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New data on the variation of the thermal expansion of ice Ih with temperature at

ambient pressure together with new evaluations of the bulk modulus and earlier data

for the heat capacity provide the basis for a coherent thermodynamic modeling of the

main thermo-physical properties of ice Ih over its whole range of stability. The quasi-

harmonic approximation with one Debye and 7 Einstein terms, together with explicit

anharmonicity, represents the dominant contributions next to minor “anomalies”

from hydrogen ordering and lattice defects. The model fits accurately the main

features of all experimental data and provides a basis for the comparison with earlier

determinations of the phonon density of states and the Grüneisen parameters.

a)Corresponding authors: holzapfel@physik.upb.de, Stefan.Klotz@upmc.fr
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I. INTRODUCTION

Ice Ih can be considered as a prototype of solids with anomalous thermo-physical prop-

erties not only due to the negative slope of its melting curve1–3 and its negative thermal

expansion at low temperature4–6 but also due to its anomalous specific heat capacity7–11

showing a slow linear increase over a wide range in temperature (at ambient pressure) and a

correspondingly strong variation of its thermal Debye temperature8, related to a very wide

and strongly structured phonon density of states (PDOS)12–15. Various first-principles cal-

culations of thermophysical properties of ice Ih16–19 have provided a solid background for

a better understanding of both the approximations involved in theses calculations and for

the basic physics of ice. However the results do not represent the thermophysical properties

within the accuracy of the experimental data. Also, the two purely empirical description of

the thermodynamics of ice Ih by different series expansions2,3 do not represent the thermo-

physical properties within the accuracy of the experimental data. In the first case2, the

negative thermal expansion at low temperature was obviously considered as an experimen-

tal artifact and replaced by a positive interpolation down to low temperatures. In the other

case3, the series expansion was restricted to temperatures above 180 K. On the other hand,

the properties of ice Ih in wide ranges of pressure and temperature are of basic interest to

glaciologists as well as for models of icy planets and moons. To the best of our knowledge no

comprehensive thermodynamic model for the thermo-physical properties of ice Ih has been

reported so far representing all the presently available experimental data within their given

accuracy and providing the basis for the prediction of all theses properties over the entire

range of existent of ice Ih.

The present study was motivated by the observation that although the use of two Debye

and one Einstein term provided a very good description of the recent thermal expansion

data6, these three terms are completely insufficient for the representation of the heat capac-

ity: It needs a better description of the PDOS by at least one Debye term and more than

2 Einstein terms, whereby the PDOS derived from the neutron scattering data12–15 provide

good guides for the selection of the representative Einstein temperatures.

The present approach is intended to model the dominant thermo-physical properties of

ice Ih. At the same time it helps for the evaluation of the smaller, but significant other

contributions detected first in the heat capacity10. These were attributed to a “proton glass
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(PG) transition”10 and are clearly visible in more recent volume expansion data5 where it was

interpreted as arising from solitons, i.e. localized librational movements of H2O molecules.

Further anomalies were attributed to ferroelectric ordering, to the ice Ih-XI phase transition

and to special relaxation effects at low temperatures20,21.

II. THE MODEL

Coherent thermodynamic models for all thermo-physical properties of solids are usually

based on the formulation of the partition function which provides, being a fundamental

function of the system, the Helmholtz free energy F (T, V, n, ...)22,23 as a function of tem-

perature T , volume V , particle number n, and often other parameters which we do not

need in the present case. If we keep the particle number fixed to 1 mole, the state of the

system is characterized just by the two state variables T and V , whereby V as well as all

the other extensive functions, like the free energy F (T, V ), the internal energy U(T, V ), and

the entropy S(T, V ), are represented in the following as molar quantities. The free energy

F (T, V ) includes two parts, the energy of the ground state (or ”cold part“) EzT (V ), and

thermal contributions Fth(T, V ):

F (T, V ) = EzT + Fth(T, V ) (1)

For convenience we include the zero-point energy of the phonons in the ground state

energy EzT (V ). Correspondingly, the pressure P and the bulk modulus K are also separated

in two parts::

P (T, V ) = ∂F (T, V )/∂V = PzT + Pth(T, V ) (2)

K(T, V ) = −V ∂P/∂V = KzT (V ) +Kth(T, V ) (3)

For the limited stability range of ice Ih, the ground-state energy and the corresponding

pressure and bulk modulus at zero temperature are well represented by the Murnaghan

forms24:

EzT (V ) =
V K0

K ′0(K ′0 − 1)

[
(
V0

V
)K

′
0 +K ′0 − 1

]
(4)
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PzT (V ) =
K0

K ′0

[
(
V0

V
)K

′
0 − 1

]
(5)

KzT (V ) = K0(
V0

V
)K

′
0 (6)

Thereby V0 stands for the volume, K0 for the bulk modulus and K ′0 for its pressure

derivative at zero temperature and ambient pressure.

The dominant part of the thermal free energy Fth(T, V ) and of the thermal pressure

Pth(T, V ) of insulators comes from phonons and is usually described in the quasi-harmonic

phonon approximation as an integral or a sum over contributions from Einstein-oscillators,

whereby the volume-dependent frequencies ν(V ) of the oscillators are commonly replaced

by corresponding Einstein-temperatures θ(V ) = hν(V )/kB. The free energy of one Einstein

term (without its zero-point energy) is

fE(T, θ) = kBT ln(1 − exp(−θ/T )) (7)

whereby we use lower case letters for all the functions related to single modes in contrast

to capital letters used for molar quantities. The corresponding formulas for the internal

energy uE(T, θ), heat capacity cE(T, θ), thermal pressure pE(T, θ) and thermal contribution

to the bulk modulus kE(T, θ) are given in the Appendix.

Convenient relations for the volume dependence of the Einstein temperature θ, its first-

order Grüneisen parameter γ and its second-order Grüneisen parameter Γ are provide by

the form:

θqh(V ) = θ · (V/V0)γ(Γ−1)exp [γΓ · (1 − (V/V0))] (8)

which gives

γqh(V ) = −∂ln(θqh(V ))/∂ln(V ) = γ [1 − Γ · (V/V0)] (9)

Γqh(V ) = ∂ln(γqh(V ))/∂ln(V ) = ΓV/ [V0 − Γ · (V − V0)] (10)

with the ambient pressure (V = V0) values θ, γ and Γ. For simple, monatomic, nonmetal-

lic, crystalline materials, the Debye model25 provides a good approximation for the phonon

density of state (PDOS) in the form:
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PDOSD(T, θD) = 3N T 2/θ3
D (11)

for N oscillators and a cutoff at the volume dependent Debye temperature θD. The

quasi-harmonic thermal free energy in this Debye model has then the form:

FD(T, θD) =

∫ θD

0

PDOSD(τ, θD)fE(T, τ)dτ (12)

and the corresponding Debye free energy fD(T, θD), internal energy uD(T, θD) and heat

capacity cD(T, θD) per mode are given in the Appendix.

