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Interfaciaux, F-75005 Paris, France

‡Universite de Lorraine, CNRS, LPCT, F-54000, Nancy, France

E-mail: benjamin.rotenberg@sorbonne-universite.fr

Abstract

The nuclear magnetic resonance (NMR) relaxation of quadrupolar nuclei is gov-

erned by the electric field gradient (EFG) fluctuations at their position. In classical

molecular dynamics (MD), the electron cloud contribution to the EFG can be included

via the Sternheimer approximation, in which the full EFG at the nucleus that can be

computed using quantum density functional theory (DFT) is considered to be propor-

tional to that arising from the external, classical charge distribution. In this work, we

systematically assess the quality of the Sternheimer approximation as well as the impact

of the classical force field (FF) on the NMR relaxation rates of aqueous quadrupolar

ions at infinite dilution. In particular, we compare the rates obtained using an ab ini-

tio parametrized polarizable FF, a recently developed empirical FF with scaled ionic

charges and a simple empirical non-polarizable FF with formal ionic charges. Sur-

prisingly, all three FFs considered yield good values for the rates of smaller and less

polarizable solutes (Li+, Na+, K+, Cl−), provided that a model-specific Sternheimer
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parametrization is employed. Yet, the polarizable and scaled charge FFs yield better

estimates for divalent and more polarizable species (Mg2+, Ca2+, Cs+). We find that

a linear relationship between the quantum and classical EFGs holds well in all of the

cases considered, however, such an approximation often leads to quite large errors in

the resulting EFG variance, which is directly proportional to the computed rate. We

attempted to reduce the errors by including first order nonlinear corrections to the

EFG, yet no clear improvement for the resulting variance has been found. The latter

result indicates that more refined methods for determining the EFG at the ion posi-

tion, in particular those that take into account the instantaneous atomic environment

around an ion, might be necessary to systematically improve the NMR relaxation rate

estimates in classical MD.

1 Introduction

In a typical nuclear magnetic resonance (NMR) experiment, the nuclei with spin I ≥ 1

predominantly relax through the quadrupolar mechanism that couples the quadrupolar mo-

ment of the nucleus eQ with the electric field gradient (EFG) Vαβ at its position.1 Thus, the

description of quadrupolar NMR relaxation is pertinent to the majority of alkaline metal,

alkaline earth metal, and halide ions, that are species of considerable chemical, technological,

and biological interest (7Li+, 23Na+, 39K+, 25Mg2+, 35Cl−, etc). During an NMR experiment,

nuclear magnetic moments precess with the characteristic Larmor frequency ω0 = γB0 where

γ is the gyromagnetic ratio of a given nucleus and B0 is the external magnetic field. Provided

that the typical molecular time scale τ over which the EFG decorrelates is small compared

to 1/ω0 (ω0τ � 1, the so-called extreme narrowing regime), the magnetization along both

the longitudinal and transverse directions of B0 decays exponentially with equal rate con-

stants 1/T1 and 1/T2, the spin-lattice and spin-spin relaxation rates, respectively. The latter
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quantities can be then computed as follows:1,2

1

T1

=
1

T2

=
1

20

2I + 3

I2(2I − 1)

(
eQ

~

)2 ∫ ∞
0

dt 〈V(t) :V(0)〉, (1)

where ~ is the reduced Planck constant, V is the total EFG tensor at the nucleus position,

and 〈V(t) :V(0)〉 ≡ 〈
∑

α,β Vαβ(t)Vαβ(0)〉 (α and β run over the three Cartesian components)

is the EFG autocorrelation function (ACF), CEFG(t). Finally, 〈. . . 〉 in Eq. (1) denotes an

average in the canonical ensemble (fixed number of particles N , volume V and temperature

T ), without an imposed magnetic field. The isotropic character of the equilibrium system

permits to have such simple formulation of Eq. (1) that is rooted in the linear response

theory.

The estimation of the EFG ACF requires both a good sampling of the microscopic dy-

namics of the system and an accurate computation of the EFG along the trajectory. In

principle, ab initio molecular dynamics (MD) can provide both features,3–5 yet the entailed

computational cost often limits the ability to converge the corresponding ACF with suffi-

cient accuracy for a reliable estimate of its integral.6 This motivated the use of classical MD

to sample configurations over the relevant time scales, yet the accurate estimation of the

EFG at the nucleus position has remained a formidable challenge in classical MD.2,7–11 Such

challenge comes from the fact that the dominant contribution to the total EFG Vαβ is due

to the intraatomic electronic charge distribution around a nucleus that is not available in

atomistic classical models and is even difficult to obtain accurately with electronic struc-

ture calculations. Yet, quantum density functional theory (DFT) allows to quite accurately

compute EFGs for main group elements and some transition metals,12 although a complete

understanding of the solvation effects on the EFGs has remained challenging. In the case of

monoatomic ions, the widespread electrostatic models of the EFG relaxation13–16 consider

that the EFG at the nucleus is created by the inhomogeneous distribution of external charges

that polarize the electronic cloud of the given ion. Consequently, a linear relation between
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the total Vαβ and external V ext
αβ EFG is often assumed, yielding the so-called Sternheimer

approximation:17

V ' (1 + γ)Vext, (2)

where the constant γ is the Sternheimer (anti-)shielding factor18,19 that is usually large,

γ � 1 (note that Eq. (2) uses a different sign convention for γ than in Refs.18–20). While

the exact external charge distribution that comes from solvent molecules and gives rise to

Vext is generally unknown, in classical MD it is approximated by a simpler distribution

corresponding to the charges used to compute electrostatic interactions. Following previous

work, we will assume that V ext
αβ in Eq. (2) is due to the external, force-field based charge

distribution readily available in classical MD, whereas a specific value of γ can be determined

using auxiliary quantum-mechanical calculations for the system at hand. For instance, the

Sternheimer factors can be derived using a perturbation theory in the long-range approxi-

mation18,19 (usually denoted as γ∞), in which the polarization of a spherical electron cloud

around an ion is due to a distant charge distribution. Nevertheless, the values of γ∞ that do

not capture polarization effects from solvent-solute interactions were shown to differ consid-

erably from that of ions in aqueous solutions.10 Inserting Eq. (2) into Eq. (1), the expression

(1) for the relaxation rate can be recast as

1

T1

= CQ(1 + γ)2〈V2
ext〉τc, (3)

where CQ ≡ 1
20

2I+3
I2(2I−1)

(
eQ
~

)2
is an ion specific constant, 〈V2

ext〉 ≡ 〈Vext(0) :Vext(0)〉 is the

variance of the external EFG, and τc is an effective correlation time

τc = 〈V2
ext〉−1

∫ ∞
0

dt 〈Vext(t) :Vext(0)〉 . (4)

Equations (3) and (4) serve as a starting point of the present work. Using a series of

classical force fields (FFs) as described in detail below in Section 2, we simulate single
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ions dissolved in water to determine the variance of the external EFG 〈V2
ext〉, the ACF of

external EFG, and the effective correlation time τc (4). In line with the earlier work,10 we

then determine the effective model-specific Sternheimer factors γeff by comparing the EFG

at the ion position obtained from classical MD to that from ab initio (AI) DFT calculations

on a set of configurations generated with classical FFs. Finally, the resulting combination of

〈V2
ext〉, τc, and γeff , and ionic parameters (I, eQ) allows to consistently determine the NMR

relaxation rate 1/T1 as given by Eq. (3).

