Johan S Høye 
email: johan.hoye@ntnu.no
  
Jean-Pierre Simonin 
email: jpsimonin@gmail.com
  
Chemical potential of an ion in an asymmetric electrolyte within the mean spherical approximation (MSA)

Keywords: Asymmetric electrolyte, mean-spherical approximation (MSA), chemical potential

We study the known solution of the mean spherical approximation (MSA) for the primitive model of an electrolyte consisting of charged hard spheres with unequal diameters. Especially, details of the non-trivial evaluation of chemical potentials are given. They can be obtained in various independent ways from the known MSA solution. The different ways of evaluation are utilized to show that consistent results are obtained. Details for other thermodynamic quantities are also presented. An additional purpose of this rederivation of results is to give a firmer basis and insight to obtain the correct and consistent thermodynamics for the more demanding and realistic situation with polar particles present in the MSA electrolyte.

Introduction

The MSA solution of the Ornstein-Zernike (OZ) equation for the primitive model of an electrolyte was obtained by L. Blum [1]. The electrolyte consists of charged hard spheres that can have different hard core diameters. For electrolytes the basic model is the well-known Debye-Hückel (DH) theory [2]. In this theory, the ions in the cloud around the central ion cannot approach it to a distance smaller than some minimum distance. On the other hand, there is no restriction on the distance between ions in the cloud. In contrast, this restriction is imposed within the MSA [3]. In this framework the ions are impenetrable hard cores everywhere. Then the DH theory is perturbed in such a way that the finite sizes of the ions are consistently taken into account [4][5][START_REF] Blum | Theoretical Chemistry, Advances and Perspectives[END_REF], in a way valid for fluids more generally, including the high density of liquids.

A strength of the MSA perturbation is that it utilizes certain exact properties of statistical mechanical systems and thus has turned out to give reliable results in many situations, electrolytes included. Even for liquid densities like salt melts, it is reliable. One such property is that molecular hard cores are not allowed to overlap as expressed by the resulting pair correlation function. Another property is that for large particle separations r, the MSA direct correlation function becomes the exact one, the 1/r tail for ionic Coulomb interactions. By that the remaining uncertainty, from this viewpoint, is the value of the direct correlation function close to hard core separations. From the viewpoint of this second property, the basic Debye-Hückel theory also has the 1/r direct correlation function, but for all r. In contrast, the MSA, due to the hard core condition, perturbs it to be something else for distances r inside hard cores.

The solution of this MSA problem, however, is highly non-trivial. But due to a method, introduced by Baxter [START_REF] Baxter | [END_REF], analytic solution became possible. There the factor correlation function with matrix elements Q ij (r) plays a central role. The subscripts i, j refer to the various particle species in a mixture. A key to the solution is that with standard hard core condition inside non-overlapping hard cores, the explicit form of Q ij (r) can be written down for various cases. The remaining problem is to determine its coefficients.

Expressions and relations for these coefficients are given in Ref. [8]. There thermodynamic quantities are also given, and a numerical check of their consistency is performed. In another short note chemical potentials were obtained, but details of evaluations were not given [9]. In the present work we give such details of evaluations, that are not straightforward, to obtain the chemical potentials. Especially, they can be evaluated in different and independent ways, and can thus be checked against each other. Other thermodynamic quantities are also reconsidered.

The realistic extension of the primitive electrolyte is to include dipolar hard spheres in the MSA problem. This more demanding MSA problem for a mixture of ions and dipoles was solved to a large extent by Blum and Wei [10,11]. However, details of its thermodynamics have not been obtained or straightened out properly [12]. Thus an additional outcome of the present work is to lay a firmer basis for the more demanding problem where a solvent of dipolar particles is added. It turns out that certain properties of the MSA problem for charged particles are present when expanding it to include dipolar particles.

The present work will be useful to tackle this difficult problem, in particular in order to derive full expressions for the chemical potentials of the ions and of the dipolar solvent. It will serve as a guide to sort out details and pinpoint some inaccuracies to obtain fully consistent thermodynamics. This is work in preparation.

In Sec. 2 the known MSA solution for the asymmetric electrolyte is given in the form of several equations that relate various quantities needed to obtain excess thermodynamic quantities due to the ionic interactions.

