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Introduction

In a typical nuclear magnetic resonance (NMR) experiment, the nuclei with spin I ≥ 1 predominantly relax through the quadrupolar mechanism that couples the quadrupolar moment of the nucleus eQ with the electric field gradient (EFG) V αβ at its position. [START_REF] Abragam | The Principles of Nuclear Magnetism[END_REF] Thus, the description of quadrupolar NMR relaxation is pertinent to the majority of alkaline metal, alkaline earth metal, and halide ions, that are species of considerable chemical, technological, and biological interest ( 7 Li + , [START_REF] Zeron | A Force Field of Li + , Na + , K + , Mg 2+ , Ca 2+ , Cl -, and SO 2-4 in Aqueous Solution Based on the TIP4P/2005 Water Model and Scaled Charges for the Ions[END_REF] Na + , 39 K + , [START_REF] Joung | Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations[END_REF] Mg 2+ , [START_REF] Andersen | Rattle: A "Velocity" Version of the Shake Algorithm for Molecular Dynamics Calculations[END_REF] Cl -, etc). During an NMR experiment, nuclear magnetic moments precess with the characteristic Larmor frequency ω 0 = γB 0 where γ is the gyromagnetic ratio of a given nucleus and B 0 is the external magnetic field. Provided that the typical molecular time scale τ over which the EFG decorrelates is small compared to 1/ω 0 (ω 0 τ 1, the so-called extreme narrowing regime), the magnetization along both the longitudinal and transverse directions of B 0 decays exponentially with equal rate constants 1/T 1 and 1/T 2 , the spin-lattice and spin-spin relaxation rates, respectively. The latter quantities can be then computed as follows: 1,2

1 T 1 = 1 T 2 = 1 20 2I + 3 I 2 (2I -1) eQ 2 ∞ 0 dt V(t) :V(0) , (1) 
where is the reduced Planck constant, V is the total EFG tensor at the nucleus position, and V(t) :V(0) ≡ α,β V αβ (t)V αβ (0) (α and β run over the three Cartesian components)

is the EFG autocorrelation function (ACF), C EFG (t). Finally, . . . in Eq. ( 1) denotes an average in the canonical ensemble (fixed number of particles N , volume V and temperature T ), without an imposed magnetic field. The isotropic character of the equilibrium system permits to have such simple formulation of Eq. ( 1) that is rooted in the linear response theory.

The estimation of the EFG ACF requires both a good sampling of the microscopic dynamics of the system and an accurate computation of the EFG along the trajectory. In principle, ab initio molecular dynamics (MD) can provide both features, [START_REF] Philips | Quadrupolar NMR Re-laxation from ab Initio Molecular Dynamics: Improved Sampling and Cluster Models versus Periodic Calculations[END_REF][START_REF] Philips | Quadrupolar 14 N NMR Relaxation from Force-Field and Ab Initio Molecular Dynamics in Different Solvents[END_REF][START_REF] Philips | Quadrupolar NMR Relaxation of Aqueous 127 I -, 131 Xe + , and 133 Cs + : A First-Principles Approach from Dynamics to Properties[END_REF] yet the entailed computational cost often limits the ability to converge the corresponding ACF with sufficient accuracy for a reliable estimate of its integral. [START_REF] Badu | Quadrupolar NMR Spin Relaxation Calculated Using Ab Initio Molecular Dynamics: Group 1 and Group 17 Ions in Aqueous Solution[END_REF] This motivated the use of classical MD to sample configurations over the relevant time scales, yet the accurate estimation of the EFG at the nucleus position has remained a formidable challenge in classical MD. [START_REF] Roberts | Ionic Quadrupolar Relaxation in Aqueous Solution: Dynamics of the Hydration Sphere[END_REF][START_REF] Engström | Monte Carlo Simulations of the Electric Field Gradient Fluctuation at the Nucleus of a Lithium Ion in Dilute Aqueous Solution[END_REF][START_REF] Engström | A Molecular Approach to Quadrupole Relaxation. Monte Carlo Simulations of Dilute Li + , Na + , and Cl -Aqueous Solutions[END_REF][START_REF] Engström | Molecular Dynamic Simulation of Quadrupole Relaxation of Atomic Ions in Aqueous Solution[END_REF][START_REF] Carof | Accurate Quadrupolar NMR Relaxation Rates of Aqueous Cations from Classical Molecular Dynamics[END_REF][START_REF] Mohammadi | Nuclear Magnetic Resonance Spin-Lattice[END_REF] Such challenge comes from the fact that the dominant contribution to the total EFG V αβ is due to the intraatomic electronic charge distribution around a nucleus that is not available in atomistic classical models and is even difficult to obtain accurately with electronic structure calculations. Yet, quantum density functional theory (DFT) allows to quite accurately compute EFGs for main group elements and some transition metals, 12 although a complete understanding of the solvation effects on the EFGs has remained challenging. In the case of monoatomic ions, the widespread electrostatic models of the EFG relaxation [13][14][15][16] consider that the EFG at the nucleus is created by the inhomogeneous distribution of external charges that polarize the electronic cloud of the given ion. Consequently, a linear relation between the total V αβ and external V ext αβ EFG is often assumed, yielding the so-called Sternheimer approximation: 17

V (1 + γ)V ext , (2) 
where the constant γ is the Sternheimer (anti-)shielding factor 18,19 that is usually large, γ 1 (note that Eq. ( 2) uses a different sign convention for γ than in Refs. [18][19][20] ). While the exact external charge distribution that comes from solvent molecules and gives rise to

V ext is generally unknown, in classical MD it is approximated by a simpler distribution corresponding to the charges used to compute electrostatic interactions. Following previous work, we will assume that V ext αβ in Eq. ( 2) is due to the external, force-field based charge distribution readily available in classical MD, whereas a specific value of γ can be determined using auxiliary quantum-mechanical calculations for the system at hand. For instance, the Sternheimer factors can be derived using a perturbation theory in the long-range approximation 18,19 (usually denoted as γ ∞ ), in which the polarization of a spherical electron cloud around an ion is due to a distant charge distribution. Nevertheless, the values of γ ∞ that do not capture polarization effects from solvent-solute interactions were shown to differ considerably from that of ions in aqueous solutions. [START_REF] Carof | Accurate Quadrupolar NMR Relaxation Rates of Aqueous Cations from Classical Molecular Dynamics[END_REF] Inserting Eq. (2) into Eq. ( 1), the expression (1) for the relaxation rate can be recast as

1 T 1 = C Q (1 + γ) 2 V 2 ext τ c , (3) 
where

C Q ≡ 1 20 2I+3 I 2 (2I-1)
eQ 2 is an ion specific constant, V 2 ext ≡ V ext (0) :V ext (0) is the variance of the external EFG, and τ c is an effective correlation time

τ c = V 2 ext -1 ∞ 0 dt V ext (t) :V ext (0) . (4) 
Equations ( 3) and ( 4) serve as a starting point of the present work. Using a series of classical force fields (FFs) as described in detail below in Section 2, we simulate single ions dissolved in water to determine the variance of the external EFG V 2 ext , the ACF of external EFG, and the effective correlation time τ c (4). In line with the earlier work, [START_REF] Carof | Accurate Quadrupolar NMR Relaxation Rates of Aqueous Cations from Classical Molecular Dynamics[END_REF] we then determine the effective model-specific Sternheimer factors γ eff by comparing the EFG at the ion position obtained from classical MD to that from ab initio (AI) DFT calculations on a set of configurations generated with classical FFs. Finally, the resulting combination of V 2 ext , τ c , and γ eff , and ionic parameters (I, eQ) allows to consistently determine the NMR relaxation rate 1/T 1 as given by Eq. ( 3).

