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Abstract: Background: Fabry disease (FD) is an X-linked lysosomal disease due to a deficiency in the
activity of the lysosomal α-galactosidase A (GalA), a key enzyme in the glycosphingolipid degrada-
tion pathway. FD is a complex disease with a poor genotype–phenotype correlation. FD could involve
kidney, heart or central nervous system impairment that significantly decreases life expectancy. The
advent of omics technologies offers the possibility of a global, integrated and systemic approach well-
suited for the exploration of this complex disease. Materials and Methods: Sixty-six plasmas of FD
patients from the French Fabry cohort (FFABRY) and 60 control plasmas were analyzed using liquid
chromatography and mass spectrometry-based targeted metabolomics (188 metabolites) along with
the determination of LysoGb3 concentration and GalA enzymatic activity. Conventional univariate
analyses as well as systems biology and machine learning methods were used. Results: The analysis
allowed for the identification of discriminating metabolic profiles that unambiguously separate FD
patients from control subjects. The analysis identified 86 metabolites that are differentially expressed,
including 62 Glycerophospholipids, 8 Acylcarnitines, 6 Sphingomyelins, 5 Aminoacids and 5 Biogenic
Amines. Thirteen consensus metabolites were identified through network-based analysis, including 1
biogenic amine, 2 lysophosphatidylcholines and 10 glycerophospholipids. A predictive model using
these metabolites showed an AUC-ROC of 0.992 (CI: 0.965–1.000). Conclusion: These results highlight
deep metabolic remodeling in FD and confirm the potential of omics-based approaches in lysosomal
diseases to reveal clinical and biological associations to generate pathophysiological hypotheses.

Keywords: inborn errors of metabolism; Fabry disease; lysosomal storage diseases; metabolomics;
systems biology; machine learning

1. Introduction

Fabry disease (FD, OMIM #301500) is an X-linked inherited metabolic disease (IMD)
due to lysosomal α-galactosidase A activity deficiency (GalA-EC 3.2.1.22), which has a key
role in the glycosphingolipid degradation pathway, leading to cellular dysfunction and mi-
crovascular pathology [1]. The incidence ranges from 1 in 40,000 to 1 in 117,000 births in the
general population [2]. However, this might be underestimated as some screening studies
(Japan [3], Austria [4], northwestern Italy [5], United States (Missouri) [6] and Taiwan [7])
reported a higher incidence rate (1/1500–1/7000). The impairment of GalA generates a
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progressive accumulation of glycosphingolipid derivatives such as globotriaosylceramide
(Gb3) and galabiosylceramide in the lysosome. This may occur in various cell types such as
vascular, endothelial, renal, cardiac and nerve cells (neurons, Schwann cells) where the con-
tinuous deposition leads to serious cellular damage and organ failure [8]. Thus, damage to
the kidney, heart and central nervous system will significantly decrease life expectancy [9].
Most Fabry patients show no symptoms in early life; however, symptoms may arise in
childhood or adolescence. The classical phenotype in FD presents cornea verticillata, neuro-
pathic pain, gastrointestinal dysfunction and angiokeratoma [10,11]. Serious complications
are usually observed in adulthood and may include progressive renal insufficiency, car-
diac complications (arrhythmia, hypertrophic cardiomyopathy) and/or cerebrovascular
complications. Vascular ectasia and tortuosity could also be observed [10]. Pathogenic
variants might present with low to absent residual GalA activity in males spanning the
full disease clinical spectrum. In heterozygous females, the presentation is miscellaneous.
This clinical variability might be due to the X-inactivation in female patients. Putative
modifier genes could also explain part of the lack of GLA genotype–phenotype correlation.
FD diagnosis is usually made by the deficiency in GalA activity in white blood cells from a
blood sample [12], plasma/serum [13] or a dried blood spot [14]. Other samples could be
used to identify a GalA activity deficiency such as lymphoblasts, cultured fibroblasts, tears
or urine [15]. The diagnosis confirmation is done using molecular analysis of the GLA gene.
While reliable for male patients, the enzymatic assessment is dubious for female carriers
given the abovementioned random inactivation of the X-chromosome. In this case, molecu-
lar analysis is a very precious tool to detect heterozygous individuals. The storage product
Gb3 concentrations are inconsistently increased in either plasma [16,17] or urine [18] in
late onset forms and in female patients. For a greater discrimination, globotriaosylsphingo-
sine (LysoGb3), a deacylated derivative of Gb3, is suggested. However false negatives in
some female patients and in very late onset forms have been described [19,20]. Moreover,
LysoGb3 does not correlate well with clinical events in patients under treatment, as recently
illustrated in patients on migalastat-chaperone therapy [21]. Regarding treatment, Enzyme
Replacement Therapy (ERT) using intravenous exogeneous human α-Galactosidase A has
enhanced FD management. Currently, two ERTs are available: recombinant (Agalsidase
β) [22] or gene-activated human α-Galactosidase A enzyme [23]. Substrate reduction
therapy (SRT) is another approach aiming to reduce the synthesis of glucosylceramide via
inhibition of the glucosylceramide synthase. Two molecules are currently under clinical tri-
als: Venglustat and Lucerastat [24]. Recently, a new therapeutic strategy was also reported
using a pharmacological chaperone that can help proper protein folding of the mutated
protein to increase the enzymatic activity [25]. All of these therapeutic avenues aim to
improve the quality of life of the patients and to slow the course of the disease [26]. An
effective management of FD requires early diagnosis. This highlights the lack of robust
surrogate markers and molecular understanding of FD pathogeny for effective diagnosis,
patient stratification and personalized management [27,28]. Thus, a better understanding
of FD biological plasticity might enhance our screening and diagnosis tools.