In Sec. 3 general relations for the chemical potentials in terms of the direct correlation function are written down. Then in Sec. 4 the chemical potentials are evaluated in a way that is new, while in Sec. 5 details of an earlier evaluation are given. By these evaluations the MSA equations have to be combined in various ways to obtain the non-trivial details needed. The latter are given in Appendices A and B. In Sec. 6 the results obtained are related to a third independent result for the chemical potentials obtained earlier.

Finally, in Sec. 7 explicit results for the MSA internal energy, Gibbs free energy, pressure, and Helmholtz free energy are given. These quantities are excess quantities that add to the corresponding quantities of the reference system mixture of hard spheres. Details of the evaluations of the MSA excess pressure are given in Appendix C. In view of the complexity of the MSA problem, the resulting thermodynamic expressions turn out to be rather simple.

MSA solution

The Fourier transform of the OZ equation for a mixture is

hij (k) = cij (k) + l ρ l hil (k) clj (k), (1) 
where the tilde denotes Fourier transform with Fourier variable k. The h ij (r) is the pair correlation function for particle species i and j separated by a distance r, while c ij (r) is the corresponding direct correlation function. The ρ i is the number density of component i. The OZ equation is solved with boundary conditions. One of them is that particles considered as hard spheres cannot overlap. This gives the exact condition h ij (r) = -1 for overlap separations. The other condition is the MSA condition on the direct correlation function, c ij (r) = -βφ ij (r) outside the overlaps of the hard spheres. The φ ij (r) are the pair interactions which in the present case with charged spheres are given by the electrostatic Coulomb interaction such that c ij (r) = -z i z j α 2 /r. The z i is the valency of species i, while the usual inverse temperature β and α 2 are defined by Equation (12) and the text right below it.

According to Baxter one now can write [START_REF] Baxter | [END_REF],

δ ij -(ρ i ρ j ) 1/2 cij (k) = l Qil (k) Qjl (k), (2) 
Qij (k) = δ ij -(ρ i ρ j ) 1/2 dr e ikr Q ij (r). (3) 
With the MSA boundary conditions it turns out that the form of the factor correlation matrix Q(r) can be seen directly in several cases. This includes the asymmetric electrolyte where the explicit MSA solution for the elements of Q(r) is written down in Ref. [8]. Its matrix elements Q ij (r) are given by its Equations (2.7) and (2.8) as

Q ij (r) = lim µ→0 q ij (r) -z i a j e -µr (4) 
where µ is a parameter tending to zero, that is introduced in order to conveniently handle apparent mathematical divergences related to electrostatic effects (as may be seen below), and,

q ij (r) = (r -σ ij ) q ij + 1 2 (r -σ ij ) 2 q j (5) for r < σ ij , with σ ij = (σ j + σ i )/2.
Here the Q ij and Q j of Ref. [8] are replaced by q ij and q j . It is seen in this relation that q j is the second derivative of q ij with respect to r. It is independent of r, and it turns out that it is also independent of i [8].

We will need their integral and find

K ij = ∞ λji dr Q ij (r) = - 1 2 σ 2 i q ij + 1 6 σ 3 i q j + 1 2 z i (σ j -σ i -R)a j , (6) 
where λ ji = (σ j -σ i )/2 and R = 2/µ. Here σ i is the hard core diameter of species i. The coefficients q ij , q j , and a j that follow from Equations (2.11) -(2.19) of the reference are given by

q ij = L σ i + σ j + L 2 ζ 2 σ i σ j - 2Γ 2 α 2 a i a j , q j = 2L 1 + L 2 ζ 2 σ j + LP n a j , (7) 
a i = α 2 z i -ησ 2 i 2Γ(1 + Γσ i ) , (8) 
where

L = π ∆ and η = 1 2 LP n = π 2∆ P n . (9) 
It is noted in Equation ( 7) that q ij is symmetric in i and j, as expected since the (symmetric) contact radial distribution function is given by (see, e.g., Equation (3.3) of Ref. [13]),

g ij (r = σ ij ) = 1 2πσ ij dq ij (r) dr r=σij = 1 2πσ ij q ij (10) 
Further,

P n = 1 Ω k ρ k σ k z k 1 + Γσ k , Ω = 1 + L 2 k ρ k σ 3 k 1 + Γσ k , (11) 
ζ n = k ρ k (σ k ) n , ∆ = 1 - π 6 ζ 3 , α 2 = βe 2 /(ε 0 ε), (12) 
in which n = 0, 1, 2, 3, ∆ is the fraction of remaining free space, and the sums are done over all species. Here β = 1/(k B T ) where k B is Boltzmann's constant and T is temperature. The α 2 is given in SI units where ε 0 is the permittivity of vacuum and ε is the relative permittivity of solution. If Gaussian units are used, then α 2 = 4πβe 2 /ε. The Γ is the MSA screening parameter and is determined by the equation