In this work we aim to address the following questions: 

Simulation details

To systematically assess the impact of the underlying classical model on the resulting NMR relaxation rates, we investigated three FFs for aqueous electrolyte solutions that differ in terms of their parametrization strategy (AI-vs. empirically-parametrized), the geometry of water molecules, and the treatment of electronic polarizability: (i) the explicitly polarizable ion model 21 (PIM) based on the rigid four site Dang-Chang water; [START_REF] Dang | Molecular Dynamics Study of Water Clusters, Liquid, and Liquid-Vapor Interface of Water With Many-Body Potentials[END_REF] (ii) the Madrid-2019 model [START_REF] Zeron | A Force Field of Li + , Na + , K + , Mg 2+ , Ca 2+ , Cl -, and SO 2-4 in Aqueous Solution Based on the TIP4P/2005 Water Model and Scaled Charges for the Ions[END_REF] with scaled ionic charges based on the rigid four site TIP4P/2005 water; [START_REF] Abascal | A General Purpose Model for the Condensed Phases of Water: TIP4P/2005[END_REF] (iii) the Amber-14 FF [START_REF] Joung | Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations[END_REF][START_REF] Joung | Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters[END_REF][START_REF] Li | Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent[END_REF][START_REF] Maier | Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB[END_REF] based on the rigid three site SPC/E water [START_REF] Berendsen | The Missing Term in Effective Pair Potentials[END_REF] and formal ionic charges. In both Dang-Chang and TIP4P/2005 rigid water models, the molecules carry an additional massless M-site that bears the negative charge and lies along the bisector of the HOH bond angle. In addition, the M-site of the Dang-Chang water carries an induced dipole moment in the PIM, as discussed further below.

The total potential energy of the PIM is given by: 21

U PIM tot = U charge + U disp + U rep + U LJ + U pol . (5) 
In Eq. ( 5), U charge stands for the Coulomb interaction between charges q i and q j separated by the distance r ij (unless otherwise specified, atomic units are employed throughout the article):

U charge = i<j q i q j r ij . (6) 
Note that in the PIM ions bear formal charges (+1, -1, +2), while the sites in Dang-Chang water molecules bear partial charges (q H = +0.5190, q O = 0, q M = -2q H ). U disp is the dispersion potential:

U disp = - i<j f ij 6 (r ij ) C ij 6 r 6 ij + f ij 8 (r ij ) C ij 8 r 8 ij , (7) 
where

f ij n = 1 -exp -b ij D r ij n k=0 (b ij D r ij ) k k!
are the short-range corrections of the Tang-Toennies type. U rep captures the repulsive part of ion-ion and ion-water interactions:

U rep = i<j A ij e -B ij r ij . (8) 
In addition, instead of U disp + U rep in Eqs. ( 7) and ( 8), the Lennard-Jones potential U LJ is used to describe the water-water repulsion and dispersion in the Dang-Chang water model:

U LJ = i<j 4 ij σ ij r ij 12 - σ ij r ij 6 . (9) 
Finally, the polarization energy U pol describes electrostatic many-body effects that are included through induced dipoles µ i :

U pol = i |µ i | 2 2α i + i,j q i µ j α g ij (r ij ) -q j µ i α g ji (r ij ) T α ij -µ i α µ j β T αβ ij , (10) 
where Einstein summation is used for Cartesian components α and β, α i is the polarizability

of the i-th atom, T α ij = ∂ α (1/r ij ) and T αβ ij = ∂ α ∂ β (1/r ij ) are multipole interaction tensors,
and

g ij (r ij ) = 1 -c ij exp (-b ij r ij ) 4 k=0 (b ij r ij ) k k!
is a short-range Tang-Toennies correction.

The induced dipoles are determined at every integration time step through minimization of U pol in Eq. (10). In practice, the induced dipoles for cations in the PIM are neglected due to their quite small polarizability. 21 The induced dipole of a Dang-Chang water molecule is carried by the virtual M-site. All ion-ion, ion-water, and water-water interactions parameters in Eqs. ( 6), ( 7), ( 8), (9), and (10) were taken from Ref. 21.

The Madrid-2019 [START_REF] Zeron | A Force Field of Li + , Na + , K + , Mg 2+ , Ca 2+ , Cl -, and SO 2-4 in Aqueous Solution Based on the TIP4P/2005 Water Model and Scaled Charges for the Ions[END_REF] model for ions in aqueous solutions employs only U charge (see Eq. ( 6))

and U LJ (see Eq. ( 9)) to describe all interactions in the system:

U Madrid-2019 tot = U charge + U LJ , (11) 
where ions carry scaled charges (+0.85, -0.85, +1.70 for monovalent cations, monovalent anions and divalent cations, respectively) as an effective way to introduce the electronic polarizability of the medium, and sites on water molecules carry partial charges (q H = +0.5564, q O = 0, q M = -2q H ). The corresponding Lennard-Jones interaction parameters ij and σ ij can be found in Ref. 23. Finally, the SPC/E-based Amber14 FF [START_REF] Joung | Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations[END_REF][START_REF] Joung | Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters[END_REF][START_REF] Li | Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent[END_REF][START_REF] Maier | Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB[END_REF] is similarly described with

U Amber14 tot = U charge + U LJ (12) 
with formal ionic charges (+1, -1, +2) and the partial charges of the SPC/E water molecules (q H = +0.4238, q O = -2q H ). The corresponding interaction parameters were taken from Refs. 25-27.

To mimic infinite dilution conditions, N = 256 water molecules and 1 ion were simulated in a cubic box at density ρ = 0.997 g/cm 3 and temperature T = 298.15 K that was maintained using the Nosé-Hoover chains thermostat [START_REF] Nosé | A Unified Formulation of the Constant Temperature Molecular Dynamics Methods[END_REF][START_REF] Hoover | Canonical Dynamics: Equilibrium Phase-Space Distributions[END_REF][START_REF] Martyna | Nosé-Hoover Chains: The Canonical Ensemble via Continuous Dynamics[END_REF] with a time constant of 1 ps. Electrostatic interactions were treated using Ewald summation. [START_REF] Aguado | Summation of Electrostatic Multipole Interactions up to the Quadrupolar Level[END_REF][START_REF] Laino | Notes on "Ewald Summation of Electrostatic Multipole Interactions up to Quadrupolar Level[END_REF] The cutoff for short-range interactions was set to the half of the box side length (close to 1 nm). Initially, arbitraryoriented water molecules and an ion were randomly initialized on a lattice, then annealed at T = 1000 K for 150 ps and subsequently equilibrated at T = 298.15 K for another 150 ps.

Such preparation protocol was followed by 5 independent production runs each of length 1 ns in the N V T ensemble with an integration time step of 1 fs. The water molecules were made effectively rigid by integrating their equations of motion using the RATTLE [START_REF] Andersen | Rattle: A "Velocity" Version of the Shake Algorithm for Molecular Dynamics Calculations[END_REF] algorithm with precision 10 -9 . All classical MD simulations as well as the EFG calculations were performed with the MetalWalls package. [START_REF] Marin-Laflèche | A Classical Molecular Dynamics Software Dedicated to the Simulation of Electrochemical Systems[END_REF] In the case of PIM simulations, the induced dipoles were determined self-consistently using the conjugate gradient algorithm with tolerance 10 -6 . The computation of the EFG at the ion position due to point charges and point dipoles, with the latter contributing only in the case of PIM simulations, was implemented using Ewald summation [START_REF] Aguado | Summation of Electrostatic Multipole Interactions up to the Quadrupolar Level[END_REF][START_REF] Laino | Notes on "Ewald Summation of Electrostatic Multipole Interactions up to Quadrupolar Level[END_REF] in the MetalWalls package (release version 21.06 37 ) and was performed at every integration time step. Finally, it is important to note that in the case of a non-electroneutral system, the trace of the classical EFG computed using the Ewald summation expressions 33 features a non-zero trace

Tr V ext = - 4π V q tot , (13) 
where q tot is the total charge of the simulation box and V is its volume. To ensure that the final EFG is traceless, a third of (13) was subtracted from the diagonal EFG components before analysis. In addition, we verified that the resulting EFG ACFs are almost identical to those in a dilute, explicitly electroneutral system (see Supporting Fig. S1a andS1b).

Finally, the EFG ACFs obtained from N V E production runs are in excellent agreement with the ones in the N V T ensemble (see Supporting Fig. S1c andS1d).

To determine effective Sternheimer factors, for each classical FF we additionally simulated a smaller system comprised of 64 water molecules and 1 ion using the same system parameters as discussed before. The smaller systems were prepared with the same protocol as the larger ones. Subsequently, we sampled 1000 configurations every 10 ps during a single N V T production run to ensure a sufficient degree of decorrelation between two consecutive snapshots. These 1000 configurations from classical MD were used as an input for the DFT-based computations of the EFG in the condensed phase that include the electronic contribution.

