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ARTICLE

Modelling the persistence and control of Rift Valley
fever virus in a spatially heterogeneous landscape
Warren S. D. Tennant 1,2✉, Eric Cardinale3,4, Catherine Cêtre-Sossah 3,4, Youssouf Moutroifi5,

Gilles Le Godais6, Davide Colombi7, Simon E. F. Spencer 1,8, Mike J. Tildesley 1,2,9, Matt J. Keeling 1,2,9,

Onzade Charafouddine5, Vittoria Colizza 10, W. John Edmunds11 & Raphaëlle Métras10,11

The persistence mechanisms of Rift Valley fever (RVF), a zoonotic arboviral haemorrhagic

fever, at both local and broader geographical scales have yet to be fully understood and

rigorously quantified. We developed a mathematical metapopulation model describing RVF

virus transmission in livestock across the four islands of the Comoros archipelago, accounting

for island-specific environments and inter-island animal movements. By fitting our model in a

Bayesian framework to 2004–2015 surveillance data, we estimated the importance of

environmental drivers and animal movements on disease persistence, and tested the impact

of different control scenarios on reducing disease burden throughout the archipelago. Here

we report that (i) the archipelago network was able to sustain viral transmission in the

absence of explicit disease introduction events after early 2007, (ii) repeated outbreaks

during 2004–2020 may have gone under-detected by local surveillance, and (iii) co-

ordinated within-island control measures are more effective than between-island animal

movement restrictions.
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R ift Valley fever (RVF) is a zoonotic arboviral haemorrhagic
fever of increasing global health concern. In most cases, it is
asymptomatic in humans, but in some cases, it can cause

dengue-like symptoms, or in rare instances, more severe condi-
tions such as meningo-encephalitis, haemorrhagic fever or death.
In domestic ruminant livestock (cattle, sheep and goats), RVF
virus infections cause waves of abortions and high neonatal
deaths1,2. RVF was described for the first time in Kenya in 19313.
Since then, the disease has been reported throughout Africa, and
outside the African continent in Madagascar (1979), in the
Arabian Peninsula (2000) and in the Comoros archipelago
(2007)4–6. Beyond its potential for spread to further geographical
areas, a major concern is the likelihood of persistence in pre-
viously disease free regions7–11. These persistence mechanisms
vary between ecosystems depending on local host communities
and meteorological factors allowing favourable conditions for
mosquito vectors to complete their life cycle and to be capable of
virus transmission12. Whilst these mechanisms may apply within
a geographically limited homogeneous ecosystem, over a larger
geographical scale, one needs to account for spatial heterogeneity.
This includes considering other factors and mechanisms such as
the variability of the environmental conditions impacting vector
transmission, or the movements of hosts across space13–16.

Previous modelling studies for RVF have focused on estimating
key transmission mechanisms in single patch systems, e.g.
Mayotte17,18, or on viral spatial spread during or between epidemics,
e.g. in South Africa and Uganda19,20. However, no study to date has
estimated the importance of both environmental variables and
animal movements on RVF virus persistence in a spatially hetero-
geneous system, by fitting a mathematical model to disease data,
precluding the formal assessment of disease control measures in a
real-world settings. In order to better understand the mechanisms of
RVF viral spread and persistence in a spatially heterogeneous sys-
tem, we developed and fitted a metapopulation model to a series of
RVF seroprevalence studies in livestock across the Comoros archi-
pelago—a collection of four islands located in the South-Western
Indian Ocean, between Madagascar and Mozambique.

In this paper, we thus sought to (i) estimate the importance of
island-specific variables and animal movements across the islands
on RVF spread, (ii) assess the likelihood of RVF persistence in the
system without re-introduction from mainland Africa or Mada-
gascar, and (iii) assess the impact of livestock movement control
measures on disease incidence in the Comoros archipelago. To do
this, we developed a mathematical metapopulation model to
describe the spread of RVF virus within and between the four
islands of the Comoros archipelago (Fig. 1), and fitted this model
in a Bayesian framework to livestock seroprevalence data col-
lected from 2004 until 2015. Consequently, we estimated the basic
reproduction number of the disease on each island over time, and
the mean annual number of livestock which move between the
four islands. We then used our model to forecast specific RVF
antibody prevalence on all four islands in the absence of another
explicit introduction event of the virus from outside the Comoros
archipelago. Finally, we assessed the impacts of movement
restrictions and reducing within-island transmission on each
island upon the total number of new infections in livestock from
2004 to 2015.

Results
Livestock seroprevalence data. We used age-stratified RVF IgG
seroprevalence data collected in livestock as part of several sero-
surveys conducted amongst the four islands of the archipelago
(namely Grande Comore, Mohéli, Anjouan and Mayotte). A total of
8423 samples—2191 in Grande Comore, 475 in Mohéli, 857 in
Anjouan and 4900 in Mayotte—were collected over a 12-year period

(July 2004–June 2015). Summary statistics for these data are shown
in Fig. 2. For details on these data, refer to the Methods section.

Estimation of island-specific transmission and animal move-
ments. We modelled RVF viral transmission within age-
structured livestock populations within each island as a func-
tion of the Normalized Difference Vegetation Index (NDVI), and
between islands through the movement of livestock. Five models
with different relationships between NDVI and within-island
transmission were fitted in a Bayesian framework to the age-
stratified livestock seroprevalence data in order to estimate island-
specific viral transmission rates. We used Deviance Information
Criterion (DIC)21 to discriminate the relative quality of fitted
models (Supplementary Table 1). We present the fit for the tested
models in Fig. 2 and Supplementary Figs. 1–4 – showing the
comparison between simulated age-stratified IgG seroprevalence
in livestock against the available serological data.

The model assuming a similar exponential relationship
between NDVI and transmission amongst livestock across
islands, with island-specific baseline transmission values (Model
3b) fitted to the empirical data with the greatest accuracy
according to DIC (Fig. 2). Predictions of Model 3b included the
observed rise in seroprevalence of RVF in Grande Comore and
Mohéli and fall in seroprevalence in Anjouan between 2011 and
2014. Furthermore, in the complete absence of age information
(Mayotte 2004–2008) the model captured the rise in seropreva-
lence in 2007–2008. There were only a few serological surveys for
which the model was unable to capture. These discrepancies
included sero-surveys in young livestock conducted in Grande
Comore from April until June 2013.

