough so
that (8.21) holds, and hence the lower bound on the full boundary quadratic
formusing Ay < 0:

1
. f(p —1)QP2 [dex + HaAx]
1
+§fIV<I>m|2[3zx + HyAx] +/(p —DOpuVyx -V
! 2
= / E(P —1)0p;, [—wo + H3]
1 5 0
+§|V(Dm| [—wo+ H2 ]+ (p — I)EaZ(Dmpm} Ax.

From (3.18), the discriminant of the above quadratic form is given by
07 2
(p=D~| — (oot H)*(p—-1Q
(p—DHO
=(p-1Q [ o~ (Coo+ )’

2
:(p_l)MZQ[Uz_(—%-l-l—w)}

= (p — DU’ Q[~D(Z) + O ()]
We then observe by definition of x that for t > 1r:

~ 7 ~
ZeSuppAx & Z;, < —— <

from which since Za > 7Z»:
Z € SuppAx = —D(Z) + O(wg) <O
provided 0 < wp < 1 has been chosen small enough.
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Together with (8.21) and A x < 0, this ensures: Vt € [, T%],

1
5 /(p —1)OP2 (8 x + HaAy]
1
= / V@ P [0 x + HaAx] + /(p D)oV - VD <0
(8.29)

Nonlinear terms. From (8.26), (8.25) for T < ty:

. . Z0 Za
Suppx CH{Z = v(1)Z4} CH{Z < v(tp)Z4} = {Z < 702—} C{Z < Zy},
a

and hence from (8.14):

/XIVBqu>|2+/(p— HOx3"G,*

< IVGol? + G,

2 <
H0(Z<Z0) H*0(z<Zp) —

Conclusion. Injecting the collection of above bounds into (8.19) and summing
over m € [0, 2ko] yields the crude bound: VYt € [tr, 7¢],

d 2k ) 5
- [Z [=n0sx + Ve x]
m=0
Zko 43
=CY [0 10ekx+ VoL +e
m=0

We integrate the above on [, 7] and conclude using

X(Tf,Z)=§( )=§' Zio =1 for Z < Z

v(Tyr)

a

and the initialization (8.28):

2 2
Ty
< Cr—r) p=dgr +/ ' ec(rf_a)e_g”do

T

< CM)e %Y = C(Zy)e %7,
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Since the time 7 is arbitrary in [7g + I', 7*], the bound (8.24) follows.

Step 4 Proof of (8.15). We run the energy identity (8.19) with x,, ,, and
estimate each term.

Terms % <Z< % In this zone, we have by construction

p=p
and hence the bootstrap bounds (4.38) imply

<1

Him(Z<50) ~

101 gt 7 20, + 19

and hence interpolating with (8.24) for k,, large enough:

N ()
a0 ST

”IOHHm(ZO<Z<ZO) ”IOH LZ(Z0<Z ) ~

Him (A <7<
45

<e T (8.30)

and similarly for the phase

_% m 48,
IV <e? (-2) < % (8.31)

H™( ZO <Z<ZO) =

Linear term. We observe the cancellation using (8.17), (4.2):

1 VA
aTXVOJ" + HZAXUO:m = <Z>d—2(r—1)+2(vo—m) |:_'LLA; (?)}

1 Z
+u(d —w) <Z>d_2(r—1)+2(vo—m)A§ z*

1 Z
4 (g )¢ (7))

=—pld =2(0r —=1)+ 2o —m)] xvy.m

1
o <<Z>d—2<r—1>+2<m—m)+w> (8.32)

for some universal constant w > 0. We now estimate the norm for2Z* < Z <
3Z*. Using spherical symmetry for Z > 1 and m > 1:

185 p
1Zm0" p| < szznf S ZZJ|aJp| (8.33)
j=1
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and hence using the outer L° bound (4.40):

(p— QI3 p|> + |3V |2
d7r<g <37 (Z)d—Z(r—1)+2(v0—m)+w

| zielp [P 719, ?