The DFT calculations were performed in the Quantum Espresso (QE) package 38 using the projected augmented wave (PAW) method to allow for an all-electron representation of the core region. [START_REF] Blöchl | Projector Augmented-Wave Method[END_REF][START_REF] Petrilli | Electric-field-gradient calculations using the projector augmented wave method[END_REF][START_REF] Charpentier | The PAW/GIPAW Approach for Computing NMR Parameters: A New Dimension Added to NMR Study of Solids[END_REF] The AI EFG at the ion position was evaluated with periodic boundary conditions using the QE-GIPAW package. [START_REF] Varini | Enhancement of DFT-calculations at petascale: Nuclear Magnetic Resonance, Hybrid Density Functional Theory and Car-Parrinello calculations[END_REF] The self-consistent electron densities were obtained using the PBE functional [START_REF] Perdew | Generalized Gradient Approximation Made Simple[END_REF] and a kinetic energy cutoff of 80 Ry. In the case of Li + , Na + , K + , Cl -, Mg 2+ , Ca 2+ ions we employed the norm-conserving pseudopotentials included in the GIPAW package, [START_REF]GIPAW Norm-Conserving Pseudopotentials[END_REF] whereas for Cs + , Br -, and I -we used the PAW pseudopotentials from the pslibrary 1.0.0. [START_REF] Dal Corso | Pseudopotentials Periodic Table: From H to Pu[END_REF] Due to approximations involved in representing AI EFGs in the present approach, here we used the PBE functional for all ions, although more advanced functionals can provide a more accurate description of EFGs for larger and more polarizable species. [START_REF] Philips | Quadrupolar NMR Relaxation of Aqueous 127 I -, 131 Xe + , and 133 Cs + : A First-Principles Approach from Dynamics to Properties[END_REF]12 In other words, the errors produced by the Sternheimer approximation (2) might considerably outweigh the ones associated with the use of a simpler DFT functional.

Sternheimer approximation 3.1 Effective Sternheimer factor

We first assess the validity of the Sternheimer approximation by comparing the EFGs obtained with classical MD simulations, V ext αβ , to that from DFT GIPAW calculations, V AI αβ , on a set of 1000 configurations. The results for Li + , Na + , K + , Cl -, Mg 2+ , and Ca 2+ ions, the parameters for which are available in all three FFs considered in this work, are shown in Fig. 1.

Additional results for Cs + , Br -, I -, and Ca 2+ ions can be found in Supporting Figs. S2 andS3. In agreement with earlier work, 10 we find that the linear relation

V AI αβ (1 + γ eff )V ext αβ
holds well in all of the cases considered (that is, for all ions and FFs) and allows to determine effective model-dependent Sternheimer factors γ eff using a linear fit (2). Note that here and in what follows we will distinguish between the effective Sternheimer factors γ eff derived for a specific atomic environment and γ ∞ that are calculated using perturbation methods for model condensed phase environments or free ions in response to a distant charge distribution. 19,20 From the slope of the scatter plots in Fig. 1 and Supporting Fig. S2, we consistently find that V AI αβ responds positively to the EFG of the external (ionic) charge distribution, V ext αβ , in the present approach, leading to the anti-shielding effect and strictly positive values of the obtained Sternheimer factors. This differs from the case of γ ∞ for Li + obtained via the Watson sphere model, which aimed at modeling a solid-like environment, 20 that results in the shielding effect for the cation and a negative value of γ ∞ . Further below we will compare in more detail the values of γ eff devised in this work and that of γ ∞ from the Watson andS7). For instance, the Amber14 FF features approximately one more molecule in the first solvation shell of the Cl -anion on average as compared to the two other models (6.9 vs. 6.2 and 5.9, respectively, see Supporting The liquid-state environment around a solute impacts the obtained Sternheimer factors γ eff , as compared to those from the Watson sphere model γ ∞ , in which the ion's electron cloud responds to the surrounding, oppositely charged hollow sphere that models the environment of an ionic solid. 20 Here we briefly discuss the differences between γ eff and γ ∞ (see Fig. 1 and Tab. 1), as the latter were used in the early systematic study of quadrupolar relaxation rates. [START_REF] Roberts | Ionic Quadrupolar Relaxation in Aqueous Solution: Dynamics of the Hydration Sphere[END_REF] For the least polarizable cation, Li + , the effective Sternheimer factors are quite small (γ eff ≈ 0.2-0.36), yet of different sign when compared to γ ∞ = -0.255. Such discrepancy might be due to differences in the scaled-charge model and ab initio solvent charge distributions around an ion, as highlighted in Ref. 46. For alkali metal cations, we find that γ eff is generally larger than γ ∞ (approximately by a factor of 2 for Na + and Cs + , and by a factor of 1.1-1.4 for K + ). For halide ions, γ eff is somewhat smaller than γ ∞ (smaller by a factor of ≈ 1.1 for Br -and I -, and by a factor of 1.4-2 for Cl -depending on the classical FF considered). For Mg 2+ and Ca 2+ , γ eff is around 2-4.5 and 1.6-2 times larger than γ ∞ , respectively. In addition, the Sternheimer-like polarization factors have recently been obtained from analyzing contributions of localized orbitals to the EFG for large and highly polarizable ions in AIMD. [START_REF] Philips | Quadrupolar NMR Relaxation of Aqueous 127 I -, 131 Xe + , and 133 Cs + : A First-Principles Approach from Dynamics to Properties[END_REF] The ratio between the total and external EFG in Ref. 5 was found to be +3 for Cs + and -65 for I -, differing considerably both from γ ∞ and also γ eff obtained in this work. Yet, as highlighted in Ref. 5, a clean separation between external and internal EFGs is not always meaningful in systems with a degree of donation or hydrogen bonding. We now assess the quality of the Sternheimer approximation

γ eff σ(V 2 ) γ eff σ(V 2 ) γ eff σ(V 2 ) Li + -0.
V SA αβ = (1 + γ eff )V ext αβ ( 14 
)
by considering the average prediction error for the squared EFG:

σ(V 2 ) = 1 M M i=1 V SA i 2 -V AI i 2 (V AI i ) 2 , (15) 
where M = 1000 is the total number of configurations used for analysis, and V 2 i above stands for V i : V i as computed from the Sternheimer approximation (14),

V SA i 2 , or from DFT GIPAW calculations, V AI i 2
, for the same i-th configuration. The values of σ(V 2 ) are listed in Tab. 1. Generally, for every ion and classical FF, we find σ(V 2 ) to be quite large, indicating a 20-50% percent difference between V SA 2 and V AI 2 on average. Since such relatively large prediction error might considerably impact the resulting NMR relaxation rates that are directly proportional to the EFG variance V 2 , in what follows we attempt to construct a better approximation for the EFG beyond the linear regime (14).

Effect of the first solvation shell

Since the main contribution to the EFG at the ion position arises from the closest solvent molecules, [START_REF] Carof | On the Microscopic Fluctuations Driving the NMR Relaxation of Quadrupolar Ions in Water[END_REF] we start with investigating the potential impact of the hydration shell structure on the obtained effective Sternheimer factors. Fig. 3 shows γ eff in the three considered classical FFs as a function of the number of water molecules N w in the first hydration shell of an ion for Na + , K + , Cl -, Br -, and Ca 2+ (see also Supporting Tab. S2). The first minimum of the ion-oxygen radial distribution function (RDF) was used as a boundary of the first solvation shell (see Supporting Fig. S6 and Supporting Tab. S1). As Li + and Mg 2+ feature a quite stable hydration shell structure (Supporting Fig. S7) with N w = 4 and 6, respectively, they were excluded from the present analysis. Among the 1000 configurations used for the AI EFG parametrization, for a given ion and FF we selected only those that had at least 50 occurrences for a specific value of N w . The corresponding standard errors in Fig. 3 and Supporting Tab. S2 were also estimated using bootstrapping.