The full set of parameter estimates for Model 3b can be found
in Supplementary Table 2 and Supplementary Fig. 5. These
parameter estimates corresponded to a (median) maximum
annual seasonal reproduction number, Rst, for each island. These
were 3.99 for Grande Comore (95% credible interval (CrI)=
[3.17, 4.72]), 3.40 for Mohéli (95% CrI= [2.33, 5.54]), 2.95 for
Anjouan (95% CrI= [2.15, 3.83]) and 2.77 for Mayotte (95%
CrI= [2.36, 3.14]). The geometric mean of seasonal reproduction
numbers was also greater than one across all four islands
(Supplementary Table 3). Consequently, our model inferred
multiple outbreaks to have occurred on both Grande Comore and
Mohéli: Mohéli in 2011, Grande Comore in 2012 and both
Mohéli and Grande Comore in 2014 (Supplementary Fig. 6). In
addition, the importation of infectious animals was inferred to
begin between December 2006 and April 2007 (with 95%
credibility) with 4.15 (95% CrI= [1.33, 7.10]) infectious animals
being introduced each week. Livestock were also traded between
islands within the Comoros archipelago (Fig. 3). Mayotte was
estimated to be the largest importer of animals, with 1875 (95%
CrI= [1707, 2058]) importations per annum, all of which came
from Anjouan. As a consequence, Anjouan was the largest
exporter, exporting 2912 (95% CrI= [2728, 3104]) animals per
year, with 629 (95% CrI= [565, 689]) and 408 (95% CrI= [365,
449]) to Grande Comore and Mohéli respectively. Mohéli
exported and imported similar number of animals per year: 739
(95% CrI= [685, 795]) imports and 719 (95% CrI= [641, 800])
exports. The majority of Mohéli’s exports were trade to Grande
Comore, 657 (95% CrI= [588, 726]), with approximately half
that imported, 331 (95% CrI= [294, 367]).

RVF transmission dynamics and persistence in the Comoros
archipelago. Based on 1000 realisations of the best model (Model
3b), we observed a rise in seroprevalence during 2007–2008 on all
four islands (Fig. 4). This was due to high seasonal reproduction
numbers on each island attributed to high NDVI values
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(Supplementary Fig. 7) occurring alongside a sufficiently high
proportion of susceptible animals; or related to the importation of
infectious livestock into Grande Comore from the African
mainland during late 2006 and early 2007, following the RVF
outbreak in East Africa22.

Forecasting beyond July 2015 until June 2020 showed out-
breaks occurring on all four islands again, but their timing and
magnitude varied greatly between islands. According to our
model predictions, large outbreaks of RVF occurred on Grande
Comore and Mohéli in either 2017 and/or 2018. A small outbreak
was predicted for Anjouan in 2018, followed by a substantial
epidemic in Anjouan and Mayotte during 2019. By the end of
June 2020, the model predicted population level seroprevalence to
be 28.3% on Grande Comore (95% prediction interval (PI)=
[27.0%, 43.1%]), 30.2% on Mohéli (95% PI= [27.7%, 36.6%]),
51.4% on Anjouan (95% PI= [44.0%, 53.9%]) and 20.7% on
Mayotte (95% PI= [7.5%, 26.0%]), giving weight to the
hypothesis that the Comoros archipelago is able to sustain RVF
viral transmission without an explicit introduction of the virus
from mainland Africa or Madagascar.

Impact of livestock movement control measures. To further
investigate the role of animal movements on the epidemiology of

Rift Valley fever in the Comoros archipelago, we compared the
total number of livestock infections in the 2004–2015 period
under different movement-restriction scenarios (Fig. 5a). Under
the full trade network, the estimated number of infections per
island were 362,659 (95% CrI= [341,277, 420,691]) in Grande
Comore, 57,244 (95% CrI= [50,664, 60,630]) in Mohéli, 98,567
(95% CrI = [91,241, 104,117]) in Anjouan and 7482 (95%
CrI= [6,532, 8,527]) in Mayotte.

Movement reductions on Grande Comore generated a median
increase of 20,076 in the total number of cases across all four
islands compared to the full trade network. Relative to the
(median) total number of infections on each island under the full
trade network, reducing the number of imports and exports into
Grande Comore by 100% increased the median number of
infections in Grande Comore itself by 10% (95% CrI= [–4.0%,
18.5%]). The increase in the majority of simulations was due to a
delayed 2012–2013 outbreak in Grande Comore, resulting in a
small (new) outbreak in 2013–2014 and more severe outbreak in
2014–2015 on the island (Supplementary Fig. 8). Under 100%
reduction in Grande Comore’s exports, the total number of
infections in Mohéli reduced by 12.6% (95% CrI= [10.6%,
18.8%]). Furthermore, the total number of infections in Anjouan
and Mayotte decreased by 10% on average under full movement
restrictions on Grande Comore.
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Fig. 1 Metapopulation model for RVF virus transmission in the Comoros archipelago. In order to quantify the drivers of Rift Valley fever in the Comoros
archipelago, we developed a metapopulation model describing RVF virus infection of livestock (cattle, sheep and goats) in the Comoros archipelago. a We
modelled the explicit movement of livestock (solid black arrows) between the four islands in the Comoros archipelago: Grande Comore (red), Mohéli
(blue), Anjouan (green) and Mayotte (purple). b Within-island viral transmission was modelled as an age-stratified Susceptible-Exposed-Infected-
Recovered (SEIR) model. The shown schematic illustrates the transfer of animals (arrows) between four infection states–susceptible, S, exposed, E,
infected, I, and recovered, R–and 10 age groups, a= 1, ..., 10, (boxes) on each island. The number of individuals in each compartment was updated in
discrete time, t, with a single time step equal to one epidemiological week. Animals were born into the youngest age group at a time-varying rate νt and
were removed from the system due to death at an age-dependent proportion μa. A fixed proportion, δ, of individuals were aged at each time step.
Susceptible animals were exposed to the disease at a time-varying proportion, λt, which was dependent on the mean Normalized Difference Vegetation
Index (NDVI) across each island and time point. For further details on the metapopulation model, please refer to the Methods section. Data used to
produce the maps shown in (a) were made available under Attribution 3.0 Unported (CC BY 3.0)67 and Creative Commons Attribution for
Intergovernmental Organisations (CC BY-IGO)68 licenses. The former (CC BY 3.0) licenced the data for Mayotte69, and the latter (CC BY-IGO) licenced
the data for the Union of Comoros70, Tanzania71, Madagascar72 and Mozambique73. All presented data was unaltered.
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Isolating Mohéli from Grande Comore and Anjouan decreased
the (median) total number of infections across all four islands by
15,150. Compared to the full trade network, Mohéli’s own total
number of infections fell by 14% (95% CrI= [10.0%, 25.8%]).
The total number of infections on the other three islands-Grande
Comore, Anjouan and Mayotte-were unaffected.