In this work we aim to address the following questions: (i) Can accurate quadrupolar

NMR relaxation rates be obtained from classical MD simulations with various degrees of

sophistication, provided that the electronic contribution to the EFG is included via AI-

parametrized, model-specific Sternheimer factors that capture local solvent-solute interac-

tions? (ii) How well does the Sternheimer approximation describe the AI-derived EFGs at

the ion position and can the incorporation of non-linear effects improve the predictions of

the Sternheimer model? (iii) How do the Sternheimer factors depend on the structure of

the hydration shell around an ion? (iv) To what extent the treatment of polarizability in

classical MD impacts the obtained NMR relaxation rates? The rest of the article is therefore

structured as follows. In Section 2, we describe the details of our classical MD and quantum

DFT simulations. In Section 3, we validate the Sternheimer approximation for different ions

using a series of classical FFs and consider its possible extensions as well as dependence on

the hydration shell structure around an ion. In Section 4, we consider the EFG relaxation

at the nucleus position of various alkali metal, alkaline earth metal, and halide ions with

the employed FFs to determine their quadrupolar NMR relaxation rates at infinite dilution,

before concluding in Section 5.
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2 Simulation details

To systematically assess the impact of the underlying classical model on the resulting NMR

relaxation rates, we investigated three FFs for aqueous electrolyte solutions that differ in

terms of their parametrization strategy (AI- vs. empirically-parametrized), the geometry of

water molecules, and the treatment of electronic polarizability: (i) the explicitly polarizable

ion model21 (PIM) based on the rigid four site Dang-Chang water;22 (ii) the Madrid-2019

model23 with scaled ionic charges based on the rigid four site TIP4P/2005 water;24 (iii) the

Amber-14 FF25–28 based on the rigid three site SPC/E water29 and formal ionic charges. In

both Dang-Chang and TIP4P/2005 rigid water models, the molecules carry an additional

massless M-site that bears the negative charge and lies along the bisector of the HOH bond

angle. In addition, the M-site of the Dang-Chang water carries an induced dipole moment

in the PIM, as discussed further below.

The total potential energy of the PIM is given by:21

UPIM
tot = Ucharge + Udisp + Urep + ULJ + Upol. (5)

In Eq. (5), Ucharge stands for the Coulomb interaction between charges qi and qj separated

by the distance rij (unless otherwise specified, atomic units are employed throughout the

article):

Ucharge =
∑
i<j

qiqj

rij
. (6)

Note that in the PIM ions bear formal charges (+1, -1, +2), while the sites in Dang-Chang

water molecules bear partial charges (qH = +0.5190, qO = 0, qM = −2qH). Udisp is the

dispersion potential:

Udisp = −
∑
i<j

[
f ij6 (rij)

Cij
6

r6
ij

+ f ij8 (rij)
Cij

8

r8
ij

]
, (7)

where f ijn = 1 − exp
(
−bijDrij

)∑n
k=0

(bijDrij)
k

k!
are the short-range corrections of the Tang-
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Toennies type. Urep captures the repulsive part of ion-ion and ion-water interactions:

Urep =
∑
i<j

Aije−B
ijrij . (8)

In addition, instead of Udisp + Urep in Eqs. (7) and (8), the Lennard-Jones potential ULJ is

used to describe the water-water repulsion and dispersion in the Dang-Chang water model:

ULJ =
∑
i<j

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
. (9)

Finally, the polarization energy Upol describes electrostatic many-body effects that are in-

cluded through induced dipoles µi:

Upol =
∑
i

|µi|2

2αi
+
∑
i,j

[(
qiµjαg

ij(rij)− qjµiαgji(rij)
)
Tαij − µiαµ

j
βT

αβ
ij

]
, (10)

where Einstein summation is used for Cartesian components α and β, αi is the polarizability

of the i-th atom, Tαij = ∂α(1/rij) and Tαβij = ∂α∂β(1/rij) are multipole interaction tensors,

and gij(rij) = 1 − cij exp (−bijrij)
∑4

k=0

(bijrij)
k

k!
is a short-range Tang-Toennies correction.

The induced dipoles are determined at every integration time step through minimization of

Upol in Eq. (10). In practice, the induced dipoles for cations in the PIM are neglected due

to their quite small polarizability.21 The induced dipole of a Dang-Chang water molecule is

carried by the virtual M-site. All ion-ion, ion-water, and water-water interactions parameters

in Eqs. (6), (7), (8), (9), and (10) were taken from Ref. 21.

The Madrid-201923 model for ions in aqueous solutions employs only Ucharge (see Eq. (6))

and ULJ (see Eq. (9)) to describe all interactions in the system:

UMadrid−2019
tot = Ucharge + ULJ, (11)

where ions carry scaled charges (+0.85, -0.85, +1.70 for monovalent cations, monovalent
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anions and divalent cations, respectively) as an effective way to introduce the electronic

polarizability of the medium, and sites on water molecules carry partial charges (qH =

+0.5564, qO = 0, qM = −2qH). The corresponding Lennard-Jones interaction parameters εij

and σij can be found in Ref. 23. Finally, the SPC/E-based Amber14 FF25–28 is similarly

described with

UAmber14
tot = Ucharge + ULJ (12)

with formal ionic charges (+1, -1, +2) and the partial charges of the SPC/E water molecules

(qH = +0.4238, qO = −2qH). The corresponding interaction parameters were taken from

Refs. 25–27.

To mimic infinite dilution conditions, N = 256 water molecules and 1 ion were simu-

lated in a cubic box at density ρ = 0.997 g/cm3 and temperature T = 298.15 K that was

maintained using the Nosé-Hoover chains thermostat30–32 with a time constant of 1 ps. Elec-

trostatic interactions were treated using Ewald summation.33,34 The cutoff for short-range

interactions was set to the half of the box side length (close to 1 nm). Initially, arbitrary-

oriented water molecules and an ion were randomly initialized on a lattice, then annealed at

T = 1000 K for 150 ps and subsequently equilibrated at T = 298.15 K for another 150 ps.

Such preparation protocol was followed by 5 independent production runs each of length 1

ns in the NV T ensemble with an integration time step of 1 fs. The water molecules were

made effectively rigid by integrating their equations of motion using the RATTLE35 algo-

rithm with precision 10−9. All classical MD simulations as well as the EFG calculations

were performed with the MetalWalls package.36 In the case of PIM simulations, the induced

dipoles were determined self-consistently using the conjugate gradient algorithm with toler-

ance 10−6. The computation of the EFG at the ion position due to point charges and point

dipoles, with the latter contributing only in the case of PIM simulations, was implemented

using Ewald summation33,34 in the MetalWalls package (release version 21.0637) and was

performed at every integration time step. Finally, it is important to note that in the case

of a non-electroneutral system, the trace of the classical EFG computed using the Ewald
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summation expressions33 features a non-zero trace

Tr Vext = −4π

V
qtot, (13)

where qtot is the total charge of the simulation box and V is its volume. To ensure that the

final EFG is traceless, a third of (13) was subtracted from the diagonal EFG components

before analysis. In addition, we verified that the resulting EFG ACFs are almost identical

to those in a dilute, explicitly electroneutral system (see Supporting Fig. S1a and S1b).

Finally, the EFG ACFs obtained from NV E production runs are in excellent agreement

with the ones in the NV T ensemble (see Supporting Fig. S1c and S1d).

To determine effective Sternheimer factors, for each classical FF we additionally simulated

a smaller system comprised of 64 water molecules and 1 ion using the same system parame-

ters as discussed before. The smaller systems were prepared with the same protocol as the

larger ones. Subsequently, we sampled 1000 configurations every 10 ps during a single NV T

production run to ensure a sufficient degree of decorrelation between two consecutive snap-

shots. These 1000 configurations from classical MD were used as an input for the DFT-based

computations of the EFG in the condensed phase that include the electronic contribution.

The DFT calculations were performed in the Quantum Espresso (QE) package38 using the

projected augmented wave (PAW) method to allow for an all-electron representation of the

core region.39–41 The AI EFG at the ion position was evaluated with periodic boundary con-

ditions using the QE-GIPAW package.42 The self-consistent electron densities were obtained

using the PBE functional43 and a kinetic energy cutoff of 80 Ry. In the case of Li+, Na+,

K+, Cl−, Mg2+, Ca2+ ions we employed the norm-conserving pseudopotentials included in

the GIPAW package,44 whereas for Cs+, Br−, and I− we used the PAW pseudopotentials

from the pslibrary 1.0.0.45 Due to approximations involved in representing AI EFGs in the

present approach, here we used the PBE functional for all ions, although more advanced

functionals can provide a more accurate description of EFGs for larger and more polarizable
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Figure 1: Validation of the Sternheimer approximation for different classical FFs. The
EFG components obtained using classical MD, V ext

αβ , are plotted versus the ab initio ones,
V AI
αβ , following the procedure explained in Section 2. A linear relationship between V AI

αβ and
V ext
αβ is evident in all cases considered and allows to define an effective Sternheimer factor
V AI
αβ = (1 + γeff)V ext

αβ for every model. The fits for γeff are shown with solid lines, whereas the
obtained values of γeff are listed in Tab. 1. The results for Li+, Na+, K+, Cl−, Mg2+, and
Ca2+ ions are indicated with a different color shown in the legend of (a) (the legend is the
same for all plots). Additional results for Cs+, Br−, and I− are shown in Supporting Fig. S2.

species.5,12 In other words, the errors produced by the Sternheimer approximation (2) might

considerably outweigh the ones associated with the use of a simpler DFT functional.