In the more general case of crystalline solids with more than one atom per unit cell

the Debye approximation remains reasonable for the low energy acoustic phonons, and

the remaining phonon contributions are usually well represented by a few ”representative“

Einstein terms. In this way one obtains for the quasi-harmonic contribution to the molar

free energy:

Fqh(T, V ) = N
n∑
i

wifi(T, V ) (13)

with N for the number of molecules per mole and the weights wi for the free energies

per mode fi(T, V ), whereby the index i refers to the fact that each term with its volume

dependence includes the parameters θi, γi, and Γi. In addition, the index i=0 refers to

the Debye form (A5) and i >0 to the Einstein form (7). In the same way one obtains the

other quasi-harmonic contributions to internal energy, heat capacity, total pressure and bulk

modulus as weighted sums over the individual terms.

The question is now, how many Einstein terms are needed to represent the experimental

data within their given accuracy? Information on the phonon spectrum for ice Ih from the

neutron scattering function14 motivated Fortes6 to evaluate his thermal expansion data at

ambient pressure with two Debye and one Einstein term. If we use the form (A3) for the

contribution of a single Debye or Einstein term to the thermal pressure together with the

inverted form (5) for the thermal expansion at ambient pressure as a function of the thermal

pressure together with the assumption that the thermal pressure is very small with respect

to the bulk modulus and the volume dependence on the right hand side can be neglected,

we get as a good first order approximation:
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TABLE I. Best fitted parameters for Debye or Einstein temperatures θi and Grüneisen parameters

γi together with normalized standard deviations σ for the representation of the thermal expansion

data of Fortes6 with various combinations of Debye, pseudo-Debye and Einstein terms labeled with

D, PD and E for the terms used in the form (14).

Model θ1(K) θ2(K) θ3(K) γ1 γ2 γ3 σ

Fortes 87 513 1254 -0.70 1.32 1.33 1.00

2D1E 87 513 1254 -0.69 1.32 1.33 0.90

2PD1E 86 513 1239 -0.69 1.32 1.28 0.90

1PD2E 65 376 1079 -0.43 1.18 1.59 1.08

0PD3E 41 376 1211 -0.40 1.16 1.37 1.00

Vqh(T ) = V0

(
1 +

NK0

V0

n∑
i

γiwiui(T, θi)

)
(14)

If one would assume that the two transverse and one longitudinal acoustic branches are

represented by the two Debye terms and the three degrees of freedom for the librational

modes by one Einstein term, the corresponding weights 2:1:3 in the quasi-harmonic approx-

imation result in a very poor description of the heat capacity. If one tries to fit the data for

the heat capacity7,8,10,11 with theses three terms one gets the weights 0.78, 3.10 and 4.23, but

still with large systematic deviations indicating that one needs a model with more Einstein

terms. However, for the following discussion of different forms for the thermal expansion we

may just use these weights to represent the corresponding Grüneisen parameters γi with the

use of the values from Ref.6 V0=19.304 cm3/g and K0=10.713 GPa in the form (14). In the

first line of Table I we reproduce just the corresponding data of Fortes’ original fit6, whereby

we present only the decimals needed for this comparison. The corresponding residues of the

thermal expansion data of Fortes6 from his fitted form are illustrated in fig. 1 together with

the deviations of the other optimized forms from his original relation.

For comparison, we have refitted the parameters of the form (14) with the algorithm of

Mathcad, which we used for all the present calculations, and noticed only a small decrease in

the standard deviation σ (second row in Table I marked 2D1E) probably due to a different

weighting scheme. The blue dash-dotted line in fig. 1 illustrates the very small difference of
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FIG. 1. Relative deviations of the volume data of Fortes6 in ppm (red and pink diamonds) with

respect to his best fit with 2 Debye and 1 Einstein term as black base line. Additional curves show

the small deviations of the present refit with 2 Debye terms and 1 Einstein term as blue dash-dotted

line and the fits with 2 pseudo-Debye and 1 Einstein term (green dotted curve), with 1 pseudo-Debye

and 2 Einstein terms (dashed pink curve) and with 3 Einstein terms only (orange dash-double-

dotted curve), respectively. Integration of Fortes’ analytic form for the thermal expansivity (grey

solid curve, ”int-alfa“) shows significantly larger deviations.

this fit. Since the original Debye function with their integral form considerably slows down

all least square fits, we applied the simpler pseudo-Debye form26–29. All the refinements were

performed with the pseudo-Debye function given in the Appendix.

We tested the pseudo-Debye form with a fit of the form (14) to the experimental data

(third row in Table I marked 2PD1E and green dotted line in fig. 1) and obtained almost the

same results in comparison with the previous fit, justifying the use of this more efficient form

in all the following calculations. The form with one pseudo-Debye term and two Einstein

terms (row 4 in Table I and thin pink dashed line in fig. 1) deteriorated very slightly the

fit but provides still the expected T 4-variation at low temperatures in contrast to the fit

with three Einstein terms (row 5 in Table I and thin dashed-double-dotted curve in fig. 1).

This would be the simplest form for the representation of the thermal expansion coefficient,

still with much smaller systematic deviations from the data than the previously proposed
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form6. The deviation in the thermal expansion calculated by integration of Fortes’ previous

form is shown in fig. 1 as the grey line. One may notice that the Debye temperatures in the

first and second column of Table I are significantly larger than the corresponding Einstein

temperatures due to the fact that the Einstein temperatures correspond to the centers of

gravity of the respective Debye spectrum.

Before we evaluate in detail all the available data for the volume expansion4–6 the question

remains, how many Einstein terms do we need, to represent the heat capacity at ambient

pressure within the limits of the experimental accuracy.

III. HEAT CAPACITY AT AMBIENT PRESSURE

In the fit of the experimental Cv-data7–11 we use only the more accurate data sets7,10,11 and

start with constraining the Debye term with respect to the data at the lowest temperatures11

as illustrated in the double logarithmic plot of fig. 2.
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FIG. 2. a) Contributions of the Debye term (i = 0) and the 7 Einstein terms to the heat capacity (in

units of R) at ambient pressure in log-log scale versus temperature and b) Sum of the contributions

to the heat capacity on linear scales. Symbols are experimental data from refs.7,10,11

By trial and error, the plots in fig. 2 provided good starting values for the refinement of

1 Debye and 7 Einstein terms with the results for the Debye temperature θ0 and the seven

Einstein temperatures θi as well as for their weights wi given later in Table II together with

the other parameters for this 1D7E-model. Thereby, a compromise had to be found in the
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FIG. 3. Experimental heat capacity data7,10,11 (upper) and deviation from the fitted relation

for Cv (lower) including contributions from the PG-transition (light blue) and explicit premelting

anharmonicity (red). The anomalous region (thick pink) has been excluded in the fit.

number of terms, because a larger number of terms improves the quality of the fit but leads

to physically unreasonable parameters like negative weight and large uncertainties due to

stronger correlations.

Fig. 2 illustrates that the Cv-data deviate already at temperatures below 10 K from the

normal Debye behavior and the weight of the Debye term given in Table II is though very

small. The almost linear increase of Cv over a wide range in temperature and the large

number of Einstein terms indicate here again that the PDOS must deviate strongly from a

simple Debye form. The quality of the fit is illustrated in fig. 3 by the residues with respect

to the quasi-harmonic contribution, whereby we excluded in the fit all the data in the region

of anomalous behavior around 100 K, the region marked in pink in fig. 3.