The total number of infections in the Comoros archipelago
reduced by 1,998 on average compared to the full trade network
under complete movement restrictions to and from Anjouan.
Restricting imports and exports of Anjouan by 100%, only
reduced its own total number of infections by 14.1% (95%

CrI= [11.6%, 17.3%]), and reduced the total number of
infections on Mohéli by ~12.2%.

Restricting movement from Anjouan to Mayotte increased the
total number of cases across all four islands on average: a rise of
724 infections over the study period. A complete reduction in
imports into Mayotte averted the 2007 Mayotte epidemic, but
may have instead caused an outbreak in 2011 owing to sufficient
local conditions for transmission (Supplementary Fig. 8). As a
result of the movement restrictions to Mayotte, infections on
Grande Comore and Mohéli (the first and third most populous
islands) increased by 0.5% on average.

Empirical evidence
Mean with 95%
confidence interval
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Fig. 2 Model fit of the best fitted model (Model 3b) to each sero-survey conducted between July 2004 and June 2015. The exponential transmission
model with the same seasonal component α and different baseline transmission β for each island fitted to the data best out of all five models tested
(DIC= 1189). Shown is the fitted simulated IgG seroprevalence (coloured violins) for each aggregated sero-survey conducted throughout the study period.
Seroprevalence of Grande Comore (red), Mohéli (blue) and Anjouan (green) were aggregated by month, and seroprevalence for Mayotte (purple) was
aggregated by year. Simulated seroprevalence was generated through 1000 realisations of the metapopulation model. Also shown is the mean observed
age-stratified IgG seroprevalence (grey points) with 95% confidence interval (vertical error bars). The presented summary metrics were calculated from
the n= 8423 biologically independent sera-samples which were used to infer the parameters of the metapopulation model. In particular, there were
n= 2191 samples for Grande Comore, n= 475 samples for Mohéli, n= 857 samples for Anjouan and n= 4900 samples for Mayotte.
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Effects of reducing within-island transmission. To investigate
the long-term impacts of island-specific control measures, such as
vector control, on the dynamics of RVF throughout the Comoros
archipelago, we compared the total number of livestock infections
in 2004–2015 period under 10%, 20% and 30% reductions in the
transmission rate of each island (Fig. 5b).

Reducing the within-island transmission rate on Grande
Comore by 10%, 20% and 30% caused a median decrease in
the total number of cases across all four islands by 31,000, 44,882
and 102,693 compared to the full transmission model. These
overall decreases in incidence was because of a reduction in the
number of cases on Grande Comore itself and Mohéli: decreases
of 25% (95% CrI= [15.4, 56.4]) and 12.2% (95% CrI= [10.5%,
20.7%]) on Grande Comore and Mohéli respectively under 30%
control. In each scenario, the 2006 and 2012 simulated outbreaks
on Grande Comore were not as severe and the 2011 outbreak on
Mohéli was delayed until 2013 (Supplementary Fig. 9).

Both a 10% and 30% reduction in the transmission rate on
Mohéli reduced the number of cases throughout the Comoros
archipelago by 18,626 and 37,632 on average over the study
period respectively. However, under a 20% reduction in the
transmission rate, the number of cases increased by 54,154 on
average. This is because under the 20% scenario, susceptibility is
high enough (higher than the full transmission model) for a more
severe outbreak to occur on Mohéli in mid-2011 despite the
reduction in transmission intensity. This larger outbreak on
Mohéli resulted in a larger outbreak in Grande Comore through
trade of infected livestock (Supplementary Fig. 10). As a
consequence, the total number of cases on Grande Comore
increased by 23.5% (95% CrI= [3.5, 28.7]) compared with the full
transmission model under 20% control on Mohéli.

The total number of infections in the Comoros archipelago was
reduced by 42,280, 69,114 and 82,344 from July 2004 until June

2015 under 10%, 20% and 30% reductions in the transmission
rate on Anjouan respectively. Almost all of these reductions
occurred on Anjouan: a 98.5% (95% CrI= [97.8, 99.1%]) decrease
in the number of cases on Anjouan under 30% control levels.
Similar to the movement-restriction scenario on Anjouan, the
2007 Mayotte epidemic did not occur under each control scenario
(Supplementary Fig. 11).

Under 10%, 20% and 30% transmission reduction scenarios,
the number of cases on Mayotte decreased by 51.1% (95%
CrI= [44.3%, 57.3%]), 75.0% (95% CrI= [71.5%, 78.3%]) and
86.5% (95% CrI= [84.7%, 88.3%]) respectively. The temporal
epidemiological dynamics of the other three islands were
unaffected under control on Mayotte (Supplementary Fig. 12).

Discussion
Understanding the transmission dynamics of Rift Valley fever
(RVF) within animal populations is essential towards estimating
human spillover risk and assessing the impact of control
measures23,24. Characterising persistence mechanisms for RVF
are useful to assist long-term surveillance programmes, anticipate
re-emergence and assess the impact of control measures25. In
spatially heterogeneous systems, these persistence mechanisms
not only include factors at a local scale, but also those over a
larger geographical scale, such as pathogen re-introduction from
neighbouring regions26. However, the effects of hosts, vectors and
their environment on the persistence of RVF are not yet well
understood or quantified. In order to improve understanding of
how environmental factors and animal trade influence the
transmission dynamics of Rift Valley fever, we developed a
metapopulation model for RVF infection in livestock and fitted it
to data in a multi-insular ecosystem – the Comoros archipelago –
from serological data during 2004–2015.