3 Sternheimer approximation

3.1 Effective Sternheimer factor

We first assess the validity of the Sternheimer approximation by comparing the EFGs ob-

tained with classical MD simulations, V ext
αβ , to that from DFT GIPAW calculations, V AI

αβ , on

a set of 1000 configurations. The results for Li+, Na+, K+, Cl−, Mg2+, and Ca2+ ions, the pa-

rameters for which are available in all three FFs considered in this work, are shown in Fig. 1.

Additional results for Cs+, Br−, I−, and Ca2+ ions can be found in Supporting Figs. S2 and

S3. In agreement with earlier work,10 we find that the linear relation V AI
αβ ' (1 + γeff)V ext

αβ

holds well in all of the cases considered (that is, for all ions and FFs) and allows to determine

effective model-dependent Sternheimer factors γeff using a linear fit (2). Note that here and
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Figure 2: The effective Sternheimer factors for different quadrupolar nuclei at infinite di-
lution. For every ion, we indicate γeff for the PIM (P), the Madrid-2019 model (M), and
Amber14 FF parameters for the SPC/E water and ions (A).

in what follows we will distinguish between the effective Sternheimer factors γeff derived for

a specific atomic environment and γ∞ that are calculated using perturbation methods for

model condensed phase environments or free ions in response to a distant charge distribu-

tion.19,20 From the slope of the scatter plots in Fig. 1 and Supporting Fig. S2, we consistently

find that V AI
αβ responds positively to the EFG of the external (ionic) charge distribution, V ext

αβ ,

in the present approach, leading to the anti-shielding effect and strictly positive values of

the obtained Sternheimer factors. This differs from the case of γ∞ for Li+ obtained via the

Watson sphere model, which aimed at modeling a solid-like environment,20 that results in

the shielding effect for the cation and a negative value of γ∞. Further below we will com-

pare in more detail the values of γeff devised in this work and that of γ∞ from the Watson
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Table 1: Effective Sternheimer factors γeff and corresponding prediction errors σ(V2) on the
EFG variance (see Eq. (15)) obtained for different classical FFs. The values in parentheses
indicate standard errors obtained using bootstrapping. The reference values of γ∞ correspond
to the Watson sphere model on an ionic solid.20 Note that here the sign of γ∞ is opposite to
the one in Ref. 20 to comply with the convention in Eq. (2).

Ion γ∞
PIM Madrid-2019 Amber14

γeff σ(V2) γeff σ(V2) γeff σ(V2)

Li+ -0.255 0.196(0.004) 0.20 0.362(0.006) 0.26 0.237(0.007) 0.29

Na+ 5.452 10.02(0.11) 0.46 10.54(0.11) 0.46 8.34(0.09) 0.43

K+ 21.782 30.21(0.32) 0.47 28.51(0.33) 0.47 24.67(0.29) 0.48

Cs+ 110.81 196.7(1.0) 0.25 — — 201.8(1.0) 0.26

Cl− 41.999 24.50(0.24) 0.42 20.25(0.22) 0.42 30.06(0.27) 0.39

Br− 85.517 — — — — 77.16(0.65) 0.39

I− 162.42 — — — — 152.1(1.3) 0.40

Mg2+ 4.118 9.00(0.06) 0.36 18.34(0.17) 0.55 10.91(0.15) 0.56

Ca2+ 18.791 30.02(0.13) 0.23 36.24(0.30) 0.36 29.73(0.23) 0.36

sphere model that were used in the early systematic study on the NMR relaxation rates of

quadrupolar nuclei by Roberts and Schnitker.2

The comparison between γeff for different classical FFs are shown in Fig. 2, whereas ex-

plicit values are listed in Tab. 1 (the corresponding standard errors were estimated using

bootstrapping). As expected, for the considered atomic species the effective Sternheimer

factor increases with the number of electrons, indicating its dominant contribution to the

total EFG at the nucleus position. In addition, certain quantitative differences are found

when comparing γeff across the three classical FFs considered, highlighting the sensitivity of

local polarization effects to the charge distribution around an ion and solute-solvent interac-

tions. For the two smallest cations, Li+ and Mg2+, γeff in the Madrid-2019 model are larger

by a factor ≈ 1.5–2 than those in the PIM and Amber14 FFs. A similar trend is found for

Ca2+, however the magnitude of γMadrid−2019
eff is bigger by a factor ≈ 1.2 when compared to

the two other FFs. Smaller differences in γeff across models are seen for larger Na+, K+, and

Cs+ cations. For the Cl− anion, γeff for the Amber14 FF is larger by a factor ≈ 1.25–1.5
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than those for the PIM and Madrid-2019 model.

When the comparison is made across different FFs, two effects may play an important

role: (i) the representation of the charge density around an ion using different (partial)

point charges and point dipoles (in polarizable models) on water molecules; (ii) changes

in the structure and dynamics of the solvation shell around an ion. Both effects can po-

tentially influence V AI
αβ and V ext

αβ , and therefore the computed value of γeff . To assess the

effect of charge density representation via distinct water point charges and dipoles, we have

adopted the following strategy. First, we took 1000 system configurations that were used

in the AI calculations of the Sternheimer factor for the PIM and recomputed the external

EFGs using the point charges from the Madrid-2019 FF (this is possible thanks to the same

TIP4P/2005 geometry of water molecules in these two FFs). The latter allowed us to calcu-

late Sternheimer factors for configurations that were generated with the PIM dynamics but

with point charges of the Madrid-2019 FF (Supporting Fig. S4). Interestingly, we find that

such operation results in quite larger values of γeff for Li+, Mg2+, Ca2+ that become closer

to the ones obtained consistently for the Madrid-2019 FF (Tab. 1). Yet, the values of γeff

obtained after such a numerical experiment are not in quantitative agreement with those for

the Madrid-2019 FF (Tab. 1), suggesting additional differences that stem from variations in

the solvation shell structure in the two models at hand, which are highlighted in the differ-

ence in the ion-oxygen radial distribution functions and in the number of water molecules in

the shell (Supporting Figs. S6 and S7, respectively). Furthermore, much smaller variations

in γeff are found for Na+ and K+. In addition, γeff for Cl− increases contrary to the cor-

responding value in the Madrid-2019 FF (Tab. 1). Consistently, opposite trends for γeff of

Li+, Mg2+, Ca2+, and Cl− are observed when the Sternheimer factors are calculated using

configurations that were generated with the Madrid-2019 dynamics but with point charges

and dipoles of the PIM (Supporting Fig. S5). In summary, the latter observations highlight

the sensitivity of the obtained γeff to the charge density representation of the chosen wa-

ter model. Further differences in γeff are likely caused by subtle variations in the solvation
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shell structure across the FFs (Supporting Figs. S6 and S7). For instance, the Amber14 FF

features approximately one more molecule in the first solvation shell of the Cl− anion on av-

erage as compared to the two other models (6.9 vs. 6.2 and 5.9, respectively, see Supporting

Fig. S7 and Tab. S1), which can result in an enhanced polarization of the electronic cloud by

hydrogen bonds donated by water for such an environment. Finally, the observed deviations

in computed γeff across different classical FFs again emphasize the sensitivity of the EFGs

to the local environment around an ion.