N —— +
~ /22*52532* Jg (Z)%+V0+% j; (Z)v0+%—(r—1)+1+%
< / N Z79}p

m—+1 inJ

= B

1

< (1 + bZ(Z*)z(’_z)) < e (8.34)

®+2 [v0+ 22:11) ]

(Z%)
using

b(Z*)r—Z — er[—e—l—u(r—Z)] — et[—e+1—2u] =1

and the explicit choice from (4.17):
2(r — 1)
2 — ) =4,.
g (vo e ) ¢

Conclusion Injecting the above bounds into (8.19) yields:

1d 5 5
EE (p— l)meXvo,m + |V, Xvo,m

2u(r — 1)]
p

=- / Xoom [(P = 1) Qpp, + VO[] [lwo +

m+1 |8£d>|2
Zo<Z<27" vo,m Z (Z>2(m+1—1)+2a)

m=0

m

018} by
+2 (Z)2m=)+20 te 3
j=0

+0 (f Xvo,mlvq>m||V8mG<D|+/Xvo,mQ|pm||amGp|

N——
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and hence after summing over m:

1d [
EE {Z /(P - I)Q:O;%,Xvo,m + |vq)m|2Xvo,m}
m=0

2ko

2(r — 1
=~ [vo-i- ;r_l)} Z/xvo,m [(p = DQpp + VP’
m=0

2k
_ 4
+0 (e 57+ E /(P - 1)Qﬁ3¢XV0+a),m + |V<Dm|2Xvo+w,m)
m=0

2ko

+3 0 (f X VO IIV0" Gl + [ xuo,QOmname)
m=0

Using (8.24) we conclude
W ED
o [Z [ =105t + |V<I>m|2xvo,m}
m=0

B 2= (1
=—Q|vo+ —1 + Z_g

2ko

<3 [ s [0 = QB2 + 190, P]
m=0

2kg
48
+0 (e_SgT + Z / XV(),mlvamG®|2
m=0

+ / (p— 1)vao,m|a’"Gp|2). (8.35)

Therefore, using also (8.20), for Zy large enough and universal and

5 +2(r—1) 5
Y — ) =4,,
n\Vvo p—1 g

there holds

2ko

d

E {Z /(p - DQpr%zXVo,m + |Vq>m|2Xv0,m}
m=0
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2k

45
gZ/xmm (p— DO + VD, 2] + Ce

T

Integrating in time and using (4.19) yields (8.15). O

8.3 Closing the bootstrap and proof of Theorem 1.1

We are now in position to prove the bootstrap Proposition 4.4 which immedi-
ately implies Theorem 1.1.

Proof of Proposition 4.4 and Theorem 1.1 Recall that the non vanishing of the
solution is ensured by (4.27). It remains to close the bound (4.26). Indeed, from
4.1), (4.2), (4.8) for Z > Z*:

|Au| _ (Z*)?
Sj |ApTot| +
PD PD

<1,

~

[0z pTot 102 WTot] | 0Tot AWl ]
b +

where we used (4.40) in the last step. The |u|? term is handled similarily, and
(4.26) is improved for by small enough.14 Note also that the bounds (4.40)

imply
lu(l gre = C(2)

for ‘71 & k¢ K kyy, for times in the bootstrap interval and hence the bootstrap
time is strictly smaller than the life time provided by standard Cauchy theory.
We now conclude from a classical topological argument a la Brouwer. The
bounds of Sects. 5, 6, 7, 8 have been shown to hold for all initial data on the
time interval [, Tg 4+ '] with I large. Moreover, as explained in the proof of
Lemma 8.1, they can be immediately propagated to any time t* after a choice
of projection of initial data on the subspace of unstable modes PX (7).

This is done as follows. We define a decomposition of the the set of initial
data X (7). Recall that the restriction of the data X (7p) to the interval [0, Z,]
is contained in the Sobolev space Hy, which can be split into a direct sum of
the stable and unstable subspaces

Hox, =U @ V.