This anomaly around 100 K had been attributed to molecular disorder10 and was studied

in more detail recently by thermal dilatometry5 and neutron scattering6. It should be noted

that the original term ”proton glass“10 is misleading since the molecules are still intact.

What is presumably meant is a glass behaviour in the molecular dipole orientations as the

reorientation dynamics becomes extremely slow at these temperatures. It is visible in fig. 3

as a strong peak with significant scattering of the data. Since no theory exists from which an

analytical expression for the associated heat capacity could be derived, we simply describe
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it empirically by:

CPG(T ) = R
2wCPG

∆TCPG

(
T − TCPG

∆TCPG

)
exp

(
−
(
T − TCPG

∆TCPG

)

)2
)

(15)

with the parameters wCPG
= 0.214, TCPG

= 104 K and ∆TCPG
= 22 K and represented

in fig. 3 by the light blue line. Since large hysteresis and dependence on heating rate was

observed for this transition10 as illustrated by the green and blue crosses for the two different

runs, we have excluded the range marked by the pink solid line in this fit. This transition

may be related also to the disorder in the structure of ice Ih observed at first as an anomaly in

the entropy30 and studied in more detail in recent years16,18,31–34. The corresponding disorder

entropy is not included in the present quasi-harmonic approach, but could be added easily

later, and it is not clear whether there are other contributions from the disorder to the heat

capacity which are included here in the quasi-harmonic terms.

Slightly before melting a small additional contribution shows up as ”premelting anhar-

monicity“ (thin red line) related also to the occurrence of defects35,36, which we model by:

Ca(T, Ta) = wa R TaT (Ta − T )−2 (16)

with the corresponding free energy

Fa(T, Ta) = wa R ln(1 − T

Ta
) (17)

and the internal energy

Ua(T, Ta) = wa R Ta

(
T

Ta − T
+ ln(1 − T

Ta
)

)
(18)

with weight wa = 8.0·10−5 and Ta = 280 K.

Some problems with the quasi-harmonic approximation are noticed when one uses the ex-

perimental data10,11 to calculate the corresponding calorimetric Debye temperature θC(T )8,38

shown in fig. 4. At first one can notice a significant decrease of θC(T ) at low temperatures

(T < 10 K), up to about 13 K, which can be attributed to a deviation of the PDOS from

Debye type T 2-behavior already at theses low energies represented by the first Einstein term

in the present model. A stronger Debye contribution would have resulted in a horizontal

start at low temperatures. There appears to be a horizontal part below 5 K, however it does

not fit to the expected low energy limit determined as acoustic Debye temperature θA from
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FIG. 4. Comparison of the acoustic θA (blue diamond)37 and the calorimetric Debye temperature

θC (circles and crosses) below 30 K with the present quasi-harmonic curve (red line) and a rough

fit (blue line) illustrating possible quantum glass contributions.

ultrasonic measurements of the elastic coefficients37. This difference may be typical for the

quantum effects in glasses at low temperatures39 which lead to a linear contribution to the

heat capacity in the milli-Kelvin region but would not effect the acoustic Debye tempera-

ture. From this point of view it would be interesting to perform a detailed study of the heat

capacity in this very low temperature region, which would than allow to refine the present

model further for this region. Due to the strong weight of the many data points below 5

K the fitted curve represents these data very well but deviates significantly in the region

around 10 K. This deviation could be modeled by an additional Einstein term. However

as long as we have no quantitative information on the possible quantum glass contribution

this rather small difference (in absolute values) will be considered as an uncertainty of the

present model.

IV. THERMAL EXPANSION AT AMBIENT PRESSURE

In the next step we want to find good starting values for the first-order Grüneisen param-

eters γi (Table II) for the present 1D7E-model with its single Debye and 7 Einstein terms

from fits of the form (14) to various data of the thermal volume expansion.
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FIG. 5. Relative volume change in the low temperature region on double logarithmic scale. The

dilatometry data5 are represented by the blue stepped curve with the blue squares as smoothed

values, and the solid light blue curve corresponding to the present best 1PD7E-fit. The green curve

reproduces the original best fit of earlier diffraction data4 and the red squares together with their

best 1PD7E-fit (red curve) illustrate the later diffraction data6. The dashed orange line stands for

the expected T 4-behavior at low temperature.

Although the dilatometry data have a much higher precision than the diffraction data

at low temperatures, they needed a 6 ppm decrease in the absolute values to match the

diffraction data at 0 K. The differences over the full range in temperature are shown in

fig. 6.

One may notice that the deviation of the dilatometry data from the later diffraction data

is only 6 ppm below 50 K where the diffraction data provide a better reference for V0. More

significant are the differences at higher temperatures (fig. 6). The dilatometry data show

some small wiggles which represent additional deviations from the 1PD7E-model, though

in the diffraction data6 similar wiggles are not observed or resolved. In addition, the large

difference between the dilatometry and the diffraction data in the upper temperature range

needs some special attention.

On should recall that the dilatometric method probes macroscopic properties (changes

in the length along crystallographic axes and hence the volume of the sample), whereas

the diffraction technique provides microscopic information on the crystal structure and the
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FIG. 6. Relative volume change (upper) and deviation (lower) from the dilatometry data5 (blue

squares with the blue line being a 1PD7E fit). X-ray diffraction data4 are represented by the green

curve and neutron diffraction results6 by the red dots and the red curve being the corresponding

1PD7E fit. The black curve represents an estimated average used in this work as reference data.

corresponding unit cell. Differences at elevated temperature have been attributed in many

cases to the thermal excitation of defects. A difference of 1% just before melting seems not

to be too large. However, in general, defects are expected to increase the volume35,36. Maybe

this is an other anomaly of ice Ih.

With all these uncertainties we use just a reasonable average curve as reference for our

model as indicated by the black curve in fig. 6. This reference fits perfectly the dilatometry

data in the lower temperature range and gives a reasonable average at higher temperatures.

It corresponds to the 1PD7E-form with just a small change in γ5 given in Table II. The

corresponding parameters for the preliminary description of the experimental data by theses

refinements are presented in Table II as ”Our ref.“.

One may notice in Table II that the largest differences in the γj occur for the first Debye

term and the last Einstein term. This reflects the fact that, on the one hand, significant

differences in the thermal expansion data are observed at very low temperature (fig. 5, giving

the variation at low temperatures on double logarithmic scale) and, on the other hand, in

the upper temperature range (figure 6, presenting the differences with respect to the best
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TABLE II. Preliminary parameter values for the present 1PD7E-model from independent fits of

the data to the heat capacity, thermal expansion and bulk modulus at ambient pressure. γa,i,

γb,i, and γc,i correspond to fits to data from refs.4,6, and5, respectively. ”Our ref.“ refers to the

parameter set based on the black line in fig. 6.