For most of the cations, γ eff decreases with N w , yet enhanced statistics is necessary to decisively confirm this trend. Relatively small differences in γ eff (N w ) (up to around 5%) are found for the Na + and Ca 2+ cations when comparing their two most probable coordination numbers (5 and 6 for Na + ; 7 and 8 for Ca 2+ ). The K + cation has a quite broad distribution of coordination numbers (Supporting Fig. S7) and its γ eff (N w ) features the most pronounced dependence on N w among the ions considered. In particular, consistently across the three FFs, γ eff for K + decreases by up to ≈ 15% when going from 5 to 8 water molecules in the first solvation shell. An up to 10% reduction in γ eff is found for Cs + for increasing N w in the PIM and the Amber14 FF. For Cl -, γ eff increases by around 10% for increasing N w from 5 to 7 in the PIM. For anions in the Amber14 FF, relatively small changes in the Sternheimer factor are seen with increasing N w , yet γ eff tends to grow for Br -and Cl -. In summary, taking into account the hydration shell structure around an ion might be necessary to improve the prediction for the final relaxation rate (especially, in such cases as K + and Cs + for which γ eff features a relatively pronounced dependence on N w ).

Beyond the standard Sternheimer approximation

To improve the quality of the original Sternheimer approximation (14) and to capture the differences in γ eff generated by a distinct number of water molecules in the first solvation shell, we have attempted to construct a generalized linear Sternheimer approximation (GSA) that introduces couplings between diagonal and off-diagonal components of V ext αβ . Although the scatter plots of V AI αβ plotted versus V ext αβ are practically identical for both diagonal and off-diagonal components (see Fig. 4a), yielding very similar component-wise Sternheimer factors, such GSA might be useful for capturing the differences in the electronic environments of an ion for each specific N w . Specifically, to parametrize the GSA we fit V AI αβ against V ext αβ employing the following expression:

V GSA αβ = (1 + γ 1 )V ext αβ + γ 2 Γ αγ V ext γδ Γ T δβ , (16) 
where γ 1 and γ 2 are two Sternheimer-like factors, and Γ αβ is an orthonormal matrix that generates an additional coupling between the components of V ext αβ and satisfies Γ αγ Γ T γβ = δ αβ .

Note that by construction the term Γ αγ V ext γδ Γ T δβ is traceless and symmetric. To perform the fit (16), we expressed Γ αβ using the Rodriguez formula:

Γ αβ (ê, ψ) = (cos ψ) δ αβ + (1 -cos ψ) êα êβ -(sin ψ) αβγ êγ , ( 17 
)
where αβγ is the Levi-Civita symbol and ê = (sin θ cos φ, sin θ sin φ, cos θ) T is a unit vector.

Thus, the angles ψ, θ, φ and the two constants γ 1 , γ 2 are the fit parameters for the model (16). To assess the fit quality, in Fig. 4b As the GSA (16) had not brought a considerable improvement in predicting the EFG variance compared to the AI data, we attempted to include the first-order non-linear correction to the EFG at the nucleus. In general, the EFG at the nucleus of an ion V αβ subject to external electric fields can be expressed as a perturbation series in the field and its gradients: [START_REF] Fowler | The Theory of Sternheimer Shielding in Molecules in External Fields[END_REF][START_REF] Calandra | Nuclear Quadrupole Coupling of 1 7O and 3 3S in Ionic Solids: Invalidation of the Sternheimer Model by Short-Range Corrections[END_REF] 

V αβ = V ext αβ + g αβ,γ E ext γ + g αβ,γδ V ext γδ + 1 2 αβ,γδ E ext γ E ext δ + . . . , (18) 
where the next order terms above correspond both to higher derivatives of the external field E ext α and higher order non-linear terms. g αβ,γ , g αβ,γδ , and αβ,γδ are tensorial susceptibilities that describe the response of the electronic cloud in different environments. In the case of an initially spherical electronic cloud of an ion, g αβ,γ = 0, whereas g αβ,γδ and αβ,γδ both feature only one independent component, γ and , respectively: [START_REF] Calandra | Nuclear Quadrupole Coupling of 1 7O and 3 3S in Ionic Solids: Invalidation of the Sternheimer Model by Short-Range Corrections[END_REF][START_REF] Buckingham | Advances in Chemical Physics[END_REF] g αβ,γδ = γ 1 2 (δ αγ δ βδ + δ αδ δ βγ ) -

1 3 δ αβ δ γδ (19) αβ,γδ = 3 4 (δ αγ δ βδ + δ αδ δ βγ ) - 1 2 δ αβ δ γδ (20) 
Given the relations in Eqs. ( 19), (20) and assuming that the trace of V ext αβ is identically zero, the EFG in Eq. ( 18) simplifies to

V αβ = (1 + γ)V ext αβ + 3 4 E ext α E ext β - 1 3 δ αβ |E ext | 2 + . . . , (21) 
where the first term in the equation above corresponds to the usual Sternheimer approximation and the second one conveys the first order non-linear correction with the hyperpolarizability . In Fig. 5, we plot the difference between V AI αβ and (1 + γ eff )V ext αβ versus the traceless tensor and (e)), and Amber14 FF parameters for the SPC/E water and ions ((c) and (f)) for K + , Na + , Li + , Cl -, and Mg 2+ . The legend shown in (a) also applies to all panels; panels (a), (b) and (c) share the same range on both axes, and so do panels (d), (e) and (f). Shaded regions around a curve correspond to the standard error obtained from independent simulation runs.

E ext αβ = E ext α E ext β -δ αβ |E ext | 2 /3 for Li + , K + ,

NMR relaxation rates

We finally consider the EFG ACFs from different classical FFs and the resulting NMR relaxation rates. Figs. 6a-c feature the normalized ACFs of V ext αβ , C norm EFG (t), for Li + , Na + , K + , Cl -, Mg 2+ and Ca 2+ in the PIM, Madrid-2019 model, and the Amber14 FF parameters for the SPC/E water and ions. Additional results for larger and more polarizable solutes such as Cs + , Br -, and I -as well as a comparison between the EFG ACFs for the alkali metals are available in the Supporting Fig. S1. Interestingly, the structure of the EFG ACFs remains similar across the distinct FFs considered and is consistent with previous studies. 2,7-10, [START_REF] Carof | On the Microscopic Fluctuations Driving the NMR Relaxation of Quadrupolar Ions in Water[END_REF][START_REF] Carof | Collective Water Dynamics in the First Solvation Shell Drive the NMR Relaxation of Aqueous Quadrupolar Cations[END_REF] In general, C norm EFG (t) relaxes in two steps with a pronounced short-range oscillatory regime for the smaller Li + and Mg 2+ ions, associated with their tight confinement in the solvation shell. [START_REF] Carof | On the Microscopic Fluctuations Driving the NMR Relaxation of Quadrupolar Ions in Water[END_REF] Furthermore, the ACF for Li + is positive at all times in the PIM and Amber14 FF, whereas in the Madrid-2019 model it shows a negative region at around 0.1 ps. In addition, a less pronounced oscillatory regime of C norm EFG (t) at short times is observed for the Ca 2+ ion as well. In the Amber14 FF, as compared to the two other models, the EFG ACF of Mg 2+ shows much more striking oscillations, whereas the decay for Ca 2+ is considerably slower. This again illustrates the difficulty for non-polarizable models with formal ionic charges to accurately model multivalent ionic species. [START_REF] Duboué-Dijon | Hydration and Ion Pairing in Aqueous Mg 2+ and Zn 2+ Solutions: Force-Field Description Aided by Neutron Scattering Experiments and Ab Initio Molecular Dynamics Simulations[END_REF][START_REF] Duboué-Dijon | A Practical Guide to Biologically Relevant Molecular Simulations with Charge Scaling for Electronic Polarization[END_REF] For larger ions, C norm EFG (t) develops two clear relaxation steps. Interestingly, and consistently with AIMD simulations, 5 C norm EFG (t) develops a "notch" at very short times for the anions and for Cs + , a feature associated with the librational motion of water molecules in the hydrogen bond network. [START_REF] Philips | Quadrupolar NMR Relaxation of Aqueous 127 I -, 131 Xe + , and 133 Cs + : A First-Principles Approach from Dynamics to Properties[END_REF] Finally, the reasonable agreement between C norm EFG (t) obtained here and in AIMD [START_REF] Philips | Quadrupolar NMR Re-laxation from ab Initio Molecular Dynamics: Improved Sampling and Cluster Models versus Periodic Calculations[END_REF][START_REF] Philips | Quadrupolar NMR Relaxation of Aqueous 127 I -, 131 Xe + , and 133 Cs + : A First-Principles Approach from Dynamics to Properties[END_REF] confirms that the short time stretching and bending vibrational modes of water molecules (neglected in the rigid water models employed here) do not play a significant role in the form of the EFG relaxation.