2Γ = α n i=1 ρ i z i -ησ 2 i 1 + Γσ i 2 1/2 . ( 13 
)
Here Equation ( 8) can be inserted to obtain the relation

α 2 = n i=1 ρ i a i 2 . ( 14 
)
From Equation ( 13) one finds that 2Γ can be regarded and interpreted as the extension of the Debye-Hückel shielding parameter since for σ i = 0 they coincide. Further, with known z i , ρ i , and α, the Γ can be found by solution of Equation (13). With known Γ other quantities are found by substitutions. Usually the parameter η (or P n ) is small. For an electrolyte neutral in positive and negative charges, in which all particles have the same diameter σ i , then η = 0. The internal energy per particle of component i, denoted by u i , is given by [1,14],

βu i = α 2 4π z i (N i + const.). ( 15 
)
with N i given by

N i = - Γz i + ησ i 1 + Γσ i ( 16 
)
where η = LP n /2 as given by Equation ( 9). Here the const. = -(π/6) l ρ l σ l (N l σ l + (3/2)z l ) [9] is a quantity that does not depend upon i, and with charge neutrality it thus does not contribute to total energy. Hereafter this term will therefore be removed.

General relations for the chemical potentials

It results from Equation (39) of Ref. [14] that one has in the MSA,

µ i = u i + δµ i (17) 
where u i is the excess internal energy per ion i and,

β δµ i = 1 2 k ρ k c(HS) ik (0) -cik (0) (18) 
where ρ k is the number density of ion k (number of ions per m 3 ), and cik (0) denotes the Fourier transform of c ik (r), evaluated for zero wave vector, and the '(HS)' superscript means that the quantity is calculated for a collection of electrically neutral hard spheres of the same size as the ions. Equation (37) of Ref. [14] gives the following relation for the internal energy per ion in the MSA,

βu i = 1 2 [c ii (0) + 1] - 1 2 k ρ k cik (0). ( 19 
)
By taking this relation for the HS case, and combining it with Equations ( 18) and (19), one straightforwardly obtains an alternative expression for δµ i in terms of the i -i direct correlation function, which reads,

β δµ i = βu i - 1 2 c ii (0) -c (HS) ii (0) ( 20 
)
where we have used the fact that u (HS) i = 0 (because the interaction potential between two HS particles is zero outside the hard core).

Chemical potentials from the direct correlation function c ii (0)

Let us denote by S ij (r) the transform of c ij , defined by [START_REF] Blum | Theoretical Chemistry, Advances and Perspectives[END_REF],

S ij (r) = 2π ∞ r t c ij (t) dt. ( 21 
)
If we introduce the parameters,

σ ij = σ i + σ j 2 , λ ji = σ j -σ i 2 (22)
then, following Baxter [START_REF] Baxter | [END_REF], it can be shown that, in the MSA, S ij may be expressed by [15,16],

S ij (r) = Q ij (r) - k ρ k Q ik (r + t) Q jk (t) dt (23) 
for λ ji < r < σ ij , in which Q ij is the factor correlation function defined in Equation ( 4), and the integration with respect to t is over the range in which the integrand exists, that is for t > max(λ ki -r, λ kj ).

