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The performance of different approximate algorithms for computing anharmonic features in vibrational spectra is anal-
ysed and compared on model and more realistic systems that present relevant nuclear quantum effects. The methods
considered combine approximate sampling of the quantum thermal distribution with classical time propagation and in-
clude Matsubara dynamics, path integral dynamics approaches, linearized initial value representation and the recently
introduced adaptive quantum thermal bath. A perturbative analysis of these different methods enables to account for the
observed numerical performance on prototypes for overtones and combination bands and to draw qualitatively correct
trends for the numerical results obtained for Fermi resonances. Our results prove that the unequal performances of
these approaches often derive from the method employed to sample initial conditions and not, as usually assumed, from
the lack of coherence in the time propagation. Furthermore, as confirmed by the analysis reported in J. Chem. Phys.
130, 194510 (2021), we demonstrate, both via the perturbative approach and numerically, that path integral dynamics
methods fail to reproduce the intensities of these anharmonic features and follow purely classical trends with respect
to their temperature behaviour. Finally, the remarkably accurate performance of the adaptive quantum thermal bath
approach is documented and motivated.

I. INTRODUCTION

This paper reports a systematic comparison, based on an-
alytical results and numerical investigations, of the perfor-
mance of a set of approximate methods for simulating quan-
tum nuclear dynamics, with specific focus on the calculation
of anharmonic spectral features in infrared spectra. As ex-
periments and technology increasingly investigate phenom-
ena where nuclear quantum effects (NQEs) are at play, the
need for accurate and effective algorithms to solve the quan-
tum time-evolution of condensed matter systems becomes ap-
parent. The prototypical example is Hydrogen, the lightest
and most abundant element in the Universe, and a basic con-
stituent of inorganic matter and living organisms. It is well
known that, for this key element and for molecules containing
it, NQEs such as tunnelling, coherence or zero-point energy,
are often relevant to describe processes of experimental sig-
nificance occurring at low temperature1,2 or high pressure3–5.
Moreover, since at room temperature the De Broglie wave-
length of Hydrogen is of the order of the Angström and there-
fore often comparable to interatomic distances, NQEs are ob-
served also close to ambient conditions. This occurs, for ex-
ample, in reactions involving proton transfer6–8 or showing
significant isotope effects9–14. The spectroscopy of ice and
water is also affected by NQEs15–17. On a different scene, the
rapid developments in the area of quantum computers moti-
vate accurate simulations, for example, of coherence effects
in qbits and of the influence of the environment on quantum
components.

The key challenge for computing nuclear quantum time-
dependent properties is that numerically exact solution meth-
ods scale exponentially with the number of degrees of free-
dom. On the other hand, dynamical properties, captured in

particular by time correlation functions (TCFs), are relevant
as they can be probed through different experimental tech-
niques such as infrared/Raman spectroscopy or measurements
of rate constants and transport coefficients. Several approx-
imate schemes have then been designed to mitigate the ex-
ponential scaling. In this paper, we will focus on trajectory-
based methods as they provide computationally efficient ap-
proximations for treating mildly quantum particles. In these
approaches, sampling of initial conditions from the quan-
tum thermal distribution is combined with the propagation of
classical-like trajectories and observables are computed as ap-
propriate averages over this ensemble of trajectories. These
methods have been proven quite effective since, in common
conditions of temperature and pressure, the most relevant
NQEs derive from zero-point energy and are typically cap-
tured, at least approximately, via the initial sampling. Further-
more, in systems containing large numbers of degrees of free-
dom, the interactions within a complex environment usually
reduce the time scales in which other quantum effects, such as
coherence, can be observed. This enables a reliable descrip-
tion with methods that use some form of classical propagation
to derive short-time approximations of the quantum propa-
gator. For the purposes of this work, we classify trajectory-
based methods in two broad families. The first exploits the
framework of imaginary-time PI in order to approximate the
nuclear quantum dynamics via a ring-polymer representation.
The most common representatives of this family are Centroid
Molecular Dynamics18–21 (CMD) and (Thermostatted) Ring-
Polymer Molecular Dynamics22,23 ((T)RPMD). While these
methods were introduced as somewhat ad hoc, they can be put
on firmer grounds as approximate forms of the so-called Mat-
subara dynamics24,25, which provides a unified framework to
assess their merits. The second family is composed by the
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semi-classical methods that are derived from stationary phase
approximations of the quantum time propagators appearing in
the expression of time-correlation functions. One of the sim-
plest and most widely used approaches in this family is the
Linearized Semi-Classical Initial Value Representation (LSC-
IVR, sometimes also referred to as classical Wigner)26. This
method relies on the Wigner thermal distribution27 combined
with classical trajectories to rewrite quantum TCFs in a (gen-
eralized) phase space, with strong analogies to the classical
one. The explicit form of the Wigner function for multidi-
mensional systems is, however, not known and brute-force
sampling of its path integral representation is hindered by the
presence of phase factors. Consequently, several variants of
LSC-IVR have been proposed based on different schemes to
approximate and sample the Wigner density as will be dis-
cussed in more detail in section III.

Trajectory-based methods have been successfully applied
to simulate the behaviour of condensed matter systems, but
it is commonly assumed that they are intrinsically unable to
capture phenomena such as overtones, combination bands or
Fermi resonances because these are believed to derive pre-
dominantly from quantum coherence, and thus to be impossi-
ble to capture via classical propagation. Only very recently,
numerical tests have been performed to compare the perfor-
mance of different PI or semi-classical methods in reproduc-
ing combination bands in the important case of water and
ice spectroscopy16. These exploratory calculations indicate
that an interesting development of CMD, the so-called quasi-
CMD28 (QCMD) method, and LSC-IVR accurately describe
the fundamental bands in the spectrum of gas and liquid-phase
water and in ice. Furthermore, LSC-IVR can capture the
intensity of the high-frequency combination bands relatively
well. As mentioned by the authors of Ref. 16, these results
raise the question of why ring-polymer methods (QCMD,
CMD, and RPMD) are unable to reproduce overtones and
combination bands. This failing cannot be attributed to a
lack of real-time coherence, since this approximation is also
present in LSC-IVR. More recently29 a perturbation approach
was employed to further analyze this effect and show that the
inaccuracy of the most common PI methods originates from
their improper treatment of the dynamical coupling between
the centroid and the Matsubara fluctuation modes.

In this paper, we present a systematic study of the ability
of different trajectory-based methods to describe anharmonic
spectral features such as overtones, combination bands and
Fermi resonances. To that end, we study simple prototype
models obtained by adding anharmonic perturbations to a har-
monic reference potential. We present a general perturbation
approach to derive analytical expressions for the integrated
intensity of the relevant spectral features obtained via Mat-
subara dynamics, CMD, RPMD, and LSC-IVR with different
initial conditions sampling schemes. Our results enable to ra-
tionalize the different characteristics (and to some extent the
reliability) of these approaches. Moreover, we clearly demon-
strate that the lack of coherence in the dynamics cannot be in-
voked to explain inaccuracies in the description of anharmonic
spectral features. In particular, we show that the observed
trends in the performance of different LSC-IVR variants can

be traced back to the treatment of position-momentum cor-
relations, rather than to coherence effects. The general trends
established from the perturbative approach are then completed
by a numerical exploration of Fermi resonances and of an-
harmonic spectral features in a more realistic system: gas
phase water. As discussed throughout this paper, the results
of Ref. 29 - obtained independently from our work - support
our analysis for Matsubara and PI based dynamics.

We also present, for each system, numerical results ob-
tained via an alternative, more recent, approach: the adaptive
Quantum Thermal Bath (adaptive QTB – adQTB). (ad)QTB
combines Newtonian evolution for the nuclei with a gen-
eralized Langevin thermostat to include zero-point energy
effects30,31. The adaptive version of the algorithm was re-
cently proposed32 to eliminate the so-called zero-point energy
leakage problem (i.e. a nonphysical flow of energy driven by
the classical evolution). The idea of the QTB was originally
introduced as a single particle alternative to PI for computing
static averages in the quantum canonical ensemble. Similarly
to RPMD and CMD, it has then been proposed also as an ap-
proximate tool to describe dynamical properties, and in par-
ticular vibrational spectra4,5,33. Providing an analytical jus-
tification for this type of calculations is problematic, but we
demonstrate numerically that adQTB spectra are remarkably
accurate and can therefore offer an interesting and cost effec-
tive alternative to PI-based simulations.

The paper is organized as follows. Section II, presents the
perturbation strategy that is used to derive analytical expres-
sions for classical and trajectory-based quantum approxima-
tions of time correlation functions. In section III, we focus
on the problem of initial conditions sampling for the LSC-
IVR approach and present three different approximations to
the Wigner thermal density. Section IV and V analyze the re-
sults obtained from perturbation theory on simple prototype
models for overtones and combination bands, respectively. In
section VI, we explore numerically the performance of the dif-
ferent methods to describe the Fermi resonance phenomenon,
while section VII illustrates how the trends derived from per-
turbation theory can provide qualitative and quantitative in-
sight for the description of a more realistic system: gas-phase
water. Finally, section VIII summarizes the main conclusions
of this study.

II. TRAJECTORY-BASED QUANTUM TIME
CORRELATION FUNCTIONS

In this section we present the perturbative approach em-
ployed to derive analytical expressions for the momentum
autocorrelation functions (ATCF) from which the vibrational
spectra can be computed, and summarize the approximate
quantum approaches that we shall examine. To better illus-
trate our perturbative analysis, we first present it in the rela-
tively simple case of the purely classical ATCF and then in-
troduce the main adjustments necessary to treat the trajectory-
based approximations of the quantum dynamics. Unidimen-
sional notations are used for simplicity but the procedure can
equally be applied to multidimensional systems.
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A. Perturbative expansion to the classical dynamics

For a classical system at thermal equilibrium, the momen-
tum ATCF is defined as:

cpp(t) =
∫

dqdp ρ(q, p) peiL t p (1)

with ρ(q, p) = e−βH(q,p)/Zc the Boltzmann density, and iL
the classical Liouville operator. This operator characterizes
the Newtonian dynamics so that eiL t p is the momentum ob-
tained after propagating this dynamics for a duration t, starting
from the phase-space point (q, p).

We consider systems described by a potential of the follow-
ing form:

V (q) =V0(q)+λv(q) (2)

composed of a main harmonic component V0(q) plus an an-
harmonic time-independent perturbation proportional to the
control parameter λ . We then expand equation (1) to second
order in λ (the first-order contribution is zero for the anhar-
monic spectral features on which we focus). The expansion
of the probability density is:

ρ(q, p) = ρ0(q, p)
{

1+λβ
[
v(q)−〈v(q)〉0

]
+

λ 2β 2

2
[
v(q)2 + 〈v(q)2〉0−2v(q)〈v(q)〉0

]}
+O

(
λ

3)
(3)

where the symbols 〈. . .〉0 denote the averaging over the Gaus-
sian distribution ρ0(q, p) associated to the harmonic potential
V0. The Liouvillian is split as:

iL = iL0−λ
dv
dq

∂

∂ p
(4)

with iL0 the harmonic Liouvillian, for which time propaga-
tion can be performed analytically. The perturbed time prop-
agator can be expanded using the Dyson series:

eiL t = eiL0t −λ

∫ t

0
ds eiL0(t−s) dv

dq
∂

∂ p
eiL0s

+λ
2
∫ t

0
ds1

∫ s1

0
ds2 eiL0(t−s1)

dv
dq

∂

∂ p

eiL0(s1−s2)
dv
dq

∂

∂ p
eiL0s2 +O

(
λ

3) (5)

We then inject both expansions (3) and (5) in the expression
(1) of the ATCF and truncate terms of order higher than 2 in λ

(more details can be found in Appendix A). In sections IV and
V, this approach is applied to polynomial perturbations v(q).
We use symmetries and the properties of the harmonic Liou-
villian iL0 and Gaussian distribution ρ0 in order to perform
the time and phase-space integrals and we derive the second-
order perturbative expansion of cpp(t). Notably, since the un-
perturbed Liouvillian iL0 is purely harmonic, its time propa-
gation does not produce anharmonic resonances. As a result,
the first order in the expansion (3) of the density ρ(q, p) is
sufficient to describe overtones and combination bands up to
second order in λ .