0 1 2 3 4 5 6 7

θi(K) 55 55 104 227 324 435 955 1693

wi 0.044 0.142 0.844 0.566 0.626 1.041 2.596 5.94

γa,i -0.71 -1.91 -0.56 0.72 2.51 2.11 0.63 1.12

γb,i -1.41 -1.78 -0.25 0.94 2.22 1.77 0.76 0.65

γc,i -0.61 -1.52 -0.34 0.94 1.94 1.35 1.41 0.09

Our ref. -0.61 -1.52 -0.34 0.94 1.94 1.54 1.41 0.09

Γi -18.5 -18.5 -92.9 3.80 8.49 -8.25 -0.93 -0.93

fit of eq. 14 to the dilatometry data5). The less negative values of γ0 in this case fit also

better to the mostly positive pressure dependencies of the elastic coefficients Cij
40,41 and

to the dispersion of the mode-Grüneisen parameters measured by neutron scattering under

pressure15.

V. BULK MODULUS AT AMBIENT PRESSURE

When one compares the data for the temperature dependence of the bulk modulus at

ambient pressure2,6,42,43 in fig. 7, one can notice at first that there is a reasonable agreement

in the middle of the given temperature range. In the upper temperature range the differences

remain small compared with the uncertainty of the data. However, at low temperatures the

differences are more significant. The evaluations2,6 were primarily based on a complete set

of elastic constants determined by ultrasonic measurements42 covering the range from 60

K to 110 K, various data at fixed temperatures in the range 240-260 K40,44–46 and suitable

interpolation schemes between. From this point of view extrapolations2,6 to temperatures

below 60 K are not based on experimental data. The most recent study43, on the other hand,

covers the range from 50 K to 273 K and takes into account all the earlier measurements.

Therefore we give this evaluation twice as much weight when we fit all the data together
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with our 1PD7E-model.
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FIG. 7. Comparison of various reference data for the temperature dependence of the bulk modulus

at ambient pressure. The reference data from 20062 are represented by orange open diamonds.

A later evaluation6 based on published low-temperature ultrasonic data and Brillouin results at

higher temperatures is shown as red line. The most recent evaluation43 is marked by the blue line

with the blue diamonds. Our best fit, discussed in the text, is represented by the black line. The

green dashed line illustrates the cold lattice contribution.

Our best fit uses a value of K0=11.0 GPa and K ′0=5.5 and provides now also the initial

values of the second-order Grüneisen parameters Γi. This includes the inherent volume

dependence of the Debye and Einstein temperatures in eq. 19 for the later refinement of the

quasiharmonic free energy in the next section.

VI. THE COHERENT THERMODYNAMIC MODEL

For the fundamental function, the total free energy, we now use the form:

F (T, V ) = EzT + Fqh(T, V ) + Fah(T, V ) (19)

where the ground-state energy EzT depends on the parameters V0, K0, K ′0. The quasi-

harmonic contribution Fqh(T, V ) includes now the full volume dependence in the Debye

15



and Einstein temperatures as well as in the Grüneisen parameters (8)-(10). The volume

dependence in the explicit premelting anharmonicity (16)-(18) is taken into account by the

assumption that the characteristic temperature Ta in theses relations is replaced by the

volume dependent form:

Tah(V ) = Ta(V/V0)−γah (20)

providing the form:

Fah(T, V ) = Fa(T, Tah(V )) (21)

and the volume dependence in other thermodynamic relations (16,18).

The refinement of the 8 weights wi together with the 8 times three parameters θi, γi, and

Γi of the quasi-harmonic model makes use of the fact that there is a certain hierarchy in the

dependence of the various thermodynamic functions on these parameters. This means that

we can use the preliminary values obtained from the uncorrelated fits as starting values at

first for the refinement of the Debye and Einstein temperatures θi and the weights wi in the

fit of the heat capacity data, now with the thermodynamically correct forms with the full

temperature dependence of all the Debye and Einstein temperatures. In the next step the

γi are refined with respect to the volume expansion, and in the last step the Γi with respect

to temperature dependence of the bulk modulus at ambient pressure. With a few cycles of

this procedure, we obtain the final values given in Table IV shown in the Appendix.

Small changes in the values of the parameters for the PG-transition were also tested

giving the final results for the volume expansion (wV pg = -2.38·10−5, TV pg = 122 K, ∆TV pg

= 8.15 K in (C1)) and for the heat capacity (wCpg = 0.25, TCpg = 107 K, ∆TCpg = 22 K

in (15)). The available data of the PG-transition observed in the heat capacity did not allow

to extract any reasonable information on the volume dependence of this contribution. Since

it is difficult to provide an equilibrium thermodynamic relation for the relaxation at lower

temperatures34, theses minor effects would have to be added separately with parameters

values depending on the experimental and sample conditions.

The premelting anharmonicity is modeled with the parameters wa = 7·10−5 and Ta=

340 K and the volume dependence of Tah(V ) in eq. 20 with the Grüneisen parameter γa =

-3.5 taken from the melting curve, because this extra ”anharmonicity“ is closely related to
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FIG. 8. Relative change of the heat capacity by 2% compression corresponding to the complete

range of stability of ice Ih.

VII. PREDICTIVE POWER OF THE PRESENT MODEL

Since the results of the global fit described in the previous chapter do not show any

significant difference with respect to the results of the restricted fit to the heat capacity

shown in fig. 3, this figure needs no duplication. Similarly, the differences in the fit of the

volume expansion were marginal and we find that the additional constraint in the coherent

model leads only to a very minor increase of 0.8% in the standard deviations. Without

the contribution from the PG-transition the RMSD would increase by 3%. This indicates

again that a small contribution from this transition can be noticed also clearly in the volume

expansion derived from the neutron diffraction data6. The data for the bulk modulus at

ambient pressure6 are also fitted perfectly with no visible difference to the black fitted curve

in fig. 7 and provides in this way the values for the refined second-order Grüneisen parameters

given in Table IV.

With the coherent thermodynamic model one can now calculate all the thermo-physical

properties of ice Ih from the free energy (19) for the whole range of stability form the initial

volume V0 = 19.30448 cm3/mol to the smallest volume Vtr = 18.947 cm3/mol, both at 0 K.
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FIG. 9. Effect of pressure on the calorimetric Debye temperature (red curve) with respect to

variation at ambient temperature taken as blue base line. In addition, the deviation of the values

calculated from the experimental Cv-data for ambient pressure7,10,11 (symbols) are illustrated for

comparison with fig. 4.

Since the effect of pressure on the heat capacity in this small range of compression is rather

small, only the relative change is illustrated here in fig. 8.

One can notice here that this relative change becomes rather large only at low temper-

ature due to the large negative values of the Grüneisen parameters for the low-frequency

modes. The small maximum around 10 K can be related to the difference of the Grüneisen

parameters for this range.

The effect of pressure on the heat capacity may be seen more clearly in fig. 9, which

presents the change of the calorimetric Debye temperature by the red curve with respect

to the variation at ambient pressure as blue base-line. In addition, fig. 9 shows also the

deviation of the values for ambient pressure calculated from the experimental Cv data7,10,11

with respect to the model curve for comparison with fig. 4, illustrating again the uncertainty

below 10 K due to possible effects of disorder and around 100 K due to the PG-transition.

The red curve shows quantitatively at low temperatures the predicted decrease due to the

negative Grüneisen parameters and at higher temperatures the increase due to the positive

values for the higher phonon energies.