14 The smallness of by is responsible for the size of the time length between initial data and
formation of a singularity.
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For functions defined for all Z, we define a subspace of functions satisfying
the assumptions of Sect. 4.3 on initial data

Vreg = {(57 \Ij) . ”59 \IJ”km < OO}

with the property that V., has the same dimension as V' and its restriction to
[0, Z,] satisfies the property

dist(Vreg, V)i, < € 4™, (8.36)

Note that the space V,., consists of functions which are defined for all Z
and which are more regular on [0, Z,] than the ones contained in V. We

can explicitly construct V,., by defining it as the linear space generated by

{v,1 gyt vy, g} where each vfeg is obtained from the element v/ —a generator

of V—by a smoothing and an extension procedure. The precise details of both
the smoothing and extension are not important, as long as (8.36) is ensured to
hold. By (8.36), the projection [P (composed with the restriction to [0, Z,]) is
an isomorphism between V;.., and V. Denoting the inverse of this isomorphism
by I, we see that it satisfies the property that P o I is the identity map on V.
We also define a complementary subspace W such that the space of all data
with || p, Wk, < oo decomposes into the sum

Vs @ W

with W obeying the additional property that PW = 0. We can further restrict
W to consist of functions satisfying all of the assumptions of Sect. 4.3 on
initial data. Let X (7) be the solution of the nonlinear problem (3.14) with the
initial data X (7p). We now apply Lemma 3.5 to x(7) = PX (7). We choose
the initial data X (79p) obeying all the initial data bounds with the additional
condition that it is of the form w + Iv with a fixed element w € W obeying
the bound

ey
lwllizy, < e 3

and any element v € V obeying

_ 3
lolley, <e

70 .

For such initial data PX (t9) = v and the solution X (t) depends continuously
on v. As a consequence, the right hand side F' of Lemma 3.5, which represents
the projection PP of the nonlinear terms G in (3.14), can be shown to depend
continuously on x (7). All other assumptions of Lemma 3.5 follow from the
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bounds of Sects. 5, 6, 7, 8 and Lemma 8.1. It now follows from Lemma 3.5
that, for any w fixed as above, there exists v™ = v*(w) such that the exit time
©* corresponding to the initial data X (tp) = Iv* 4+ w satisfies * = oo. This
concludes the proof of Theorem 1.1. O
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Appendix A: Comparison with compressible Euler dynamics

We consider the compressible Euler equations with a polytropic equation of
state:

dhp+V-(pu)=0,
pdu+pu-Vu+VP =0, xecR? (A.1)
—r=1l,y
P = P
fory > 1.
Each step below should be compared with the corresponding step in
Sect. 2.1.
Step 1 Scaling and renormalization. The scaling symmetry ' is

2
AV oMY, Ax), AvFTu(A7+Te, Ax).

We renormalize self-similarly

dr_l Ar 1
dt A%’ A2

15 We choose a 1-parameter of scaling transformation, which is compatible with the Navier—
Stokes equations, out of a larger 2-parameter family of possible transformations.
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and obtain

8m+%<#p+y‘vp>+v-(pu)=0,

(A2)
paru+2p<y+1u+y Vu)—i—,ou-Vu—i—VP:O.

As we did for the Schrodinger equations in Lemma 2.1, we proceed with a
front renormalization

p> ——p(yVb), urs bju(yf)

br-1

with

and consider a potential spherically symmetric flow withu = V¥ = ¥’ Note
that for the Euler equations, unlike the Schrédinger and Navier—Stokes cases,
the front renormalization corresponds to a symmetry of the equations. A direct
computation in which we also integrate the second equation leads to

—0ep = AV + (557 + 7hp) + 22 [(155) 2+ V]

2
—o,w = LVwR 4+ (e—m> 1+ (55 Z - vw + pr-!
These equations should be directly compared to the Schrédinger equations in
their front renormalized, self-similar, hydrodynamical formulation (2.5).

A stationary solution of the above equation satisfies

A+ (55 + ) + 22 [(559) 2+ ] =0,

2 1
Lvw + (e—m)\ll—f—(T)Z VW 4 p7 ! = 1.