The ongoing omics revolution has opened new avenues to interrogate biological
systems through data-rich strategies at an unprecedented breadth, depth and scope in
different fields, including IMD [29–32]. This omics surge is mainly driven by high through-
put technologies, bioinformatics, data sciences and systems biology approaches. Such
systems-based strategies promote unbiased, data-driven and hypothesis-free studies to
explore health and disease states and get rid of hypothesis-driven aspects of conventional
reductionist approaches [31]. In FD, several omics-based studies have been previously
reported in FD [33–44]. We describe here a network-based targeted metabolomics study
aiming to determine metabolic-based biological signatures that could discriminate Fabry
patients from healthy subjects. In addition, we aimed to compare the unveiled metabolomic
profile with routinely FD biomarkers.
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2. Materials and Methods
2.1. Patients and Blood Samples

Blood samples were retrieved from the French Fabry cohort (FFABRY), a French
multicenter cohort of patients with an enzymatic and/or genetic diagnosis of FD [45].
A total of 66 patients were included: 33 with classical phenotype, including 20 females
(age range: 25 to 75 years; mean age: 47 years) and 13 males (age range: 20 to 59 years;
mean age: 38 years), and 33 with non-classic phenotype, including 14 females (age range:
17 to 66 years; mean age: 46 years) and 19 males (age range: 17 to 74 years; mean age:
49 years). A total of 45 were treated, 11 with Agalsidase α (8 classical and 3 non-classical),
21 with Agalsidase β (11 classical and 10 non-classical), 1 with Migalastat (non-classical),
10 with Agalsidase α and Agalsidase β (4 classical and 6 non-classical), 1 with Agalsidase α

and Miglastat (non-classical), and 1 with all three, Agalsidase β, Agalsidase α and Migalas-
tat (non-classical). No significant differences in age, sex or treatment between phenotype
groups were observed. The mean cumulative treatment duration time was 6.4 years. Geno-
typing had been performed in 61 patients. For missense variants, 13 and 24 were found
in classical and non-classical Fabry patients, respectively. There were 16 and 8 variants
leading to a truncated protein (deletion, frameshift or non-sense mutations) in classical
and non-classical Fabry patients, respectively. All these characteristics are presented in
Supplementary Tables S1 and S2. Human control plasmas with no significant medical
conditions were purchased from Biovit (West Sussex, UK). We analyzed plasma samples
from 60 healthy donors, 30 males (age range: 20 to 55 years; mean age: 34 years) and
30 females (age range: 18 to 56 years; mean age: 37 years). The overall summary of the
cohort is presented in Figure 1.
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The study was approved by the Institutional Ethics Committee Research (Ethics Board
of Rouen University Hospital-CERNI E2016-21).

2.2. Targeted Metabolomics Analysis

All reagents required for the AbsoluteIDQ® p180 analysis are included in the kit
or provided by Biocrates Life Science AG (Innsbruck, Austria). Sample preparation was
carried out according to the manufacturer’s protocol [46,47]. Briefly, 10 µL of plasma
was transferred to the upper 96-well plate and dried under a nitrogen stream. Thereafter,
50 µL of a 5% PITC solution was added to derivatize amino acids and biogenic amines.
After incubation, the spots were dried again before the metabolites were extracted using
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5 mM ammonium acetate in methanol (300 µL) into the lower 96-well plate for analysis
after further dilution using the MS running solvent A. Quantification was carried out
using isotopically labeled internal standards and a calibration curve [46,47]. The full list
of 188 measured metabolites is presented Supplementary Table S3. The AbsoluteIDQ®

p180 kit is a fully automated assay based on phenylisothiocyanate (PITC) derivatization
of the target analytes in bodily fluids using internal standards for quantitation. Amino
acids and biogenic amines are determined in LC-MS mode, acylcarnitines, phospholipids,
sphingomyelins, and the sum of hexoses are analyzed in flow injection analysis (FIA). The
analyses were performed following the instructions of the kit manufacturer: autosam-
pler temperature at 10 ◦C, injection volume at 10 µL, reversed-phase HPLC gradient
using HPLC grade water and acetonitrile, both with 0.2% formic acid (FA), flow rate at
0.5 mL/min. For the FIA, only acetonitrile with 0.2% FA was used with a max flow rate
of 0.2 mL/min. Liquid chromatography instrument prominence Shimadzu UFLC System
(Shimadzu, Prominence, Kyoto, Japan) was used coupled to the 4000 Qtrap mass spectrom-
eter (Sciex, Framingham, MA, USA) with an electrospray ion source. Data acquisition and
processing were performed using the Analyst 1.5 software (Sciex, Framingham, MA, USA).

2.3. Plasma LysoGb3 Analysis

The LysoGb3 concentration was measured as previously described [45]. Using plasma
samples and ultra-performance liquid chromatography coupled to tandem mass spec-
trometry (UPLC-MS/MS). In glass tubes, EDTA-plasma was mixed with glycine-LysoGb3
(100 ng/mL) as an internal standard. Proteins were precipitated with methanol:acetone
1:1 (v/v), sonicated for 30 s in a bath sonifier and vortexed. After centrifugation, 8 min at
16,000× g, the supernatant was transferred into new tubes and dried. For UPLC-LCMS/MS
analysis, the residue was redissolved in methanol. Quantitative analysis of LysoGb3 was
performed on a TQD mass spectrometer coupled to an Acquity UPLC system (Waters®)
and equipped with an Acquity BEH-C18 column. Elution was achieved by mobile phase A,
consisting of 37% methanol, 63% water containing 1 mM ammonium formiate and 0.1%
formic acid, and mobile phase B, consisting of 100% methanol containing 1 mM ammonium
formiate and 0.1% formic acid. A calibration curve was generated by a serial dilution of
LysoGb3 (Matreya-LLC) in methanol, with concentrations ranging from 100 to 1.56 ng/mL.

2.4. Alpha-D-Galactopyranosidase Activity Analysis

Alpha-D-galactopyranosidase enzymatic activity was assessed in isolated blood leuko-
cytes using a fluorometric assay [13]. Hexosaminidase activity was also determined as an
enzyme control to confirm leukocyte integrity. The residual enzymatic activity (REA) is
defined as the ratio of enzyme activity measured in a sample to the activity measured with
a control.