As we show with running integrals of C norm EFG (t) in Figs. 6d-f and Supporting Fig. S1, accurate ACFs over around 10 ps (and even more in some cases) are required to precisely measure the effective EFG correlation time τ c (4). All parameters of the EFG relaxation, in particular V 2 ext and τ c , for all ions and FFs considered are again summarized in the Supporting Tab. S3. Small differences in τ c are found across the three FFs considered, yet in most cases τ c does not exceed 0.5 ps. For Ca 2+ in the Amber14 FF, τ c = 1.06 ps, likely being an overestimation in comparison to the two other FFs (τ c = 0.31 ps in the PIM and 0.44 ps in the Madrid-2019 for Ca 2+ , see also Supporting Fig. S3).

The variance of the external EFG V 2 ext decreases horizontally along the periodic table, reflecting its dependence on the ionic size. Additionally, we list in the Supporting Tab. S3

the EFG variance V 2 SA obtained with the Sternheimer approximation (14) using γ eff from Tab. 1 as well as the variance V 2 AI obtained directly from the AI EFGs on our sets of 7: Predicted NMR relaxation rates of quadrupolar nuclei at infinite dilution. For every ion, we indicate an experimental value (E), as well as the rate obtained using the PIM (P), the Madrid-2019 model (M), and Amber14 FF parameters for the SPC/E water and ions (A). For the P, M and E cases, the two adjacent columns indicate the 1/T 1 value obtained using the EFG variance from the Sternheimer approximation V 2 SA (left darkcolored columns) and directly from AI DFT calculations V 2 AI (right light-colored columns).

1000 configurations for each ion. It is evident from this comparison that the failure of the Sternheimer approximation in capturing the dispersion of the AI EFG (Fig. 4b) always results in V 2 SA being smaller than V 2 AI . In some cases, as shown further below, the use 3) yields a better prediction for the final NMR relaxation rates. Nevertheless, a direct replacement of V 2 SA by V 2 AI in Eq. ( 3)

of V 2 AI instead of V 2 SA ≡ (1 + γ eff ) 2 V 2 ext in Eq. (
does not entirely account for the errors introduced by the Sternheimer approximation (see discussion in the SI). Consistently across the three FFs, a 25-35% difference between V 2 AI and V 2 SA is found for the Na + , K + , and Cl -, potentially leading to a marked impact on the final relaxation rate. In addition, a somewhat better correspondence between V 2 SA and V 2 AI can be achieved if a direct fit between the squared EFGs V 2

AI

(1 + γ eff ) 2 V 2 ext for γ eff is performed, generally resulting in larger values of γ eff as compared to γ eff in Tab. 1.

However, such a fit simultaneously yields bigger σ(V 2 ) and similarly fails to capture the dispersion of the AI EFGs (not shown). Finally, the differences in V 2 ext and consequently in V 2 SA and V 2 AI again highlight the importance of the charge and density distributions around an ion on the resulting EFG at the ion position.

Finally, it is instructive to compare the EFG relaxation parameters obtained here with classical MD with that from the AIMD studies. [START_REF] Philips | Quadrupolar NMR Re-laxation from ab Initio Molecular Dynamics: Improved Sampling and Cluster Models versus Periodic Calculations[END_REF][START_REF] Philips | Quadrupolar NMR Relaxation of Aqueous 127 I -, 131 Xe + , and 133 Cs + : A First-Principles Approach from Dynamics to Properties[END_REF][START_REF] Badu | Quadrupolar NMR Spin Relaxation Calculated Using Ab Initio Molecular Dynamics: Group 1 and Group 17 Ions in Aqueous Solution[END_REF] In Ref. for the NMR relaxation rates, provided that γ eff , V 2 ext , and τ c are obtained consistently for a FF at hand.

The final NMR relaxation rates 1/T 1 for different ions obtained with the three classical FFs considered here are shown in Fig. 7 and also summarized in Tab. 2, together with the corresponding experimental values. For [START_REF] Engström | Monte Carlo Simulations of the Electric Field Gradient Fluctuation at the Nucleus of a Lithium Ion in Dilute Aqueous Solution[END_REF] Li + , we find a quite good prediction for 1/T 1 with the largest relative error 1 -T exp 1 /T sim 1 of around 35% in both the PIM and the Madrid-2019 model when compared to the experimental value of 0.027 s -1 that is measured for [START_REF] Engström | Monte Carlo Simulations of the Electric Field Gradient Fluctuation at the Nucleus of a Lithium Ion in Dilute Aqueous Solution[END_REF] Li + in D 2 O (which corresponds to the quadrupolar contribution only). The value of 0.0247(0.0007) for [START_REF] Engström | Monte Carlo Simulations of the Electric Field Gradient Fluctuation at the Nucleus of a Lithium Ion in Dilute Aqueous Solution[END_REF] Li + in the Amber14 FF is in very good agreement with the experimental Table 2: Comparison between the NMR relaxation rates from experiments and classical MD simulations with various FFs for a series of quadrupolar ions at infinite dilution.

Ion I Q (mb) 1 1/T 1 (s -1 )
Experiment PIM Madrid-2019 Amber14 value. Recently, the latter model has been used to determine the concentration dependence of the quadrupolar contribution to the rate of [START_REF] Engström | Monte Carlo Simulations of the Electric Field Gradient Fluctuation at the Nucleus of a Lithium Ion in Dilute Aqueous Solution[END_REF] Li + in simulations, yet a value of γ ∞ = 0.17 was used to account for the electronic cloud polarization effects and ultimately resulted in some differences between the simulation and experimental results at lower concentrations. [START_REF] Mohammadi | Nuclear Magnetic Resonance Spin-Lattice[END_REF] Here we show that this discrepancy can be overcome by considering the model specific Sternheimer factor γ eff .

For [START_REF] Zeron | A Force Field of Li + , Na + , K + , Mg 2+ , Ca 2+ , Cl -, and SO 2-4 in Aqueous Solution Based on the TIP4P/2005 Water Model and Scaled Charges for the Ions[END_REF] Na + , the Madrid-2019 model provides the best estimate for 1/T 1 that is around 20% smaller than the experimental value. For 39 K + , all FFs considered yield quite close quadrupolar relaxation rates, being approximately 40% smaller than the experimental value.

On the other hand, for the [START_REF] Andersen | Rattle: A "Velocity" Version of the Shake Algorithm for Molecular Dynamics Calculations[END_REF] Cl -anion, the rates from all three FFs are also quite close to each other but 40-60% larger than those from the experiment. We find that the use of

V 2 AI instead of V 2
SA improves the rate predictions for Na + and K + , yet leads to larger discrepancies for Cl -and the other two anions Br -and I -, the parameters for which are available in the Amber14 FF only. For the two divalent cations considered here, [START_REF] Joung | Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations[END_REF] Mg 2+ and 43 Ca 2+ , we find that the PIM and the Madrid-2019 model provide better estimates for the relaxation rates. In particular, very good agreement for with the experimental rates is found [START_REF] Perdew | Generalized Gradient Approximation Made Simple[END_REF] Ca 2+ (35% error in the PIM and almost quantitative agreement in the Madrid-2019 model), whereas a much higher discrepancy is observed in the Amber14 FF. Somewhat larger errors are found for 25 Mg 2+ , however still better than in the Amber14 FF whose rate is around 4 times smaller than the experimental one. Finally, it is interesting to assess the rates obtained for larger and highly polarizable solutes like 133 Cs + , 81 Br -, and 127 I -. The parameters for the latter three species are available in the Amber14 FF, and in each case 1/T 1 from the simulations is about twice as high as the experimental one. On the contrary, for 133 Cs + in the PIM, the resulting rate 1/T PIM 1 = 0.053(0.002) s -1 is in reasonable agreement with the experimental one 1/T exp 1 = 0.075 s -1 , and is somewhat better than the state-of-the-art AIMD value obtained from the EFGs with relativistic effects included 5 1/T AIMD 1 = 0.033(0.006) s -1 . This illustrates that classical MD is also suitable for computing the NMR relaxation rates for divalent as well as large and strongly polarizable ionic species, provided that more sophisticated methods to account for the electronic polarizability are employed.