In Equation ( 23), the Q ij (r) vanishes for r > σ ij , but the presence of the A ij term in Q ij (r) imposes a +∞ upper bound for the integration over t. From Equations ( 4) and (23), one gets,

S ij (r) = q ij (r) -A ij - k ρ k I ijk (r) (24) 
in which [START_REF] Blum | Theoretical Chemistry, Advances and Perspectives[END_REF],

A ij = z i a j ( 25 
)
with z i the valence of ion i, and the expression of a j is given by Equation ( 8), and,

I ijk (r) = min(σik-r,σjk) max(λki-r,λkj)
q ik (r+t) q jk (t) dt-A jk σik max(λki,λkj+r)

q ik (t) dt-A ik σjk max(λki-r,λkj)
q jk (t) dt (26) in which we used Equation (B.13) and (B.14) of Ref. [START_REF] Blum | Theoretical Chemistry, Advances and Perspectives[END_REF], letting µ → 0. It may be noted that this expression for S ij is identical to Equation (32) of Ref. [10] (after addition of a minus sign to S ij in this equation, and changing the integration variable in the first integral of I ijk ). Now, we need the direct correlation function, c ii (0), in Equation (20) to calculate the correction to the chemical potential of ion i, δµ i . By virtue of Equation ( 21), this may be done by differentiating S ii (r) twice with respect to r, which gives,

c ii (0) = - 1 2π d 2 S ii (r) dr 2 r=0 . ( 27 
)
Taking j = i in Equations ( 24)-( 26) and r > 0 yields,

S ii (r) = q ii (r)-A ii - k ρ k σik-r λki q ik (r + t) q ik (t) dt -A ik σik λki+r q ik (t) dt -A ik σik λki q ik (t) dt .
(28) The last integral vanishes upon differentiation with respect to r. One then gets from Equations ( 27) and (28),

c ii (0) = - 1 2π d 2 q ii (r) dr 2 r=0 - k ρ k σik λki d 2 q ik (r) dr 2 r=t q ik (t) dt + A ik dq ik (r) dr r=λki .
(29) It stems from Equations ( 5) and (29) that,

c ii (0) = - 1 2π q i - k ρ k κ ik q k + A ik dq ik (r) dr r=λki (30) 
with [10],

κ ik = σik λki q ik (t) dt (31) 
for which one gets the following expression from Equation ( 5),

κ ik = - 1 2 q ik σ 2 i + 1 6 q k σ 3 i . (32) 
One also has from Equations ( 5) and ( 22) that dq ik (r)

dr r=λki = q ik -σ i q k . ( 33 
)
To evaluate the c ii (0), Equation (25) with a j given by Equation ( 8) is needed. Further the P n from Equation ( 11) can be rewritten as (see Equations (B.46) and (B.56) of Ref. [START_REF] Blum | Theoretical Chemistry, Advances and Perspectives[END_REF]),

P n = k ρ k σ k (N k σ k + z k ) (34) 
The expression for c ii (0) in Equation ( 30) may be further simplified by using the relation demonstrated in Appendix A, k ρ k a k q k = 0. Then, it stems from Equations ( 25), (30), and (33), that,

c ii (0) = 1 2π -q i + k ρ k κ ik q k + z i a k q ik . (35) 
The HS expression of the latter, c

(HS) ii (0), for the electrically neutral system is derived by taking z i = 0, and a k = 0 for any k in this relation, so that,

q ik (HS) = 2L σ ik + L 4 ξ 2 σ i σ k , q k (HS) = 2L 1 + L 2 ξ 2 σ k . (36) 
These two relations may be used in Equation (32), and then in Equation (35) to get c

(HS) ii (0). Finally these expressions for c ii (0) and c (HS) ii (0) may be inserted in Equation (20) to derive δµ i . This calculation involves some simple but tedious algebra (more easily handled by employing a symbolic calculation system like Maple), in which Equations [START_REF] Baxter | [END_REF], and (31), quantities q ik , q i , and κ ik , as well as the expressions for the sums, S a 2 k , S akσk , and S ak , obtained in Appendix A, are used. By virtue of Equation ( 15), the internal energy per ion is [17],

βu i = λ z i N i ( 37 
)
in which λ = α 2 /(4π), and N i is given by Equation ( 16). One finally finds after substantial simplifications,

β δµ i = -λ η σ i η σ 2 i (Γσ i -2) + 3z i 3(1 + Γσ i ) . ( 38 
)

Chemical potentials from cij (0)

Results for the chemical potentials of the asymmetric electrolyte were given in a short note by Høye and Blum [9]. However, details of the derivation were not given. As they turn out to be far from trivial, we will give such details here. In this section, the derivation is based upon use of cij (0) which is the Fourier transform of the direct correlation function for zero wave vector. The excess chemical potential µ i due to the ionic interactions, can be written in the form µ i = u i + δµ i as given by Equation (17). With the MSA thermodynamics the δµ i then follows from Equation (18).