2.5. Data Analysis

Data matrix was log-transformed and pareto-scaled [48]. Missing values were imputed
using nearest neighbor averaging algorithm using the impute.knn function in the impute
R package. Univariate analyses were performed using t-tests to identify discriminatory
features between the assessed groups. Limma package [49] was used for differential
analysis with sex and age taken into account by adding it as covariate. Spearman correlation
analysis was performed using R software. Euclidean distance was used as a similarity
measure in the clustering analysis. Principal Component Analysis was used as dimension
reduction technique using log-transformed and pareto-scaled dataset. False discovery rates
were corrected using the Benjamini–Hochberg–Yekutieli method [50], and p < 0.05 was
considered statistically significant. For network analysis, the first step was to compute
several partial correlation matrices (PCM) [51]. Three kinds of PCMs were calculated:
control + disease samples, control samples only, and all the combinations of samples
including control + “disease-minus-one-patient” to get patient specific networks. Networks
were then constructed from each PCMs data matrix and pruned with each other to get
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specific networks. The idea of network pruning is to remove edges in a general network
that are also found in a more specific network. So, we pruned the “disease + control”
network with the “control” network in order to keep only edges that are disease specific.
Thus, this step results in a “disease-specific” network. This step has been done using the
CTD R package [52]. Using the same strategy, networks of controls + “disease-minus-one”
samples were pruned with the control-samples network to obtain a “disease-specific-minus-
one-patient” network. This network was then pruned with the “disease-specific” network
calculated above in order to extract “patient-specific” metabolic signatures. A summary
overview of the network strategy is presented in Supplementary Figure S1. The metabolites
present in all of these “patient-specific” networks were selected to build a Consensus
Network and enable the visualization of key metabolic signatures for the disease. To test
the discriminatory power of this signature, Random Forest models were tuned for every
possible combination of metabolites from the Consensus Network. Random Forest models
were built using the ranger package [53] and the caret package in R [54]. The models
were tuned over ~50 repeats to obtain robust classification probabilities. Performances of
the models were assessed with the MLeval package in R. The main metric for predictive
performance assessment was the area under the curve (AUC) for the resulting receiver
operating characteristic (ROC) curve. All data analyses and visualizations were performed
using R software [55].

3. Results

The aim of this work is to explore metabolic profile differences between Fabry and
control samples using plasma-targeted metabolomics. The full data matrix with samples
characteristics is presented in Supplementary Table S2. To analyze the data, the first ap-
proach was to use an unsupervised analysis to track samples’ clustering trends based on
the underlying metabolic profiles. The principal component analysis score plot revealed
a clear separation between Fabry and control samples (Figure 2A). This separation was
mainly observed on the PC1 dimension which explains alone 69.3% of the variance of the
dataset. No sex, treatment or disease phenotype separation were observed on the PCA
(Figure 2B–D). The PCA scores’ matrices are presented in Supplementary Table S4. To
go further, we performed a differential analysis between the two groups Fabry versus
control samples. The analysis identified 86 metabolites that are differentially expressed.
The full list of metabolites and their related statistics are presented in Supplementary
Table S5. The metabolites include 62 Glycerophospholipids, 8 Acylcarnitines, 6 Sphin-
gomyelins, 5 Aminoacids and 5 Biogenic Amines. To visualize the discriminant effect of
these metabolites on the samples, we present in Figure 3A a heatmap of the correlation be-
tween metabolites (rows) and samples (columns). The full correlation matrix is presented in
Supplementary Table S6. The heatmap clearly shows two main clusters belonging to Fabry
and Control samples. This clustering is driven by the respective metabolic profile in each
sample. Thus, we have performed correlation analysis between the differentially expressed
metabolites. The results are presented in a heatmap (Figure 3B). The figure shows four
main clusters with high intraclass correlation, especially between glycerophospholipids
and sphingomyelins, Acylcarnitines and aminoacids. The top 12 differentially expressed
metabolites are presented in boxplots (Figure 4). These include 3 amino acids: Glutamine
(logFC = 1.78, p-value = 6.79 × 10−23), Methionine (logFC = 1.83, p-value = 2.99 × 10−22),
Methionine sulfoxide (logFC = −1.86, p-value = 1.72 × 10−23), and 9 phosphatidyl-
cholins: PC ae C38:1 (logFC = −1.94, p-value = 1.72 × 10−23), PC ae C38:2 (logFC = −1.89,
p-value = 8.51 × 10−23), PC aa C40:2 (logFC = −1.88, p-value = 2.99 × 10−22), PC ae C36:1
(logFC = −1.89, p-value = 3.96 × 10−22), PC aa C40:3 (logFC = −1.88, p-value = 6.8 × 10−22),
PC ae C40:3 (logFC = −1.78, p-value = 1.39 × 10−19), PC aa C42:4 (logFC = −1.78,
p-value = 3.31 × 10−19), PC ae C40:2 (logFC = −1.78, p-value = 1.05 × 10−18), PC ae C38:3
(logFC = −1.78, p-value = 5.84 × 10−18).