B. Linearized approximations

The extension of the perturbative strategy to the linearized
IVR approaches is relatively straightforward. We start by ex-
pressing the real part of the standard quantum ATCF as24,34:

Cpp(t) = Re[Cpp(t)] =
∫

dqdp ρw(q, p) peiLQt p (6)

where Cpp is the (complex) standard TCF and ρw(q, p) is the
thermal Wigner distribution:

ρw(q, p) =
1

2π h̄Z

∫
d∆ e

ip∆

h̄

〈
q− ∆

2

∣∣∣∣e−β Ĥ
∣∣∣∣q+ ∆

2

〉
(7)

with Z the quantum partition function of the system. The
quantum Liouville operator iLQ reads:

iLQ =
p
m

∂

∂q
−

∞

∑
ν=1,odd

1
ν!

(
ih̄
2

)ν−1 dνV
dqν

∂ ν

∂ pν
(8)

The real part of the quantum ATCF is related to the Kubo-
transformed ATCF by the following equation in the Fourier
domain:

Kpp(ω) =
Cpp(ω)

βΘ(ω,β )
(9)

with Θ(ω,β ) = h̄ω/2
tanh(β h̄ω/2) the average thermal energy of a

quantum harmonic oscillator of frequency ω . The Kubo-
transformed momentum ATCF characterizes the vibrational
density of state (VDOS) of a quantum system, which is
given by β

m Kpp(ω). This quantity can be directly compared
with results from exact and path integral dynamics methods.
For linear observables such as the ones used in this work,
equation (6) is the exact expression for the real part of the
Wigner ATCF and does not imply any approximation at this
point35. This expression, however, requires to perform the
time-evolution using iLQ, an impossible task for realistic sys-
tems. The LSC-IVR approximation is then obtained by re-
placing iLQ by its classical counterpart iL (i.e. by truncating
the sum in equation (8) at order ν = 1). This classical evo-
lution can be integrated numerically using standard molecular
dynamics methods. The approximation eliminates any effect
associated with quantum coherence and interference.

In sections IV and V, we consider 3rd-order polynomial
potentials V (q), so that the sum in equation (8) is actually fi-
nite and contains only one additional term with respect to iL ,
corresponding to ν = 3. It is then possible to apply the pertur-
bative approach to both the exact momentum ATCF of (6) and
its LSC-IVR approximation. By comparison, we show that,
up to second order in λ , the additional term in iLQ does not
contribute to the the momentum ATCF and thus to the inten-
sity of the anharmonic resonances in the vibration spectrum,
computed as its Fourier transform. Importantly, this implies
that, for these resonances, the accuracy of LSC-IVR results
does not depend on the time propagation but only on the sam-
pling of the Wigner thermal density. In particular, as discussed
more in detail in the following, if the first order term in the
λ -expansion of ρW is correct, the observables will be exact
within the perturbative analysis.
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C. Path integral dynamics methods

We also consider three other approaches that are based on
the imaginary-time path integral framework: Matsubara dy-
namics, RPMD and CMD. These methods directly provide
approximations to the Kubo-transformed ATCF. In each of
the three PI-based methods, the expression for Kpp(t) is sim-
ilar to equation (1), except that the probability density and
the Liouville operator are expressed in the extended PI phase
space24,25. The perturbative strategy presented above, based
on the expansion of the density in powers of λ and on the
Dyson series for the Liouville operator, can therefore also be
applied. The derivation of the perturbative expansion of the
ATCF then makes use of the analytical expressions that can be
derived for harmonic systems in the PI framework, as detailed
in appendix B. This procedure is technically more involved,
but conceptually very similar to the classical calculation. The
results derived in this work for PI-based methods are further
corroborated by the calculations by Benson and Althorpe in
Ref. 29, via a different approach based on classical perturba-
tion theory expressed in terms of action-angle variables.

D. Quantum thermal bath

We also include in our comparisons the quantum thermal
bath approach30. This method (as the closely related quan-
tum thermostat31) relies on a generalized Langevin equation
to approximate statistical NQEs:

d p
dt

=−∂V
∂q
− γ p+F(t) (10)

where γ is a friction coefficient and F(t) is a colored random
force with the following correlation spectrum:

CFF(ω) = 2mγr(ω)Θ(ω,β ) (11)

with γr(ω) the random force amplitude that is simply given
by γr(ω) = γ in the original QTB method. The QTB acts
as a frequency-dependent thermostat that tends to thermal-
ize the vibration modes of the system with an average energy
Θ(ω,β ) – therefore accounting for zero-point contributions –
instead of the classical thermal energy β−1. Though simple
and efficient, the QTB suffers from zero-point energy (ZPE)
leakage: the ZPE injected at high frequencies tends to un-
physically flow towards low frequencies. In Ref. 32, a solu-
tion to this issue was proposed by noting that in a Langevin
simulation, the linear susceptibility χqp(ω) is related to the
momentum-random force correlation function by:

χqp(ω) =
Re [CpF(ω)]

CFF(ω)
(12)

In generalized Langevin simulations, there are therefore two
different estimators for the VDOS, that can either be com-
puted from Cpp(ω) via eq. (9), or from the linear susceptibility
estimated via [CpF(ω)]. These two estimators are equivalent
if the quantum fluctuation-dissipation theorem36 holds:

Re [CpF(ω)] = γr(ω)Cpp(ω) (13)

However, as shown in Ref. 32, this relation is not generally
respected in standard QTB simulations. Indeed, deviations
from (13) can be used as a criterion for a quantitative assess-
ment of ZPE leakage. The adaptive QTB (adQTB) method
exploits this criterion to adjust the random force amplitude
γr(ω) on the fly in order to compensate for ZPE leakage in a
systematic way32 and restore the fluctuation-dissipation the-
orem, eq. (13). Beyond the assessment of ZPE leakage, we
show in the following that the fluctuation-dissipation theorem
also proves useful in calculating anharmonic resonances.

III. SAMPLING THE WIGNER DISTRIBUTION

As we noted in section II B, the accuracy of the LSC-IVR
approximation for the prediction of anharmonic resonance in-
tensities depends entirely on the quality of the Wigner distri-
bution sampling. This sampling represents a difficult problem
for realistic high-dimensional systems as the rapidly oscillat-
ing phase factor e

ip∆

h̄ in equation (7) prevents a direct cal-
culation of the integral. Furthermore, ρW can take negative
values and it is therefore not strictly a probability distribu-
tion. Different approximations have been designed to allow
for a practical sampling of ρW, usually relying on (general-
ized) Gaussian functional expressions37,38. In this paper, we
analyze three of these approximations: (i) an equilibrium har-
monic approximation (that we will denote IVR0), (ii) the Lo-
cal Harmonic Approximation39,40 (LHA) and (iii) the Edge-
worth Conditional Momentum Approximation41 (ECMA). In
these methods, the Wigner distribution is split as the prod-
uct of the marginal position probability density and the condi-
tional momentum (pseudo)distribution:

ρw(q, p) = 〈q|e
−β Ĥ

Z
|q〉×

∫
d∆ ei p∆

h̄
〈
q− ∆

2

∣∣e−β Ĥ
∣∣q+ ∆

2

〉
2π h̄〈q|e−β Ĥ |q〉

= ρ
m
w (q)× ρ

c
w(p|q) (14)

The marginal position density ρm
w (q) = 〈q| e

−β Ĥ

Z |q〉 can be
sampled exactly using standard PI molecular dynamics or
Monte Carlo methods, and the three LSC-IVR approximations
that we consider differ only in their expression for ρc

w(p|q).

A. Equilibrium harmonic approximation IVR0

The equilibrium harmonic approximation is obtained by ex-
panding the potential operator V (q̂) to second order around
the configuration q0 of minimal potential energy:

V (q̂)≈V (q0)+
1
2

mΩ
2
0(q̂−q0)

2 (15)

with m the mass of the particle and where the squared fre-
quency Ω2

0 is defined as:

Ω
2
0 =

1
m

d2V
dq2

∣∣∣∣
q0

(16)
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As we will apply this method to potentials that are primar-
ily harmonic, there is no ambiguity on the definition of q0.
We note that the expansion of the potential is only performed
in the conditional momentum part of the Wigner density (the
marginal position distribution is still exact). The approximate
potential (15) is quadratic so that matrix elements of the den-
sity operator e−β Ĥ can be written explicitly (see for example
ref. 42). The IVR0 momentum distribution is then indepen-
dent of position and given by:

ρ
c
IVR0(p) =

exp
{
− p2

2mΘ(Ω0,β )

}
∫

dp exp
{
− p2

2mΘ(Ω0,β )

} (17)

The IVR0 expression is the simplest Gaussian approximation
to ρc

w and, contrary to LHA and ECMA (see below), the cor-
responding momentum distribution is not position-dependent.
We will show in sections IV and V that this poses a problem,
since a precise treatment of the intrinsically quantum and an-
harmonic position-momentum correlation is actually critical
to correctly capture anharmonic resonances.

B. Local Harmonic Approximation

The local harmonic approximation39,40 is similar to IVR0
except that the quadratic expansion of the potential is per-
formed locally around each position q. This defines the local
squared frequency:

Ω
2(q) =

1
m

d2V
dq2 (18)

The LHA conditional momentum distribution is then given
by:

ρ
c
LHA(p|q) =

exp
{
− p2

2mΘ(Ω(q),β )

}
∫

dp exp
{
− p2

2mΘ(Ω(q),β )

} (19)

In this conditional probability, some correlation between mo-
menta and position is present via the dependence on q of
Θ(Ω(q),β ). This correlation, however, is purely local in the
particle’s position and, as we shall see in the following, this
can be a major drawback of the LHA. In sections VI and
VII, to deal with potentials beyond perturbed harmonic oscil-
lators, where imaginary frequencies may arise, we use the Lo-
cal Gaussian Approximation (LGA) described in ref. 40 which
generalizes the LHA to cases where Ω2(q) can be locally neg-
ative.

C. Edgeworth Conditional Momentum Approximation

Building on the formalism proposed in ref. 43, the ECMA
uses the Edgeworth expansion of ref. 41 to approximate the
conditional momentum distribution (details in appendix C).