With Equation (2.26) of Ref. [8] and Equation ( 2) one has

δ ij -(ρ i ρ j ) 1/2 cij (0) = k Qik (0) Qjk (0), Qik (0) = δ ik -(ρ i ρ k ) 1/2 K ik (39)
with K ij given by Equation ( 6). Note that this K ij to be used in this section has an additional term compared to the κ ij given by Equation (32). Thus one has

cij (0) = K ij + K ji - k ρ k K ik K jk , ( 40 
) l ρ l cil (0) = l ρ l K il + l ρ l K li - l k ρ l ρ k K ik K lk . ( 41 
)
From Equation (2.24) of Ref. [8] one has

q j 2π = 1 - n k=1 ρ k K kj (42) by which l ρ l cil (0) = 1 - q i 2π - k ρ k K ik q k 2π . ( 43 
)
β δµ i = 1 4π   q i -q (HS) i - j ρ j K ij q j -K (HS) ij q (HS) j   . ( 44 
)
Together with Equation (42) this gives for Gibbs free energy per unit volume

G βG = i ρ i µ i = βE - 1 8π 2 i ρ i [(q i ) 2 -(q (HS) i ) 2 ], ( 45 
)
where E = i ρ i u i is the internal energy per unit volume. To obtain the contribution δµ i to the chemical potential various summations by repeated use of Equations ( 6)-( 12) are needed. The hard sphere quantities are as before. They are for the reference system of hard spheres with no charges. Details of these summations are performed in Appendix B. There the three terms of K ij result in three sums U 0 , U 1 , and U 2 . With K ij and δµ i given by Equations ( 6) and ( 44) respectively, we get from Equations (71)-(74),

β δµ i = 1 4π U 3 -- 1 2 σ 2 i U 2 + 1 6 σ 3 i U 1 + U 0 = - P n σ i 4∆ Γa i + π 12∆ α 2 P n σ 2 i + z i • const. (46) 
This is the sought contribution to the chemical potentials (17), and it is the same as the one given in Ref. [9]. In addition, results (38) and (48) obtained by other independent methods, also agree with this result. (However, the other results have not included the z i • const. term. But due to the neutrality condition it is not needed. And it has not been checked whether the various methods would give the same magnitude for this term.) It may be noted that the two q k terms of Equation (35) alone also give δµ i (+z i •const.) since this equation and Equation (44) give the same expressions. However, they differ slightly in their definitions of κ ij and K ij , but this difference produces only the U 0 = z i •const. term in (46). Accordingly the z i term alone at the end of Equation (35) must compensate for and thus give the internal energy u i (+z i •const.) given by Equation (15).

Previous result for δµ i

An expression for the electrostatic activity coefficient in the primitive MSA was obtained in previous work [18] for the case of an asymmetric electrolyte. It was found by differentiation at constant Γ of the electrostatic Helmholtz energy, which reduces to the differentiation of the internal energy in the MSA [18]. In the case of constant ion size and solution permittivity, Equation (19) from this reference gives,

βµ i = -λ Γz 2 i 1 + Γσ i + ησ i 2z i -ησ 2 i 1 + Γσ i + ησ 2 i 3 (47) 
By subtracting βu i [Equation (37)] from this expression, one finds,

β δµ i = -λ η σ i η σ 2 i (Γσ i -2) + 3z i 3(1 + Γσ i ) (48) 
which is in agreement with Equations ( 38) and (46) as expected. It is noted that δµ i = 0 when all ions have the same diameter (in which case η = 0). The internal energy per ion i, u i [Equation (37)], represents the main part of the total chemical potential, µ i [Equations ( 17) and ( 47)]. This may be seen for example by considering the case of a strongly asymmetric single electrolyte in water at 25 • C (ε = 78.4), in which the cation (i = 1) and the anion (i = 2) have diameters of 2 Å and 4 Å, respectively. The result for the ratio

R i = δµ i /µ i (49) 
is plotted in Figure 1 that δµ 1 and δµ 2 are of opposite signs, and that their magnitude is relatively small compared to that of µ 1 and µ 2 (a few percent of the latter). The ratios R 1 and R 2 both reach a maximum value for a concentration of ∼ 5 M.