To investigate the correlation between the associations between the retrieved metabolic
profile and residual enzyme activity and LysoGb3, we used Spearman correlations. For
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LysoGb3, the analysis yielded nine negative correlations (PC aa C24:0 vs. LysoGb3:
rho = −0.3 adjusted p-value = 3.10 × 10−2, PC aa C40:2 vs LysoGb3: rho = −0.3 adjusted
p-value = 3.41 × 10−2, PC ae C40:1 vs. LysoGb3: rho = −0.29 adjusted p-value = 3.60 × 10−2,
PC ae C42:1 vs. LysoGb3: rho = −0.29 adjusted p-value = 3.76 × 10−2, PC aa C40:1
vs. LysoGb3: rho = −0.29 adjusted p-value = 3.92 × 10−2, PC ae C42:2 vs. LysoGb3:
rho = −0.28 adjusted p-value = 4.50 × 10−2, lysoPC a C26:1 vs LysoGb3: rho = −0.28 ad-
justed p-value = 4.60 × 10−2), and two positive correlations (Acetylcarnitine vs. LysoGb3:
rho = 0.33 adjusted p-value = 1.83 × 10−2, Putrescine vs. LysoGb3: rho = 0.35 adjusted
p-value = 1.05 × 10−2). For residual enzyme activity, two negative correlations were ob-
served (Hexadecenoylcarnitine vs. Residual Enzyme Activity: rho = −0.48 adjusted
p-value = 4.87 × 10−4, Serotonin vs. Residual Enzyme Activity: rho = −0.34 adjusted
p-value = 1.85 × 10−2). A network visualization is presented in Figure 5, and full results
are presented in Supplementary Table S7.
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C40:1-AUC = 0.926 (CI: 0.846–1.000), PC ae C40:5-AUC = 0.913 (CI: 0.827–1.000), lysoPC a 
C18:0-AUC = 0.738 (CI: 0.605–0.872), PC aa C26:0-AUC = 0.673 (CI: 0.531–0.814). Overall, 
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Figure 5. Correlation analysis between LysoGb3, Residual enzyme activity and the metabolomic data. Detailed results are
presented in supplementary Table S7.

For a more personalized assessment of the results at the patient’s level, a network-based
strategy was used. This was based on generating different networks using control, disease or
both samples. Using these networks, 21 Fabry-specific metabolic signatures were extracted
that are presented in Supplementary Figures S1–S21. Networks and the full list for each
sample are presented in Supplementary Tables S8–S11. Then, to build a consensus network,
we identified the most redundant metabolites found in all of the patients’ signatures. The
consensus network included 13 metabolites: 1 biogenic amine (Methionine sulfoxide),
2 lysophosphatidylcholines (lysoPC a C18:0, lysoPC a C28:0) and 10 glycerophospholipids
(PC ae C38:1, PC aa C38:1, PC ae C36:1, PC aa C42:1, PC ae C40:3, PC aa C42:5, PC ae C38:3,
PC ae C40:1, PC ae C40:5, PC aa C26:0). Correlation network visualizations are presented in
Figure 6A,B. The full results are presented in Supplementary Table S12. To have an overview
of the expression levels of these metabolites, boxplots are shown in Figure 6C. Based on this
consensus signature, we explored the predictive performance of each of the 13 metabolites
and all their possible combinations using predictive Random Forest models. Area under
curve and ROC curves were used as performance metrics. All model-related results are
presented in Supplementary Table S13. The 13 univariate models and their combination
are shown in Figure 6 These models showed the following predictive performances: PC ae
C38:1-AUC = 0.975 (CI: 0.928–1.000), PC aa C38:1-AUC = 0.973 (CI: 0.923–1.000), Methionine
sulfoxide-AUC = 0.972 (CI: 0.921–1.000), PC ae C36:1-AUC = 0.971 (CI: 0.919–1.000), PC
aa C42:1-AUC = 0.962 (CI: 0.904–1.000), PC ae C40:3-AUC = 0.946 (CI: 0.877–1.000), PC aa
C42:5-AUC = 0.945 (CI: 0.876–1.000), lysoPC a C28:0-AUC = 0.943 (CI: 0.873–1.000), PC
ae C38:3-AUC = 0.94 (CI: 0.867–1.000), PC ae C40:1-AUC = 0.926 (CI: 0.846–1.000), PC ae
C40:5-AUC = 0.913 (CI: 0.827–1.000), lysoPC a C18:0-AUC = 0.738 (CI: 0.605–0.872), PC aa
C26:0-AUC = 0.673 (CI: 0.531–0.814). Overall, most of the models showed an AUC higher
than 0.90. It is worth mentioning that one of the most predictive model includes all the
metabolites and showed an AUC = 0.992 (CI: 0.965–1.000).
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Figure 6. Network and machine learning analysis. (A) Negative partial correlation network visualization of the Fabry
consensus plasma metabolic signature. The size of the ribbon is proportional to the correlation. (B) Positive partial
correlation network visualization of the Fabry consensus plasma metabolic signature. The size of the ribbon is proportional
to the correlation. (C) Boxplots of the consensus plasma metabolic signature. (D) ROC curves of the Random Forest
predictive models, including 1 biogenic amine (Methionine sulfoxide), 2 lysophosphatidylcholines (lysoPC a C18:0, lysoPC
a C28:0) and 10 glycerophospholipids (PC ae C38:1, PC aa C38:1, PC ae C36:1, PC aa C42:1, PC ae C40:3, PC aa C42:5, PC ae
C38:3, PC ae C40:1, PC ae C40:5, PC aa C26:0).
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4. Discussion

Fabry disease is an IMD that displays a clinical heterogeneity. Currently, LysoGb3 is
the most reliable diagnostic biomarker for Fabry disease. However, it fails in diagnosing
some non-classical phenotypes or female patients. Since an early diagnosis of this rare
disease allows the optimization of patient management, it is essential to uncover disease-
specific biomarkers that could allow the stratification of patients and provide tools for
treatment follow-up. To achieve this goal, we conducted a targeted metabolomic study in a
series of Fabry patients and control individuals. A total of 188 metabolites, including acyl-
carnitines, biogenic amines, amino acids, glycerophospholipids and sphingomyelins, were
quantified in plasma samples. Unsupervised multivariate analysis of the concentrations of
these metabolites showed a very clear discrimination of metabolomic profiles between the
control and Fabry groups. However, we found no specific metabolic patterns related to
gender, disease phenotype (classical vs. non-classical) or disease treatment. Furthermore,
this targeted metabolomic analysis shows that 86 metabolites have differential expression
between Fabry and control samples. The main unveiled biochemical classes include glyc-
erophospholipids, acylcarnitines, amino acids, biogenic amines and sphingomyelins. To
parse the metabolic complexity of these patterns, we used an integrative network-based
strategy coupled to a machine learning approach that uncovered a consensual biosignature
that is specifically increased in Fabry samples compared to controls. It includes 1 biogenic
amine (Methionine sulfoxide), 2 lysophosphatidylcholines (lysoPC a C18:0, lysoPC a C28:0)
and 10 glycerophospholipids (PC ae C38:1, PC aa C38:1, PC ae C36:1, PC aa C42:1, PC ae
C40:3, PC aa C42:5, PC ae C38:3, PC ae C40:1, PC ae C40:5, PC aa C26:0).