The liquid-state environment around a solute impacts the obtained Sternheimer factors

γeff , as compared to those from the Watson sphere model γ∞, in which the ion’s electron

cloud responds to the surrounding, oppositely charged hollow sphere that models the envi-

ronment of an ionic solid.20 Here we briefly discuss the differences between γeff and γ∞ (see

Fig. 1 and Tab. 1), as the latter were used in the early systematic study of quadrupolar

relaxation rates.2 For the least polarizable cation, Li+, the effective Sternheimer factors are

quite small (γeff ≈ 0.2–0.36), yet of different sign when compared to γ∞ = −0.255. Such

discrepancy might be due to differences in the scaled-charge model and ab initio solvent

charge distributions around an ion, as highlighted in Ref. 46. For alkali metal cations, we

find that γeff is generally larger than γ∞ (approximately by a factor of 2 for Na+ and Cs+,

and by a factor of 1.1–1.4 for K+). For halide ions, γeff is somewhat smaller than γ∞ (smaller

by a factor of ≈ 1.1 for Br− and I−, and by a factor of 1.4–2 for Cl− depending on the clas-

sical FF considered). For Mg2+ and Ca2+, γeff is around 2–4.5 and 1.6–2 times larger than

γ∞, respectively. In addition, the Sternheimer-like polarization factors have recently been

obtained from analyzing contributions of localized orbitals to the EFG for large and highly

polarizable ions in AIMD.5 The ratio between the total and external EFG in Ref. 5 was

found to be +3 for Cs+ and -65 for I−, differing considerably both from γ∞ and also γeff

obtained in this work. Yet, as highlighted in Ref. 5, a clean separation between external and

internal EFGs is not always meaningful in systems with a degree of donation or hydrogen

bonding.
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We now assess the quality of the Sternheimer approximation

V SA
αβ = (1 + γeff)V ext

αβ (14)

by considering the average prediction error for the squared EFG:

σ(V2) =
1

M

M∑
i=1

∣∣∣∣∣
(
VSA
i

)2 −
(
VAI
i

)2

(VAI
i )

2

∣∣∣∣∣ , (15)

where M = 1000 is the total number of configurations used for analysis, and V2
i above

stands for Vi : Vi as computed from the Sternheimer approximation (14),
(
VSA
i

)2
, or from
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DFT GIPAW calculations,
(
VAI
i

)2
, for the same i-th configuration. The values of σ(V2) are

listed in Tab. 1. Generally, for every ion and classical FF, we find σ(V2) to be quite large,

indicating a 20-50% percent difference between
(
VSA

)2
and

(
VAI

)2
on average. Since such

relatively large prediction error might considerably impact the resulting NMR relaxation

rates that are directly proportional to the EFG variance 〈V2〉, in what follows we attempt

to construct a better approximation for the EFG beyond the linear regime (14).

3.2 Effect of the first solvation shell

Since the main contribution to the EFG at the ion position arises from the closest solvent

molecules,47 we start with investigating the potential impact of the hydration shell structure

on the obtained effective Sternheimer factors. Fig. 3 shows γeff in the three considered

classical FFs as a function of the number of water molecules Nw in the first hydration

shell of an ion for Na+, K+, Cl−, Br−, and Ca2+ (see also Supporting Tab. S2). The first

minimum of the ion-oxygen radial distribution function (RDF) was used as a boundary of

the first solvation shell (see Supporting Fig. S6 and Supporting Tab. S1). As Li+ and Mg2+

feature a quite stable hydration shell structure (Supporting Fig. S7) with Nw = 4 and 6,

respectively, they were excluded from the present analysis. Among the 1000 configurations

used for the AI EFG parametrization, for a given ion and FF we selected only those that

had at least 50 occurrences for a specific value of Nw. The corresponding standard errors in

Fig. 3 and Supporting Tab. S2 were also estimated using bootstrapping.

For most of the cations, γeff decreases with Nw, yet enhanced statistics is necessary to

decisively confirm this trend. Relatively small differences in γeff(Nw) (up to around 5%) are

found for the Na+ and Ca2+ cations when comparing their two most probable coordination

numbers (5 and 6 for Na+; 7 and 8 for Ca2+). The K+ cation has a quite broad distribution

of coordination numbers (Supporting Fig. S7) and its γeff(Nw) features the most pronounced

dependence on Nw among the ions considered. In particular, consistently across the three

FFs, γeff for K+ decreases by up to ≈ 15% when going from 5 to 8 water molecules in the first
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Figure 4: (a) Distribution of individual components of V AI
αβ plotted versus V ext

αβ . (b), The
original distribution of V AI

αβ as a function of V ext
αβ is compared to V SA

αβ obtained using the
linear Sternheimer approximation (14) and its generalized form (16). The EFGs shown here
correspond to the Na+ ion in the PIM. Qualitatively similar dependencies are found for other
ions and FFs.

solvation shell. An up to 10% reduction in γeff is found for Cs+ for increasing Nw in the PIM

and the Amber14 FF. For Cl−, γeff increases by around 10% for increasing Nw from 5 to 7 in

the PIM. For anions in the Amber14 FF, relatively small changes in the Sternheimer factor

are seen with increasing Nw, yet γeff tends to grow for Br− and Cl−. In summary, taking

into account the hydration shell structure around an ion might be necessary to improve the

prediction for the final relaxation rate (especially, in such cases as K+ and Cs+ for which γeff

features a relatively pronounced dependence on Nw).

3.3 Beyond the standard Sternheimer approximation

To improve the quality of the original Sternheimer approximation (14) and to capture the

differences in γeff generated by a distinct number of water molecules in the first solvation

shell, we have attempted to construct a generalized linear Sternheimer approximation (GSA)

that introduces couplings between diagonal and off-diagonal components of V ext
αβ . Although

the scatter plots of V AI
αβ plotted versus V ext

αβ are practically identical for both diagonal and
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off-diagonal components (see Fig. 4a), yielding very similar component-wise Sternheimer

factors, such GSA might be useful for capturing the differences in the electronic environments

of an ion for each specific Nw. Specifically, to parametrize the GSA we fit V AI
αβ against V ext

αβ

employing the following expression:

V GSA
αβ = (1 + γ1)V ext

αβ + γ2ΓαγV
ext
γδ ΓTδβ, (16)

where γ1 and γ2 are two Sternheimer-like factors, and Γαβ is an orthonormal matrix that

generates an additional coupling between the components of V ext
αβ and satisfies ΓαγΓ

T
γβ = δαβ.

Note that by construction the term ΓαγV
ext
γδ ΓTδβ is traceless and symmetric. To perform the

fit (16), we expressed Γαβ using the Rodriguez formula:

Γαβ(ê, ψ) = (cosψ) δαβ + (1− cosψ) êαêβ − (sinψ) εαβγ êγ, (17)

where εαβγ is the Levi-Civita symbol and ê = (sin θ cosφ, sin θ sinφ, cos θ)T is a unit vector.

Thus, the angles ψ, θ, φ and the two constants γ1, γ2 are the fit parameters for the model

(16). To assess the fit quality, in Fig. 4b we show V AI
αβ , V SA

αβ , and V GSA
αβ plotted versus V ext

αβ

for the Na+ ion in the PIM (qualitatively similar results are obtained for other ions in all FFs

considered). It is evident that the main error in V SA
αβ comes from the failure of the simple

linear approximation (14) to capture large off-diagonal deviations of V AI
αβ when compared to

V ext
αβ . Despite a more advanced structure of the GSA (16) with 4 additional fit parameters,

V GSA
αβ does not bring a considerable improvement to the resulting EFG variance (generally,

a few percent reduction in σ(V2)) and, similarly to V SA
αβ , it fails to capture significant off-

diagonal deviations. In addition, we find that γ1 in the fit (16) is quite close to γeff in (14),

thus making the contribution of γ2ΓαγV
ext
γδ ΓTδβ generally small.