In comparison with the small changes of the heat capacity under pressure, the thermal
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FIG. 10. Isochores for the thermal pressure Pth(V, T ) at V0, the volume at ambient pressure and

0 K. The two other values 0.99 V0 and 0.98 V0 cover roughly the range of stability of ice Ih (pink,

green, blue curves) with the variation along the melting curve (solid red line), corresponding to

the free energy (19) with the parameters of Table II. The contribution from the PG-transition is

too small to be noticed here.

pressure shows much stronger changes as illustrated in fig. 10.

Isochores for the isothermal bulk modulus for the same range up to the melting curve are

presented in fig. 11, which does not show any anomalous behavior.

The equation of states (EOS) can be calculated from (19)

P (T, V ) = ∂F (T, V )/∂V = PzT + Pqh(T, V ) + Pah(T, V ) (22)

either in the form of isochors or by inversion in the form of isobars V (T, P ). Corresponding

to the two terms of the thermal contribution to the free energy, the thermal pressure includes

also a contribution from the premelting anharmonicity

Pah(T, V ) =
γah
V
Uah(T, V ) (23)

and one gets for the isobaric volume the implicit form

V (T, P ) = V0

[
1 − K ′0

K0

(Pth(T, V (T, P )) − P )

]1/K′
0

− ∆Vpg(T ) (24)
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FIG. 11. Isochores for the isothermal bulk modulus K(V, T ) at Vm0, 0.99 Vm0 and 0.98 Vm0 cover

roughly the range of stability of ice Ih (pink, green, blue curves) and the variation along the melting

curve (red line). Vm0 is the volume at the melting point at zero pressure.

which can be solved with our reference values K0=11 GPa and K ′0=6.6 by iteration to

get the three isobars for 0, 100 and for 213 MPa covering the range up to the first high

pressure phases as shown in fig. 12. Numerical values are given in the appendix V.

One may notice that the negative thermal expansion is barely visible and the effect of

the PG-transition can not be seen on this scale in fig. 12. More interesting are therefore the

isobars for the thermal expansion coefficient, α(T, P ), illustrated in fig. 13.

Here one can notice the similarity to the thermal pressure illustrated in fig. 10, with,

however, the region of negative values shifted to smaller temperatures, the expected decrease

under compression along the melting curve and larger negative values at low temperatures.

More interesting are the isotherms for the isothermal bulk modulus in fig. 14. The

isothermal variations look here almost like straight lines, but the two isobars for ambient

pressure and the transition pressure of 213 MPa illustrate the anomalous behavior of ice Ih.

On the other hand, the isotherms P (V, T ) (fig. 15) for the total pressure show more directly

the anomaly of ice Ih by the fact that the 0 K isotherm overlaps with the 50 K isotherm

and the 100 K isotherm appears to be shifted downwards.

The present model allows also to calculate the calorimetric Grüneisen parameter:
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FIG. 12. Isobars for the molar volume V (T, P ) for P= 0, 100 and 213 MPa (pink, green, blue

curves) and the variation along the melting curve (red line).
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FIG. 13. Isobars for the thermal expansion coefficient α(T, P ) for P = 0, 100 and 213 MPa (pink,

green, blue curves) and the variation along the melting curve (red line).

γcal(T, V ) = α(T, V )V K(T, V )/CV (T, V ) (25)

and its isobaric variation. Two isobars are represented in fig. 16, one for ambient pressure

and one for the upper boundary of ice Ih, at 210 MPa.
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FIG. 14. Isobaric variation of the isothermal bulk modulus at ambient pressure (pink curve) and

along the upper boundary of ice Ih at 213 MPa (dark green curve) together with the isotherms

for 0 K (blue line), 50 K (turquoise dotted), 100 K (green dotted), 150 K (orange dotted), 200 K

(pink dotted), 250 K (red dotted) and along the melting line (red line).

One can notice in fig. 16 a significant effect of pressure on the calorimetric Grüneisen

parameter in the temperature range from 10 to about 150 K which is mostly related to

the decrease in the corresponding Debye temperature, or, in other words, to negative mode

Grüneisen parameters of the low frequency translational modes shown in the next two figs. 17

and 18.

Most remarkable in fig. 17 is the strong decrease of the initial Debye temperature θ0 and

even stronger decrease in the first Einstein temperature θ1 in the given range of compression

and the fact that the decrease becomes even stronger but with finite values at the phase

boundary. The increase in θ4 and θ5 illustrates that the range of the translational modes is

broadening and the almost constant values of θ6 and θ7 show that the librational modes are

barely effected by this compression. These observation could be compared also with some

of the optical studies.

The second-order Grüneisen parameters given in Table IV can be used to calculate also the

volume dependencies of the corresponding mode-Grüneisen parameters given in fig. 18. The

most significant observation is here again the strong decrease of the initial Debye and the first

Einstein term. The intermediate terms 2 to 5 show no systematics and may be effected by
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FIG. 15. Isothermal variation of total pressure at 0 K (blue line) and at five temperatures, 50, 100,

150, 200, 250 K (dotted lines) and along the melting curve (red line) up to 213 K. The two isobars

for ambient pressure (pink line) and for the transition pressure of 213 MPa frame the isotherms.

contributions from intrinsic anharmonicity not separately modeled in this coherent approach

which did not yet take into account the additional information provided by studies on the

PDOS to be discussed in the next section.

VIII. COMPARISON WITH PDOS

When we compare the results of the present model with experimental data for the PDOS

of ice Ih13 from neutron scattering, we can see in fig. 19 that the selected Einstein terms

reproduce reasonably well the dominant features of the experimental PDOS.

Since the original data for the PDOS of ice Ih from neutron scattering13 where not

available in numerical form, we digitized the corresponding part of the original fig. 213 and

scaled the area to 3 modes per molecule, whereby we did not correct for the missing part

below 30 K. Integration of this PDOS using the standard formula gave the Cv-data shown

in fig. 20 (blue dots). For this purpose, the background of the PDOS was reduced by 3%

with respect to the value of the first peak to obtain a better fit of Cv below 100 K.

Fig. 20 (upper) shows at first that in the range below 100 K the heat capacity (red curve)

is reproduced very well by values calculated from the experimental PDOS13 (blue points).
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FIG. 16. Comparison of the calorimetric Grüneisen parameter from the present model for ambient

pressure (pink curve) and for the upper boundary of ice Ih at 210 MPa (blue dashed curve).

1 6 1 7 1 8 1 9

1 0

1 0 0

1 0 0 0

θ7
θ6
θ5
θ4θ3

θ2

θ1De
by

e/E
ins

tei
n T

em
pe

rat
ure

 θ i

M o l a r  v o l u m e  ( c m 3 )

θ0

FIG. 17. Volume dependence of the Debye (θ0) and Einstein (θ1-θ7) temperatures.

The comparison with the present coherent model based on formula (19) and using only

the first 6 terms (0 to 5 in Table IV) (green dashed line) shows a slight deviation above

100 K which is attributed to anharmonic contributions of these translational modes. An

accurate estimate of the anharmonicity of the librational modes could only be made by a

detailed comparison with not yet available data for the librational PDOS. However, for the
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FIG. 18. Volume dependence of the Grüneisen parameters for the Debye (θ0) and Einstein (θ1-θ7)

temperatures of the present model.

translational modes we get within our model a total weight of 3.188 in comparison with

the expected 3 per molecule. We attribute this 6% deviation to explicite anharmonicity

and model it - in a first approach - within our quasi-harmonic approximation simply by the

excess weights of the θ0-θ5 terms.