Mayotte
Imports: 1875 [1707, 2058]

Anjouan
Imports: 147 [96, 197]

Exports: 2912 [2728, 3104]

Mohéli
Imports: 739 [685, 794]

Exports: 719 [641, 800]

Grande Comore
Imports: 1288 [1185, 1382]

Exports: 416 [356, 478] 

1875
[1707, 2058]

408
[365, 449]

629[565, 689]

85[43, 126]

331
[294, 367]

62
[19, 106]

657
[588, 726]

N

0 25 50km

Fig. 3 Estimated livestock trade network in the Comoros archipelago from best fitted model (Model 3b), presented as the annual number of livestock
heads moved between islands. The imports and exports of each island in the Comoros archipelago—Grande Comore (red), Mohéli (blue) and Anjouan
(green) and Mayotte (purple)—were estimated by fitting the metapopulation model to age-stratified sero-surveys conduct from July 2004 until June 2015.
The estimated annual trade network of livestock in the Comoros archipelago is shown, with the direction of each arrow indicating the direction of trade
between islands. The median and 95% credible interval (CrI) of estimated annual livestock movements are shown on each arrow. Data used to produce the
map were made available under Attribution 3.0 Unported (CC BY 3.0)67 and Creative Commons Attribution for Intergovernmental Organisations (CC BY-
IGO)68 licenses. The former (CC BY 3.0) licenced the data for Mayotte69, and the latter (CC BY-IGO) licenced the data for the Union of Comoros70. All
presented data was unaltered.
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We showed that (i) the within-island RVF virus transmission
was similarly driven by NDVI across these islands, (ii) the virus
was able to persist across the network over 12-year period, (iii)
within-island controls were more effective than livestock move-
ment restrictions between islands. Finally, we provided evidence
that some recent outbreaks may have gone undetected.

In total, five different metapopulation models were fitted: each
with their own model describing the rate of transmission between
livestock. The transmission mechanisms mapping our seasonal
driver, NDVI, to transmission rate in an exponential manner
fitted to the data best according to Deviance Information Cri-
terion (DIC). This result not only agrees with an NDVI-driven

transmission model for RVF applied to Mayotte only17, but
suggests that the effects of our choice of covariate (NDVI),
alongside island-specific baseline transmission rates, were suffi-
cient to explain the observed serology on each island. This
demonstrates that NDVI can be successfully used as a proxy for
the effects of seasonal mosquito population dynamics on the
transmission, and thus may be applied to other arboviral disease
systems where entomological data is scarce. However, it is still
important to evaluate how other factors might influence baseline
transmission rates. In our study, the estimated baseline trans-
mission rates on each island from highest to lowest were Grande
Comore, Mohéli, Anjouan and Mayotte. This variation may be
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Fig. 4 Simulated RVF IgG seroprevalence on each island in the Comoros archipelago, 2004–2020, for the best fitted model (Model 3b). The
metapopulation model was fitted to age-stratified sero-surveys from July 2004 until June 2015 for Grande Comore (red), Mohéli (blue), Anjouan (green)
and Mayotte (purple). Fitted models were then simulated until July 2020. a Median (solid line) and 95% prediction interval (coloured bands) of IgG
seroprevalence. bMedian (solid line) and 95% credible interval (coloured bands) of the seasonal reproduction number (Rst). cMedian (solid line) and 95%
credible interval (coloured bands) of the effective seasonal reproduction number (Rest). Distributions shown were estimated from 1000 realisations of the
metapopulation model.
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Fig. 5 Effect of control measures on the number of infections in the Comoros archipelago from 2004 to 2015. The total number of infections from July
2004 until June 2015 is shown under each control measure scenario on each island in the Comoros archipelago (grey): Grande Comore (red), Mohéli
(blue), Anjouan (green) and Mayotte (purple). a Full (100%) restrictions on imports and exports were placed on each island. For each island, the median
estimate of the geometric mean seasonal reproduction number, �Rst, independent of movement restrictions is shown. bWithin-island transmission rate was
reduced by 10%, 20% and 30% on each island independently. The shown violins and boxplots were calculated from n= 1000 independent realisations of
each control scenario. The central line of the boxplots defines the median with the lower and upper bounds of the box corresponding to the first and third
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attributed to the different agricultural ecosystems on each island,
such as livestock production system or within-island trade net-
work of varying intensity27–29. These findings were reflected in
the (time-varying) reproduction number: a metric to quantify
disease severity and threshold criterion to determine
endemicity30.

Across all four islands, the geometric mean seasonal repro-
duction number was greater than one, indicating persistence of
RVF virus in the Comoros archipelago. The maximum estimated
reproduction number for each island was between 2.5 and 4,
which is in line with previous reproduction number estimates for
RVF20,31,32. The seasonal reproduction number was greater than
one for over three quarters of the year on Grande Comore and
Mohéli, and only half the year on Anjouan and Mayotte (Sup-
plementary Table 3), reflecting island-specific conditions. Lower
reproduction number estimates on Anjouan and Mayotte might
explain why outbreaks were less likely to occur on these islands,
as time periods with conditions suitable for RVF transmission
(high NDVI) were offset by time periods with poor transmission
suitability (low NDVI). This explanation at least agrees with
existing evidence that an explicit introduction event from outside
the Comoros archipelago may have been essential for an outbreak
to occur on Mayotte in 2006/20075,6,17.