Other thermodynamic quantities

With Equation ( 15) the internal energy per unit volume is [1] 

βE = i ρ i u i = α 2 4π i ρ i z i N i = - α 2 4π i ρ i Γz 2 i 1 + Γσ i + η z i σ i 1 + Γσ i = - α 2 4π Γ i ρ i z 2 i 1 + Γσ i + π 2∆ ΩP 2 n , (50) 
where Equations ( 9) and ( 11) are used. Due to neutrality the z i •const. term does not contribute. The result for E is also expression (3.1) given in Ref. [8].

With Equations ( 45) and (72) excess Gibbs free energy G per unit volume is

βG = i ρ i βµ i = βE - α 2 8 P n ∆ 2 . ( 51 
)
Use of expressions (38), (46), or (48) for δµ i give the same result in accordance with Equation (3.9) of Ref. [8] (where the activity coefficient ∆ ln γ ± = βG/ζ 0 is used).

The MSA contribution to pressure p is given by Equation (3.6) in Ref. [8] βp

= 1 3 βE + 1 12π S, S = i,j ρ i ρ j σ ij q ij 2 -q (HS) ij 2 . (52) 
With result (78) obtained in Appendix C, one ends up with the simple answer

βp = - Γ 3 3π - α 2 8 P n ∆ 2 , (53) 
which is Equation (3.8) of Ref. [8] where the osmotic coefficient ∆φ = βp/ζ 0 is given. From this follows Helmholtz free energy per unit volume, A, as,

βA = βG -βp = βE + Γ 3 3π (54) 
in accordance with Equation (3.4) of Ref. [8].

Conclusion

We have given details of the evaluations of the chemical potentials and other thermodynamic quantities for the primitive model of an asymmetric electrolyte. The consistency of these results will be a basis for the extension to the MSA solution where dipolar particles are included. The case of the mixture of ions and dipoles will be the subject of subsequent work. The results of the present study will be employed for a derivation of the chemical potentials of the species comprising the mixture, which are still unknown at present. using k ρ k z k = 0 from charge neutrality. Further by use of Equations ( 7) -( 12)

A j = 2L 1 2 (ζ 3 + ζ 2 σ j ) + ζ 3 L 4 ζ 2 σ j -W a j , (66) 
W = 2Γ 2 α 2 k ρ k σ 2 k a k = k ρ k σ 2 k Γ 1 + Γσ k z k -ησ 2 k = k ρ k σ k 1 - 1 1 + Γσ k z k -σ 2 k P n π 2∆ = - B j a j -ζ 3 P n π 2∆ -ΩP n + 2∆ π (Ω -1)P n π 2∆ = - B j a j -1 + π 2∆ ζ 3 P n . ( 67 
)
Altogether we find by inserting for A j and B j and using expression [START_REF] Baxter | [END_REF] for The q ij and q j of Equation ( 7), together with Equation (36), can be written on the forms

q j , 1 + 1 2 (A j -B j ) = 1 + π 2∆ ζ 3 1 + π 2∆ ζ 2 σ j + 1 2 P n a j = q j 2π 1 + π 3 ζ 3 , (68) 
q ij = q (HS) ij + F a j , q (HS) ij = D + Eσ j , (69) 
q j = q (HS) j + Ca j , q (HS) j = A + Bσ j .

(70)

These definitions of the coefficients A, B, C, D, E, and F are only short hand notations used in Appendices B and C, but not elsewhere. With K ij given by Equation ( 6) we need

U 0 = 1 2 z i j ρ j (σ j -σ i -R)a j q j = z i • const. ( 71 
)
With Equation (63) only the σ j term contributes, but due to the neutrality condition its value is not needed since only neutral combinations of particles are of interest. We also need

U 1 = j ρ j [(q j ) 2 ) -(q (HS) j ) 2 )] = j ρ j [2(A + Bσ j + Ca j )Ca j -C 2 a 2 j ] = 0 -C 2 α 2 = -(LP n ) 2 α 2 , (72) 
U 2 = j ρ j (q ij q j -q (HS) ij q (HS) j ) = j ρ j [(D + Eσ j )Ca j + F a j (A + Bσ j + Ca j )] = C(DS ak + ES akσk ) + 0