Discussion and concluding remarks

We have shown in this work that accurate NMR relaxation rates can be obtained from classical MD simulations, provided that local electron cloud polarization effects are taken into account consistently for each specific classical FF considered. We have employed a

Sternheimer-like parametrization for the electron cloud contribution to the EFG at the ion position by comparing the classical V ext αβ and quantum V AI αβ EFGs on a set of classically generated configurations. We have found that a linear relationship between V AI αβ and V ext αβ holds well in all the cases considered (Fig. 1), allowing to define effective model-dependent Sternheimer factors γ eff (Fig. 2). Yet, such Sternheimer factors show a quite pronounced dependence on the FFs at hand. For instance, the difference in γ eff across the classical models considered here can be up to 50%, which is in some cases comparable to the difference between γ eff and γ ∞ that was obtained for a more simplistic Watson sphere approximation.

We have found that considerable variations in γ eff are due to the changes in the charge density representation of the employed water model (that is, via the chosen set of point charges and dipoles), whereas further differences are likely caused by variations in the solvation shell structure. In summary, γ eff might be reasonably transferable for electrolyte FFs that employ the same water model, whereas the transferability is likely limited across FFs with different water models.

The error in the predicted EFG variance using such an effective Sternheimer approximation ( 14) might be quite large (up to 50% for certain ions) when compared to the AI EFGs (Tab. 1). In particular, the linear Sternheimer-like approximations that relate V AI αβ and V ext αβ fail to capture the large dispersion in V AI αβ (Fig. 4). We have demonstrated that for the present liquid matter systems it is very challenging to systematically reduce the prediction error, for instance by taking into account non-linear effects (21) that were shown to be essential for highly symmetric crystalline environments. [START_REF] Calandra | Nuclear Quadrupole Coupling of 1 7O and 3 3S in Ionic Solids: Invalidation of the Sternheimer Model by Short-Range Corrections[END_REF] Some explanations can be proposed to rationalize this finding: (i) in the present parametrization we employ V ext αβ generated by the external classical charge distribution around the given ion that can be very sensitive to the quality of the FF at hand -while some FFs can provide a better approximation for the ab initio charge density, it is still hard to systematically assess its impact as the partitioning between internal and external charges includes some degree of arbitrariness in condensed phase systems; (ii) the local polarization effects that have a considerable impact on the EFG at the nucleus might be strongly dependent on the instantaneous hydration shell structure and solute-solvent interactions; (iii) the inclusion of non-linear corrections to the EFG at the nucleus in liquid state systems can be limited by different symmetry properties of the V αβ and E ext αβ tensors. In summary, it might be possible to construct an improved EFG parametrization strategy by explicitly considering the local atomic environment around an ion, as this was done recently in the context of NMR for chemical shifts. [START_REF] Chaker | NMR Shifts in Aluminosilicate Glasses via Machine Learning[END_REF][START_REF] Paruzzo | Chemical Shifts in Molecular Solids by Machine Learning[END_REF] In particular, correlating local solvent structure with the variable of interest (in this case, the EFG tensor) using machine learning methods provides a possible direction to improve predictions from FF MD, as evidenced by recent progress in the field of vibrational spectroscopy. [START_REF] Kananenka | Machine Learning for Vibrational Spectroscopic Maps[END_REF]64 The quality of the classical FF used for simulating the electrolyte dynamics constitutes another important dimension of the problem. Here we have observed that the incorporation of electronic polarizability either through induced dipoles as in the PIM or through scaled ionic charges as it the Madrid-2019 model in many cases leads to better values of the NMR relaxation rates when compared to the non-polarizable Amber14 FF based on the SPC/E water and formal ionic charges. In particular, this is valid for the divalent Mg 2+ and Ca 2+ ions as well as for the large and highly polarizable Cs + ion (Fig. 7). However, surprisingly, for smaller and less polarizable species, the non-polarizable Amber14 FF also provides quite good predictions for the final NMR relaxation rates. Furthermore, while the FFs used in this work employ rigid water molecules, the inclusion of stretching and bending modes in flexible water geometries might be necessary for a more accurate description of the EFG relaxation at short time scales in classical MD. Quantitatively, the 1/T 1 predictions obtained here are comparable and in some cases superior to the AIMD results. [START_REF] Philips | Quadrupolar NMR Re-laxation from ab Initio Molecular Dynamics: Improved Sampling and Cluster Models versus Periodic Calculations[END_REF][START_REF] Philips | Quadrupolar NMR Relaxation of Aqueous 127 I -, 131 Xe + , and 133 Cs + : A First-Principles Approach from Dynamics to Properties[END_REF] The fact that computationally more efficient non-polarizable and scaled charge models are suitable for determining the NMR relaxation rates with reasonable accuracy, provided that a model-specific Sternheimer factor parametrized on ab initio calculations is used, paves the way for exploring the microscopic origins of many NMR relaxation phenomena, in particular those involving the concentration and pressure dependence of 1/T 1 in concentrated electrolyte solutions and its relation to collective symmetry-breaking fluctuations in the solvation shell. [START_REF] Carof | Collective Water Dynamics in the First Solvation Shell Drive the NMR Relaxation of Aqueous Quadrupolar Cations[END_REF] 
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The authors declare no competing financial interest. the main text), i.e. there exists an error term ∆V:

V AI (t) = (1 + γ eff )V ext (t) + ∆V(t) (25) 
The ACF of AI EFG can thus be recast as follows:

V AI (t) :V AI (0) = (1 + γ eff ) 2 V ext (t) :V ext (0) + ∆V(t) :∆V(0) + 2(1 + γ eff ) V ext (t) :∆V(0) . (26) 
Finally, by integrating Eq. ( 26) over time, we find

V 2 AI τ c, AI = (1 + γ eff ) 2 V 2 ext τ c, ext + ∆V 2 τ c, ∆ + 2(1 + γ eff ) ∞ 0 dt V ext (t) :∆V(0) , (27) 
where ∆V 2 is the variance of the error term ∆V and τ c, ∆ is its effective correlation time

τ c, ∆ = ∆V 2 -1 ∞ 0 dt ∆V(t) :∆V(0) . (28) 
Evidently from Eq. ( 27), both the variance of V 2 AI and the correlation time of the AI EFG τ c, AI are affected by the fluctuations of the error term ∆V. NaCl ion pair. For the smaller systems, 5 independent simulation runs of length 1 ns were performed. For the larger system, the results were extracted from 1 run of length 10 ns.

Comparison between the EFG ACF and the integral of the normalized EFG ACF (inset) for Na + (c) and Cl -(d) as sampled in the N V T (blue dashed lines) and N V E (solid yellow lines) ensemble. The N V T runs correspond to the smaller system in a and b. The N V E runs were performed in a single 5 ns simulation for the system with N = 256 water molecules using an equilibrated system state form N V T simulation as a starting configuration. In all cases, the ions and water were simulated using the Madrid-2019 model. Table S3: Parameters of the EFG relaxation for different ions in the PIM, Madrid-2019 model, and Amber14 FF parameters for the SPC/E water and ions. V 2 ext is the variance of the external EFG at the ion position obtained from classical MD simulations. V 2 is the variance of the full EFG at the ion position obtained using the Sternheimer approximation: V 2 SA = (1 + γ eff ) 2 V 2 ext . V 2 AI is the variance of the full EFG obtained directly from DFT GIPAW calculations on a set of 1000 configurations. τ c is the correlation time of the external EFG ACF. The values in the parentheses indicate the standard error over 5 independent simulation runs.