The resulting distribution is expressed as a position-dependent
Gaussian (similarly to LHA) multiplied by a correction factor:

ρ
c
ECMAn(p|q) =

exp
{
−κ2(q)p2

2h̄2

}
CEWn(q, p)∫

dp exp
{
−κ2(q)p2

2h̄2

}
CEWn(q, p)

(20)

where κ2(q) (and more generally κm(q)) denotes the second
order (mth order) cumulant of the distribution f (∆|q) defined
as:

f (∆|q) =
〈
q− ∆

2

∣∣e−β Ĥ
∣∣q+ ∆

2

〉
∫

d∆
〈
q− ∆

2

∣∣e−β Ĥ
∣∣q+ ∆

2

〉 (21)

For each position q, κ2(q) is computed via an auxiliary open-
chain path integral calculation, following the procedure of
ref. 41. Therefore, in the ECMA, the position-dependent
width of the Gaussian momentum distribution is the result of a
fully non-local calculation and it can differ significantly from
that obtained in LHA from the local curvature of the potential.
The Edgeworth correction factor takes the form of a truncated
expansion in powers of p:

CEWn(q, p) = 1+
n

∑
m=4,even

κm(q)
m!

(
ip
h̄

)m

(22)

It can be positive or negative, which allows recovering the
negative values of ρw, a feature that is totally absent in both
IVR0 and LHA. Furthermore, the ECMA converges asymp-
totically to the exact Wigner distribution in the limit of large
truncation orders n. In most cases, ECMA0 already provides a
very good approximation of the Wigner distribution, that can
be further improved by including the first few terms of the
correction factor41.

Practical sampling of the ECMA goes as follows: (1) sam-
ple the exact marginal position distribution using stan-
dard PIMD. (2) For each position sample q, compute
κ2(q) and the successive cumulants of f (∆|q) via an
auxiliary (open chain) PI calculation. (3) Sample the
Gaussian part of the conditional momentum distribution
ρκ2(p|q) ∝ exp

(
−κ2(q)p2/2h̄2). (4) For n ≥ 4, reweight

the samples with the normalized Edgeworth correction
CEWn(q, p)/〈CEWn(q, p)〉

ρκ2
. Appendix C provides more de-

tails on each of these sampling steps.
The three sampling schemes presented here were chosen

as representatives of increasingly accurate methods but other
procedures exist such as the Feynman–Kleinert variational
linearized path integral method44 that also introduces approx-
imate position-momentum correlations.

IV. VIBRATIONAL OVERTONES IN THE
PERTURBATIVE REGIME

The simplest model for investigating overtones is given by
the following potential:

V (q) =
1
2

mω
2
0 q2 +

λ

3
q3 (23)
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which consists of a harmonic oscillator at frequency ω0 and a
cubic perturbation term.

The dynamics of this model system is mainly harmonic
with a small anharmonic contribution – the overtone – at an-
gular frequency 2ω0. In this section, we study the temperature
dependence of the intensity of this overtone, as obtained from
different approximate quantum dynamics methods. To quan-
tify this intensity, we introduce the parameter η , defined from
the integrated overtone VDOS:

η(β ) =
∫ 2ω0+∆ω

2ω0−∆ω

β

m
Kpp(ω;β )dω (24)

with ∆ω a frequency interval chosen to encompass the whole
overtone spectral region. The parameter η(β ) is dimension-
less and measures the fraction of the system vibration energy
that is contained in the overtone.

For small enough λ , the perturbative strategy outlined in
section II can be applied to derive analytical expressions
for Kpp(ω;β ) and η(β ). In the classical case, the VDOS
is related to the classical ATCF cpp (instead of the Kubo-
transformed Kpp), and, following the approach outlined in
section II, the overtone contribution ηcl is obtained, at second
order in λ , as:

ηcl(β ) =
4λ 2

9m3ω6
0 β

+O
(
λ

3) (25)

This quantity varies linearly with the temperature T and in
particular, at low T , the classical overtone disappears as the
system freezes in the vicinity of the potential minimum where
the anharmonicity is negligible.

For the model system (23), it is also possible to derive a
perturbative expression for the quantum VDOS and for the
corresponding overtone intensity ηQ(β ):

ηQ(β ) =
4λ 2

9m3ω6
0

Θ(ω0,β )+O
(
λ

3) (26)

which can be derived in two different ways, either using stan-
dard Rayleigh-Schrödinger perturbation theory based on the
harmonic oscillator eigenstates29,45, or from the perturbative
expansion of the exact Wigner distribution provided in ap-
pendix E. Equation (26) is similar to (25), but the classi-
cal thermal energy 1/β is replaced by the quantum energy
Θ(ω0,β ). As shown in Fig. 1, in the high temperature limit,
the classical and quantum results coincide. However, at low
temperature, Θ(ω0,β )→ h̄ω0/2 and thus, contrary to its clas-
sical counterpart, ηQ tends to a non-zero constant, due to zero-
point motion contributions.

In the following subsections, we use the perturbative anal-
ysis introduced in section II to investigate the performance
of some commonly adopted trajectory-based methods for ap-
proximating the quantum η(β ). We first consider the lin-
earized semi-classical initial value representation (LSC-IVR)
and emphasize the importance of the initial conditions by
considering the different approximations to the initial Wigner
distribution introduced in section III. We then turn to ring-
polymer-based approximations, before finally examining the
results of the QTB method. Our findings are summarized in
Fig. 1.
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FIG. 1: Contribution η of the overtone to the VDOS as
function of temperature for the potential (23) computed using
different methods. Lines are perturbative expressions while
bullet points are simulation results. In all the calculations, m
is the proton mass, ω0 = 1500 cm−1 and λ = 21 kcal/mol/3,

which is small enough for the perturbative analysis to be
highly accurate.

A. Linearized dynamics

As we pointed out in section II, for the simple cubic pertur-
bation of equation (23), the classical and quantum propagation
of p coincide up to second order in λ . A Dyson expansion
of the quantum Liouville time propagator gives the following
propagation of p:

eiLQt p = eiL t p+
λ h̄2

12

∫ t

0
ds eiL0(t−s) ∂ 3

∂ p3 eiL0s p

+
λ 2h̄4

144

∫ t

0
ds1

∫ s1

0
ds2 eiL0(t−s1)

∂ 3

∂ p3 eiL0(s1−s2)
∂ 3

∂ p3 eiL0s2 p

− λ 2h̄2

12

∫ t

0
ds1

∫ s1

0
ds2 eiL0(t−s1)q2 ∂

∂ p
eiL0(s1−s2)

∂ 3

∂ p3 eiL0s2 p

− λ 2h̄2

12

∫ t

0
ds1

∫ s1

0
ds2 eiL0(t−s1)

∂ 3

∂ p3 eiL0(s1−s2)q2 ∂

∂ p
eiL0s2 p

+O
(
λ

3) (27)

Using the analytic expressions available for the propagation
according to the harmonic operator eiL0t , it is easy to show
that the third derivative ∂ 3

∂ p3 , that appears in the first and sec-
ond order terms of eq. (27) is always null, so that

eiLQt p = eiL t p+O
(
λ

3) (28)

Therefore, the LSC-IVR approximation to the momentum
ATCF is exact at second order in perturbation. Quantum ef-
fects thus only arise from the sampling of initial conditions,
and the accuracy of the LSC-IVR estimate for η(β ) is en-
tirely determined by the approximation used for the Wigner
distribution ρw(q, p). More specifically, we show in the fol-
lowing that accounting for momentum-position correlations is
essential to describe the overtone accurately.
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As we noted above, the first-order expansion of the den-
sity ρw(q, p) is sufficient to describe overtones up to second
order in λ . For the model of equation (23), the perturbative
expansion of the IVR0, LHA, and ECMA0 approximations
for ρc

w(p|q) can all be expressed as:

ρ
c
IVR(p|q)= ρ 0(p)

[
1+α(ω0,β )

λq
3mω2

0

(
p2

mΘ(ω0,β )
−1
)]

+O
(
λ

2) (29)

where ρ 0(p) is the Gaussian momentum distribution of the
harmonic oscillator, and α(ω0,β ) is a coefficient that dif-
fers between the three methods and modulates position-
momentum correlations.

In the IVR0 approximation, α(ω0,β ) = 0, which yields the
integrated overtone in the VDOS:

ηIVR0(β ) = ηQ(β )
Θ(ω0,β )

Θ(2ω0,β )
+O

(
λ

3) (30)

The approximation is therefore asymptotically correct in the
classical high-temperature limit, where the factor that multi-
plies ηQ tends to one, but ηIVR0→ 1

2 ηQ at low T . The neglect of
position-momentum correlations in the initial distribution thus
leads to a global underestimation of the overtone intensity.

For non-zero α(ω0,β ), the general form of the overtone
intensity can be shown to be:

ηIVR(β ) = ηQ(β )
Θ(ω0,β )

Θ(2ω0,β )

[
1+α(ω0,β )

]
(31)

In LHA,

αLHA(ω0,β ) =
3
2

[
1+βΘ(2ω0,β )−2βΘ(ω0,β )

]
(32)

This approximation tends to overestimate α(ω0,β ) due to the
local nature of the approximation for the Gaussian conditional
momentum distribution. As a consequence, the overtone in-
tensity is higher than the exact quantum result, in particular in
the zero-temperature limit, where ηLHA→ 5

4 ηQ.
Finally, in the ECMA0 approximation,

αECMA0(ω0,β ) =
Θ(2ω0,β )

Θ(ω0,β )
−1 (33)

which coincides with the first order expansion of the exact
Wigner density for the potential (23). This is sufficient to en-
sure that the LSC-ECMA0 approximation for Cpp and for the
overtone intensity η(β ) is exact at second order in λ . More-
over, higher order terms in the Edgeworth expansion cancel
at this order of perturbation (see appendix E). Therefore the
fully non-local description of the position-momentum corre-
lations provided by ECMA allows for an accurate description
of the overtone intensity η(β ), even though the linearization
of the dynamics suppresses any quantum coherence effects.

B. Path integral based approximations

The perturbative analysis detailed in appendix B reveals
that, at second order in λ , Matsubara dynamics yields the

exact overtone intensity ηQ(β ) of equation (26). In contrast,
the results of its most common approximations – RPMD and
CMD – equal that of classical simulations ηcl(β ). We can an-
alyze this difference as follows: in Matsubara dynamics, the
overtone is produced from constructive anharmonic interac-
tions between the centroid of the ring-polymer and the fluc-
tuation Matsubara modes. In CMD, this interaction is aver-
aged out so that only the classical centroid contribution re-
mains in the overtone. On the other hand, the spring terms
in the RPMD potential shift the frequencies of the fluctuation
Matsubara modes so that they do not interact constructively
with the centroid at the overtone frequency but produce spu-
rious peaks instead. Therefore, in RPMD as well, only the
centroid contributes to the overtone. The dynamical interac-
tion between the centroid and the fluctuation modes is thus
essential to correctly capture anharmonic resonance effects.
This analysis is confirmed by the calculations of Benson et
al. that, using perturbation theory in the action angle variables
representation of the Matsubara dynamics, reached the same
conclusions29.

C. Numerical experimentation with the Quantum Thermal
Bath

Fig. 1 presents also numerical experiments performed with
the quantum thermal bath. Remarkably, in a standard QTB
dynamics, the overtone intensity depends quite strongly on
the estimator chosen for the VDOS. In Fig. 1, we show results
for the VDOS obtained from the Cpp(ω) (results indicated as
QTB-a) and from CpF(ω) (QTB-b). The QTB-a results are in
close agreement with the LSC-IVR0 curve as can be explained
by the following qualitative argument. Similarly to LSC, QTB
combines an approximate sampling of the Wigner distribution
(it is exact for purely harmonic systems) with an essentially
classical dynamics (at least on timescales shorter than γ−1).
Furthermore, similarly to the IVR0, the QTB was shown not
to capture position-momentum correlations46. The QTB-b re-
sults, on the other hand, closely follow the exact ηQ(β ) curve.
This agreement is remarkable and indicates that, contrary to
the Cpp(ω) ATCF, the estimation of CpF(2ω0), being propor-
tional to χqp(2ω0), directly probes the system’s response at
the overtone frequency and provides an accurate estimate of
the anharmonic intensity.