As the GSA (16) had not brought a considerable improvement in predicting the EFG

variance compared to the AI data, we attempted to include the first-order non-linear correc-

tion to the EFG at the nucleus. In general, the EFG at the nucleus of an ion Vαβ subject
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Figure 5: The difference between V AI
αβ and (1+γeff)V ext

αβ is plotted versus the traceless version
of the tensor Eext

α Eext
β to account for non-linear effects (21) for different ions in the PIM. The

absence of linear correlation is evident in all cases considered (also for other ions and FFs).

to external electric fields can be expressed as a perturbation series in the field and its gradi-

ents:48,49

Vαβ = V ext
αβ + gαβ,γE

ext
γ + gαβ,γδV

ext
γδ + 1

2
εαβ,γδE

ext
γ Eext

δ + . . . , (18)

where the next order terms above correspond both to higher derivatives of the external field

Eext
α and higher order non-linear terms. gαβ,γ, gαβ,γδ, and εαβ,γδ are tensorial susceptibilities

that describe the response of the electronic cloud in different environments. In the case of an

initially spherical electronic cloud of an ion, gαβ,γ = 0, whereas gαβ,γδ and εαβ,γδ both feature
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only one independent component, γ and ε, respectively:49,50

gαβ,γδ = γ

{
1

2
(δαγδβδ + δαδδβγ)−

1

3
δαβδγδ

}
(19)

εαβ,γδ = ε

{
3

4
(δαγδβδ + δαδδβγ)−

1

2
δαβδγδ

}
(20)

Given the relations in Eqs. (19), (20) and assuming that the trace of V ext
αβ is identically zero,

the EFG in Eq. (18) simplifies to

Vαβ = (1 + γ)V ext
αβ +

3ε

4

(
Eext
α Eext

β −
1

3
δαβ|Eext|2

)
+ . . . , (21)

where the first term in the equation above corresponds to the usual Sternheimer approxi-

mation and the second one conveys the first order non-linear correction with the hyperpo-

larizability ε. In Fig. 5, we plot the difference between V AI
αβ and (1 + γeff)V ext

αβ versus the

traceless tensor Ẽext
αβ = Eext

α Eext
β − δαβ|Eext|2/3 for Li+, K+, Cl−, and Mg2+ in the PIM

(qualitatively similar results are found for other ions in all FFs considered). In agreement

with earlier results on a smaller number of configurations51 and in contrast to crystalline

atomic environments,49 the overall symmetric scatter plots centered at the origin indicate

the absence of significant linear correlation between V AI
αβ − (1 + γeff)V ext

αβ and Ẽext
αβ . The fact

that the latter two quantities are uncorrelated in the present liquid state system might be

related to different symmetry properties of the Vαβ and Ẽαβ tensors. For instance, for certain

configurations that feature a symmetry axis the electric field can be vanishing at the origin

corresponding to the nucleus position, whereas the EFG can still remain non-zero. In addi-

tion, we attempted to correlate V AI
αβ − (1 + γeff)V ext

αβ with other higher order non-linear terms

like (Eext)2Vαβ, (Vext)2Ẽext
αβ , Ẽext

αγ Vγβ, however, similarly to Fig. 5, in all cases no pronounced

correlation has been identified (not shown). Therefore, in the following we use the initial

Sternheimer approximation for the prediction of NMR relaxation rates.
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Figure 6: Autocorrelation function of the the electric field gradient at the ion position in
different classical FFs: normalized EFG ACF and its running integral in the PIM ((a) and
(d)), the Madrid-2019 model ((b) and (e)), and Amber14 FF parameters for the SPC/E
water and ions ((c) and (f)) for K+, Na+, Li+, Cl−, and Mg2+. The legend shown in (a)
also applies to all panels; panels (a), (b) and (c) share the same range on both axes, and so
do panels (d), (e) and (f). Shaded regions around a curve correspond to the standard error
obtained from independent simulation runs.

4 NMR relaxation rates

We finally consider the EFG ACFs from different classical FFs and the resulting NMR

relaxation rates. Figs. 6a–c feature the normalized ACFs of V ext
αβ , Cnorm

EFG (t), for Li+, Na+,

K+, Cl−, Mg2+ and Ca2+ in the PIM, Madrid-2019 model, and the Amber14 FF parameters

for the SPC/E water and ions. Additional results for larger and more polarizable solutes such

as Cs+, Br−, and I− as well as a comparison between the EFG ACFs for the alkali metals are

available in the Supporting Fig. S1. Interestingly, the structure of the EFG ACFs remains

similar across the distinct FFs considered and is consistent with previous studies.2,7–10,47,52

In general, Cnorm
EFG (t) relaxes in two steps with a pronounced short-range oscillatory regime
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for the smaller Li+ and Mg2+ ions, associated with their tight confinement in the solvation

shell.47 Furthermore, the ACF for Li+ is positive at all times in the PIM and Amber14 FF,

whereas in the Madrid-2019 model it shows a negative region at around 0.1 ps. In addition,

a less pronounced oscillatory regime of Cnorm
EFG (t) at short times is observed for the Ca2+

ion as well. In the Amber14 FF, as compared to the two other models, the EFG ACF of

Mg2+ shows much more striking oscillations, whereas the decay for Ca2+ is considerably

slower. This again illustrates the difficulty for non-polarizable models with formal ionic

charges to accurately model multivalent ionic species.53,54 For larger ions, Cnorm
EFG (t) develops

two clear relaxation steps. Interestingly, and consistently with AIMD simulations,5 Cnorm
EFG (t)

develops a “notch” at very short times for the anions and for Cs+, a feature associated

with the librational motion of water molecules in the hydrogen bond network.5 Finally, the

reasonable agreement between Cnorm
EFG (t) obtained here and in AIMD3,5 confirms that the

short time stretching and bending vibrational modes of water molecules (neglected in the

rigid water models employed here) do not play a significant role in the form of the EFG

relaxation.

As we show with running integrals of Cnorm
EFG (t) in Figs. 6d–f and Supporting Fig. S1,

accurate ACFs over around 10 ps (and even more in some cases) are required to precisely

measure the effective EFG correlation time τc (4). All parameters of the EFG relaxation,

in particular 〈V2
ext〉 and τc, for all ions and FFs considered are again summarized in the

Supporting Tab. S3. Small differences in τc are found across the three FFs considered, yet

in most cases τc does not exceed 0.5 ps. For Ca2+ in the Amber14 FF, τc = 1.06 ps, likely

being an overestimation in comparison to the two other FFs (τc = 0.31 ps in the PIM and

0.44 ps in the Madrid-2019 for Ca2+, see also Supporting Fig. S3).

The variance of the external EFG 〈V2
ext〉 decreases horizontally along the periodic table,

reflecting its dependence on the ionic size. Additionally, we list in the Supporting Tab. S3

the EFG variance 〈V2
SA〉 obtained with the Sternheimer approximation (14) using γeff from

Tab. 1 as well as the variance 〈V2
AI〉 obtained directly from the AI EFGs on our sets of
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Figure 7: Predicted NMR relaxation rates of quadrupolar nuclei at infinite dilution. For
every ion, we indicate an experimental value (E), as well as the rate obtained using the
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obtained using the EFG variance from the Sternheimer approximation 〈V2
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colored columns) and directly from AI DFT calculations 〈V2

AI〉 (right light-colored columns).

1000 configurations for each ion. It is evident from this comparison that the failure of the

Sternheimer approximation in capturing the dispersion of the AI EFG (Fig. 4b) always

results in 〈V2
SA〉 being smaller than 〈V2

AI〉. In some cases, as shown further below, the use

of 〈V2
AI〉 instead of 〈V2

SA〉 ≡ (1 + γeff)2〈V2
ext〉 in Eq. (3) yields a better prediction for the

final NMR relaxation rates. Nevertheless, a direct replacement of 〈V2
SA〉 by 〈V2

AI〉 in Eq. (3)

does not entirely account for the errors introduced by the Sternheimer approximation (see

discussion in the SI). Consistently across the three FFs, a 25–35% difference between 〈V2
AI〉

and 〈V2
SA〉 is found for the Na+, K+, and Cl−, potentially leading to a marked impact on
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the final relaxation rate. In addition, a somewhat better correspondence between 〈V2
SA〉 and

〈V2
AI〉 can be achieved if a direct fit between the squared EFGs V2

AI ' (1 + γ′eff)2V2
ext for

γ′eff is performed, generally resulting in larger values of γ′eff as compared to γeff in Tab. 1.