Importation of RVF infected animals from outside the
Comoros archipelago may have also been an essential factor in
causing the 2018 epidemic in Mayotte18,33. In the absence of an
explicit re-introduction event of the RVF virus in 2017/18, our
model predicted that an outbreak was ongoing in Mayotte 1 year
after serological data suggests. Indeed, sequence analysis of the
strains confirmed that the strain circulating in Mayotte from 2018
onwards was that responsible for the RVF epidemics in Uganda
in 201734. Yet even without an explicit re-introduction of the
virus into Grande Comore within our framework, our model
predictions suggest that the environmental conditions of Grande
Comore and Mohéli were sufficient to cause substantial RVF
outbreaks in 2017 and 2018. There is little empirical evidence to
support these predictions as it stands, owing to the lack of recent
active surveillance on these islands, suggesting these outbreaks
may have been missed. As a consequence, any vaccination cam-
paign that would be reactive to the detection of outbreaks would
currently be ineffective unless surveillance was first improved.

Our study showed that restricting imports into Mayotte pre-
vented an epidemic in 2007 (Supplementary Fig. 8). This suggests
that at least for Mayotte, the importation of livestock from
Anjouan to Mayotte is paramount for inducing large outbreaks
on the island. Indeed, viral re-emergence on Mayotte resulted
from viral re-introductions (likely from infected animals impor-
ted from neighbouring islands), coupled with an important pro-
portion of the local livestock being susceptible to infection17,18,35.
However, in contrast to previous data that showed Mayotte by
itself in a closed ecosystem (without animal imports) could not
sustain viral transmission between its two epidemics8,17, our
results indicated that an outbreak may have occurred during 2011
on Mayotte instead due to sufficient environmental conditions for
transmission.

We demonstrated that island-specific control strategies, such as
movement restrictions or vector control, may result in more poor
epidemiological outcomes over the long term. For example,
restricting livestock movements to and from Grande Comore
only served to delay an outbreak to a season which was more
suitable for transmission in the majority of simulations, resulting
in a more severe outbreak. However, <5% of movement-
restriction control simulations caused a decrease to the total
number of infections Grande Comore, suggesting that there may
be scenarios in which movement-restriction control measures
might be effective. As Grande Comore was also the island least

affected by the control measures of the other three islands, our
results may suggest that only within-island control (perhaps with
some combination of movement restrictions) ought to be con-
sidered to reduce disease burden on Grande Comore. However,
Mohéli’s temporal dynamics were found to be very sensitive to
controls implemented on Grande Comore or Anjouan. Island-
specific controls on Mayotte affected the other three islands the
least, and thus only Mayotte is appropriate for focused island-
specific control measures. A combination of the controls may be
more appropriate to implement on Grande Comore, Mohéli
and Anjouan simultaneously, but the potential impacts on the
complete system (including Mayotte) should be thoroughly
assessed first.

There are some limitations to using a mechanistic approach to
elucidate the factors that drive spread and persistence of RVF.
Although we showed that the disease continued to propagate
without an explicit introduction event from continental Africa
after 2007, this may be attributed to our choice of modelling
framework: a deterministic framework in which disease can
technically never be eradicated. That is, our choice of framework
does not capture additional uncertainties associated with random
infection processes, which may result in stochastic extinction of
the disease. However, rather than discussing persistence as an
absence of stochastic extinction, we have presented our claims of
persistence in terms of the reproduction number. Our results
showed that, on average, RVF has the ability to remain endemic
on the Comoros archipelago provided that the climate conditions
remain favourable to support transmission. Within our frame-
work, implicit persistence mechanisms can be ascribed to alter-
nate wildlife hosts36, irregular introductions of infected hosts
through trade15, or maintenance of the virus in local mosquito
populations via transovarial transmission37,38. Serological surveys
in potential wildlife hosts, imported animals and mosquito vec-
tors would enable the routes for RVF persistence to be more
precisely assessed. Within our metapopulation model we assumed
that movements of animals between islands were constant over
time due to lack of data. These movement patterns had only been
previously described qualitatively and suggest that they depend
on several factors including climate, economic reasons, religious
festivities as well as weddings and other family gatherings6,27.
These seasonal oscillations in host movement may have impor-
tant implications on the spread of the RVF across the Comoros
archipelago39,40. With quantitative, time-dependent information
on livestock movement, our framework could be adapted to
include these seasonal movement patterns. We also did not
explicitly model mosquitoes within our framework as there
were insufficient data on all competent vectors of RVF in the
Comoros archipelago, or elsewhere, to parametrise such an
approach27,41,42. It is clear however that understanding mosquito
population dynamics and their vectorial capacity for RVF virus
will be paramount to fully disentangle the seasonal drivers of RVF
from one another. Our model could then be extended to include
the population dynamics of RVF vectors and wildlife hosts in
areas where such data are available.

Despite these limitations, our modelling framework and
parameter estimates might be adapted to settings within and
outside of RVF and/or the Comoros archipelago. Our transmis-
sion parameter estimates could serve as initial inputs to calibrate
modelling approaches to other affected regions, such as Kenya43,
Tanzania44 and South Africa45,46. The presented modelling fra-
mework and/or livestock movement estimates may also be
adapted to other ruminant diseases that have been shown to
circulate in the Comoros archipelago, such as Q-fever47 and ovine
rinderpest (also known as peste des petits ruminants)48. With
increasingly fine-scale serological data, livestock populations may
further be spatially refined to include multiple communities per
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island, with transmission between communities described using a
coupled-population approach49. Transmission parameters of each
community could then be estimated within a hierarchical struc-
ture, whereby transmission drivers between neighbouring com-
munities may be similar. These serological data may further be
used to infer these host movement dynamics in scenarios where
prior estimates are uninformative (Supplementary Fig. 13). This
approach could thus be used to quantify movements of birds or
bats, for example, between different communities in multi-insular
systems50. These proposed model extensions and applications
however hinge on the appropriate demographic and epidemio-
logical data to be readily available and carefully maintained
alongside local expert knowledge of potential disease transmission
pathways.

In summary, we have presented a metapopulation model for
RVF fitted to empirical data. We have shown that the virus is able
to persist in the Comoros archipelago without the need for the
explicit large-scale introduction of the virus from eastern Africa
or Madagascar. Moreover, we have identified that the ecological
features of Grande Comore and Mohéli were more suitable to
maintain the virus, whereas livestock trade and high susceptibility
were essential for RVF epidemics to occur on Anjouan and
Mayotte. Our results suggest that several outbreaks occurred in
Grande Comore and Mohéli that were missed owing to insuffi-
cient surveillance, emphasising the importance of sustaining
long-term, co-ordinated surveillance programmes in order to
elicit an early enough control response to avert epidemics in
livestock and resultant spillover into human populations. The
presented metapopulation model and parameter estimates for
disease transmission and hosts movements, may also be extended
to other settings within and outside of Rift Valley fever.