For this prototype model, we performed standard QTB sim-
ulations, in which the two estimators for the VDOS can differ.
In the more realistic cases presented in sections VI and VII,
we used the adQTB algorithm, in which case the two estima-
tors coincide (see appendix D).

V. COMBINATION BANDS

In section IV, we treated a simple unidimensional overtone
model, but in molecular and condensed matter systems, anhar-
monic resonances also arise from the coupling between dif-
ferent vibration modes. In particular, when two modes are
coupled, combination bands (CB), corresponding to the sum
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FIG. 2: Contributions of the three combination bands to the
VDOS for the potential (34) as a function of temperature for
the different methods. Lines are analytical expressions and

crosses are simulation results.

and the difference of the harmonic frequencies, appear in the
spectrum. This behavior can be modeled by using the follow-
ing two-dimensional potential:

V (q1,q2) =
1
2

m1ω1q2
1 +

1
2

m2ω2q2
2 +λq1q2

2 (34)

consisting of two harmonic oscillators at frequencies ω1 and
ω2 coupled by a cubic interaction term with amplitude con-

trolled by the parameter λ .
Three anharmonic resonances appear in the momentum au-

tocorrelation spectrum of potential (34): an overtone at 2ω2
and combinations bands at ω1+ω2 and ω1−ω2 (the overtone
contribution at 2ω1 is zero at second order in λ ). We char-
acterize the different resonances by the intensities η(β ;2ω2),
η(β ;ω1+ω2) and η(β ;ω1−ω2) of their respective contribu-
tions to the vibrational density of states.

The perturbative analysis shows that, in the classical case,
these intensities are given by:

ηcl(β ;ω1 +ω2) =
λ 2(ω1 +ω2)

2
β−1

m1m2
2(ω1 +2ω2)

2
ω14ω22

+O
(
λ

3)
(35)

ηcl(β ;ω1−ω2) =
λ 2(ω1−ω2)

2
β−1

m1m2
2(ω1−2ω2)

2
ω14ω22

+O
(
λ

3)
(36)

ηcl(β ;2ω2) =
2λ 2β−1

m1m2
2(ω1 +2ω2)

2(ω1−2ω2)
2
ω22

+O
(
λ

3)
(37)

As in section IV, the combination bands are second order in
λ and vary linearly with temperature. Moreover, the config-
uration ω1 = 2ω2 appears as a particular case (the Fermi res-
onance) where the intensities diverge, indicating that the per-
turbative expansion of section II does not apply. The specific
case of the Fermi resonance is examined numerically in sec-
tion VI.

In the quantum case, the exact contributions of the reso-
nances to the VDOS are obtained perturbatively as:

ηQ(β ;ω1 +ω2) =
(ω1Θ(ω2,β )+ω2Θ(ω1,β ))λ

2(ω1 +ω2)

m1m2
2(ω1 +2ω2)

2
ω14ω22

+O
(
λ

3) (38)

ηQ(β ;ω1−ω2) =
(ω1Θ(ω2,β )−ω2Θ(ω1,β ))λ

2(ω1−ω2)

m1m2
2(ω1−2ω2)

2
ω14ω22

+O
(
λ

3) (39)

ηQ(β ;2ω2) =
2λ 2Θ(ω2,β )

m1m2
2(ω1 +2ω2)

2(ω1−2ω2)
2
ω22

+O
(
λ

3) (40)

These expressions are very similar to the classical ones
(eqs. 35–37), except that the factor β−1 at the numerator
is replaced with weighted combinations of Θ(ω1,β ) and
Θ(ω2,β ). Indeed, contrary to the classical case where
equipartition of energy holds, in the quantum case, the dif-
ferent amounts of ZPE in each mode affects the combination
bands amplitude.

The comparison, as a function of temperature, between
the quantum (solid black curve) and classical results (dashed
black curve) is shown in Figure 2. We clearly observe two dif-
ferent behaviors: ηQ(ω1 +ω2) and ηQ(2ω2) saturate at a non-
zero value at low temperature due to zero-point energy contri-

butions. On the other hand, ηQ(ω1−ω2) goes to zero at low
temperature faster than the classical system. This can be ex-
plained as follows. In the Rayleigh-Schrödinger perturbation
picture, the difference-frequency component of the quantum
ATCF arises from transitions that start from an excited vibra-
tional state. At low temperature, when only the ground state is
populated, these transitions are efficiently suppressed and the
corresponding resonance vanishes. The figure also presents
the perturbative expressions derived below for the different
LSC-IVR approximations as well as the results of numeri-
cal experiments with the QTB and RPMD methods. In this
case, the combination band intensities are obtained by inte-
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gration of the VDOS over a frequency window chosen to en-
compass the appropriate peak while excluding contributions
from other peaks. As in section IV, we choose λ so that the
second-order perturbation expansion is accurate. For the com-
parisons reported here, we use ω1 = 2.5ω2 = 1500 cm−1 and
λ = 8.5 kcalmol−1 Å

−3
.

A. Linearized dynamics

Using the Dyson expansion and similar arguments as in
section IV.A (eq. 27), it is possible to show that, for the cu-
bic perturbation of eq. (34), quantum propagation of the mo-
menta is equivalent to classical propagation up to second or-
der in λ . Therefore a relation similar to (28) holds for each
degree of freedom and quantum effects only stem from the
initial Wigner distribution in the LSC-IVR framework.

As in the one-dimensional case of section IV, ECMA0
yields the exact Wigner distribution at first order in λ so that
the anharmonic resonance intensities are correct up to sec-
ond order. On the other hand, in the IVR0 approximation,
momentum-momentum and position-momentum correlations
are neglected leading to incorrect intensities of the combina-
tion bands. These are given by:

ηIVR0(β ;ω1 +ω2) = ηQ(β ;ω1 +ω2)
Θ(ω2,β )

Θ(ω1 +ω2,β )
(41)

ηIVR0(β ;ω1−ω2) = ηQ(β ;ω1−ω2)
Θ(ω2,β )

Θ(ω1−ω2,β )
(42)

ηIVR0(β ;2ω2) = ηQ(β ;2ω2)
Θ(ω1,β )

Θ(2ω2,β )
(43)

In LSC-IVR0, the quantum result ηQ is thus multiplied by the
ratio between the harmonic thermal energy Θ at frequency ω2
(or ω1 for eq. (43)) and at the frequency of the combination
band considered. This can lead to non-negligible errors, par-
ticularly in the evaluation of the sum-frequency component,
as shown in Fig. 2.

The perturbative form of the LSC-LHA anharmonic in-
tensities is more involved and reported in appendix F. Nu-
merical results for this approach are shown in Figure 2 and
that the local approximation for the position-momentum and
momentum-momentum correlations improves the estimate of
the intensity of the overtone at 2ω2 with respect to IVR0, but
it leads to an overestimation of the sum-frequency combina-
tion band at ω1 + ω2 (similarly to the observations in sec-
tion IV). More intriguing is the behavior of ηLHA(ω1−ω2),
that becomes negative at low temperature. Indeed, in numeri-
cal experiments with the potential of eq. (34), the momentum
autocorrelation spectrum computed in LHA displays a nega-
tive dip at frequency ω1−ω2. This result is unphysical since,
according to the Wiener-Khinchin theorem, the momentum
autocorrelation spectrum is always positive for stationary dy-
namics. Therefore, the negative intensity of the difference-
frequency feature is a clear manifestation that the classical
dynamics does not conserve the initial distribution.

B. Other approximations

Using the perturbative analysis, we were able to show that
Matsubara dynamics yields the exact anharmonic resonance
intensities up to second order in λ . On the other hand, both
RPMD and CMD yield classical intensities. Numerical re-
sults obtained in RPMD simulations are shown in figure 2 as
an illustration. These findings are in agreement with those of
Benson and Althorpe in ref. 29 and can be interpreted simi-
larly as in section IV B.

The QTB numerical experiments are also consistent with
the trends reported in IV: the anharmonic intensities closely
follow the exact curve when the VDOS is computed from the
linear susceptibility χ(ω) via the CpF(ω) correlation spec-
trum (QTB-b), whereas the naive evaluation from the Cpp(ω)
autocorrelation spectrum (QTB-a) leads to significant inaccu-
racies.

Finally we mention that eqs. 35–40 can also be used to
derive a closed-form quantum correction factor (QCF) to be
applied to classical vibration spectra in order to recover the
quantum intensity of overtones and combination bands. QCFs
have been explored before to approximate NQEs in the calcu-
lations of different dynamical observables47–49. Use of these
factors, however, can be problematic when dealing with vibra-
tional features since different choices of QCF can lead to very
different estimates39,50,51. Furthermore, these factors may am-
plify the effect of numerical noise, especially on the signal at
high frequencies. Nonetheless, Benson and Althorpe show in
Ref. 29 that QCFs derived from perturbation theory can pro-
vide satisfactory results for simple molecules, among which
the water model presented in Section VII.

VI. FERMI RESONANCES

In section V, we noted that the configuration ω1 ≈ 2ω2 ap-
pears as a particular case, the Fermi resonance, in which the
perturbative approach developed above for combination bands
breaks down. In this configuration, the interaction between
the 2ω2-overtone and the ω1-mode causes the high-frequency
peak in the vibration spectrum to split. In ref. 52, Basire et
al. developed a different perturbative approach and showed
that the temperature-dependence of this splitting is qualita-
tively different if the system is treated classically or quantum-
mechanically, accounting for zero-point motion. Indeed, the
classical Fermi splitting goes to zero as T 1/2 at low temper-
ature while the quantum one saturates at a non-zero value.
This behavior can be related to that of the overtone intensity
in section IV: because of zero-point fluctuations, the 2ω2-
overtone does not disappear at low temperatures and its inter-
action with the high-frequency mode and the resulting split-
ting persist. To study the Fermi resonance, we use the simple
3-dimensional model for gas-phase CO2 – the historic exam-
ple for which Fermi developed the theoretical explanation of
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FIG. 3: Left and right panels: Kubo-transformed momentum autocorrelation spectrum at 150K (left) and 800K (right) in the
region of the Fermi dyad for TRPMD, LSC-ECMA and adQTB, compared to the exact results. The exact spectra are obtained
by solving the Schrödinger equation on a basis of harmonic wavefunctions and are artificially broadened by convolution with a

Gaussian function so that the height of the peaks approximately match the other methods. Center panel: Fermi splitting as a
function of temperature approximated with TRPMD, LSC-ECMA and adQTB. This splitting is measured as the distance

between the center of mass of each of the two peaks that constitute the Fermi dyad. Arbitrary units are used for the intensities
of the spectra.

this phenomenon53 – also adopted in ref. 52:

V (x,y,z) =
1
2

m1ω
2
1 x2 +

1
2

m2ω
2
2 y2 +

1
2

m2ω
2
2 z2

+
1
2

χ12x(y2 + z2)
√

m1m2

(44)

where x is the symmetric stretching coordinate and y, z cor-
respond to the two degenerate bending modes. The antisym-
metric streching mode is on a different frequency range and
does not interact with the relevant modes; it is thus not in-
cluded in the model. The masses m1 and m2 are chosen as
the reduced masses of the corresponding modes and the har-
monic frequencies are ω1 = 1261 cm−1 and ω2 = 634 cm−1.
The anharmonic coupling parameter is taken equal to χ12 =
1.479×10−7 a.u..