These results show alterations in the metabolism of sphingomyelins and glycerophos-
pholipids. Among the 15 metabolites most significantly altered between controls and Fabry
patients, the majority belong to the class of glycerophospholipids (GPL), the components
of which are important parts of cell membrane and are also involved in many biological
processes such as inflammation and cell differentiation [56]. For example, the length of the
fatty acid chain of which they are composed and their degree of saturation have an impact
on membrane fluidity and permeability. GPL also serve as reservoirs for second messengers
that will be released under the action of phospholipases. Zhang et al. showed that lipid
metabolism can contribute to the pro- or anti-inflammatory activities of macrophages by
modulating, for example, the fluidity of the membrane and are thus biomarkers of the
activation state of macrophages [57]. Depending on the activation stimulus, activated
macrophages are divided into 2 main groups: M1 macrophages (pro-inflammatory phe-
notype) and M2 macrophages (anti-inflammatory phenotype). This activation leads to a
modification of the GPL from saturated to polyunsaturated GPLs. In addition, M1 has
more GPLs than lysophospholipids, unlike M2. Since Fabry disease is an inflammatory
disease, it is therefore interesting to note that most of the GPLs significantly modified in
our metabolomic study are GPLs containing polyunsaturated fatty acids. GPLs are also
found largely in neural cell membranes, and studies have shown that abnormal metabolism
of GPL is associated with neuroinflammation and neurodegeneration [56]. For example,
alterations in the GPL composition of the neural membrane have been shown to occur in
neurological pathologies such as Alzheimer’s disease [58] and Parkinson’s disease [59]. Of
note, GPL are also components of lipoproteins, particularly low-density lipoproteins (LDL),
and it is now accepted that polyunsaturated fatty acids are more oxidation-sensitive [60].
The oxidation of LDL is a key step in the development of atherosclerosis [61]. Thus, the in-
crease in polyunsaturated GPL in Fabry disease may therefore play a role in the occurrence
of cardiovascular events in Fabry patients with increased oxidative stress.

Another metabolite of potential interest for Fabry disease is methionine, which is
significantly decreased in Fabry patients compared to controls. Indeed, methionine is
an essential amino acid that not only plays a proteinogenic role, but also intervenes in
several important metabolic pathways such as the cycle of re-methylation of homocysteine
to methionine in the presence of folates. This result is suggestive of an alteration in the
homocysteine re-methylation cycle. Studies seem to indicate that Fabry patients have
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increased homocysteine concentrations even in the absence of chronic renal failure or
vitamin deficiency [62–64]. However, the exact mechanism of this increase is not yet clearly
understood. Of note, renal insufficiency may be associated with increased plasmatic levels
of S-adenosylmethionine (SAM) while folate and methionine levels remain normal [65].
Studies have also shown that methylated forms of Gb3 are present in the plasma and
urine of Fabry patients [66]. This might involve the metabolism of SAM, which is derived
from methionine. SAM is a methyl donor and a regulator of epigenetics. The role of
epigenetics, including DNA methylation, has already been suggested in lysosomal storage
diseases [67] and might be involved in the lack of genotype–phenotype correlation in Fabry
disease. Patients with Fabry disease also present autophagy impairments [68]. Yanagisawa
et al. showed that deregulation of DNA methylation on the GLA gene is associated with
this dysfunction and that there is a correlation between symptom severity, autophagy
dysfunction and methylation of the mutant allele [69].

Interestingly, our analysis clearly shows that not only methionine level is decreased,
but its oxidized form, methionine sulfoxide (Met-SO), is increased in patients compared to
controls. One of the peculiarities of methionine is that it is very susceptible to oxidation, due
to its cysteine sulfide groups. The oxidation of methionine modifies the physicochemical
properties of proteins and consequently modulates their function. Numerous studies
have shown an increase in oxidative stress in Fabry disease [70–75]. In particular, it
has been shown that the accumulation of Gb3 induces oxidative stress [71,73–75] and
that there is a correlation between Gb3 and oxidative stress [76]. Biancini et al. also
reported an increase in lipid and protein oxidation and inflammation in Fabry patients
with decreased antioxidant defenses [71] such as heme oxygenase 1 (HO1) [74]. Fabry
patients have endothelial dysfunction [63,77,78]. Namdar et al. showed that the endothelial
dysfunction is due to Gb3 accumulation [79]. This is partly due to a decrease in nitric
oxide (NO) production by the enzyme endothelial NO synthase (eNOS). Indeed, under
physiological conditions, eNOS is associated with the cofactor BH4 to produce NO. In a
context of increased oxidative stress, BH4 is oxidized to BH2, and the eNOS thus decoupled
from its cofactor no longer produces NO, but superoxide anion, a radical oxygen species
(ROS), thus increasing oxidative stress. Shen’s team showed that BH4 was decreased
in patients with Fabry disease [80]. Moreover, a decrease in superoxide dismutase 2,
the mitochondrial enzyme responsible for the degradation of the superoxide anion, was
observed in these patients [81]. The oxidation of methionine to methionine sulfoxide
(Met-SO) is a mechanism by which proteins protect themselves from oxidative stress,
and to protect the cell from radical oxygen species (ROS), the methionine SO reductase
system intervenes to subsequently reduce Met-SO to methionine [82]. Therefore, Met-SO is
considered a marker of the systemic oxidative state of the organism [83,84].