Methods
Study area. The Comoros archipelago is a group of four islands—Grande Comore
(1146 km2), Mohéli (290 km2), Anjouan (424 km2) and Mayotte (374 km2)—
located in the northern part of the Mozambique Channel, between Mozambique
and Madagascar, populated with ~1 million inhabitants29,51. The climate of the
islands is marine tropical, and the Comoros archipelago are old volcanic islands,
with varying ecosystems29,50,52. The livestock (cattle, sheep and goat) production
system is extensive, and the total animal population is estimated to be over
350,00053. Animals are raised for local consumption. Grande Comore, Mohéli and
Anjouan are part of the Union of the Comoros, and may exchange animals reg-
ularly. Mayotte has been a French department since 2011 and a EU outermost
territory since 2014, and no official import of animals are reported from the
neighbouring island, Anjouan, whilst some unreported imports occur on a regular
basis12,27,50,52.

Livestock seroprevalence data. We analysed cross-sectional seroprevalence data
conducted in the Union of Comoros as part of surveillance programmes in Grande
Comore, Mohéli and Anjouan as presented by Roger et al.54 and Roger et al.27.
Surveys were conducted in 2009, 2012, 2013 and 2015. The livestock prevalence
data from Mayotte covered the period 2004 to 2016 and resulted from the SESAM
(Système d’épidémio-surveillance animale à Mayotte) surveillance system as pre-
sented in Métras et al.12 and Métras et al.17.

Metapopulation model. To decipher the relative roles of meteorological factors
and livestock movements on RVF persistence across the four islands of the
Comoros archipelago, we developed a metapopulation model, using an island as a
patch. Within each of the four patches, we modelled RVF transmission dynamics
and islands were connected by animal movements. A schematic summarising the
main components of the model is shown in Fig. 1.

The model was deterministic and discrete-time, where each time step was
1 week. The livestock populations (cattle, sheep and goats) were modelled for each
island in the Comoros archipelago, with each split into 10 age groups a: 0–1
(a= 1), 1–2 (a= 2), ..., and 9+ (a= 10) years old. At time point t, each island i
contained Nt,i,a animals of each age group a, and an age-dependent proportion of
animals, μa, died at each time step. Animals of each age group a moved from island
i to island j at a weekly rate mt,ij,a, where mt,ii,a denoted the number of animals of
age group a which remained on island i at time t. Animals were born into the
youngest age group at rate νt,i on each island i and a proportion of animals, δ, were
aged at each time step. For simplicity, we assumed that the total livestock
population of each island was constant over time.

Animals of each age group a and island i were classified as either susceptible
(Si,a), exposed (Ei,a), infectious (Ii,a) or recovered (Ri,a) to the virus. We assumed
that animals were exposed to the virus for one week, and remained infectious for
1 week. Once recovered, animals were immune to infection for the duration of their
life. We assumed no maternal protection to the virus, and thus new animals were
assumed to be fully susceptible to the disease. At each time t, an island-dependent
proportion of susceptible animals became infected, denoted λt,i. Infectious animals
of age a were introduced into each island i from sources outside the Comoros
archipelago at a time-dependent rate denoted by IðextÞt;i;a .

Given livestock population sizes at time t, the total number of susceptible,
exposed, infectious and recovered livestock for each age group a and island was
calculated at subsequent time t+ 1 as follows:

For animals less than one year old (the first age group, a= 1):
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4
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For animals between 1 and 9 years old (age groups a= 2, ..., 9):
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For animals <9 years old (the final age group, a= 10):

Stþ1;i;10 ¼ ∑
4

j¼1

mji;10

Nt;j;10
1� μ10
� �

1� λt;j

� �
St;j;10

h i
þ mji;9

Nt;j;9
δ 1� μ9
� �

1� λt;j

� �
St;j;9

h i( )
;

ð9Þ

Etþ1;i;10 ¼ ∑
4

j¼1

mji;10

Nt;j;10
1� μ10
� �

λt;jSt;j;10
h i

þ mji;9

Nt;j;9
δ 1� μ9
� �

λt;jSt;j;9
h i( )

; ð10Þ

Itþ1;i;10 ¼ ∑
4

j¼1

mji;10

Nt;j;10
1� μ10
� �

Et;j;10

h i
þ mji;9

Nt;j;9
δ 1� μ9
� �

Et;j;9

h i( )
þ I

extð Þ
t;i;10 ;

ð11Þ

Rtþ1;i;10 ¼ ∑
4

j¼1

mji;10

Nt;j;10
1� μ10
� �

It;j;10 þ Rt;j;10

� �h i
þ mji;9

Nt;j;9
δ 1� μ9
� �

It;j;9 þ Rt;j;9

� �h i( )
:

ð12Þ
At each time t, the birth rate, νt,i, and force of infection, λt,i, were defined as:

νt;i ¼ ∑
10

a¼1
∑
4

j¼1

mji;a

Nt;j;a
μaNt;i;a � ∑

10

a¼1
I (ext)t;i;a ; ð13Þ

λt;i ¼ 1� exp �bt;i
It;i;a
Ni

� �
; ð14Þ

for any island i and time-dependent transmission rate bt,i, where Ni ¼ ∑10
a¼1 Nt;i;a .

At the first time point (t= 0), a small number of exposed and infectious animals
were initialised on each island (Table 1). A proportion of the total population on
each island, ϵi, was also assumed to be immune at the start of the simulation. It was
also assumed that the age of immune animals was proportional to the age of the
population. Therefore, for each island i,

S0;i;a ¼ Ni � E0;i � I0;i � ϵiNi

� �
pa; ð15Þ
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E0;i;a ¼ E0;ipa; ð16Þ

I0;i;a ¼ I0;ipa; ð17Þ

R0;i;a ¼ ϵiNipa; ð18Þ
where pa denotes the proportion of the livestock population in age-group a.