= 2L 2 P n 1 2 σ i α 2 2Γ -ζ 2 P n π 2∆ -ΓP n + 1 2 + π 4∆ ζ 2 σ i α 2 2Γ P n = (LP n ) 2 α 2 2Γ (1 -Γσ i ), (73) 
U 3 = q i -q (HS) i = Ca i = Ca i [(1 + Γσ i ) -Γσ i ] = π ∆ P n α 2 2Γ z i -P n σ 2 i π 2∆ -a i Γσ i = - π ∆ P n a i Γσ i -π 2 P n 2∆ 2 α 2 Γ σ 2 i + z i • const. ( 74 
)
Appendix C. Expression for S [Equation (52)]

The sum (52) may be performed first with respect to j. Due to symmetry with respect to i and j the σ ij can be replaced by σ i (or σ j ). By that

S = i ρ i σ i S i , S i = j ρ j q ij 2 -q (HS) ij 2 , (75) 
and with q ij expressed on the form (70,) one first finds

S i = 2F (DS ak +ES akσk )+F 2 α 2 = 2 - 2Γ 2 α 2 a i 2η α 2 2Γ (1-Γσ i )+ - 2Γ 2 α 2 a i 2 α 2 , ( 76 
)
where result (73) for U 2 is utilised. Further with a i given by Equation (8) one finds

σ i S i = -4ηΓ(1 -Γσ i )σ i a i + 4Γ 3 α 2 (1 + Γσ i -1)a 2 i = -4ηΓσ i a i + 4ηΓ 2 σ 2 i α 2 z i -ησ 2 i 2Γ(1 + Γσ i ) + 4Γ 3 α 2 α 4 (z i -ησ 2 i ) 2 (2Γ) 2 (1 + Γσ i ) - 4Γ 3 α 2 a 2 i = -4ηΓσ i a i -α 2 η 2 σ 3 i 1 - 1 1 + Γσ i + α 2 Γ z 2 i 1 + Γσ i - 4Γ 3 α 2 a 2 i . (77) 
With Equations ( 11) -( 12) and (58), this results in

S = i ρ i σ i S i = -4ηΓ α 2 2Γ P n -α 2 η 2 ζ 3 - 2∆ π (Ω -1) + α 2 Γ i ρ i z 2 i 1 + Γσ i -4Γ 3 = π 2∆ P 2 n α 2 -2 - π 2∆ ζ 3 + Ω -1 + α 2 Γ i ρ i z 2 i 1 + Γσ i -4Γ 3 = -4πβE -4Γ 3 - 3π 2 α 2 P n ∆ 2 , (78) 

Figure 1 .

 1 Figure 1. Variation of R i [Equation (49)] as a function of salt concentration. Solid line = -R 1 (cation); dashed line = R 2 (anion).

since 1 +

 1 (π/(2∆)ζ 3 = [1 + (π/3)ζ 3 ]/∆. Thus relation (42) and by that Equations (43) and (44) are verified.
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Appendices

Appendix A. Proof for the relation k ρ k a k q k = 0. Expressions for S a 2 k , S akσk , and S ak .

By virtue of Equation [START_REF] Baxter | [END_REF], one has,

It is known (see Equation (B.18) of Ref. [START_REF] Blum | Theoretical Chemistry, Advances and Perspectives[END_REF] and Equation (14)) that,

Moreover, one has,

which results from Equations (B.53) and (B.54) of Ref. [START_REF] Blum | Theoretical Chemistry, Advances and Perspectives[END_REF], as well as from Equa-tions ( 8) and (16). From this equation and Equation (34), one obtains,

Next, one finds from Equation (57),

because of the electroneutrality condition, k ρ k z k = 0. By utilising Equation (B.55) of Ref. [START_REF] Blum | Theoretical Chemistry, Advances and Perspectives[END_REF],

and Equation (34), it follows that,

This relation may be inserted into Equation (59), which yields,

Finally, by using Equations ( 56), ( 58) and (62) in Equation ( 55), one finds the relation,

Appendix B. Verification of Equation (42). Expressions for U 0 , U 1 , U 2 , and U 3 .

First we may verify that relation (42) is consistent with the other relations. Inserted for K kj from expression (6) one first gets

with -3-π/(2∆)ζ 3 = -3/∆. Here the E is the internal energy given by Equation (50).