One of the limitations of our study is related to the small number of patients studied.
Thus, our results will need to be confirmed in a larger cohort to verify the predictive nature
of these metabolites in Fabry disease and to be able to use them as diagnostic and treatment
monitoring tools, particularly in heterozygous women and moderate forms of the disease.
It would also be promising to adjust these metabolites to clinical manifestations and assess
their predictive performances of disease progression.

5. Conclusions

This metabolomic study allowed us to unveil specific metabolic patterns in Fabry
disease. The identification of specific pathological biosignatures provides a better un-
derstanding of the disease and in particular the important role of glycerophospholipids
and oxidative stress in its pathophysiology. Consideration should be given to combining
ERT or SRT treatments with an oxidative stress inhibitor treatment and using Met-SO
as a biomarker for treatment monitoring. Moreover, this highlights the potential of us-
ing integrative omics and systems-based techniques to parse the genotype–phenotype
complexity of FD.
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42. Doykov, I.D.; Heywood, W.E.; Nikolaenko, V.; Śpiewak, J.; Hällqvist, J.; Clayton, P.T.; Mills, P.; Warnock, D.G.; Nowak, A.; Mills, K.
Rapid, proteomic urine assay for monitoring progressive organ disease in fabry disease. J. Med. Genet. 2020, 57, 38–47. [CrossRef]
[PubMed]

43. Tebani, A.; Mauhin, W.; Abily-Donval, L.; Lesueur, C.; Berger, M.G.; Nadjar, Y.; Berger, J.; Benveniste, O.; Lamari, F.; Laforêt, P.;
et al. A proteomics-based analysis reveals predictive biological patterns in fabry disease. J. Clin. Med. 2020, 9, 1325. [CrossRef]
[PubMed]

44. Manwaring, V.; Boutin, M.; Auray-Blais, C. A metabolomic study to identify new globotriaosylceramide-related biomarkers in
the plasma of fabry disease patients. Anal. Chem. 2013, 85, 9039–9048. [CrossRef]

45. Mauhin, W.; Lidove, O.; Amelin, D.; Lamari, F.; Caillaud, C.; Mingozzi, F.; Dzangue-Tchoupou, G.; Arouche-Delaperche, L.;
Douillard, C.; Dussol, B.; et al. Deep characterization of the anti-drug antibodies developed in fabry disease patients, a prospective
analysis from the french multicenter cohort ffabry. Orphanet J. Rare Dis. 2018, 13, 127. [CrossRef]

46. Ramsay, S.L.; Guggenbichler, W.; Weinberger, K.M.; Graber, A.; Stoeggl, W.M. Device for Quantitative Analysis of a Drug or
Metabolite Profile. Google Patents WO2007003344A2, 11 January 2007.

47. Ramsay, S.L.; Stoeggl, W.M.; Weinberger, K.M.; Graber, A.; Guggenbichler, W. Apparatus and Method for Analyzing a Metabolite
Profile. Google Patents US8265877B2, 11 September 2012.

48. Van Den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; Van Der Werf, M.J. Centering, scaling, and transformations:
Improving the biological information content of metabolomics data. BMC Genom. 2006, 7, 142. [CrossRef]

49. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for
rna-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef]

50. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat.
Soc. Ser. B 1995, 57, 289–300. [CrossRef]

51. Liang, F.; Song, Q.; Qiu, P. An equivalent measure of partial correlation coefficients for high-dimensional gaussian graphical
models. J. Am. Stat. Assoc. 2015, 110, 1248–1265. [CrossRef]

52. Thistlethwaite, L.R.; Petrosyan, V.; Li, X.; Miller, M.J.; Elsea, S.H.; Milosavljevic, A. Ctd: An information-theoretic algorithm
to interpret sets of metabolomic and transcriptomic perturbations in the context of graphical models. PLoS Comput. Biol. 2021,
17, e1008550. [CrossRef] [PubMed]

53. Wright, M.N.; Ziegler, A. Ranger: A fast implementation of random forests for high dimensional data in C++ and r. J. Stat. Softw.
2017, 77, 1–17. [CrossRef]

54. Kuhn, M. Caret: Classification and Regression Training; Astrophysics Source Code Library: 2020. Avaliable online: https:
//ascl.net/ (accessed on 1 May 2021).

55. Eriksson, L.; Trygg, J.; Wold, S. A chemometrics toolbox based on projections and latent variables. J. Chemom. 2014, 28, 332–346.
[CrossRef]

56. Farooqui, A.A.; Horrocks, L.A.; Farooqui, T. Glycerophospholipids in brain: Their metabolism, incorporation into membranes,
functions, and involvement in neurological disorders. Chem. Phys. Lipids 2000, 106, 1–29. [CrossRef]

57. Zhang, C.; Wang, Y.; Wang, F.; Wang, Z.; Lu, Y.; Xu, Y.; Wang, K.; Shen, H.; Yang, P.; Li, S.; et al. Quantitative profiling of
glycerophospholipids during mouse and human macrophage differentiation using targeted mass spectrometry. Sci. Rep. 2017,
7, 412. [CrossRef]

58. Kosicek, M.; Hecimovic, S. Phospholipids and Alzheimer’s disease: Alterations, mechanisms and potential biomarkers. Int. J.
Mol. Sci. 2013, 14, 1310–1322. [CrossRef] [PubMed]

59. Miletic Vukajlovic, J.; Drakulic, D.; Pejic, S.; Ilic, T.V.; Stefanovic, A.; Petkovic, M.; Schiller, J. Increased plasma phosphatidyl-
choline/lysophosphatidylcholine ratios in patients with Parkinson’s disease. Rapid Commun. Mass Spectrom. 2019, 34, e8595.
[CrossRef] [PubMed]