Movement between islands. We assumed that the total number of movements
between islands was constant over time. Owing to the substantial distances between
each island, we assumed that animals could move along the network motivated by
Roger et al.27. The movement network is shown in Fig. 1. That is, only the fol-
lowing movements were possible: Grande Comore to Mohéli, Grande Comore to
Anjouan, Mohéli to Grande Comore, Mohéli to Anjouan, Anjouan to Grande
Comore, Anjouan to Mohéli, and Anjouan to Mayotte. All animals that did not
move on this network were assumed to remain on their respective islands.

As the size of adult livestock relative to the size of boats used to travel between
islands was large, only the two youngest age groups were moved between islands.
We also assumed that the number of movements per age group a was proportional
to the total number of animals in each age group at time t and the total number of
weekly movements between island i and island j.

mt;ij;a ¼
mij

Nt;i;a

Nt;i;1þNt;i;2
; for a 2 1; 2f g;

0; otherwise;

(
ð19Þ

where mij denoted the total number of weekly livestock movements between island
i and island j.

External importation of infection. On account of the RVF outbreak in eastern
Africa between 2006 and 2007, we assumed that infectious animals were imported
into Grande Comore for a limited time. As with movements between islands in the
Comoros archipelago, we assumed that only the two youngest age groups were
imported. We also assumed that the age of imported animals was proportional to
the age of the Comoros archipelago livestock population. Given the weekly number

of infectious animals imported, I
extð Þ

t;i , the number of infectious imports per island
i and age group a was defined as follows:

I
extð Þ

t;i;a ¼ I
extð Þ

t;i
pa

p1þp2
fortðextÞstart ≤ t ≤ t

ðextÞ
start þ tðextÞduration; a 2 1; 2f g and i ¼ 1;

0 otherwise;

(
ð20Þ

where tðextÞstart and tðextÞend denote the start and end of the importation window
respectively.

Seasonally driven transmission functions. We used NDVI as a proxy for the effects
of seasonal mosquito population dynamics on RVF transmission rates. The esti-
mated NDVI at each time point and island was obtained by aggregating NDVI
estimates of 250m by 250m grid squares for each island55. Weekly estimates were
obtained by smoothing the aggregated estimates with a Gaussian kernel of
21 days56. As the relationship between NDVI and transmission rate is unknown,
we tested three underlying models for transmission: linear, exponential and con-
stant as presented below.

Linear: the transmission rate scaled linearly with NDVI:

bt;i ¼ αi NDVIt;i �min
τ

NDVIτ;i
� �

þ βi; ð21Þ

for some positive parameter αi and βi representing the baseline level of
transmission on each island.

Exponential: the transmission rate scaled exponentially with NDVI:

bt;i ¼ exp αi NDVIt;i �min
τ

NDVIτ;i
� �

þ βi

h i
; ð22Þ

for some positive parameter αi and exp βi
� �

denoting the baseline level of
transmission on each island.

Constant: as a baseline comparison, we also modelled a time-independent
transmission rate, thus not depending on NDVI:

bt;i ¼ βi; ð23Þ

where βi denotes the island-dependent transmission rate.
As the exposure and infectious periods were fixed at one week, the seasonal

reproduction number and effective seasonal reproduction numbers for each island

were given by Rst,i= bt,i and Rest;i ¼ Rt;i

Ni
bt;i respectively. An island i was deemed to

allow the virus to persist if the geometric mean of Rst;i
over the time period was

greater than 1.

Parameters. The parameters of the model were selected based on the current
knowledge on RVF epidemiology and demography of the livestock population in
the Comoros archipelago. The parameters that were fixed in the model are shown
in Table 1. To allow for monthly aggregates of RVF IgG seroprevalence to be
calculated (used in model fitting), the time steps of the model represent 1.08
calendar weeks. Therefore, the weekly ageing rate δ was chosen such that animals
took 48 time steps (1 year) to age. The mortality rates of age groups 1–9 and 10
were set to 8.8 × 10−3 and 6.2 × 10−3 respectively57,58. We assumed that mortality
rates of livestock were independent of the island on which they were kept. The
population size of each island was calculated by aggregating estimates of sheep,
goat and cattle population estimates for each island using the Gridded Livestock
Map of the World53. All other parameters (Supplementary Table 4) were estimated
by fitting the model to serological surveys carried out on each island from July 2004
until June 2015.

Model fitting and parameter estimation. To estimate the remaining parameters θ
of the model (Supplementary Table 4), we fitted the metapopulation model to the
serological data in a Bayesian framework. Below, we define the observation model
(likelihood) and priors of each parameter that were used to fit our model to the
livestock seroprevalence data in this framework.

Observation model. As farms and animals were randomly sampled for serological
testing on each island, we assumed that the number of RVF specific IgG antibody
positive animals was binomially distributed given the total number of animals
tested and the proportion of the livestock population that were immune at the time
of testing. For Grande Comore, Mohéli and Anjouan, surveys were aggregated by
the month in which they were conducted. As surveys in Mayotte were conducted
throughout the year, we aggregated surveys by epidemiological year, which began
in July. Simulating the metapopulation model forward in time to estimate the
proportion of the population that were immune at the age of testing,

yðposÞT;i;A � Binom nðtestedÞT;i;A ;
∑t2T∑a2ARt;i;a

∑t2T∑a2ANt;i;a

 !
; ð24Þ

where yðposÞT;i;A and nðtestedÞT;i;A denote the number of animals that were bled and tested
RVF antibody positive in age group(s) A on island i over the aggregated time
window T, respectively. For surveys that were not age-specific, animals were classed
as either adults (age groups 2–10) and infants (age group 1). In surveys where the
age of animals was unknown, all age groups in the model were used to calculate the
proportion immune at the time of testing.

Table 1 Fixed model parameters.