(A.3)

Step 2 Emden transform. We introduce the variables

V=u, S=+2p'7,

where S is the space dependent sound speed, so that equivalently taking the
derivative of the second equation:

d—1 4 1 2 5
V/+TV+<yp—l+m)+ﬁ
VV’+<e—%>V+ ) (ZV'
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Let

x =logZ, V(Z)=v(x), S(Z)=s(x), ZdiZ = (;i%

First equation

v/+(d—1)v+ e N 1 N 2 5’1 1—e Z4V
Z Z yv—1 y+1) y—-1sz|\ 2

and hence letting

v(x) =e*w, s(x)=c*o
yields

w' +w)+d - Dw

n e n 1 n 2 0/+1 l—e+ 0
J— [ w =0,
y—1 y+1 y—1\o 2

Y L P | 4 0
ow E—— w)o o — | W =
y—1\ 2 y —1 y2—1

Second equation. We get

vv/+ 1 N l—e W+ )+ss’_0
z \"Tyx)t )Yt T

and hence

, 1 1—e , , B
w(w —i—w)—i—(e—m)w—i—(T) (w +2w)4+o(0 +0)=0

or equivalently

1_
w—i——e w +o0’ + wz—i-Lw—l-cr2 =0
2 y+1

We have obtained:
Lemma A.1 (Emden transform) Let

x =logZ, W'(Z)=c*wx), S(Z)=ec*a(x), S=2p'T,
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then

(w+]2;e)w/+ao/+(w2+#w+oz>=O,

(A4)
ow/+%(%+w)a’+a[<d+%>w+ y%{l] =0.
Step 3 Renormalized form. We define
2 2 2 \?
! A ,¢>2( ):e
y —1 1—-eo+1) e—1
and the renormalized unknowns
o
U = w, X =—. (A.S5)
c—1 ¢

The second equation becomes:

sy =Yooy
2 2

trel(1+ D) =ty 2 1oy
¢) 2 (y2-De|

i.e.,

U+ W - 1) AV 2y —0
R [ L

The first equation becomes
e—1)\?
(T) UU' +¢*23

e—1)\? ’ y e—1 22
— ) U+ ——U ¥ =0
+|:( 2 ) +y+1 2 + o

and hence (A.5) yields:

2
(U—-1DHU +¢x32 + [UZ ) SE— +e22} =0.
I—=e(y+1

We arrive at the renormalized system

(U—=1DU 4¢3 +(U?—rU +£%%) =0,
ZU+U-DY+2[UE+1)-r] =0,
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which is identical to the system (2.11) for the defocusing NLS but with the
parameters

2 2y
£=—, | —
y—1 (- +D
in place of
4 2
{ = , r = .
p—1 (1—oe)

Appendix B: Hardy inequality

Lemma B.1 Assume 2y ¢ 7. Then, forallu € C,(r > 1) and j > 1:

rad
/ P utdr Sy Nl <o) + / P20t oluPdr. (B.1)
r>1 - = r>1

Proof Assume 2y # —1, We integrate by parts

/ 2 uldr = ! [r27’+1u2]fr°° — —2 / P2y, u dr
r>1 2V+1 2J/+1 r>1

1 1
2 2
< Cllulp g <pen) + € ( f y rzyuzdr) ( / N rZV”(aru)Zdr) ,
r= r=

where we used the one dimensional Sobolev embedding, and (B.1) for j =1
follows by Hélder. For higher values of j, (B.1) now follows by induction. O

Appendix C: Commutator for A¥

Lemma C.1 (Commutator for A¥) Let k > 1, then for any two smooth func-
tions V., ®, there holds:

[A%, VI —2kVV - VA @ = 3 Cta 53 VP BAC.1)
||+ B1=2k, | B| <2k =2

where 3% = 97" --- 9,7, |a| = a1 + -+ - + ag.