Ion

V 2 ext (a.u.) V 2 SA (a.u.) V 2 AI (a.u.) τ c (ps) PIM Li + 5.50(0.01) 10 -4 7.86(0.05) 10 -4 8.45(0.20) 10 -4 0.20(0.01) Na + 1.15(0.01) 10 -4 1.40(0.03) 10 -2 1.83(0.05) 10 -2 0.26(0.01) K + 6.31(0.01) 10 -5 6.14(0.13) 10 -2 7.94(0.21) 10 -2 0.33(0.01) Cs + 2.28(0.01) 10 -5 8.91(0.10) 10 -1 9.73(0.22) 10 -1 0.34(0.01) Cl -1.33(0.01) 10 -4 8.68(0.17) 10 -2 1.21(0.02) 10 -1 0.51(0.02) Mg 2+ 1.83(0.01) 10 -4 1.83(0.02) 10 -2 2.12(0.06) 10 -2 0.091(0.005) Ca 2+ 7.19(0.02) 10 -5 6.91(0.06) 10 -2 7.78(0.17) 10 -2 0.31(0.01) Madrid-2019 Li + 3.75(0.01) 10 -4 6.95(0.06) 10 -4 7.58(0.17) 10 -4 0.107(0.003) Na + 1.48(0.01) 10 -4 1.97(0.04) 10 -2 2.59(0.06) 10 -2 0.41(0.01) K + 5.99(0.01) 10 -5 5.21(0.12) 10 -2 7.58(0.17) 10 -2 0.36(0.01) Cl -1.98(0.01) 10 -4 8.92(0.19) 10 -2 1.19(0.02) 10 -1 0.56(0.02) Mg 2+ 1.31(0.01) 10 -4 4.89(0.09) 10 -2 6.09(0.18) 10 -2 0.100(0.003) Ca 2+ 5.13(0.04) 10 -5 7.11(0.13) 10 -2 8.43(0.18) 10 -2 0.44(0.01) Amber14 (SPC/E) Li + 3.30(0.01) 10 -4 5.05(0.06) 10 -4 5.93(0.12) 10 -4 0.21(0.01) Na + 1.39(0.01) 10 -4 1.22(0.02) 10 -2 1.68(0.04) 10 -2 0.41(0.01) K + 6.71(0.01) 10 -5 4.22(0.10) 10 -2 6.34(0.15) 10 -2 0.49(0.02) Cs + 4.28(0.01) 10 -5

1.76(0.02) 2.05(0.04) 0.50(0.02) Cl -1.20(0.01) 10 -4 1.15(0.02) 10 -1 1.48(0.03) 10 -1 0.40(0.01) Br -8.17(0.03) 10 -5 4.99(0.01) 10 -1 6.48(0.13) 10 -1 0.43(0.01) I - 4.87(0.04) 10 -5 1.14(0.02) 1.48(0.03) 0.49(0.01) Mg 2+ 8.82(0.01) 10 -5 1.25(0.03) 10 -2 1.79(0.05) 10 -2 0.066(0.003) Ca 2+ 6.04(0.01) 10 -5 5.71(0.09) 10 -2 7.06(0.13) 10 -2

1.06(0.04)

  (i) Can accurate quadrupolar NMR relaxation rates be obtained from classical MD simulations with various degrees of sophistication, provided that the electronic contribution to the EFG is included via AIparametrized, model-specific Sternheimer factors that capture local solvent-solute interactions? (ii) How well does the Sternheimer approximation describe the AI-derived EFGs at the ion position and can the incorporation of non-linear effects improve the predictions of the Sternheimer model? (iii) How do the Sternheimer factors depend on the structure of the hydration shell around an ion? (iv) To what extent the treatment of polarizability in classical MD impacts the obtained NMR relaxation rates? The rest of the article is therefore structured as follows.In Section 2, we describe the details of our classical MD and quantum DFT simulations. In Section 3, we validate the Sternheimer approximation for different ions using a series of classical FFs and consider its possible extensions as well as dependence on the hydration shell structure around an ion. In Section 4, we consider the EFG relaxation at the nucleus position of various alkali metal, alkaline earth metal, and halide ions with the employed FFs to determine their quadrupolar NMR relaxation rates at infinite dilution, before concluding in Section 5.

Figure 1 :

 1 Figure 1: Validation of the Sternheimer approximation for different classical FFs. The EFG components obtained using classical MD, V ext αβ , are plotted versus the ab initio ones, V AI αβ , following the procedure explained in Section 2. A linear relationship between V AI αβ and V ext αβ is evident in all cases considered and allows to define an effective Sternheimer factor V AI αβ = (1 + γ eff )V ext αβ for every model. The fits for γ eff are shown with solid lines, whereas the obtained values of γ eff are listed in Tab. 1. The results for Li + , Na + , K + , Cl -, Mg 2+ , and Ca 2+ ions are indicated with a different color shown in the legend of (a) (the legend is the same for all plots). Additional results for Cs + , Br -, and I -are shown in Supporting Fig. S2.

Figure 2 :

 2 Figure 2: The effective Sternheimer factors for different quadrupolar nuclei at infinite dilution. For every ion, we indicate γ eff for the PIM (P), the Madrid-2019 model (M), and Amber14 FF parameters for the SPC/E water and ions (A).

  The comparison between γ eff for different classical FFs are shown in Fig.2, whereas explicit values are listed in Tab. 1 (the corresponding standard errors were estimated using bootstrapping). As expected, for the considered atomic species the effective Sternheimer factor increases with the number of electrons, indicating its dominant contribution to the total EFG at the nucleus position. In addition, certain quantitative differences are found when comparing γ eff across the three classical FFs considered, highlighting the sensitivity of local polarization effects to the charge distribution around an ion and solute-solvent interactions. For the two smallest cations, Li + and Mg 2+ , γ eff in the Madrid-2019 model are larger by a factor ≈ 1.5-2 than those in the PIM and Amber14 FFs. A similar trend is found for Ca 2+ , however the magnitude of γMadrid-2019 eff is bigger by a factor ≈ 1.2 when compared to the two other FFs. Smaller differences in γ eff across models are seen for larger Na + , K + , and Cs + cations. For the Cl -anion, γ eff for the Amber14 FF is larger by a factor ≈ 1.25-1.5 than those for the PIM and Madrid-2019 model.When the comparison is made across different FFs, two effects may play an important role: (i) the representation of the charge density around an ion using different (partial) point charges and point dipoles (in polarizable models) on water molecules; (ii) changes in the structure and dynamics of the solvation shell around an ion. Both effects can potentially influence V AI αβ and V ext αβ , and therefore the computed value of γ eff . To assess the effect of charge density representation via distinct water point charges and dipoles, we have adopted the following strategy. First, we took 1000 system configurations that were used in the AI calculations of the Sternheimer factor for the PIM and recomputed the external EFGs using the point charges from the Madrid-2019 FF (this is possible thanks to the same TIP4P/2005 geometry of water molecules in these two FFs). The latter allowed us to calculate Sternheimer factors for configurations that were generated with the PIM dynamics but with point charges of the Madrid-2019 FF (Supporting Fig.S4). Interestingly, we find that such operation results in quite larger values of γ eff for Li + , Mg 2+ , Ca 2+ that become closer to the ones obtained consistently for the Madrid-2019 FF (Tab. 1). Yet, the values of γ eff obtained after such a numerical experiment are not in quantitative agreement with those for the Madrid-2019 FF (Tab. 1), suggesting additional differences that stem from variations in the solvation shell structure in the two models at hand, which are highlighted in the difference in the ion-oxygen radial distribution functions and in the number of water molecules in the shell (Supporting Figs. S6 and S7, respectively). Furthermore, much smaller variations in γ eff are found for Na + and K + . In addition, γ eff for Cl -increases contrary to the corresponding value in the Madrid-2019 FF (Tab. 1). Consistently, opposite trends for γ eff of Li + , Mg 2+ , Ca 2+ , and Cl -are observed when the Sternheimer factors are calculated using configurations that were generated with the Madrid-2019 dynamics but with point charges and dipoles of the PIM (Supporting Fig.S5). In summary, the latter observations highlight the sensitivity of the obtained γ eff to the charge density representation of the chosen water model. Further differences in γ eff are likely caused by subtle variations in the solvation shell structure across the FFs (Supporting Figs. S6

Fig. S7

  Fig. S7 and Tab. S1), which can result in an enhanced polarization of the electronic cloud by hydrogen bonds donated by water for such an environment. Finally, the observed deviations in computed γ eff across different classical FFs again emphasize the sensitivity of the EFGs to the local environment around an ion.

Figure 3 :

 3 Figure 3: Effective Sternheimer factors for different quadrupolar ions at infinite dilution as a function of the number of water molecules N w in the first hydration shell. We compare γ eff obtained with the charge distribution in the PIM (blue circles), the Madrid-2019 model (yellow squares), and Amber14 FF parameters for the SPC/E water and ions (green triangles).