Figure 3 shows the Fermi splitting obtained in this model
using TRPMD (blue), LSC-ECMA (red) and adQTB (green)
compared to exact results (grey) obtained by solving the
Schrödinger equation on a basis of harmonic wavefunctions.
For this low-dimensional system, the exact spectrum consists
in a sum of Dirac δ−functions, centered at the frequency-
differences between pairs of eigenstates of the system. For
visualization purposes, these peaks are displayed with an ar-
tificial (and temperature-independent) broadening in the left
and in the right panels of Fig. 3. Note that for this system,
use of the adaptive version of the QTB was critical due to
the massive zero-point energy leakage occurring in the Fermi
resonant configuration32. Moreover, the thermostatted RPMD
algorithm was preferred to prevent the appearance of spuri-
ous peaks in the low temperature spectra. At high tempera-
ture T = 800 K (right panel), all simulation methods agree in
showing a doublet with comparable splitting and peak shapes.
At 150 K (left panel), TRPMD clearly underestimates the
splitting, while both LSC-ECMA and adQTB yield slightly

broader peaks that are centered at the correct quantum fre-
quencies. Interestingly, all LSC-IVR spectra are similar (i.e.
IVR0, LGA or ECMA), with splitting values very close to
the exact result (thus only ECMA is presented). This is rel-
atively surprising and indicates that position-momentum cor-
relations, although decisive in the overtone and in the combi-
nation bands intensities, play only a minor role in determin-
ing the Fermi splitting. Indeed, combining classical propaga-
tion with a sampling that correctly captures the zero-point en-
ergy in each mode is enough for an accurate description of the
Fermi resonance. For the same reason, the adQTB also yields
accurate results, and the adQTB spectra, shown as green lines
in Figure 3, are very similar to those obtained via LSC-IVR.
In these calculations, the QTB spectra are deconvoluted us-
ing the iterative procedure of Ref. 54 in order to suppress the
spectral broadening caused by the friction force and make the
splitting more visible (though the peaks are not fully separated
in this case and a residual amplitude persists between them).

A more quantitative illustration of the performance of the
different methods in predicting the Fermi splitting is provided
in the central panel of Figure 3. Our simulations are com-
pared to the perturbative expressions derived by Basire et al.
in Ref. 52 for the amplitude of the Fermi splitting in the classi-
cal (dashed line) and in the quantum (continuous line) frame-
works. As in ref. 52, to compare the analytical trends and
the simulations, in the latter, the splitting is measured as the
distance between the center of mass of each of the two peaks
that constitute the Fermi dyad. The perturbative result is in
close agreement with the splitting obtained from the numer-
ical solution of Schrödinger equation (black diamond shapes
in Figure 3). The comparison clearly shows that both LSC-
ECMA (and more generally LSC-IVR for all three Wigner
approximations considered) and adQTB provide an almost ex-
act description of the Fermi resonance, while TRPMD and
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CMD (not shown in the figure) follow the classical curve and
yield a vanishing splitting at low temperature. This inaccuracy
of the PI-based methods can be related to the displacement
of the spectral intensity towards spurious peaks in (T)RPMD
and to the averaging out of the fluctuation modes dynamics
in CMD. Interestingly, Benson and Althorpe show in Ref. 29
that Matsubara dynamics allows recovering the correct spec-
tral intensities and therefore yields almost exact predictions
for the Fermi splitting.

VII. INFRARED SPECTRA FOR GAS-PHASE WATER

To conclude this paper, we compare the performance of
the considered methods for the simulation of the IR spectrum
of a water molecule in gas phase. Interactions are modeled
with the accurate potential energy surface due to Partridge and
Schwenke55. This system is of particular interest as coupling
between the bending and stretching modes of the molecule
naturally gives rise to overtones and combination bands in
the vibration spectrum. Furthermore, at room temperature,
the ZPE of these high-frequency modes strongly dominates
over their thermal energy kBT . This corresponds to a quantum
regime in which the various trajectory-based methods perform
very differently, according to the analysis in sections IV-VI.
This system has also been considered for a similar analysis
by Benson et al. in ref. 16 and 29, that provide a com-
parison of the IR absorption spectra obtained from PI-based
methods (TRPMD, CMD and the more recent QCMD), from
LSC-IVR (using LGA for the Wigner density sampling) and
from a quasi-exact wavefunction-based resolution (using the
DVR method56). The authors show that PI approaches do not
capture the intensity of overtones and combination bands cor-
rectly while LSC-LGA is in much better agreement with the
quasi-exact reference (although with broadened spectral line-
shapes).

In this section, we extend the set of methods considered by
Benson et al by exploring the performance of LSC-ECMA
and adQTB. However, contrary to ref. 16 we compute the
spectrum using the qTIP4p-f linear dipole moment57 instead
of the non-linear Partridge-Schwenke dipole moment. In the
linear case, the real part of the standard dipole-derivative
ATCF can be expressed exactly as:

Cµ̇ µ̇ =
∫

dqdp ρw(q, p) µ̇ eiLQt
µ̇ (45)

while a similar expression would introduce an approximation
for a non-linear dipole moment which would directly impact
the LSC-IVR results.

Figure 4 (top panel) shows the three main peaks of the IR
absorption spectrum simulated using classical MD (dashed
grey), TRPMD (solid blue), adQTB (dashed yellow) and
LSC-ECMA (dotted dashed green) at 300 K. The spectra are
also compared to the numerically exact DVR results (filled
curve). Note that the lineshape of the DVR spectrum has been
artificially broadened for visualization purposes (by damping
the TCF with a Hann window of length 750 fs, consistently
with ref. 16). All approximate quantum methods yield similar

results in this spectral region and agree reasonably well with
the DVR spectra, although none of the methods is able to cap-
ture the fine structure of the stretching band (≈ 3700cm−1).
The bottom panel of Figure 4 shows the anharmonic reso-
nances that appear in the high-frequency region of the spec-
trum (from 4500cm−1 to 8500cm−1). They consist in two
main features around 5100-5500cm−1 (sum of the bending
and stretching frequencies, which we will label as combi-
nation band) and 7000-7400cm−1 (twice the stretching fre-
quency, which we will label as overtone). Consistently with
the perturbative analysis, TRPMD strongly underestimates
these resonances, with intensities comparable to the classi-
cal results (although an accurate estimation of the combina-
tion band intensity is difficult due to the strong broadening of
the stretching peak). LSC-IVR and adQTB methods, on the
other hand, yield more intense peaks, closer to the exact result
(though with broader lineshapes) and satisfactory agreement
with the perturbative results for combination bands. Indeed,
for LSC-LGA, both resonances intensities are overestimated
by approximately 40%. The LSC-ECMA0 sligtly underes-
timates the combination band (∼ −7%) and underestimates
more significantly the overtone (∼ −25%). Contrary to the
perturbative case, the Edgeworth correction plays an impor-
tant role in this more anharmonic case: weighting the sam-
ples with the first term in the Edgeworth correction (ECMA4)
increases the resonance intensities which are both slightly
overestimated (∼ 10%). The inclusion of higher orders of
the Edgeworth correction, although more computationally de-
manding, might further improve the results and their effect
should be investigated in more details in future work. This im-
pact of the Edgeworth correction is a strong signal that the per-
turbative approach does not hold quantitatively for this very
anharmonic potential.

Despite this strong anharmonicity, the adaptive QTB only
slightly underestimates the combination band (∼ −5%, al-
though difficult to estimate accurately due to the broaden-
ing of the stretching peak) and is able to accurately capture
the overtone intensity (less than 1% discrepancy). For this
model, the random force intensity is adapted separately for O
and H so that the quantum fluctuation-dissipation relation of
eq. (13) is enforced for both species (details in appendix D).
The accuracy of the results seems to indicate that the quantum
fluctuation-dissipation theorem provides a robust criterion to
correctly thermalize anharmonic resonances.

VIII. CONCLUSIONS

Several trajectory based methods for approximate calcula-
tion of quantum time-correlation functions were compared via
analytical and numerical work. These approaches combine
approximate sampling of the quantum thermal density with
propagation of (generalised) classical trajectories. In our tests,
we considered simple low dimensional models endowed with
spectral features such as overtones, combination bands and
Fermi resonances, that are problematic for trajectory-based
methods. The observed failure to correctly reproduce these
features, often interpreted as a manifestation of quantum in-
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FIG. 4: Infrared spectrum of gas-phase water (Partridge-Schwenke potential energy and qTIP4P-f linear dipole moment) at
300K. Arbitrary units are used for the peak intensities.

terference effects, is typically attributed to lack of coherence
in the classical time propagation. Our results contradict this
interpretation, pointing to an alternative explanation that high-
lights the role of accurate initial condition sampling and the
subtle interplay of different terms in the classical(like) propa-
gators. In particular:

1. For the weakly anharmonic models of overtones and

combination bands considered in this work, the clas-
sical evolution of IVR-LSC is exact. The relative ac-
curacy of IVR-LSC approaches then depends critically
on the method employed to sample the Wigner thermal
density. In particular, approximations of this function
that do not take into proper account quantum correla-
tions between positions and momenta (such as IVR0
and LHA) fail to reproduce the correct trends with tem-
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perature of the anaharmonic features intensities. The
performance of the different methods is confirmed nu-
merically also for more complex systems.

2. Matsubara dynamics is also exact for the model over-
tone.

3. Path integral dynamics methods such as (T)RPMD and
CMD follow fully classical behaviour for the tempera-
ture dependence of the anharmonic features’ intensities.
Perturbative analysis based on the Matsubara formalism
demonstrates (for the overtone) that this is due to inac-
curate description of the coupling between the centroid
and fluctuation modes.

The results listed above for path integral based dynamics
are confirmed by a recent study29 employing classical per-
turbation theory on the action angle representation of the
Matsubara dynamics. Furthermore, our work puts on firmer
ground previous empirical observations16, indicating good ac-
curacy of LSC-IVR for anharmonic spectral features in liquid
water. The relative merits of LSC-IVR and path integral dy-
namics approaches have been examined also in other relevant
cases. Problematic features in the vibrational spectra of sim-
ple models computed via RPMD (spurious peaks) and CMD
(temperature dependence of the peaks’ positions) where re-
ported and explained in Ref. 58, and prompted developments,
such as TRPMD and the Quasi-CMD28 to mitigate them. In
contrast, LSC-IVR type of methods, while more expensive,
were directly able to produce accurate results for these test
cases59. In the context of vibrational energy relaxation, typi-
cally computed from the Fourier transform of the force auto-
correlation function (a strongly non-linear observable), it was
shown that quantum effects in the high-frequency region of
the spectrum can be captured by LSC-IVR, but not by CMD49.
Interestingly in view of our analysis of the role of the coupling
of the centroid mode with the fluctuation Matsubara modes,
in ref. 49, it was observed that the centroid correlation func-
tion could be obtained from the LSC-IVR one by decoupling
the zero-frequency normal mode from the other modes of the
ring polymer. The importance of accounting for these higher
normal modes in vibrational energy relaxation was also high-
lighted. This relationship between LSC-IVR and CMD was
later formally derived, for time-correlation functions in which
one of the two operators is the position60. The conclusions of
this paper are consistent with these previous results and rein-
force them via the adopted perturbative approach. Of course,
the pathologies of LSC-IVR stemming from the lack of con-
servation of the quantum probability density can also lead to
dramatic failures of the method, such as ice melting within
1ps of simulation16, when the resulting unphysical transfer of
energy from high to low frequency modes is faster than the
typical time scale of the phenomenon under investigation.