It is then not clear how to distribute this anharmonicity over the six terms representing

the translational modes. If we use an equal distribution over the 6 terms we get a large

deviation at low temperatures with respect to the values calculated from the PDOS as

shown in fig. 20 (lower) by the green curve. On the other hand, when the anharmonicity

is completely attributed to the highest translational term, θ5, we get the pink curve with

small deviations to lower values in the higher temperature range. The best compromise is

apparently obtained by equal distribution over both the LO and TO translational modes, θ4

and θ5. The corresponding orange line in fig. 20 (lower) shows now some deviations below

50 K which can be attributed to the cutoff and background correction in the PDOS.

At this point we can also compare the theoretical PDOS15 with the experimental data for

the heat capacity, as shown in fig. 20 as grey curve. The theoretical PDOS was extracted

from a lattice dynamical model based on neutron scattering measurements of the low-energy

phonon dispersion curves up to 19 meV corresponding to 220 K. Fig. 21 compares the

experimental PDOS13 with the theoretical PDOS15 and earlier data of the neutron scattering
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FIG. 19. PDOS for the translational modes of ice Ih from neutron scattering13 (green curve)

compared with dominant features of the present model, whereby the red cross represents the weight

of the Debye term, the blue crosses mark the Einstein terms and the pink curve corresponds to a

broadening of the Einstein terms by Gaussians of suitable width.

TABLE III. Parameters for the ”constrained“ quasi-harmonic model with implicite anharmonicity.

0 1 2 3 4 5 6 7

θi(K) 55 55 104 227 340 407 830 1160

wi 0.044 0.141 0.849 0.576 0.578 0.813 0.300 2.700

βi 0.0 0.0 0.03 1.14 0.17 0.28 23.00 3.40

function14. It provides some additional information on the PDOS since it represent its typical

features but not the correct relative intensities.

One can see clearly in fig. 21 that the high energy part of the theoretical PDOS15 shows

a too small TO-LO-splitting and a total shift to lower energies in comparison with the cor-

responding structures in both the experimental PDOS13 and the scattering function14. In

the low energy part a significant shift is most clearly visible around 150 K. Theses differ-

ences illustrate that the lattice dynamical model12,15 helps very much in understanding the

structure of the PDOS, but does not yet provide accurate data for the description of a ther-

modynamical model covering the whole energy range. In fact this point had already been
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FIG. 20. Upper: Heat capacity of ice Ih at ambient pressure (red line) compared with values

calculated from the experimental PDOS13 (blue dots) including only the translational modes as

shown in fig. 19 and from the present coherent model (green dashed line) using only the first 6

terms (0-5). An estimate of the anharmonicity in the translational modes results in the green

solid line and the blue line illustrates the total harmonic contribution including the librational

modes. Lower: Difference between the quasi-harmonic heat capacity obtained by the experimental

PDOS13 (dotted blue line in the upper plot) and values obtained with different distributions of

the translational anharmonicity. The green curve corresponds to an equal distribution over all the

translational terms (θ0 to θ5), the pink curve to anharmonicity only on the θ5 term, and the orange

curve to an equal distribution over θ4 and θ5. The gray curve represents the surplus of the heat

capacity calculated from the theoretical PDOS15.

indicated by the author of the model12. Also, the more recent theoretical models17,19 provide

primarily a better understanding of the physical background, and the comparison of their

results with the experimental data serves as a guide for the choice of the best approximations

to be used in theses models.

So far we have compared our results only with the PDOS data for the translational modes

(below 500 K, see fig. 22). For higher energies (fig. 22) only the neutron scattering function

is available which cannot be converted easily into a PDOS but provides at least the positions

of its characteristic features described by the θ6 and θ7 terms of the present model.

Since we expect in the strictly harmonic approximation for the librational modes a total
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FIG. 21. Comparison of the experimental PDOS13 (green curve) with the theoretical PDOS15 (blue

curve) and the neutron scattering function14 (red curve with roughly adjusted scale).

weight of 3 per molecule, we see that this value is nearly reached already by the θ6 term,

and the large weight of the θ7 term must be attributed mostly to anharmonic contributions.

So far we have used what we call a quasi-harmonic approximation which models the

anharmonicity just by excess weights of the quasi-harmonic terms. In this way we have

limited the number of free parameters of the present approach. However, more correctly

we should have used a quasi-harmonic approach with the correctly constrained weights (or

number of modes per molecule) together with an implicit anharmonic contribution for each

mode. This implicit anharmonicity is commonly related to a temperature dependence of

the quasi-harmonic frequencies at constant volume8,28,29,47 and can be approximated in first

order by an anharmonic contribution proportional to the internal energy of the mode i,

scaled by a factor βi, i.e. (1 + βiui(T, θi)/(kBθi)). When we applied this scheme to the

representation of the heat capacity, we noticed first of all that the θ7 term had to be shifted

into the region of the librational modes together with a smaller shift of the θ6 term and

a dramatic change in the weights of these two terms as indicated by the values given in

Table III with the new harmonic weights wi and the additional anharmonicity parameters

βi.

One may notice also in Table III that we need no anharmonic contribution for the first

two terms and have to change for the translational modes only the weight of the highest
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FIG. 22. Comparison of the neutron scattering function14 (gray curve) with Debye and the Einstein

terms of the present model (red and blue crosses represent weights). The weight w7 = 6.25 is out

of scale and only represented by the area of the corresponding Gaussian at θ7 = 1752 K together

with Gaussians for the other terms (red curve).

term θ5. Since the anharmonicity parameters of the librational modes are strongly corre-

lated with the values of the representative frequencies, we did not attempt to refine the

parameters perfectly. In fact, the representative Einstein terms should be determined with

respect to a reliable PDOS, which is not yet available. Any extra volume dependence of the

anharmonicity parameters has been neglected here and could be handled by an increase in

the number of free parameters which could not be constrained by any experimental data at

the present time. From this point of view fig. 23 shows now only that this quasi-harmonic

approach with the parameters of Table IV fits the experimental data for the specific heat

almost as good as the refined unconstrained model. But the distribution of the anharmonic-

ity is physically more reasonable in this constrained approach and allows therefore also for

a better estimate of the remaining (systematic) uncertainties.

In any case we can notice that the anharmonic contributions to the translational modes

are very moderate and their pressure dependence does not introduce significant uncertainties

in any of the thermodynamic relations at moderate temperatures (T < 100). The effect of

pressure on the anharmonicity of the librational modes could be positive or negative, and

even as a small contribution it represents now the larges uncertainty in the prediction of
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FIG. 23. Deviations of the experimental data for the heat capacity from the representation by

the ”constrained“ quasi-harmonic model with explicit anharmonic contributions. The contribu-

tion from the PG-transition has been subtracted like in fig. 3 together with the extra premelting

anharmonicity, which is indicated here by the light blue line.

the behavior of ice Ih under pressure. However, studies of the anharmonicity of ice Ih

single crystals by X-ray diffraction33 indicate that there could be a chance to constrain this

uncertainty by an extension of this type of studies in the future also to high pressures.