However, such a fit simultaneously yields bigger σ(V2) and similarly fails to capture the

dispersion of the AI EFGs (not shown). Finally, the differences in 〈V2
ext〉 and consequently

in 〈V2
SA〉 and 〈V2

AI〉 again highlight the importance of the charge and density distributions

around an ion on the resulting EFG at the ion position.

Finally, it is instructive to compare the EFG relaxation parameters obtained here with

classical MD with that from the AIMD studies.3,5,6 In Ref. 3, τc = 0.26(0.06) ps and 〈V2〉 =

0.21(0.01) (in a.u.) for 35Cl−. In our case, for the same anion we find τc = 0.51(0.02)

ps and 〈V2
SA〉 = 0.087(0.002) in the PIM; τc = 0.56(0.02) ps and 〈V2

SA〉 = 0.089(0.002)

in the Madrid-2019 model; τc = 0.40(0.01) ps and 〈V2
SA〉 = 0.115(0.002) in the Amber14

FF. Similarly for 23Na+, Ref. 3 indicates τc = 0.13(0.03) ps and 〈V2〉 = 0.028(0.001) (in

a.u.), whereas in our case we obtain we find τc = 0.26(0.01) ps and 〈V2
SA〉 = 0.014(0.003)

in the PIM; τc = 0.41(0.01) ps and 〈V2
SA〉 = 0.0197(0.0004) in the Madrid-2019 model;

τc = 0.41(0.01) ps and 〈V2
SA〉 = 0.0122(0.0002) in the Amber14 FF. The AIMD results

provide somewhat smaller estimates for τc when compared to classical MD, yet enhanced

values of the EFG variance. As shown below, classical MD can also yield quite good values

for the NMR relaxation rates, provided that γeff , 〈V2
ext〉, and τc are obtained consistently for

a FF at hand.

The final NMR relaxation rates 1/T1 for different ions obtained with the three classical

FFs considered here are shown in Fig. 7 and also summarized in Tab. 2, together with

the corresponding experimental values. For 7Li+, we find a quite good prediction for 1/T1

with the largest relative error
∣∣1− T exp

1 /T sim
1

∣∣ of around 35% in both the PIM and the

Madrid-2019 model when compared to the experimental value of 0.027 s−1 that is measured

for 7Li+ in D2O (which corresponds to the quadrupolar contribution only). The value of

0.0247(0.0007) for 7Li+ in the Amber14 FF is in very good agreement with the experimental
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Table 2: Comparison between the NMR relaxation rates from experiments and classical MD
simulations with various FFs for a series of quadrupolar ions at infinite dilution.

Ion I Q (mb)1 1/T1 (s−1)

Experiment PIM Madrid-2019 Amber14

7Li+ 3/2 -40.1 0.02711,56 0.037(0.002) 0.0173(0.0005) 0.0247(0.0007)
39K+ 3/2 +60.3 16.7,57 17.858 10.7(0.3) 10.0(0.4) 11.3(0.5)

23Na+ 3/2 +104 17.0,57 16.256 5.8(0.2) 12.6(0.5) 7.8(0.3)
133Cs+ 7/2 -3.43 0.07513,58 0.053(0.002) — 0.154(0.008)
35Cl− 3/2 -81.12 29.2(0.6),59 2858 42.1(2.1) 48.0(2.1) 44.3(1.7)
81Br− 3/2 257.9 105013,58 — — 2080(50)
127I− 5/2 -688.22 5270,13 460058 — — 9200(300)

25Mg2+ 5/2 +199.4 4.16(0.03)59 2.3(0.1) 6.8(0.1) 1.1(0.1)
43Ca2+ 7/2 -40.8 0.8(0.1)60 0.52(0.01) 0.78(0.03) 1.49(0.06)

value. Recently, the latter model has been used to determine the concentration dependence of

the quadrupolar contribution to the rate of 7Li+ in simulations, yet a value of γ∞ = 0.17 was

used to account for the electronic cloud polarization effects and ultimately resulted in some

differences between the simulation and experimental results at lower concentrations.11 Here

we show that this discrepancy can be overcome by considering the model specific Sternheimer

factor γeff .

For 23Na+, the Madrid-2019 model provides the best estimate for 1/T1 that is around

20% smaller than the experimental value. For 39K+, all FFs considered yield quite close

quadrupolar relaxation rates, being approximately 40% smaller than the experimental value.

On the other hand, for the 35Cl− anion, the rates from all three FFs are also quite close to

each other but 40–60% larger than those from the experiment. We find that the use of

〈V2
AI〉 instead of 〈V2

SA〉 improves the rate predictions for Na+ and K+, yet leads to larger

discrepancies for Cl− and the other two anions Br− and I−, the parameters for which are

available in the Amber14 FF only. For the two divalent cations considered here, 25Mg2+ and

43Ca2+, we find that the PIM and the Madrid-2019 model provide better estimates for the

relaxation rates. In particular, very good agreement for with the experimental rates is found

43Ca2+ (35% error in the PIM and almost quantitative agreement in the Madrid-2019 model),
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whereas a much higher discrepancy is observed in the Amber14 FF. Somewhat larger errors

are found for 25Mg2+, however still better than in the Amber14 FF whose rate is around 4

times smaller than the experimental one. Finally, it is interesting to assess the rates obtained

for larger and highly polarizable solutes like 133Cs+, 81Br−, and 127I−. The parameters for

the latter three species are available in the Amber14 FF, and in each case 1/T1 from the

simulations is about twice as high as the experimental one. On the contrary, for 133Cs+ in

the PIM, the resulting rate 1/TPIM
1 = 0.053(0.002) s−1 is in reasonable agreement with the

experimental one 1/T exp
1 = 0.075 s−1, and is somewhat better than the state-of-the-art AIMD

value obtained from the EFGs with relativistic effects included5 1/TAIMD
1 = 0.033(0.006)

s−1. This illustrates that classical MD is also suitable for computing the NMR relaxation

rates for divalent as well as large and strongly polarizable ionic species, provided that more

sophisticated methods to account for the electronic polarizability are employed.

5 Discussion and concluding remarks

We have shown in this work that accurate NMR relaxation rates can be obtained from

classical MD simulations, provided that local electron cloud polarization effects are taken

into account consistently for each specific classical FF considered. We have employed a

Sternheimer-like parametrization for the electron cloud contribution to the EFG at the ion

position by comparing the classical V ext
αβ and quantum V AI

αβ EFGs on a set of classically

generated configurations. We have found that a linear relationship between V AI
αβ and V ext

αβ

holds well in all the cases considered (Fig. 1), allowing to define effective model-dependent

Sternheimer factors γeff (Fig. 2). Yet, such Sternheimer factors show a quite pronounced

dependence on the FFs at hand. For instance, the difference in γeff across the classical

models considered here can be up to 50%, which is in some cases comparable to the difference

between γeff and γ∞ that was obtained for a more simplistic Watson sphere approximation.

We have found that considerable variations in γeff are due to the changes in the charge density
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representation of the employed water model (that is, via the chosen set of point charges and

dipoles), whereas further differences are likely caused by variations in the solvation shell

structure. In summary, γeff might be reasonably transferable for electrolyte FFs that employ

the same water model, whereas the transferability is likely limited across FFs with different

water models.