We have also shown that, in contrast with path integral
based methods, the (ad)QTB approach gives surprisingly ac-
curate results for the non trivial observables considered in this
work, provided that the momentum force correlation function
is considered for the calculation of the spectra. The stochas-
tic nature of this approach, that lacks a clear formal justifica-

tion both as a sampler of the thermal density and as a gen-
erator of time dependent quantities, complicates an analytical
investigation of its properties. A qualitative explanation of the
remarkable performance of the QTB can be given observing
some analogies with IVR based methods. The relevant fre-
quencies for overtones and resonances are typically more than
an order of magnitude greater than the damping frequency in
the generalized Langevin QTB evolution. In these conditions,
the friction and stochastic forces play a negligible role in the
short-term dynamics which is therefore essentially classical
as for the IVR. The generalized Langevin thermostat only en-
sures that the configurations that are explored follow (at least
approximately) the correct quantum distribution. The results
of the exploratory calculations presented here, and comple-
mentary work on more realistic systems33, indicate that that
this method deserves careful consideration as an affordable
simulation tool for highly dimensional systems with relevant
NQEs.

The analysis described in this paper is based on relatively
simple models and further tests are necessary to determine
if our results indicate general trends for highly anharmonic
condensed phase systems or for more complex (non linear)
correlation functions. In spite of this, they present clear evi-
dence that interference effects cannot always "be blamed" for
failures of trajectory-based methods. The interplay between
sampling and propagation is quite subtle and quantum correla-
tions, rather than coherence, can play a surprisingly important
role.
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Appendix A: More details on the classical perturbation theory

In this appendix, we provide more details on the classical
perturbative calculation of the overtone intensity for the uni-
dimensional potential of equation (23).

The methodology that we use to compute η in the classical
case goes as follows: (1) we expand the Boltzmann density ρ

in powers of the anharmonicity parameter λ . (2) We write the
Dyson expansion of the time propagator eiL t at second order
in λ (the order at which the overtone contribution appears, as
we will see in the following) and compute the propagated mo-
mentum eiL t p. (3) we combine the two previous results by
averaging the second-order expansion of peiL t p on the distri-
bution ρ , which yields cpp(t) at second order in λ . (4) Finally,
we evaluate the Fourier transform of cpp(t) to obtain the over-
tone contribution to the VDOS η defined in eq. (24).

The perturbed Boltzmann density, expanded to second or-
der in λ , is given by:

ρ(q, p)= ρ0(q, p)
[

1− λβq3

3
+

λ 2β 2

18

(
q6−

〈
q6
〉

0

)]
+O

(
λ

3)
(A1)

where ρ0(q, p) is the harmonic Boltzmann density and 〈·〉0
denotes the expectation value over the Gaussian density ρ0.

We use the Dyson expansion of the classical time propa-
gator to rewrite the perturbed propagator eiL t as a series of
harmonic propagations (that are represented by the operator
eiL0t and can be computed analytically) with intermediate ap-
plications of the perturbation Liouvillan −λq2 ∂

∂ p at different
times. The Dyson series of the classical time propagator trun-
cated at second order is given by:

eiLclt =eiL0t −λ

∫ t

0
ds eiL0(t−s)q2 ∂

∂ p
eiL0s

+λ
2
∫ t

0
ds1eiL0(t−s1) q2 ∂

∂ p∫ s1

0
ds2 eiL0(s1−s2) q2 ∂

∂ p
eiL0s2

+O
(
λ

3) (A2)

The zeroth order of the expansion corresponds to a purely har-
monic propagation. The first order involves a single applica-
tion of the perturbation at a time s combined with harmonic
propagations from time 0 to s and s to t. The second order
corresponds to two applications of the perturbation at differ-
ent times. The effect of the harmonic time propagator eiL0s

on q and p is:

eiL0sq = qcos(ω0s)+
p

mω0
sin(ω0s) (A3)

eiL0s p = pcos(ω0s)−mω0qsin(ω0s) (A4)

Using (A1) and (A2), the TCF of the perturbed system can be
computed entirely from the properties of the harmonic density
and time propagator. In the following, we denote as c(mn)

pp (t)
the contribution obtained from the expansion at order n of the
density and order m for the Dyson series. At second order in

λ , we thus obtain:

cpp(t) =
m+n≤2

∑
m,n

c(mn)
pp (t)+O

(
λ

3) (A5)

Note that, since the unperturbed harmonic Liouvillian does
not produce overtones, the c(m0)

pp terms do not contribute to
the intensity of the overtone and they do not appear in the
calculation of η . In particular, since c(20)

pp is not relevant, the
first-order expansion of the density is sufficient to compute
η(β ) up to second order in λ . In this section, we nonetheless
compute all c(mn)

pp terms in order to derive the full second-order
expression of the TCF.

The unperturbed contribution for the classical harmonic os-
cillator reads:

c(00)
pp (t) =

m
β

cos(ω0t) (A6)

Using the parity and separability of the harmonic Boltzmann
density, one can easily show that:

c(01)
pp = c(10)

pp = c(20)
pp = 0 (A7)

The first anharmonic contribution to the correlation function
is thus of second order in λ and comes from the two contribu-
tions c(11)

pp and c(02)
pp . Using first orders of (A1) and (A2), we

obtain:

c(11)
pp (t) =

λ 2β

3

∫
dqdp ρ0(q, p) q3 p∫ t

0
ds eiL0(t−s)q2 ∂

∂ p
eiL0s p (A8)

After applying the time propagators and exploiting the sym-
metries of the density, this term reduces to:

c(11)
pp (t) =

2λ 2β

3mω0

〈
q4〉

0

〈
p2〉

0

×
∫ t

0
ds cos(ω0s)cos(ω0(t− s))sin(ω0(t− s))

=
2λ 2

3m2ω6
0 β 2

[cos(ω0t)− cos(2ω0t)] (A9)

Finally, the second order of the Dyson series is:

c(02)
pp (t) =λ

2
∫

dqdp ρ0(q, p) p∫ t

0
ds1eiL0(t−s1) q2 ∂

∂ p∫ s1

0
ds2 eiL0(s1−s2) q2 ∂

∂ p
eiL0s2 p (A10)

Applying the propagators and averaging over the harmonic
density, we finally obtain:

c(02)
pp (t) =

10λ 2

9m2ω6
0 β 2

[cos(2ω0t)− cos(ω0t)+
3
2

ω0t sin(ω0t)]

(A11)
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The full expression of cpp(t) at second order in λ is then:

cpp(t) =
m
β

cos(ω0t)

+
λ 2

m2ω6
0 β 2

(
4
9

[
cos(2ω0t)− cos(ω0t)

]
+

5
3

ω0t sin(ω0t)

)
+O

(
λ

3) (A12)

By Fourier transform, we then obtain the overtone contribu-
tion to the classical VDOS, as defined in equation (24):

ηcl(β ) =
4λ 2

9m3ω6
0

β
−1 +O

(
λ

3) (A13)

(A11) contains a term proportional to ω0t sin(ω0t) which di-
verges when t → ∞. This divergent term, called a secular
term, is a well known artefact of this type of Dyson series
(see refs. 64 and 65) and can be removed using multiple-
scale perturbation66,67, resummation techniques68,69 or by us-
ing an appropriate change of variables (for example action-
angle variables as in ref. 29). As this term does not affect the
overtone intensity (as confirmed by numerical tests), we sim-
ply chose to discard it and to discard similar terms appearing
in the perturbative calculation for the approximate quantum
methods.

Appendix B: Perturbation theory for ring-polymer based
methods

In this appendix, we extend the perturbation approach pre-
sented in appendix A to ring-polymer methods. We show that
Matsubara dynamics yields the exact result, at second order in
λ , for the overtone intensity in the unidimensional potential of
equation (23). We also show that RPMD and CMD yield the
classical result.

Matsubara dynamics

We recall the Matsubara dynamics approximation to the
Kubo-transformed momentum ATCF24:

KMats
pp (t) = lim

M→∞

∫
dQdP ρM(Q,P) P0 eiLMt P0 (B1)

where Q = (Qn)n∈M and P = (Pn)n∈M are the M first Mat-
subara modes (with the notation n ∈M denoting n =−(M−
1)/2, . . . ,(M− 1)/2 ) among which (Q0,P0) is the centroid,
and ρM(Q,P) is the Matsubara quasi-density defined as:

ρM(Q,P) =
1

ZM

e
−β

[
∑n∈M

P2
n

2m+UM(Q)−iθM(Q,P)
]

(B2)

with the phase factor:

θM(Q,P) = ∑
n∈M

Pnω̃nQ−n (B3)

and the Matsubara potential:

UM(Q) =
1
2

mω
2
0 ∑

n∈M
Q2

n +
λ

3 ∑
i, j,k∈M

Ai jkQiQ jQk (B4)

The Ai jk are constants that can be derived for the cubic poten-
tial following the procedure described in the supplementary
material of ref. 24. The Matsubara partition function ZM nor-
malizes the distribution. The operator iLM is the Matsubara
Liouvillian defined, for the potential (23), as:

iLM(Q,P) = ∑
n∈M

iL0(Qn,Pn)−λ ∑
i, j,k∈M

Ai jkQiQ j
∂

∂Pk

(B5)

where iL0 is the classical harmonic Liouville operator. Note
that, for a purely harmonic system, the Matsubara modes
evolve independently, each following a classical harmonic
motion. As a consequence, coupling between the centroid and
the fluctuation modes only arises from the cubic perturbation
term. We denote the unperturbed Matsubara distribution as:

ρM,0(Q,P) = eiβθM(Q,P)
∏

n∈M

e−βH0(Qn,Pn)

Zn,0
(B6)

with H0 the unperturbed Matsubara Hamiltonian, Zn,0 =∫
dQndPne−β (H0(Qn,Pn)+

1
2 mω̃2

n Q2
n) and ω̃n = 2nπ/β h̄. Once the

ATCF is written under the form (B1), the same perturbation
approach can be applied as for the classical dynamics. First,
the Matsubara distribution is expanded as:

ρM(Q,P) = ρM,0(Q,P)

[
1− βλ

3 ∑
i, j,k∈M

Ai jkQiQ jQk

]
+O

(
λ

2) (B7)

Then, the time propagator is expanded to second order using
the Dyson series of the perturbed Matsubara Liouvillian (B5).
As in the classical case, we decompose the Matsubara time
correlation function (B1) as:

KM
pp(t) =

i+ j≤2

∑
i, j

KM(i j)
pp (t)+O

(
λ

3) (B8)

Since the fluctuation Matsubara modes are decoupled from the
centroid in the unperturbed dynamics, it can easily be shown
that:

KM(00)
pp (t) =

m
β

cos(ω0t) (B9)

which is the standard result for the harmonic oscillator. Fur-
thermore, using the parity of the harmonic distribution it fol-
lows that:

KM(10)
pp = KM(01)

pp = 0 (B10)

For second order terms, one can show that:

KM(11)
pp (t) =

2λ 2β

3mω2
0
[cos(ω0t)− cos(2ω0t)]

×
∫

dQdP ρM,0(Q,P)P2
0

(
Q2

0 ∑
i 6=0

Q2
i +

Q4
0

3

)
(B11)
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Since the integrand does not involve Pi (i 6=0), one can integrate
out the momenta and obtain:

KM(11)
pp (t) =

2λ 2

3ω2
0

[
cos(ω0t)− cos(2ω0t)

]
×

(〈
Q2

0
〉

0 ∑
i6=0

〈
Q2

i
〉

0 +

〈
Q4

0
〉

0
3

)
(B12)

Since the unperturbed density for Q0 is Gaussian, we have〈
Q4

0
〉

0 = 3
〈
Q2

0
〉2

0 therefore KM(11)
pp simplifies to:

KM(11)
pp (t) =

2λ 2

3mω4
0 β

[
cos(ω0t)− cos(2ω0t)

]
∑

n∈M

〈
Q2

n
〉

0

(B13)
When the number M of Matsubara modes tends to infinity, the
sum appearing in equation (B13) can be related to the average
harmonic potential energy:

lim
M→∞

∑
n∈M

1
2

mω
2
0
〈
Q2

n
〉

0 =
1
2

Θ(ω0,β ) (B14)

Finally,

lim
M→∞

KM(11)
pp (t) =

2λ 2Θ(ω0,β )

3m2ω6
0 β

[cos(ω0t)− cos(2ω0t)]

(B15)
Using a similar method (but with slightly more involved cal-
culations), it can be shown that the remaining second order
term in the expansion of the TCF takes the following form:

lim
M→∞

KM(02)
pp (t)=

λ 2Θ(ω0,β )

m2ω6
0 β

(
10
9
[

cos(2ω0t)−cos(ω0t)
]

+
5
3

ω0t sin(ω0t)

)
(B16)

Furthermore, it can be shown that KM(02)
pp = 0 for the cubic

perturbation under study, so that the Matsubara TCF is given
by:

lim
M→∞

KM
pp(t) =

m
β

cos(ω0t)+
4λ 2Θ(ω0,β )

9m2ω6
0 β

[
cos(2ω0t)

− cos(ω0t)
]
+O

(
λ

3) (B17)

where we discarded the secular term that originates from
eq. (B16). The contribution of the overtone to the VDOS,
approximated using Matsubara dynamics, is then:

ηMats(β ) =
4λ 2

9m3ω6
0

Θ(ω0,β )+O
(
λ

3)= ηQ(β )+O
(
λ

3)
(B18)

Ring-polymer molecular dynamics

The procedure for RPMD is almost identical to that for
Matsubara dynamics, except that we replace the Matsubara

distribution and Liouvillian by the RPMD ones given respec-
tively by:

ρRPMD(Q,P) =
1

ZRPMD

e
−β

[
∑n∈M

(
P2
n

2m+ 1
2 mω̃2

n Q2
n

)
+UM(Q)

]
(B19)

iLRPMD(Q,P) = ∑
n∈M

iL0(Qn,Pn)− ∑
n∈M

mω̃nQn
∂

∂Pn

−λ ∑
i, j,k∈M

Ai jkQiQ j
∂

∂Pk
(B20)

In the limit of an infinite number of modes, the final result is
given by:

KRPMD
pp (t) =

m
β

cos(ω0t)+
4λ 2

9m2ω6
0 β 2

[cos(2ω0t)− cos(ω0t)]

+
4λ 2

m2ω6
0 β 2

∞

∑
n=1

ω6
0

(ω2
0 + ω̃2

n )(3ω2
0 +4ω̃2

n )
2

×
[

cos
(

2
√

ω2
0 + ω̃2

n t
)
− cos(ω0t)

]
+O

(
λ

3) (B21)

The overtone intensity at frequency 2ω0 is therefore identical
to the classical intensity. The last line corresponds to the
so-called spurious resonances of the RPMD method, appear-
ing at frequencies whose expression combines the physical
frequency ω0 and the ring-polymer internal frequencies ω̃n.

Centroid molecular dynamics

Finally, for CMD, we first obtain a perturbative expression
of the centroid potential as:

VC(Q0) =V (Q0)+λQ0
βΘ(ω0,β )−1

βmω2
0

+λ
2Q2

0
αC(ω0,β )

βm2ω4
0

+O
(
λ

3) (B22)

with

αC(ω0,β ) = 1+
βΘ(ω0,β )

2
[βΘ(2ω0,β )−2βΘ(ω0,β )−1]

(B23)
and then apply the classical procedure by replacing the stan-
dard potential by VC which yields the following momentum
ATCF:

KCMD
pp (t) =

m
β

cos(ω0t)+
4λ 2

9m2ω6
0 β 2

[cos(2ω0t)− cos(ω0t)]

+O
(
λ

3) (B24)

As in RPMD, the only overtone contribution at frequency 2ω0
is the identical to the classical expression (A12) (Note that in
both CMD and RPMD expressions of the ATCF, we discarded
the secular terms).
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Appendix C: The Edgeworth Conditional Momentum
Approximation

In this appendix, we summarize the derivation of the Edge-
worth conditional momentum approximation (ECMA). This
method makes use of the Edgeworth expansion developed in
Ref. 41 to provide an optimal Gaussian approximation for the
conditional momentum distribution, together with a correc-
tion term that takes the form of an infinite series converging
asymptotically to the exact Wigner distribution (including, in
particular, its negative parts).

Let us begin by rewriting the Wigner conditional momen-
tum distribution of eq.(14) as

ρ
c
w(p|q) =

∫
d∆ ei p∆

h̄
〈
q− ∆

2

∣∣e−β Ĥ
∣∣q+ ∆

2

〉
∫

d∆ 2π h̄ δ (∆)
〈
q− ∆

2

∣∣e−β Ĥ
∣∣q+ ∆

2

〉 (C1)

with δ the Dirac function. We then insert the relation
2π h̄δ (∆) =

∫
dp ei p∆

h̄ to obtain:

ρ
c
w(p|q) =

∫
d∆ ei p∆

h̄
〈
q− ∆

2

∣∣e−β Ĥ
∣∣q+ ∆

2

〉
∫

dp
∫

d∆ ei p∆

h̄
〈
q− ∆

2

∣∣e−β Ĥ
∣∣q+ ∆

2

〉 (C2)

thus making clear the normalization of the conditional mo-
mentum distribution. Finally, we trivially rewrite the pseudo-
density as:

ρ
c
w(p|q) = e−κ2(q)

p2

2h̄2
∫

d∆ ei p∆

h̄ +κ2(q)
p2

2h̄2 f (∆|q)∫
dp e−κ2(q)

p2

2h̄2
∫

d∆ ei p∆

h̄ +κ2(q)
p2

2h̄2 f (∆|q)
(C3)

with the probability density

f (∆|q) =
〈
q− ∆

2

∣∣e−β Ĥ
∣∣q+ ∆

2

〉
∫

d∆
〈
q− ∆

2

∣∣e−β Ĥ
∣∣q+ ∆

2

〉 (C4)

and κ2(q) an arbitrary function of position. Expanding

e
ip
h̄ ∆+

κ2 p2

2h̄2 as a power series with respect to p, and choosing
κ2 as the second cumulant of the probability density f ,

κ2(q) =
∫

d∆ ∆
2 f (∆|q) =

〈
∆

2〉
f |q (C5)

yields the so-called Edgeworth Conditional Momentum Ap-
proximation:

ρ
c
ECMAn(p|q) = e−κ2(q)

p2

2h̄2 CEWn(q, p)∫
dp e−κ2(q)

p2

2h̄2 CEWn(q, p)
(C6)

with

CEWn(q, p) = 1+
n

∑
m=4,even

κm(q)
m!

(
ip
h̄

)m

(C7)

where κm(q) is the m-th order cumulant of the density f (∆|q),
for example, κ4(q) =

〈
∆4
〉

f |q − 3
〈
∆2
〉2

f |q. In equation

(C6), ρc
ECMAn(p|q) is approximated as the (normalized) prod-

uct of a positive function times the Edgeworth correction fac-
tor CEWn(q, p), that takes the form of an expansion in powers
of p truncated at order n. The coefficients of this expansion,
the cumulants of f , can be computed numerically without fac-
ing a sign problem41. Note that the odd orders of CEWn(q, p)
vanish by parity of f with respect to ∆.

The choice of κ2(q) as the second cumulant of f (∆|q)
cancels the second order term in the Edgeworth correction
series so that the distribution ρc

ECMA0(p|q) is an optimal
Gaussian approximation to the momentum distribution (in the
sense of the Edgeworth expansion). In particular, it ensures
that ECMA0 is exact when the momentum distribution is
actually Gaussian, as for the harmonic potential or in the
classical limit41.

In order to sample momenta from the distribution (C6), one
has to numerically estimate κ2(q) (and higher-order cumu-
lants if necessary) as it does not have an analytical expres-
sion. This is done by sampling configurations from the path-
integral representation of the density f (∆|q) in an auxiliary PI
calculation (see ref. 41 for details). This procedure must be
repeated at each configuration q sampled from the marginal
Wigner distribution and constitutes most of the computational
cost of the method.

The numerical estimation also implies that κ2(q) is sub-
ject to statistical noise. This noise can induce a bias on the
conditional momentum distribution, which in turn can affect
the estimation of momentum-dependent observables. In prac-
tice, the noise tends to broaden the momentum distribution
and leads to an overestimation of the kinetic energy. This ef-
fect is corrected by reweighting the distribution with a factor
depending on the variance σ2 of the numerical estimate for
κ2. For the ECMA0 momentum distribution, it can be shown
that the reweighting factor is given, at first order in σ , by:

CEW0
noise(p ; κ2,σ) = 1−σ

2
(

p4

8h̄4 −
p2

4h̄2
κ2
− 1

8κ2
2

)
(C8)

In practice, σ2 is estimated by computing the empirical vari-
ance of κ2(q) from multiple independent calculations (i.e.
multiple auxiliary PI simulations of (C4)). A similar correc-
tion can be derived for multidimensional system.
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Appendix D: The (adaptive) Quantum Thermal Bath
V
D
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FIG. 5: Top panel: Vibrational density of states (VDOS) of
gas-phase water in the anharmonic resonances region (in arbi-
trary units), as simulated with QTB and adQTB and computed
from the two different estimators defined in section II D and
IV C (-a: from Cpp(ω), -b: from CpF(ω)). Bottom panel: con-
verged γr(ω) coefficients at the end of the adaptation period
for both species (minus the friction coefficient γ = 12ps−1)

In this Appendix, we illustrate the effect of the adaptation
process of the adQTB method on the intensity of anharmonic
resonances with the particular case of the H2O molecule ex-
amined in section VII. The top panel of figure 5 compares
the VDOS obtained from the two different estimators defined
in section II D and IV C. In the standard QTB method, the
two estimators strongly differ with the QTB-a spectrum (ob-
tained from Cpp(ω)) being less intense, in agreement with the
results obtained for the prototype perturbative models. In the
adQTB simulations, on the other hand, the spectra obtained
from the two estimators are essentially identical and coincide
with the standard QTB-b result. The converged γr(ω) coeffi-
cients obtained at the end of the adaptation process are shown
in the bottom panel of figure 5). They display sharp peaks at
the anharmonic resonance frequencies. The increase of γr(ω)
in this region causes an increase of the adQTB-a spectrum,
that eventually reaches coincidence with adQTB-b and there-
fore a much better agreement with the numerically exact re-
sults obtained from the DVR calculations (see section VII).
Note that the anharmonic resonances in the VDOS appear on
top of a relatively large background that corresponds to the
high-frequency tail of the O-H stretching peak. The deconvo-
lution procedure of Ref.54 allows to essentially suppress this
background and recover almost unaffected spectral features as

those presented in Fig. 4.