60. McIntyre, T.M.; Hazen, S.L. Lipid oxidation and cardiovascular disease: Introduction to a review series. Circ. Res. 2010, 107,
1167–1169. [CrossRef]

http://doi.org/10.1136/jmedgenet-2017-104704
http://doi.org/10.1073/pnas.0611315104
http://doi.org/10.1016/j.stemcr.2019.07.004
http://www.ncbi.nlm.nih.gov/pubmed/31378672
http://doi.org/10.3390/cells8040327
http://www.ncbi.nlm.nih.gov/pubmed/30965672
http://doi.org/10.1016/j.ymgme.2018.11.005
http://www.ncbi.nlm.nih.gov/pubmed/30594474
http://doi.org/10.1136/jmedgenet-2019-106030
http://www.ncbi.nlm.nih.gov/pubmed/31519711
http://doi.org/10.3390/jcm9051325
http://www.ncbi.nlm.nih.gov/pubmed/32370284
http://doi.org/10.1021/ac401542k
http://doi.org/10.1186/s13023-018-0877-4
http://doi.org/10.1186/1471-2164-7-142
http://doi.org/10.1093/nar/gkv007
http://doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://doi.org/10.1080/01621459.2015.1012391
http://doi.org/10.1371/journal.pcbi.1008550
http://www.ncbi.nlm.nih.gov/pubmed/33513132
http://doi.org/10.18637/jss.v077.i01
https://ascl.net/
https://ascl.net/
http://doi.org/10.1002/cem.2581
http://doi.org/10.1016/S0009-3084(00)00128-6
http://doi.org/10.1038/s41598-017-00341-2
http://doi.org/10.3390/ijms14011310
http://www.ncbi.nlm.nih.gov/pubmed/23306153
http://doi.org/10.1002/rcm.8595
http://www.ncbi.nlm.nih.gov/pubmed/31519070
http://doi.org/10.1161/CIRCRESAHA.110.224618


J. Pers. Med. 2021, 11, 898 16 of 16

61. Witztum, J.L.; Steinberg, D. Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Investig. 1991, 88, 1785–1792.
[CrossRef] [PubMed]

62. Cheung, R.; Sillence, D.O.; Tchan, M.C. Homocysteine and erythrocyte sedimentation rate correlate with cerebrovascular disease
in fabry disease. JIMD Rep. 2012, 6, 101–105. [PubMed]

63. Demuth, K.; Germain, D.P. Endothelial markers and homocysteine in patients with classic fabry disease. Acta Paediatr. Suppl.
2002, 91, 57–61. [CrossRef]

64. Fedi, S.; Gensini, F.; Gori, A.M.; Abbate, R.; Borsini, W. Homocysteine and tissue factor pathway inhibitor levels in patients with
fabry’s disease. J. Thromb. Haemost. 2005, 3, 2117–2119. [CrossRef]

65. Van Guldener, C. Why is homocysteine elevated in renal failure and what can be expected from homocysteine-lowering? Nephrol.
Dial. Transplant. 2006, 21, 1161–1166. [CrossRef] [PubMed]

66. Abaoui, M.; Boutin, M.; Lavoie, P.; Auray-Blais, C. Tandem mass spectrometry multiplex analysis of methylated and non-
methylated urinary gb3 isoforms in fabry disease patients. Clin. Chim. Acta Int. J. Clin. Chem. 2016, 452, 191–198. [CrossRef]
[PubMed]

67. Hassan, S.; Sidransky, E.; Tayebi, N. The role of epigenetics in lysosomal storage disorders: Uncharted territory. Mol. Genet. Metab.
2017, 122, 10–18. [CrossRef] [PubMed]

68. Chévrier, M.; Brakch, N.; Céline, L.; Genty, D.; Ramdani, Y.; Moll, S.; Djavaheri-Mergny, M.; Brasse-Lagnel, C.; Annie Laquerrière,
A.L.; Barbey, F. Autophagosome maturation is impaired in fabry disease. Autophagy 2010, 6, 589–599. [CrossRef] [PubMed]

69. Yanagisawa, H.; Hossain, M.A.; Miyajima, T.; Nagao, K.; Miyashita, T.; Eto, Y. Dysregulated DNA methylation of gla gene was
associated with dysfunction of autophagy. Mol. Genet. Metab. 2019, 126, 460–465. [CrossRef] [PubMed]

70. Biancini, G.B.; Jacques, C.E.; Hammerschmidt, T.; de Souza, H.M.; Donida, B.; Deon, M.; Vairo, F.P.; Lourenco, C.M.; Giugliani,
R.; Vargas, C.R. Biomolecules damage and redox status abnormalities in fabry patients before and during enzyme replacement
therapy. Clin. Chim. Acta Int. J. Clin. Chem. 2016, 461, 41–46. [CrossRef] [PubMed]

71. Biancini, G.B.; Moras, A.M.; Reinhardt, L.S.; Busatto, F.F.; de Moura Sperotto, N.D.; Saffi, J.; Moura, D.J.; Giugliani, R.; Vargas, C.R.
Globotriaosylsphingosine induces oxidative DNA damage in cultured kidney cells. Nephrology 2017, 22, 490–493. [CrossRef]
[PubMed]

72. Muller, K.B.; Galdieri, L.C.; Pereira, V.G.; Martins, A.M.; D’Almeida, V. Evaluation of oxidative stress markers and cardiovascular
risk factors in fabry disease patients. Genet. Mol. Biol. 2012, 35, 418–423. [CrossRef] [PubMed]

73. Ravarotto, V.; Carraro, G.; Pagnin, E.; Bertoldi, G.; Simioni, F.; Maiolino, G.; Martinato, M.; Landini, L.; Davis, P.A.; Calo, L.A.
Oxidative stress and the altered reaction to it in fabry disease: A possible target for cardiovascular-renal remodeling? PLoS ONE
2018, 13, e0204618.