The error in the predicted EFG variance using such an effective Sternheimer approxima-

tion (14) might be quite large (up to 50% for certain ions) when compared to the AI EFGs

(Tab. 1). In particular, the linear Sternheimer-like approximations that relate V AI
αβ and V ext

αβ

fail to capture the large dispersion in V AI
αβ (Fig. 4). We have demonstrated that for the

present liquid matter systems it is very challenging to systematically reduce the prediction

error, for instance by taking into account non-linear effects (21) that were shown to be es-

sential for highly symmetric crystalline environments.49 Some explanations can be proposed

to rationalize this finding: (i) in the present parametrization we employ V ext
αβ generated by

the external classical charge distribution around the given ion that can be very sensitive to

the quality of the FF at hand – while some FFs can provide a better approximation for the

ab initio charge density, it is still hard to systematically assess its impact as the partitioning

between internal and external charges includes some degree of arbitrariness in condensed

phase systems; (ii) the local polarization effects that have a considerable impact on the EFG

at the nucleus might be strongly dependent on the instantaneous hydration shell structure

and solute-solvent interactions; (iii) the inclusion of non-linear corrections to the EFG at

the nucleus in liquid state systems can be limited by different symmetry properties of the

Vαβ and Eext
αβ tensors. In summary, it might be possible to construct an improved EFG

parametrization strategy by explicitly considering the local atomic environment around an

ion, as this was done recently in the context of NMR for chemical shifts.61,62 In particular,

correlating local solvent structure with the variable of interest (in this case, the EFG ten-

sor) using machine learning methods provides a possible direction to improve predictions

from FF MD, as evidenced by recent progress in the field of vibrational spectroscopy.63,64
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The quality of the classical FF used for simulating the electrolyte dynamics constitutes an-

other important dimension of the problem. Here we have observed that the incorporation

of electronic polarizability either through induced dipoles as in the PIM or through scaled

ionic charges as it the Madrid-2019 model in many cases leads to better values of the NMR

relaxation rates when compared to the non-polarizable Amber14 FF based on the SPC/E

water and formal ionic charges. In particular, this is valid for the divalent Mg2+ and Ca2+

ions as well as for the large and highly polarizable Cs+ ion (Fig. 7). However, surprisingly,

for smaller and less polarizable species, the non-polarizable Amber14 FF also provides quite

good predictions for the final NMR relaxation rates. Furthermore, while the FFs used in this

work employ rigid water molecules, the inclusion of stretching and bending modes in flexible

water geometries might be necessary for a more accurate description of the EFG relaxation

at short time scales in classical MD. Quantitatively, the 1/T1 predictions obtained here are

comparable and in some cases superior to the AIMD results.3,5 The fact that computation-

ally more efficient non-polarizable and scaled charge models are suitable for determining

the NMR relaxation rates with reasonable accuracy, provided that a model-specific Stern-

heimer factor parametrized on ab initio calculations is used, paves the way for exploring the

microscopic origins of many NMR relaxation phenomena, in particular those involving the

concentration and pressure dependence of 1/T1 in concentrated electrolyte solutions and its

relation to collective symmetry-breaking fluctuations in the solvation shell.52
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The Supporting Information is available free of charge at http://pubs.acs.org.

Additional discussion on the errors introduced by the Sternheimer approximation (Section

S1); EFG ACFs in an explicitly electroneutral system and sampled in the NV E ensemble

(Figure S1); additional EFG ACFs and Sternheimer parametrization for Cs+, Br−, and I−
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(Figure S2); comparison between the EFG ACFs and their integrals for Ca2+ in different

FFs (Figure S3); the effect of swapping the charge density representation between the PIM

and Madrid-2019 FFs on the resulting γeff (Figures S4 and S5); ion-oxygen RDFs (Figure

S6); structure of the first solvation shell of ions in the three classical FFs considered (Figure

S7); coordination numbers of the first solvation shell for all ions in the three classical FFs

considered (Table S1); effective Sternheimer factors as a function of the number of water

molecules in the first solvation shell in different FFs (Table S2); parameters of the EFG

relaxation for all ions in the three classical FFs considered (Table S3).
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(54) Duboué-Dijon, E.; Javanainen, M.; Delcroix, P.; Jungwirth, P.; Martinez-Seara, H. A

Practical Guide to Biologically Relevant Molecular Simulations with Charge Scaling

for Electronic Polarization. J. Chem. Phys. 2020, 153, 050901.
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Supporting Information

S1 Details on the Sternheimer approximation

In the present work, the system dynamics was generated using classical, force-field based

molecular dynamics (FF MD). In principle, the most accurate way of calculating the quadrupo-

lar NMR relaxation rates using FF MD would be by evaluating the ab initio (AI) electric

field gradients (EFGs) VAI at the ion position on every system configuration of interest. The

dynamics of VAI fluctuations is then given by the variance 〈V2
AI〉 and the effective correlation

time τc,AI:

τc,AI = 〈V2
AI〉−1

∫ ∞
0

dt 〈VAI(t) :VAI(0)〉. (22)

Note that the dynamics of AI EFGs computed on system configurations generated using ab

initio molecular dynamics (AIMD) might somewhat differ from that with FF MD.

The calculation of AI EFGs VAI can be quite expensive if done for a large number of

configurations. In practice, here we employed the Sternheimer approximation that relates

the classical, external EFGs Vext computed with point charges and dipoles of a FF at hand

to VAI via the effective Sternheimer factor γeff :

VAI ' (1 + γeff)Vext (23)

The dynamics of Vext fluctuations are characterized by the variance 〈V2
ext〉 and the effective

correlation time τc, ext (simply denoted by τc in the main text):

τc, ext = 〈V2
ext〉−1

∫ ∞
0

dt 〈Vext(t) :Vext(0)〉. (24)

Nevertheless, the Sternheimer approximation does not perfectly capture VAI (Fig. 4 of
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the main text), i.e. there exists an error term ∆V:

VAI(t) = (1 + γeff)Vext(t) + ∆V(t) (25)

The ACF of AI EFG can thus be recast as follows:

〈VAI(t) :VAI(0)〉 = (1 + γeff)2〈Vext(t) :Vext(0)〉+ 〈∆V(t) :∆V(0)〉

+ 2(1 + γeff)〈Vext(t) :∆V(0)〉.
(26)

Finally, by integrating Eq. (26) over time, we find

〈V2
AI〉 τc,AI = (1 + γeff)2〈V2

ext〉 τc, ext + 〈∆V2〉 τc,∆ + 2(1 + γeff)

∫ ∞
0

dt 〈Vext(t) :∆V(0)〉,

(27)

where 〈∆V2〉 is the variance of the error term ∆V and τc,∆ is its effective correlation time

τc,∆ = 〈∆V2〉−1

∫ ∞
0

dt 〈∆V(t) :∆V(0)〉. (28)

Evidently from Eq. (27), both the variance of 〈V2
AI〉 and the correlation time of the AI EFG

τc,AI are affected by the fluctuations of the error term ∆V.
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Figure S1: Simulation details. Comparison between the EFG ACF and the integral of
the normalized EFG ACF (inset) for Na+ (a) and Cl− (b) as simulated in a smaller non-
electroneutral system (blue dashed lines) with N = 256 water molecules and 1 ion and
a larger electroneutral system (solid yellow lines) with N = 1000 water molecules and 1
NaCl ion pair. For the smaller systems, 5 independent simulation runs of length 1 ns were
performed. For the larger system, the results were extracted from 1 run of length 10 ns.
Comparison between the EFG ACF and the integral of the normalized EFG ACF (inset) for
Na+ (c) and Cl− (d) as sampled in the NV T (blue dashed lines) and NV E (solid yellow
lines) ensemble. The NV T runs correspond to the smaller system in a and b. The NV E
runs were performed in a single 5 ns simulation for the system with N = 256 water molecules
using an equilibrated system state form NV T simulation as a starting configuration. In all
cases, the ions and water were simulated using the Madrid-2019 model.
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Figure S2: Normalized EFG ACFs for alkali metal ((a) in the PIM and (b) in the Amber14
FF) and halide ions ((c) in the Amber14 FF). The corresponding validation of the Stern-
heimer approximation for the systems in (a), (b), and (c) is shown in (d), (e), and (f),
respectively.