Appendix E: Perturbative expression of the Wigner
distribution

In this appendix, we derive a perturbative expression for
the matrix elements of the density operator w(q,∆;β ) =〈

q− ∆

2

∣∣e−β Ĥ
∣∣q+ ∆

2

〉
for the potential (23). Such matrix el-

ements appear both in the definition of the Wigner density
and in its ECMA approximation. We follow ref. 42 (sec-
tion 12.4) to express w(q,∆;β ) in its continuous path inte-
gral form. We then decompose the fluctuations around the
classical harmonic path in Fourier components and we obtain
analytical expressions for w(q,∆;β ) at first order in λ .

For the potential (23), the continous path integral form of
the off-diagonal density matrix elements are given by the fol-
lowing functional integral:

w(q,∆;β ) =
∫ x(β h̄)=q+∆/2

x(0)=q−∆/2
Dx(τ)exp

{
−Sλ [x]

h̄

}
(E1)

with the imaginary-time action

Sλ [x] =
∫

β h̄

0
dτ

mẋ2(τ)

2
+

mω2
0 x2(τ)

2
+

λ

3
x3(τ) (E2)

Equation (E1) can be expanded to first order in λ as:

w(q,∆;β ) =
∫ x(β h̄)=q+∆/2

x(0)=q−∆/2
Dx(τ)e−

S0 [x]
h̄

×
[

1− λ

3h̄

∫
β h̄

0
dτ x3(τ)+O

(
λ

2)] (E3)

with S0[x] the harmonic imaginary-time action. With this ex-
pansion in λ , the average over anharmonic paths is translated
into the much simpler problem of averaging the cubic poten-
tial term on harmonic paths. To that end, we expand the path
x(τ) about the classical harmonic path42:

x(τ) = x0(τ)+ y(τ) (E4)

where x0(τ) is the classical harmonic path, solution of the
differential equation mẍ0 = mω2

0 x0 with boundary conditions
x0(0) = q−∆/2 and x0(β h̄) = q+∆/2. It can be written as:

x0(τ) =
[
(q− ∆

2
)(e−ω0(τ−β h̄)− eω0(τ−β h̄))

+(q+
∆

2
)(eω0τ − e−ω0τ)

]
× 1

eβ h̄ω0 − e−β h̄ω0
(E5)

The fluctuation path y(τ) (defined as the difference between
the full path and the classical harmonic path) has the prop-
erty y(0) = y(β h̄) = 0. One can show (see ref. 42) that the
harmonic action is separable between the classical and fluctu-

ation paths i.e. e−
S0 [x]

h̄ = e−
S0 [x0 ]

h̄ e−
S0 [y]

h̄ . We thus obtain:

w(q,∆;β ) = e−
S0 [x0 ]

h̄

∮
Dy(τ)e−

S0 [y]
h̄

×
[

1− λ

3h̄

∫
β h̄

0
dτ (x0(τ)+ y(τ))3 +O

(
λ

2)] (E6)
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where the closed integral indicates a sum over paths y(τ) start-
ing and ending at 0. Due to the symmetry of the fluctuation
paths the terms containing odd powers of y(τ) cancel when
integrated over all paths and we obtain:

w(q,∆;β ) = e−
S0 [x0 ]

h̄

∮
Dy(τ)e−

S0 [y]
h̄

×
[

1− λ

3h̄

∫
β h̄

0
dτ

(
x3

0(τ)+3x0(τ)y2(τ)
)
+O

(
λ

2)] (E7)

Moreover, expanding y(τ) in a Fourier series and rewriting
the functional integral in terms of its Fourier coefficients as in
ref.42, it can be shown that the term proportional to x0(τ) does
not depend on ∆, so that we can write:

w(q,∆;β ) = w0(q,∆;β )

(
1− λ

3h̄
[a(q,∆)+b(q)]+O

(
λ

2))
(E8)

where w0 is the harmonic off-diagonal element given by

w0(q,∆;β ) = I0 e−
mω

4h̄ tanh(β h̄ω/2)∆2−mω

h̄ tanh(β h̄ω/2)q2
(E9)

with the constant I0 =
∮

Dy(τ)e−
S0[y]

h̄ and the functions a and
b are defined as:

a(q,∆) =
∫

β h̄

0
dτx3

0(τ) (E10)

b(q) =
1
I0

∮
Dy(τ)e−

S0 [y]
h̄

∫
β h̄

0
dτ 3x0(τ)y2(τ) (E11)

Analytical expressions of the functions a(q,∆) and b(q) can
be obtained using the Fourier decomposition of the fluctuation
path:

a(q,∆) =
qh̄

2Θ(ω0,β )

(
∆2

2
+

4
3

q2
(

5
2
− Θ(2ω0,β )

Θ(ω0,β )

))
(E12)

b(q) =
2qh̄
mω2

0

(
Θ(2ω0,β )

Θ(ω0,β )
−1
)

(E13)

with Θ(ω0,β ) =
h̄ω0/2

tanh(β h̄ω0/2) .

The marginal position density defined as ρm
w (q) =

w(q,0;β )/
∫

dq w(q,0;β ) is then given by:

ρ
m
w (q)=

e
−

mω2
0 q2

2Θ(ω0 ,β )√
2πΘ(ω0,β )/mω2

0

[
1− 2λq

3mω2
0

(
Θ(2ω0,β )

Θ(ω0,β )
−1
)

− 2λq3

9Θ(ω0,β )

(
5
2
− Θ(2ω0,β )

Θ(ω0,β )

)]
+O

(
λ

2) (E14)

We also obtain the exact conditional momentum distribution
(via the Fourier transform of w(q,∆;β ) with respect to ∆) :

ρ
c
w(p|q) = ρ0(p)

[
1+

λq
3mω2

0

(
Θ(2ω0,β )

Θ(ω0,β )
−1
)

×
(

p2

mΘ(ω0,β )
−1
)]

+O
(
λ

2) (E15)

To obtain the ECMA0 expression, we compute the variance
of the density f (∆|q) =

∫
d∆ ∆2 w(q,∆;β )∫

d∆ w(q,∆;β ) at first order in λ :

κ2(q) =
h̄2

mΘ(ω0,β )

[
1− 2λq

3mω2
0

(
Θ(2ω0,β )

Θ(ω0,β )
−1
)]

+O
(
λ

2) (E16)

which yields (through eq. (C6)) the exact conditional momen-
tum distribution (E15) at this order in perturbation.

Finally, the successive cumulants of ρc can be computed
to show that the Edgeworth correction does not modify the
ECMA distribution at first order. The fourth order moment of
f reads:

〈
∆

4〉
f |q = 3

(
h̄2

mΘ(ω0,β )

)2

×
[

1− 4λq
3mω2

0

(
Θ(2ω0,β )

Θ(ω0,β )
−1
)]

+O
(
λ

2) (E17)

so that we obtain for the fourth order cumulant κ4(q) =〈
∆4
〉

f |q− 3κ2
2 (q) = O

(
λ 2
)
. Furthermore, assuming that, for

any even integer m, all cumulants κ j for 4 ≤ j ≤ m− 2 are
null at first order in λ , we can use the recursion formula for
the order-m cumulant:

κm(q) = 〈∆m〉 f |q−
m−2

∑
j=2, even

(
m−1
j−1

)
κ j(q)

〈
∆

m− j〉
f |q

= 〈∆m〉 f |q− (m−1)κ2(q)
〈
∆

m−2〉
f |q (E18)

From this expression, using similar reasoning as above for κ4,
one can show that κm(q) = O

(
λ 2
)
. Therefore, by the recur-

sion principle, all cumulants of ρc of order higher than two
are null at first order in λ and thus the Edgeworth correction
does not contribute to the first-order expansion of the ECMA
distribution.

Appendix F: Full perturbative expression of the combination
bands intensities with the Local Harmonic Approximation

The contributions of the combination bands to the LSC-
LHA vibrational density of states are:

ηLHA(β ;ω1 +ω2) = ηQ(β ;ω1 +ω2) γ
LHA
ω1+ω2

ηLHA(β ;ω1−ω2) = ηQ(β ;ω1−ω2) γ
LHA
ω1−ω2

ηLHA(β ;2ω2) = ηQ(β ;2ω2) γ
LHA
2ω2

with:
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γ
LHA
ω1+ω2

=

[
h̄2

βΘ(ω1,β )(ω
4
1 ω

2
2 +2ω

3
1 ω

3
2 −ω

2
1 ω

4
2 −2ω1ω

5
2 )

−Θ
2(ω2,β )(16ω

2
1 ω

2
2 +8ω1ω

3
2 )

+βΘ(ω1,β )Θ
2(ω2,β )(−4ω

4
1 −8ω

3
1 ω2 +4ω

2
1 ω

2
2 +8ω1ω

3
2 )

+Θ(ω1,β )Θ(ω2,β )(4ω
4
1 +16ω

3
1 ω2 +20ω

2
1 ω

2
2 −8ω1ω

3
2 −8ω

4
2 )

]

/

[
8ω2(ω1Θ(ω2,β )+ω2Θ(ω1,β ))(ω

2
1 −ω

2
2 )Θ(ω1 +ω2)

]

γ
LHA
ω1−ω2

=

[
h̄2

βΘ(ω1,β )(ω
4
1 ω

2
2 −2ω

3
1 ω

3
2 −ω

2
1 ω

4
2 +2ω1ω

5
2 )

−Θ
2(ω2,β )(16ω

2
1 ω

2
2 −8ω1ω

3
2 )

+βΘ(ω1,β )Θ
2(ω2,β )(−4ω

4
1 +8ω

3
1 ω2 +4ω

2
1 ω

2
2 −8ω1ω

3
2 )

+Θ(ω1,β )Θ(ω2,β )(4ω
4
1 −16ω

3
1 ω2 +20ω

2
1 ω

2
2 +8ω1ω

3
2 −8ω

4
2 )

]

/

[
8ω2(ω1Θ(ω2,β )−ω2Θ(ω1,β ))(ω

2
1 −ω

2
2 )Θ(ω1−ω2)

]

γ
LHA
2ω2

=
Θ(ω2,β )(ω

2
1 −4ω2

2 )+3ω2
2 Θ(ω1,β )

Θ(ω2,β )(ω2
1 −ω2

2 )
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Appendix G: List of abbreviations

adQTB Adaptive Quantum Thermal Bath
ATCF Autocorrelation Function
CB Combination Band
CMD Centroid Molecular Dynamics
DVR Discrete Variable Representation
ECMA Edgeworth Conditional Momentum Approximation
IR Infrared
IVR0 Equilibrium Harmonic Approximation
LGA Local Gaussian Approximation
LHA Local Harmonic Approximation
LSC-IVR Linearized Semi-Classical Initial Value Representation
MCTDH Multi-Configuration Time-Dependent Hartree
MD Molecular Dynamics
NQE Nuclear Quantum Effect
PI Path Integral
PIMD Path Integral Molecular Dynamics
QCMD Quasi-Centroid Molecular Dynamics
QTB Quantum Thermal Bath
RPMD Ring-Polymer Molecular Dynamics
TCF Time Correlation Function
TRPMD Thermostatted Ring-Polymer Molecular Dynamics
VDOS Vibrational Density of States
WiLD Wigner-Langevin Dynamics
ZPE Zero-Point Energy
ZPEL Zero-Point Energy Leakage