Proof We argue by induction on k. For k = 1:
A(VO) - VAP =2VV .-V,
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We assume (C.1) for k£ and prove k + 1. Indeed,

A (Vo) = A(AK, VI + VAFKD)

=A|2kvV.vaFlo 4+ > Chapd?VoPD + VAFD
lol+1B1=2k. | 8] <2k —2
=2kVV .- VA*®
+ > Ghapd® VD + VASI® 4 2VV . VAKD
|+ B|=2k+2,|a|>2
= VAo 12k + HVV - VAFD + > Chrl.apd VPO
o +1B1=2k+2. o[> 1

and (C.1) is proved. O

Appendix D: Behaviour of Sobolev norms

We compute Sobolev norms assuming that the leading part of the solution
is given by (1.9). Computations below are formal but could be justified as a
consequence of the bootstrap estimates.

Dirichlet energy of the profile. We show that the Dirichlet energy of the solu-
tion remains bounded until blow up time. Indeed, we recall (1.8), (1.9) and
compute:

IV pl2dx +f PV,

lx|=<1

IVulGs ~ 1+ IVl Gagy <y = 1 +f

lx|=<1

We compute for the first term:

d
1 (To —t)r 2z97'dz
2 *
/ |Vp| d_x ~ W‘/\ . 2 4()‘71)_‘_2
x|=<1 (T, — )7 |Z|5(T T (T« — )7 (Z) 1T
ot
. 1 / V4
- 2(20=2), 2 4 1 -2, 2 _d
7. _t),( Dy 2 dt1) |Z|S<r*7,)% Zl+2(1+ eP+2-4)
B 1 f dzZ
= (T* B t)%(l—a) Zl< | 1 <Z>1+2(lfc)
(Ts—0)T
with
2r — 2 d ¢ ¢
o :sc—(r—1)>1<:>§—§—§(r—2)>1<:>d—€(r—1)>2
p—
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04+d 0(d — /d)

d—2>¢ )=

< - (£+\/3 ) 0+ d
S (d—2DVd+t(d—2)>0

which holds, and hence

/ |Vpl?dx < 1.
x|<1

Similarily:
[ P’ IVl
lx|<1
d
_ 1 / (T — )7 z4-qz7
(T, — i+ 2572 Jizis— o (T, — )7 (7)20-2D+
(Te—1) T
_ 1 dz
- L(r—2+2 142 -4) Jizie— L 1224 2P 2
(T*_t)r(r =1 T z) |\S(T*4)% (Z) ( r =T Tp-1 2)
and at r*({):

2(r —2) 2 d ¢ d
r—2+ﬁ+1+ﬁ—5<0¢>(1’—1)<1+5><§
& QR4+0d—Vd) <dl+Vd) & dd—2)+ (L+2)vVd >0

which holds and hence
f P VoI S 1.
x| <1
In view of the above, we infer

sup [ Vu(t, )3, S 1.
tel0,Ty)

Blow up of high enough Sobolev norms below the scaling. Let us now compute
the behavior of higher Sobolev norms. We unfold the change of variables

u(t, x) = —L—v(s, y)e',

y=73
o . *
v(s, 1) = — (proeb ) (1. 2), Z = yb
(Vo)1
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which yields

1
19l 2 = 197Vl 2

v

p (Vb 5_7||V5(,0Tote 7 )||L2 (1Z|1=1)
T os— se(5/b) 7T

s=se —d__2 Yot
2T (VD) T |V (prore Wirzqzi<n

sse g s—§-22 1
(vVb) P
eP“+< =)

which blows up as soon as

1 d+ 2
>0 = —el=+——) .
* 1+e e ¢ 2 p-—1

We can check that at r*(£):

Vv

d 2 d 2
o>1& —— >1l4+e+te +—
2 p-—1 p—1

@6—21(1—6)> (1—|—e)<1+§)

po d+
@5;>;<r_1>(6+2)©d>(“2)<m_1)

SdWd—2)+E+2)Vd >0

The last inequality holds for our assumptions ond > 5 and £ > 0.
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