42



Figure S3: Comparison between the normalized EFG ACFs (a) and their integrals (b) for
Ca2+ in the PIM (blue lines), Madrid-2019 model (yellow lines), and the Amber14 FF (green
lines). (a) and (b) share the same legend shown in (a).
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Figure S4: Effect of changing the representation of the charge distribution in the classical
force field on the resulting effective Sternheimer factors in the PIM model for various ions.
The AI EFGs V AI

αβ obtained on the set of configurations generated using PIM dynamics are

plotted against the external, force field specific EFG V ext,FF
αβ as computed using the PIM

(blue dots) or using the Madrid-2019 FF (yellow dots) on the same set of configurations.
The resulting Sternheimer factors γeff , V AI

αβ = (1 + γeff)V ext,FF
αβ are listed in the legends.

44



Figure S5: Effect of changing the representation of the charge distribution in the classical
force field on the resulting effective Sternheimer factors in the Madrid-2019 model for various
ions. The AI EFGs V AI

αβ obtained on the set of configurations generated using Madrid-2019

dynamics are plotted against the external, force field specific EFG V ext,FF
αβ as computed

using the Madrid-2019 FF (blue dots) or using the PIM (yellow dots) on the same set of
configurations. The resulting Sternheimer factors γeff , V AI

αβ = (1 + γeff)V ext,FF
αβ are listed in

the legends.
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Figure S6: Ion-oxygen radial distribution functions in the PIM (solid blue lines), Madrid-
2019 (dashed red lines), and Amber14 FF parameters for ions and SPC/E water (dotted
black lines) for different ions at infinite dilution.
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Figure S7: Probability of finding Nw water molecules in the first hydration shell of single ions
in the PIM (blue open circles), the Madrid-2019 model (red open squares), and Amber14
FF parameters for ions and SPC/E water (black open triangles).
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Table S1: Structure of the first hydration shell in different classical FFs. The first min-
imum of gion−O(r), r1,min, is used to estimate the first shell coordination number CN1 =
4πρO

∫ r1,min

0
dr r2gion−O(r) with ρO the number density of oxygen atoms in the simulation

box.

Ion rPIM
1,min (Å) CNPIM

1 rMadrid−2019
1,min (Å) CNMadrid−2019

1 rAmber14
1,min (Å) CNAmber14

1

Li+ 2.68 4.0 2.69 4.0 2.67 4.2
Na+ 3.28 5.8 3.15 5.5 3.17 5.8
K+ 3.63 6.8 3.53 6.8 3.53 7.0
Cs+ 4.12 8.9 — — 3.82 7.8

Mg2+ 2.96 6.0 3.00 6.0 2.88 6.0
Ca2+ 3.53 7.4 3.24 7.3 3.22 8.0
Cl− 3.82 6.2 3.68 5.9 3.80 6.9
Br− — — — — 3.94 7.0
I− — — — — 4.15 7.3
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Table S2: Effective Sternheimer factors as a function of the number of water molecules Nw in
the first solvation shell as obtained for different classical FFs. The values in the parentheses
indicate the standard error obtained using bootstrapping.

Ion γPIM
eff (Nw) γMadrid−2019

eff (Nw) γ
Amber14 (SPC/E)
eff (Nw)

Na+ 5: 10.19(0.19)
6: 9.94(0.14)

5: 10.46(0.12)
6: 10.55(0.20)

5: 8.65(0.14)
6: 8.18(0.11)

K+

5: 32.60(0.91)
6: 30.20(0.48)
7: 30.67(0.56)
8: 27.31(0.79)

5: 30.44(1.00)
6: 29.98(0.50)
7: 27.21(0.54)
8: 25.75(0.98)

5: 26.88(0.85)
6: 25.73(0.49)
7: 24.41(0.45)
8: 23.30(0.70)

Cs+

7: 199.0(2.0)
8: 198.6(2.0)
9: 195.9(2.2)
10: 191.7(3.3)

—

6: 205.2(1.9)
7: 201.5(1.8)
8: 201.7(2.2)
9: 188.6(3.7)

Cl−
5: 23.75(0.50)
6: 23.92(0.37)
7: 26.18(0.48)

5: 19.91(0.38)
6: 20.69(0.30)
7: 20.09(0.64)

6: 29.69(0.43)
7: 30.03(0.40)
8: 30.11(0.69)

Br− — —
6: 76.6(1.2)
7: 77.1(1.0)
8: 78.3(1.8)

I− — —
6: 154.5(2.4)
7: 149.4(2.2)
8: 152.5(3.0)

Ca2+ 7: 30.02(0.16)
8: 30.07(0.29)

7: 36.18(0.33)
8: 35.77(0.73)

7: 30.04(0.49)
8: 29.64(0.26)
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Table S3: Parameters of the EFG relaxation for different ions in the PIM, Madrid-2019
model, and Amber14 FF parameters for the SPC/E water and ions. 〈V2

ext〉 is the variance
of the external EFG at the ion position obtained from classical MD simulations. 〈V2〉 is the
variance of the full EFG at the ion position obtained using the Sternheimer approximation:
〈V2

SA〉 = (1 + γeff)2〈V2
ext〉. 〈V2

AI〉 is the variance of the full EFG obtained directly from
DFT GIPAW calculations on a set of 1000 configurations. τc is the correlation time of
the external EFG ACF. The values in the parentheses indicate the standard error over 5
independent simulation runs.

Ion 〈V2
ext〉 (a.u.) 〈V2

SA〉 (a.u.) 〈V2
AI〉 (a.u.) τc (ps)

PIM
Li+ 5.50(0.01) 10−4 7.86(0.05) 10−4 8.45(0.20) 10−4 0.20(0.01)
Na+ 1.15(0.01) 10−4 1.40(0.03) 10−2 1.83(0.05) 10−2 0.26(0.01)
K+ 6.31(0.01) 10−5 6.14(0.13) 10−2 7.94(0.21) 10−2 0.33(0.01)
Cs+ 2.28(0.01) 10−5 8.91(0.10) 10−1 9.73(0.22) 10−1 0.34(0.01)
Cl− 1.33(0.01) 10−4 8.68(0.17) 10−2 1.21(0.02) 10−1 0.51(0.02)

Mg2+ 1.83(0.01) 10−4 1.83(0.02) 10−2 2.12(0.06) 10−2 0.091(0.005)
Ca2+ 7.19(0.02) 10−5 6.91(0.06) 10−2 7.78(0.17) 10−2 0.31(0.01)

Madrid-2019
Li+ 3.75(0.01) 10−4 6.95(0.06) 10−4 7.58(0.17) 10−4 0.107(0.003)
Na+ 1.48(0.01) 10−4 1.97(0.04) 10−2 2.59(0.06) 10−2 0.41(0.01)
K+ 5.99(0.01) 10−5 5.21(0.12) 10−2 7.58(0.17) 10−2 0.36(0.01)
Cl− 1.98(0.01) 10−4 8.92(0.19) 10−2 1.19(0.02) 10−1 0.56(0.02)

Mg2+ 1.31(0.01) 10−4 4.89(0.09) 10−2 6.09(0.18) 10−2 0.100(0.003)
Ca2+ 5.13(0.04) 10−5 7.11(0.13) 10−2 8.43(0.18) 10−2 0.44(0.01)

Amber14 (SPC/E)
Li+ 3.30(0.01) 10−4 5.05(0.06) 10−4 5.93(0.12) 10−4 0.21(0.01)
Na+ 1.39(0.01) 10−4 1.22(0.02) 10−2 1.68(0.04) 10−2 0.41(0.01)
K+ 6.71(0.01) 10−5 4.22(0.10) 10−2 6.34(0.15) 10−2 0.49(0.02)
Cs+ 4.28(0.01) 10−5 1.76(0.02) 2.05(0.04) 0.50(0.02)
Cl− 1.20(0.01) 10−4 1.15(0.02) 10−1 1.48(0.03) 10−1 0.40(0.01)
Br− 8.17(0.03) 10−5 4.99(0.01) 10−1 6.48(0.13) 10−1 0.43(0.01)
I− 4.87(0.04) 10−5 1.14(0.02) 1.48(0.03) 0.49(0.01)

Mg2+ 8.82(0.01) 10−5 1.25(0.03) 10−2 1.79(0.05) 10−2 0.066(0.003)
Ca2+ 6.04(0.01) 10−5 5.71(0.09) 10−2 7.06(0.13) 10−2 1.06(0.04)
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