Figure 4 :

 4 Figure 4: (a) Distribution of individual components of V AI αβ plotted versus V ext αβ . (b), The original distribution of V AI αβ as a function of V ext αβ is compared to V SA αβ obtained using the linear Sternheimer approximation (14) and its generalized form (16). The EFGs shown here correspond to the Na + ion in the PIM. Qualitatively similar dependencies are found for other ions and FFs.

Figure 5 :

 5 Figure 5: The difference between V AI αβ and (1+γ eff )V ext αβ is plotted versus the traceless version of the tensor E ext α E ext β to account for non-linear effects (21) for different ions in the PIM. The absence of linear correlation is evident in all cases considered (also for other ions and FFs).

Figure 6 :

 6 Figure 6: Autocorrelation function of the the electric field gradient at the ion position in different classical FFs: normalized EFG ACF and its running integral in the PIM ((a) and (d)), the Madrid-2019 model ((b)and (e)), and Amber14 FF parameters for the SPC/E water and ions ((c) and (f)) for K + , Na + , Li + , Cl -, and Mg 2+ . The legend shown in (a) also applies to all panels; panels (a), (b) and (c) share the same range on both axes, and so do panels (d), (e) and (f). Shaded regions around a curve correspond to the standard error obtained from independent simulation runs.

Figure

  Figure7: Predicted NMR relaxation rates of quadrupolar nuclei at infinite dilution. For every ion, we indicate an experimental value (E), as well as the rate obtained using the PIM (P), the Madrid-2019 model (M), and Amber14 FF parameters for the SPC/E water and ions (A). For the P, M and E cases, the two adjacent columns indicate the 1/T 1 value obtained using the EFG variance from the Sternheimer approximation V 2 SA (left darkcolored columns) and directly from AI DFT calculations V 2 AI (right light-colored columns).

  3, τ c = 0.26(0.06) ps and V 2 = 0.21(0.01) (in a.u.) for 35 Cl -. In our case, for the same anion we find τ c = 0.51(0.02) ps and V 2 SA = 0.087(0.002) in the PIM; τ c = 0.56(0.02) ps and V 2 SA = 0.089(0.002) in the Madrid-2019 model; τ c = 0.40(0.01) ps and V 2 SA = 0.115(0.002) in the Amber14 FF. Similarly for 23 Na + , Ref. 3 indicates τ c = 0.13(0.03) ps and V 2 = 0.028(0.001) (in a.u.), whereas in our case we obtain we find τ c = 0.26(0.01) ps and V 2 SA = 0.014(0.003) in the PIM; τ c = 0.41(0.01) ps and V 2 SA = 0.0197(0.0004) in the Madrid-2019 model; τ c = 0.41(0.01) ps and V 2 SA = 0.0122(0.0002) in the Amber14 FF. The AIMD results provide somewhat smaller estimates for τ c when compared to classical MD, yet enhanced values of the EFG variance. As shown below, classical MD can also yield quite good values

Figure S1 :

 S1 FigureS1: Simulation details. Comparison between the EFG ACF and the integral of the normalized EFG ACF (inset) for Na + (a) and Cl -(b) as simulated in a smaller nonelectroneutral system (blue dashed lines) with N = 256 water molecules and 1 ion and a larger electroneutral system (solid yellow lines) with N = 1000 water molecules and 1 NaCl ion pair. For the smaller systems, 5 independent simulation runs of length 1 ns were performed. For the larger system, the results were extracted from 1 run of length 10 ns. Comparison between the EFG ACF and the integral of the normalized EFG ACF (inset) for Na + (c) and Cl -(d) as sampled in the N V T (blue dashed lines) and N V E (solid yellow lines) ensemble. The N V T runs correspond to the smaller system in a and b. The N V E runs were performed in a single 5 ns simulation for the system with N = 256 water molecules using an equilibrated system state form N V T simulation as a starting configuration. In all cases, the ions and water were simulated using the Madrid-2019 model.

Figure S3 :

 S3 Figure S3: Comparison between the normalized EFG ACFs (a) and their integrals (b) for Ca 2+ in the PIM (blue lines), Madrid-2019 model (yellow lines), and the Amber14 FF (green lines). (a) and (b) share the same legend shown in (a).

Figure S4 :

 S4 Figure S4: Effect of changing the representation of the charge distribution in the classical force field on the resulting effective Sternheimer factors in the PIM model for various ions. The AI EFGs V AI αβ obtained on the set of configurations generated using PIM dynamics are plotted against the external, force field specific EFG V ext,FF αβ as computed using the PIM (blue dots) or using the Madrid-2019 FF (yellow dots) on the same set of configurations. The resulting Sternheimer factors γ eff , V AI αβ = (1 + γ eff )V ext,FF αβ

Figure S5 :

 S5 Figure S5: Effect of changing the representation of the charge distribution in the classical force field on the resulting effective Sternheimer factors in the Madrid-2019 model for various ions. The AI EFGs V AI αβ obtained on the set of configurations generated using Madrid-2019 dynamics are plotted against the external, force field specific EFG V ext,FF αβ as computed using the Madrid-2019 FF (blue dots) or using the PIM (yellow dots) on the same set of configurations. The resulting Sternheimer factors γ eff , V AI αβ = (1 + γ eff )V ext,FF αβ are listed in the legends.

Figure S6 :

 S6 FigureS6: Ion-oxygen radial distribution functions in the PIM (solid blue lines), Madrid-2019 (dashed red lines), and Amber14 FF parameters for ions and SPC/E water (dotted black lines) for different ions at infinite dilution.

  

  

Table 1 :

 1 Effective Sternheimer factors γ eff and corresponding prediction errors σ(V 2 ) on the EFG variance (see Eq. (15)) obtained for different classical FFs. The values in parentheses indicate standard errors obtained using bootstrapping. The reference values of γ ∞ correspond to the Watson sphere model on an ionic solid.20 Note that here the sign of γ ∞ is opposite to the one in Ref. 20 to comply with the convention in Eq. (2).
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Table S1 :

 S1 Structure of the first hydration shell in different classical FFs. The first minimum of g ion-O (r), r 1,min , is used to estimate the first shell coordination number CN 1 = 4πρ O r 1,min 0 dr r 2 g ion-O (r) with ρ O the number density of oxygen atoms in the simulation box.

	Ion r PIM 1,min ( Å) CN PIM 1 Li + 2.68 4.0	r Madrid-2019 1,min 2.69	( Å) CN Madrid-2019 1 4.0	r Amber14 1,min 2.67	( Å) CN Amber14 1 4.2
	Na +	3.28	5.8	3.15	5.5	3.17	5.8
	K +	3.63	6.8	3.53	6.8	3.53	7.0
	Cs +	4.12	8.9	-	-	3.82	7.8
	Mg 2+	2.96	6.0	3.00	6.0	2.88	6.0
	Ca 2+	3.53	7.4	3.24	7.3	3.22	8.0
	Cl -	3.82	6.2	3.68	5.9	3.80	6.9
	Br -	-	-	-	-	3.94	7.0
	I -	-	-	-	-	4.15	7.3

Table S2 :

 S2 Effective Sternheimer factors as a function of the number of water molecules N w in the first solvation shell as obtained for different classical FFs. The values in the parentheses indicate the standard error obtained using bootstrapping.

	Ion	γ PIM eff (N w )	γ Madrid-2019 eff	Amber14 (SPC/E) eff (N w ) γ
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Supporting Information S1 Details on the Sternheimer approximation

In the present work, the system dynamics was generated using classical, force-field based molecular dynamics (FF MD). In principle, the most accurate way of calculating the quadrupolar NMR relaxation rates using FF MD would be by evaluating the ab initio (AI) electric field gradients (EFGs) V AI at the ion position on every system configuration of interest. The dynamics of V AI fluctuations is then given by the variance V 2 AI and the effective correlation time τ c, AI :

Note that the dynamics of AI EFGs computed on system configurations generated using ab initio molecular dynamics (AIMD) might somewhat differ from that with FF MD.

The calculation of AI EFGs V AI can be quite expensive if done for a large number of configurations. In practice, here we employed the Sternheimer approximation that relates the classical, external EFGs V ext computed with point charges and dipoles of a FF at hand to V AI via the effective Sternheimer factor γ eff :

The dynamics of V ext fluctuations are characterized by the variance V 2 ext and the effective correlation time τ c, ext (simply denoted by τ c in the main text):

Nevertheless, the Sternheimer approximation does not perfectly capture V AI (Fig. 4