Parameter Description Value

δ Proportion of animals ageing each week 1/48
μa Proportion of animals in age group a 2 1;9½ � dying each week 8.8 × 10−3

μ10 Proportion of animals in age group 10 dying each week 6.2 × 10−3

E0,i Initial number of exposed livestock on island i 5
I0,i Initial number of infectious livestock on island i 5
N1 Total population on Grande Comore 224,353
N2 Total population on Mohéli 31,872
N3 Total population on Anjouan 93,616
N4 Total population on Mayotte 20,052

The parameters in the metapopulation model were chosen based on the current understanding of the epidemiology of Rift Valley fever and the demography of the livestock population in the Comoros
archipelago. The remaining parameters were estimated by fitting the model to the serological data collected between 2004 and 2015.
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As each survey was conducted independently from one another, the likelihood
of jointly observing all serological surveys was given by the product of observing
each survey individually.

Prior distribution. The priors for each parameter estimated are shown in Supple-
mentary Table 4. Informative normal priors were chosen for the movement
parameters, with prior parameters selected based on consultation with the
Comorian veterinary services and previously reported inter-island trade
estimates17,27. The priors for the proportion of the livestock population immune on
each island was set to be a beta distribution with mean seroprevalence of 10% on
Anjouan and Mayotte, and 40% on Grande Comore and Mohéli54. The variance of
each beta distribution was determined after consultation with local experts. Weak
normal priors were placed on transmission parameters as these are yet to be
robustly quantified. Informative normal priors were used for the start and duration
of the import into Grande Comore, with prior parameters selected to correspond to
reports of the RVF outbreak in Kenya during 2006/759,60. An weakly informative
normal prior was used for the size of the import as there is scarce information on
infectivity of imported animals during 2006/2007.

Posterior distribution. With the definition of the likelihood and priors for para-
meters, we sampled from the posterior distribution of the parameters θ, using an
adaptive Markov Chain Monte Carlo Metropolis-Hastings random walk
algorithm61,62.

This algorithm constructed a Markov chain which converged to the desired
posterior distribution. It did this by, at step i in the chain, first proposing a set of
candidate parameters θ0 from a proposal distribution q. These candidate
parameters were then used to simulate the metapopulation model forward in time.
Following this, model output was used to calculate the likelihood of observing the
serological data given the observation model described above. These candidate
parameters were accepted (θi :¼ θ0) or rejected (θi≔ θi−1) with acceptance ratio:

π yjθ0� �
π θ0
� �

q θ0jθi�1

� �
π yjθi�1

� �
π θi�1

� �
q θi�1jθ0
� � ; ð25Þ

where π yjθ� �
denotes the likelihood of observing all data y with model parameters

θ, and π θð Þ is the prior of θ.
The chain was initialised with parameters randomly sampled from their respective

prior distribution. Candidate parameters were proposed jointly at each step i using a
multivariate normal distribution with mean θi−1 and covariance matrix (2.38)2Σi−1/d,
where Σi−1 was the empirical covariance matrix of the parameter chains up to
iteration i− 1, and d was the number of proposed parameters61. Markov chains of
1,000,000 values were calculated. The first 500,000 iterations of the Markov chain
were discarded as burn-in. For each fitted model, eight chains of parameters were
sampled. Convergence of the chains was assessed through visual inspection of the
trace plots and calculation of the Gelman-Rubin R̂ statistic63.

Model selection. Parameters were estimated for five epidemiological models:

● Model 1: constant transmission with different βi for each island,
● Model 2a: linear transmission with different αi and the same β for each

island,
● Model 2b: linear transmission with the same α and different βi for each

island,
● Model 3a: exponential transmission with different αi and the same β for

each island, and
● Model 3b: exponential transmission with the same α and different βi for

each island.

The best model was determined by which one had the lowest deviance
information criterion (DIC)21.

Robustness of model fitting. In order to confirm that the parameters to be estimated,
θ, were robustly inferred by our model fitting approach, we fitted our Model 3b to
10 synthetic data sets. Each synthetic data set was generated using the following
procedure:

1. Each parameter was randomly sampled from their respective prior
(Supplementary Table 4).

2. These parameters were collectively used to simulate the metapopulation
model forward in time.

3. For each serological survey in the empirical data, we used the proportion of
the population that were immune at time of testing (from the metapopula-
tion model) to randomly sample the number of animals which tested RVF
antibody positive using our observation model.

After fitting to each synthetic data, posterior distribution of parameters were
compared to the values parameter values used to generate the synthetic data.

Posterior distributions for parameters estimated in each synthetic data set are
presented in Supplementary Figs. 14–23. These figures are ordered from synthetic
data sets with the most number of livestock infections (Supplementary Fig. 14), to
the least number of livestock infections (Supplementary Fig. 23) during 2004–2015.
All posterior distributions contained the parameter values used to generate the

synthetic data. The data were informative over the priors for transmission
constants, bi, the NDVI transmission coefficient, a, and initial seroprevalence on
each island, ϵi, provided RVF outbreaks occurred in the synthetic data.

Computational implementation. The metapopulation model and Bayesian model
fitting algorithms were coded and executed in C++14 with the GNU Scientific
Library (version 2.6). Outputs from these algorithms were analysed and visualised
in R (version 3.6.3)64 using the tidyverse library (version 1.3.0)65.

Forecasting and control scenarios. To assess the ability for RVF to persist within
the Comoros archipelago beyond 2015, we forecast RVF virus seroprevalence in
livestock using empirical NDVI data from 2015 until 2020. We did this by drawing
1000 samples from the joint posterior distribution of the best model fit and using
these parameters to simulate the model until July 2020. To assess the importance of
inter-island trade on the transmission of RVF within the archipelago, we imposed
(100%) movement restrictions (imports and exports) on each island independently.
To investigate the potential long-term impacts of island-specific control measures,
such as vector control, on the transmission of RVF within the archipelago, we
reduced the transmission rate by 10%, 20% and 30% on each island independently.
For each control scenario, we calculated the total number of infections in livestock
on each island compared with the total number of infections on the full movement
and transmission network.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Summarised data used in our study to estimate the parameters in our metapopulation
model, alongside a full description of the data, are available through the GitHub
repository: wtennant/rvf_comoros66. These data are fully accessible and are presented in
Fig. 2 and Supplementary Figs. 1–4.

Code availability
All code, including the metapopulation model and fitting algorithm, are publicly
available through the GitHub repository: wtennant/rvf_comoros66.
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