74. Ravarotto, V.; Simioni, F.; Carraro, G.; Bertoldi, G.; Pagnin, E.; Calo, L.A. Oxidative stress and cardiovascular-renal damage in
fabry disease: Is there room for a pathophysiological involvement? J. Clin. Med. 2018, 7, 409. [CrossRef]

75. Shen, J.S.; Meng, X.L.; Moore, D.F.; Quirk, J.M.; Shayman, J.A.; Schiffmann, R.; Kaneski, C.R. Globotriaosylceramide induces
oxidative stress and up-regulates cell adhesion molecule expression in fabry disease endothelial cells. Mol. Genet. Metab. 2008, 95,
163–168. [CrossRef]

76. Biancini, G.B.; Vanzin, C.S.; Rodrigues, D.B.; Deon, M.; Ribas, G.S.; Barschak, A.G.; Manfredini, V.; Netto, C.B.; Jardim, L.B.;
Giugliani, R.; et al. Globotriaosylceramide is correlated with oxidative stress and inflammation in fabry patients treated with
enzyme replacement therapy. Biochim. Biophys. Acta 2012, 1822, 226–232. [CrossRef]

77. Loso, J.; Lund, N.; Avanesov, M.; Muschol, N.; Lezius, S.; Cordts, K.; Schwedhelm, E.; Patten, M. Serum biomarkers of endothelial
dysfunction in fabry associated cardiomyopathy. Front. Cardiovasc. Med. 2018, 5, 108. [CrossRef]

78. Satoh, K. Globotriaosylceramide induces endothelial dysfunction in fabry disease. Arter. Thromb. Vasc. Biol. 2014, 34, 2–4.
[CrossRef]

79. Namdar, M.; Gebhard, C.; Studiger, R.; Shi, Y.; Mocharla, P.; Schmied, C.; Brugada, P.; Luscher, T.F.; Camici, G.G. Globotriaosyl-
sphingosine accumulation and not alpha-galactosidase—A deficiency causes endothelial dysfunction in fabry disease. PLoS ONE
2012, 7, e36373. [CrossRef]

80. Shen, J.S.; Arning, E.; West, M.L.; Day, T.S.; Chen, S.; Meng, X.L.; Forni, S.; McNeill, N.; Goker-Alpan, O.; Wang, X.; et al.
Tetrahydrobiopterin deficiency in the pathogenesis of fabry disease. Hum. Mol. Genet. 2017, 26, 1182–1192. [CrossRef]

81. Tseng, W.L.; Chou, S.J.; Chiang, H.C.; Wang, M.L.; Chien, C.S.; Chen, K.H.; Leu, H.B.; Wang, C.Y.; Chang, Y.L.; Liu, Y.Y.; et al.
Imbalanced production of reactive oxygen species and mitochondrial antioxidant sod2 in fabry disease-specific human induced
pluripotent stem cell-differentiated vascular endothelial cells. Cell Transpl. 2017, 26, 513–527. [CrossRef] [PubMed]

82. Oien, D.B.; Moskovitz, J. Substrates of the methionine sulfoxide reductase system and their physiological relevance. Curr. Top.
Dev. Biol. 2008, 80, 93–133.

83. Stadtman, E.R.; Van Remmen, H.; Richardson, A.; Wehr, N.B.; Levine, R.L. Methionine oxidation and aging. Biochim. Biophys.
Acta 2005, 1703, 135–140. [CrossRef] [PubMed]

84. Suzuki, S.; Kodera, Y.; Saito, T.; Fujimoto, K.; Momozono, A.; Hayashi, A.; Kamata, Y.; Shichiri, M. Methionine sulfoxides in
serum proteins as potential clinical biomarkers of oxidative stress. Sci. Rep. 2016, 6, 38299. [CrossRef] [PubMed]

http://doi.org/10.1172/JCI115499
http://www.ncbi.nlm.nih.gov/pubmed/1752940
http://www.ncbi.nlm.nih.gov/pubmed/23430946
http://doi.org/10.1111/j.1651-2227.2002.tb03112.x
http://doi.org/10.1111/j.1538-7836.2005.01470.x
http://doi.org/10.1093/ndt/gfl044
http://www.ncbi.nlm.nih.gov/pubmed/16490741
http://doi.org/10.1016/j.cca.2015.11.018
http://www.ncbi.nlm.nih.gov/pubmed/26593248
http://doi.org/10.1016/j.ymgme.2017.07.012
http://www.ncbi.nlm.nih.gov/pubmed/28918065
http://doi.org/10.4161/auto.6.5.11943
http://www.ncbi.nlm.nih.gov/pubmed/20431343
http://doi.org/10.1016/j.ymgme.2019.03.003
http://www.ncbi.nlm.nih.gov/pubmed/30871880
http://doi.org/10.1016/j.cca.2016.07.016
http://www.ncbi.nlm.nih.gov/pubmed/27458128
http://doi.org/10.1111/nep.12977
http://www.ncbi.nlm.nih.gov/pubmed/28429522
http://doi.org/10.1590/S1415-47572012005000031
http://www.ncbi.nlm.nih.gov/pubmed/22888289
http://doi.org/10.3390/jcm7110409
http://doi.org/10.1016/j.ymgme.2008.06.016
http://doi.org/10.1016/j.bbadis.2011.11.001
http://doi.org/10.3389/fcvm.2018.00108
http://doi.org/10.1161/ATVBAHA.113.302744
http://doi.org/10.1371/annotation/7b2c04df-8592-4fb7-8608-3039db28b504
http://doi.org/10.1093/hmg/ddx032
http://doi.org/10.3727/096368916X694265
http://www.ncbi.nlm.nih.gov/pubmed/27938475
http://doi.org/10.1016/j.bbapap.2004.08.010
http://www.ncbi.nlm.nih.gov/pubmed/15680221
http://doi.org/10.1038/srep38299
http://www.ncbi.nlm.nih.gov/pubmed/27929071

	Introduction 
	Materials and Methods 
	Patients and Blood Samples 
	Targeted Metabolomics Analysis 
	Plasma LysoGb3 Analysis 
	Alpha-D-Galactopyranosidase Activity Analysis 
	Data Analysis 

	Results 
	Discussion 
	Conclusions 
	References