IX. GRÜNEISEN PARAMETERS

So far we have not yet compared the present results with the study of the effect of

pressure on the dispersion of the Grüneisen parameters under compression15. Although

the phonon dispersion curves under pressure were studies by neutron scattering, a lattice

dynamical model was needed to extract the dispersion of the Grüneisen parameters for some

high symmetry directions in reciprocal space15. One of the most prominent observations

concerns the large negative values (approximately -2.7) of the mode Grüneisen parameters

along the Γ-M-direction. However, the energy dependent average over all the directions in

reciprocal space needed for a comparison with the present results was not given and could not

be generated easily from the graphical representation of the dispersion curves. Nevertheless

the presentation of the PDOS for 0.05 and 0.5 GPa (provided in digital form by the authors)
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FIG. 24. Energy dependence of the Grüneisen parameters in terms of Einstein temperatures.

Reciprocal space-averaged mode Grüneisen parameters from a lattice dynamical model15 (gray

and black points with black curve as guide to the eye) and data from a computer simulation17

(black open diamonds), values from the present model (row 6 in Table II) based on the reference

data for the bulk modulus (pink diamond with pink connecting line). The other data from Table II,

are shown as small green, red, and blue open diamonds respectively, to illustrate the uncertainty

related to the different literature data for the thermal expansion4–6.

allowed us to extract a few values for this energy dependent average Grüneisen parameter

from the shifts of some prominent features in theses spectra, which are presented in fig. 24.

At first one may notice reasonably good agreement between the lattice dynamical data15

and the present data at low energies (below 100 K) and than significantly smaller absolute

values with respect to the computer simulation17. The values for the librational modes with

phonon energies between 800 to 1700 K are obviously not well constrained by the present

model due to the influence of effects from anharmonicity and lattice defects.

X. DISCUSSION

Although ice Ih appears at first to be a simple molecular crystal, it shows a very complex

behavior which is not yet completely understood. It is clear that the phonon spectrum is

separated into 4 distinct regions with the translational modes at the lowest energy (up to
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400 K in temperature units), the librational modes from about 700 to 1500 K, the bending

modes from 2300 to 2600 K and the stretching modes around 4900 K. However, good values

for the corresponding PDOS are only available for the translational modes which leads to

the problem that the anharmonic contributions to the thermodynamic properties are well

constrained only in the low temperature region (< 150 K) and their unknown pressure de-

pendence limits the accuracy of the present modeling at higher temperatures and elevated

pressures. At very low temperatures (< 10 K) possible effects from a quantum glass be-

havior limit the accuracy of the present thermodynamic model. Furthermore, the lack of

a good model for the ”proton glass transition“ does not yet allow an accurate formulation

of the entropy. This effects also the evaluation of the thermal expansion and the related

Grüneisen parameters, especially due to the fact, that the small but significant difference

between the microscopic and macroscopic determinations of the volume expansion is not yet

well understood. Nevertheless, the evaluation of all the experimental data for the present

thermodynamic model can be considered as a good basis for the selection of the best approx-

imations to be used in theoretical models which have provided so far a better understanding

of the physical phenomena relevant for ice Ih, but still with limited accuracy as far as a

comparison with experimental data is concerned. Cold ice remains a hot topic!
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Appendix A: Thermodynamic relations

For one Einstein term, the form of the internal energy, heat capacity, thermal pressure

and isothermal bulk modulus are given by:

uE(T, θ) =
kBθ

exp(θ/T ) − 1
(A1)

cE(T, θ) = kB

[
2T

θ
sinh(

θ

2T
)

]−2

(A2)
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pE(T, θ, γ) =
γ

V
uE(T, θ) (A3)

kE(T, θ, γ,Γ) = (1 + γE − ΓE) · pE(T, θ) − γ2
ET

V
cE(T, θ) (A4)

For one Debye term, the free energy fD(T, θD), internal energy uD(T, θ), heat capacity

cD(T, θ), are given by:

fD(T, θD) = 3kBθD

(
T

θD

)4 ∫ θD/T

0

x2ln(1 − exp(−x))dx (A5)

uD(T, θD) = 3kBθD

(
T

θD

)4 ∫ θD/T

0

x3

exp(x) − 1
dx (A6)

cD(T, θD) =
3

4
kB

(
T

θD

)3 ∫ θD/T

0

[
x2

sinh(x/2)

]2

dx (A7)

The formula for the thermal pressure pD(T, θ, γ) and thermal contribution to the bulk

modulus kD(T, θ, γ,Γ) correspond to the forms (A3) and (A4) with E replaced by D.

Appendix B: Pseudo-Debye forms

The free energy of the pseudo-Debye form consists of a leading term fPD0 for low tem-

peratures:

fPD0(T, θ) = −kB(T/3)ln(1 + (θ/T )3) (B1)

and two Einstein terms fE in the form of:

fPD(T ) = w0fPD0(T, θ) + w1fE(T, f1θ) + w2fE(T, f2θ) (B2)

with the weights w0=0.05652, w1=0.90748, w2=0.036 and the scaling factors f1=0.81 and

f2=0.41 for the effective (fixed) Einstein temperatures. Since all the other thermodynamic

relations for the pseudo-Debye terms are similar sums, only the expressions involving the

leading term fPD0 are shown here for the internal energy:

uPD0(T, θ) = kBT/(1 + (θ/T )3) (B3)
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and for the heat capacity:

cPD0(T, θ) = kB(1 + 4(θ/T )3)/(1 + (θ/T )3)2 (B4)

which shows that these terms have the same asymptotic behavior at low and high tem-

peratures as the normal Debye form.

Appendix C: Modelling the ”proton glass transition“

When we subtract the contribution of the PG-transition in the volume expansion, we use

a Gaussian form:

∆Vpg(T ) = −V0wV pgexp(−
T − TV pg

∆TVpg
)2 (C1)

with the weight wV pg = 0.00014, the position TV pg = 103 K and the width ∆TV pg = 14

K in the fits of the diffraction data which reduces the standard deviation of these by 6%.

But with all the uncertainty related to this sluggish feature, we keep this term as a small

correction in the thermal expansion and not as a normal contribution to the equilibrium

thermodynamics.

For any application of the present model we give here all the parameters of the final

refinement in Table IV.

TABLE IV. Values for the parameters of the present 1PD7E-model.

0 1 2 3 4 5 6 7

θi(K) 55 55 104 227 340 407 957 1752

wi 0.044 0.14 0.851 0.579 0.52 1.068 2.728 5.92

γi -0.914 -1.93 -0.114 0.504 2.282 1.569 0.61 0.61

Γi -22.29 -26.52 1.46 62.51 -6.25 -3.87 0.76 0.66

Appendix D: Calculated specific heat and relative volume change under

pressure

DATA AVAILABILITY
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TABLE V. Calculated values of the specific heat CV at ambient pressure (in units of R) and

the relative volume change ∆V/V0 at ambient pressure, 100 MPa and 213 MPa, with 0 K molar

volumes of V0=19.30441 cm3/mole, 19.13392 cm3/mole, and 18.97276 cm3/mole, respectively.

T (K) CV /R ∆V/V0 · 104 ∆V/V0 · 104 ∆V/V0 · 104

0 MPa 0 MPa 100 MPa 213 MPa

0 0 0 0 0

5 0.0030 -0.0013 -0.0015 -0.0018

10 0.0354 -0.0391 -0.0486 -0.0588

15 0.1174 -0.2065 -0.2528 -0.2991

20 0.2393 -0.5198 -0.6268 -0.7302

25 0.3732 -0.9463 -1.1300 -1.3033

30 0.5018 -1.4486 -1.7224 -1.9763

35 0.6216 -1.9903 -2.3696 -2.7166

40 0.7341 -2.5348 -3.0389 -3.4952

45 0.8420 -3.0441 -3.6962 -4.2819

50 0.9471 -3.4803 -4.3066 -5.0445

55 1.0503 -3.8072 -4.8353 -5.7498

60 1.1519 -3.9925 -5.2501 -6.3663

65 1.2520 -4.0088 -5.5230 -6.8652

70 1.3501 -3.8342 -5.6308 -7.2223

75 1.4460 -3.4526 -5.5555 -7.4182

80 1.5394 -2.8525 -5.2839 -7.4382

85 1.6300 -2.0270 -4.8073 -7.2717

90 1.7179 -0.9722 -4.1202 -6.9117

95 1.8031 0.3128 -3.2200 -6.3542

100 1.8858 1.8273 -2.1062 -5.5973

105 1.9661 3.5692 -0.7798 -4.6411

110 2.0443 5.5355 0.7573 -3.4867

115 2.1207 7.7228 2.5023 -2.136

120 2.1955 10.1274 4.4521 -0.5910

125 2.2691 12.7459 6.6037 1.1450

130 2.3415 15.5748 8.9539 3.0693

135 2.4132 18.6107 11.4996 5.1793

140 2.4842 21.8508 14.2379 7.4721

145 2.5548 24.5882 17.1664 9.9452

150 2.6251 28.9338 20.2826 12.5963

155 2.6952 32.7727 23.5847 15.4234

160 2.7654 36.8076 27.0709 18.4246

165 2.8356 41.0376 30.7399 21.5983

170 2.9060 45.4620 34.5905 24.9431

175 2.9767 50.0803 38.6220 28.4581

180 3.0477 54.8925 42.8339 32.1423

185 3.1190 59.8988 47.2260 35.9950

190 3.1908 65.0998 51.7982 40.0159

195 3.2630 70.4964 56.5508 44.2045

200 3.3357 76.0897 61.4842 48.5608

205 3.4089 81.8810 66.5991 53.0845

210 3.4826 87.8718 71.8960 57.7756

215 3.5568 94.0640 77.3757 62.6336

220 3.6316 100.4594 83.0390 67.6581

225 3.7068 107.0599 88.8865 72.8477

230 3.7825 113.8677 94.9185 78.2002

235 3.8588 120.8845 101.1347 83.7113

240 3.9356 21.8508 107.5337 89.3735

245 4.0131 135.5518 114.1124 95.1724

250 4.0915 143.2040 120.8647 101.0797

255 4.1713 151.0679 127.7783 148.9460

260 4.2544 159.1405 134.8293 209.0238

265 4.3482 167.4146 181.8177 268.3027
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Additional data of this study are available from the corresponding author upon request.
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26W. Holzapfel, “Approximate EOS for solids from limited data sets,” J. Phys. Chem. Solids

55, 711 (1994).

27W. Holzapfel, “EOS for solids under strong compression,” High Press. Res. 16, 81–126

(1998).

28W. Holzapfel, “Equations of state for rare gas solids under strong compression,” J. Low.

Temp. Phys. 122, 401–412 (2001).

37



29W. Holzapfel, M. Hartwig, and W. Sievers, “Equations of state for Cu, Ag, and Au for

wide ranges in temperature and pressure up to 500 GPa and above,” J. Phys. Chem. Ref.

Data. 30, 515–529 (2001).

30L. Pauling, “The structure and entropy of ice and of other crystals with some randomness

of atomic arrangement,” J. Am. Chem. Soc. 57, 2680 (1935).

31W. Kuhs and M. Lehmann, in: Water Science Review vol. 1, ed. F. Franks, Cambridge

Univ. Press, Cambridge (1986).

32W. Kuhs and M. Lehmann, “The geometry and orientation of the water moleculein ice

Ih,” J. de Phys. Colloq. (Paris) 48 (C1), 3–8 (1987).

33A. Goto, T. Hondoh, and S. Mae, “The electron density distribution in ice ih determined

by single-crystal x-ray diffractometry,” J. Chem. Phys. 93, 1412 (1990).

34M. Tyagi and S. Murthy, “Dielectric relaxation in ice and ice clathrates and its connection

to the low-temperature phase transition induced by alkali hydroxides as dopants,” J. Phys.

Chem. A 106, 5072–5080 (2002).

35A. Karasevskii and W. Holzapfel, “Influence of vibrational anharmonicity and vacancies

on thermodynamic properties of the rare gas crystals,” Fizika Nizkikh Temp. 29, 951–956

(2003).

36A. Karasevskii, W. Holzapfel, and V. Lubashenko, “Vacancies structure of crystals at

high temperature. thermodynamic properties and melting,” J. Low. Temp. Phys. 139, 609

(2005).

37R. Pynn, “The 0 K Debye temperature of hexagonal-close packed materials,” Can. J. Phys.

49, 1690 (1971).

38J. Poirier, “Introduction to the Physics of the Earth’s Interior,” Introduction to the Physics

of the Earth’s Interior, Cambridge Unviversity Press, Cambridge (1974).

39S. Hunklinger, “Quantenphänomene in Gläsern,” Phys. Blätter 55, 57 (1999).

40R. Gagnon, H. Kiefte, M. Clouter, and E. Whalley, “Pressure dependence of the elastic

constants of ice Ih to 2.8 kbar by Brillouin spectroscopy,” J. Chem. Phys. 89, 4522 (1988).

41R. Gagnon, H. Kiefte, M. Clouter, and E. Whalley, “Acoustic velocities and densities of

polycrystalline ice Ih, II, II, V, and VI by Brillouin spectroscopy,” J. Chem. Phys. 92,

1909 (1990).

42T. J. Proctor, “Low-temperature speed of sound in single crystal ice,” J. Ac. Soc. Am..

39, 972 (1966).

38



43J. Neumeier, “Elastic constants, bulk modulus, and compressibility of H2O ice Ih for the

temperature range 50 K - 273 K,” J. Phys. Chem. Ref. Data 47, 03301 (2018).

44P. Gammon, H. Kiefte, and M. Clouter, “Elastic constants of ice samples by Brillouin

spectroscopy,” J. Phys. Chem. 87, 4025 (1983).

45G. Shaw, “Elastic properties and equation of state of high pressure ice,” J. Phys. Chem.

84, 5862 (1986).

46R. Gagnon, H. Kiefte, M. Clouter, and E. Whalley, “Elastic constants of ice Ih, up to 2.8

kbar, by Brillouin spectroscopy,” J. Phys. Colloques (C1) 48, 23 (1987).

47D. Wallace, Thermodynamics of Crystals, Wiley, New York (1972).

39


